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Extreme case of density scaling: The Weeks-Chandler-Andersen system at low temperatures
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This paper studies numerically the Weeks-Chandler-Andersen system, which is shown to obey hidden scale
invariance with a density-scaling exponent that varies from below 5 to above 500. This unprecedented variation
makes it advantageous to use the fourth-order Runge-Kutta algorithm for tracing out isomorphs. Good isomorph
invariance of structure and dynamics is observed over more than three orders of magnitude temperature variation.
For all state points studied, the virial potential-energy correlation coefficient and the density-scaling exponent
are controlled mainly by the temperature. Based on the assumption of statistically independent pair interactions,
a mean-field theory is developed that rationalizes this finding and provides an excellent fit to data at low
temperatures.
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I. INTRODUCTION

Density scaling is an important experimental discovery
of the past 20 years’ liquid-state research, which by now
has been demonstrated for high-pressure data of hundreds of
systems [1–4]. The crucial insight is that, in order to char-
acterize a thermodynamic state point, the relevant variable
supplementing the temperature T is not the pressure p, but
the number density ρ ≡ N/V (considering N particles in vol-
ume V ) [1–6]. If γ is the so-called density-scaling exponent,
plotting data for the dynamics as a function of ργ /T results
in a collapse [1–4]. In other words, the dynamics depends
on the two variables of the thermodynamic phase diagram
only via the single variable ργ /T . This provides a significant
rationalization of data, as well as an important hint for theory
development. It should be noted, though, that density scaling
does not apply universally; for instance, it usually works better
for van der Waals liquids than for hydrogen-bonded liquids
[2,4].

Some time after these developments were initiated, a
framework for density scaling was provided in terms of the
isomorph theory [7,8], which links density scaling to Rosen-
feld’s excess-entropy scaling method [9,10]. According to
isomorph theory, any system with strong correlations between
the fixed-volume virial and potential-energy equilibrium fluc-
tuations has curves of invariant structure and dynamics in the
thermodynamic phase diagram. These “isomorphs” [7,11] are
defined as curves of constant excess entropy Sex, which is the
entropy minus that of an ideal gas at the same temperature and
density (Sex < 0 because any system is more ordered than an
ideal gas).
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If the potential energy is denoted by U and the virial by W ,
their Pearson correlation coefficient R is defined by

R = 〈�U�W 〉√
〈(�U )2〉〈(�W )2〉

. (1)

Here � denotes the deviation from the thermal average and
the angular brackets are canonical (NV T ) averages. The prag-
matic criterion defining strong correlation is R > 0.9 [12,13].
Systems with strong correlations have good isomorphs, i.e.,
approximate invariance of structure and dynamics along the
configurational adiabats [7]. Such systems are termed R-
simple, signaling the simplification of having an effectively
one-dimensional thermodynamic phase diagram in regard to
structure and dynamics when these are given in so-called
reduced units (discussed below). Hydrogen-bonded systems
usually have R < 0.9 and are thus not R-simple [12]; this
explains why density scaling does not apply universally.

Isomorph theory is only rigorously correct in the unreal-
istic case of an Euler-homogeneous potential-energy function
that is realized, for instance, in systems with inverse-power-
law (IPL) pair potentials [14]. Nevertheless, isomorph-theory
predictions apply to a good approximation for many systems,
e.g., Lennard-Jones-type liquids [7,15–17], the exponential
pair-potential system at low temperatures [18,19], simple
molecular models [20–22], polydisperse systems [23], crys-
tals [24], nanoconfined liquids [25], polymerlike flexible
molecules [26], metals [27,28], and Yukawa plasmas [29,30].

In some cases, isomorphs are well described by the
equation ργ /T = const with a constant γ [31], which as
mentioned accounts for density scaling as discussed in most
experimental contexts [2]. Isomorph theory, however, does
not require γ to be constant throughout the thermodynamic
phase diagram, and γ indeed does vary in most simulations
[16,32–34]. The general isomorph-theory definition of the
density-scaling exponent γ at a given state point [7,10] is

γ ≡
(

∂ ln T

∂ ln ρ

)
Sex

= 〈�U�W 〉
〈(�U )2〉 . (2)
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The second equality gives the statistical-mechanical expres-
sion of γ in terms of the constant-volume canonical-ensemble
fluctuations of potential energy and virial.

The question whether experimental density-scaling expo-
nents are strictly constant throughout the phase diagram has
recently come into focus [35,36]. In simulations, isomorphs
are in many cases described by the equation [1,8,32,37]

h(ρ)

T
= const, (3)

in which h(ρ) is a function of the density. For the Lennard-
Jones (LJ) system, for instance, one has h(ρ) ∝ (γ0/2 −
1)(ρ/ρ0)4 − (γ0/2 − 2)(ρ/ρ0)2, in which γ0 is the density-
scaling exponent at a reference state point of density ρ0

[32,37]. For isomorphs given by Eq. (3), Eq. (2) implies

γ = d ln h(ρ)

d ln ρ
. (4)

We see that unless h(ρ) is a power-law function, the density-
scaling exponent depends on the density. More generally, γ

also depends on the temperature [33]. This is the case, for in-
stance, for the LJ system approaching very high temperatures:
For T → ∞ at a fixed density, the LJ system is dominated by
the repulsive r−12 term of the pair potential, implying that γ

approaches 12
3 = 4 in this limit and that Eq. (3) cannot apply.

A likely reason that many experiments are well described
by a constant γ is the fact that density often does not vary
much. As shown by Casalini and co-workers [36,38], when
extreme pressure is applied, the density-scaling exponent is
no longer constant. Although it is now clear that γ is not
a material constant [35,36], its variation is as mentioned
often insignificant in experiments. This paper gives an ex-
ample in which γ varies dramatically. We present a study of
the noted Weeks-Chandler-Andersen (WCA) system [39,40]
that 50 years ago introduced the idea of a cutoff at the
potential-energy minimum of the LJ system [41–46]. This
idea is still very popular and used in many different contexts
[47–53].

We show below that the WCA system has strong virial
potential-energy correlations and thus is R-simple. We find
that γ varies by more than two decades in the investigated
part of the phase diagram. In comparison, the LJ system has a
density-scaling exponent that varies less than 50% throughout
the phase diagram. To the best of our knowledge, the γ vari-
ation of the WCA system is much larger than has so far been
reported for any system in simulations or experiments. For all
state points studied, we find that γ depends primarily on the
temperature. A mean-field theory is presented that explains
this observation and accounts well for the low-temperature
and low-density behavior of the system.

After providing a few technical details in Sec. II, we
present the thermodynamic phase diagram with the state
points studied numerically in Sec. III. The paper’s focus is on
three isomorphs, numbered 1–3. Each of these is associated
with an isotherm and an isochore, the purpose of which is
to put into perspective the isomorph variation of structure
and dynamics by comparing it to what happens when a sim-
ilar density or temperature variation is studied, keeping the
other variable constant. In Sec. III we also give data for
the virial potential-energy correlation coefficient R and the

density-scaling exponent γ , demonstrating that all state points
studied have strong correlations (R > 0.9) while γ varies from
about 5 to above 500. A mean-field theory is developed in
Sec. IV, predicting that R and γ both depend primarily on the
temperature. Section V presents simulations of the structure
and dynamics along the isotherms, isochores, and isomorphs.
Despite the extreme γ variation, which implies that an approx-
imate inverse-power-law description fails entirely, we find
good isomorph invariance of the reduced-unit structure and
excellent isomorph invariance of the reduced-unit dynamics.
Section VI gives a brief discussion. The Appendix details the
implementation of the fourth-order Runge-Kutta method for
tracing out isomorphs and compares its predictions to those of
the previously used simple Euler method.

II. MODEL AND SIMULATION DETAILS

Liquid model systems are often defined in terms of a pair
potential v(r). If ri j = |ri − r j | is the distance between parti-
cles i and j, the potential energy U as a function of all particle
coordinates R ≡ (r1, r2, . . . , rN ) is given by

U (R) =
∑
i< j

v(ri j ). (5)

We study in this paper the single-component WCA system
[39], which cuts the standard LJ pair potential at its minimum
and subsequently shifts the potential by adding a constant such
that the minimum is lifted to zero [39,54]. The result is the
purely repulsive pair potential given by

v(r) =
{

4ε
[(

r
σ

)−12 − (
r
σ

)−6] + ε (r < 21/6σ )

0 (r > 21/6σ ).
(6)

Like the LJ pair potential, v(r) involves two parameters: σ that
reflects the particle radius and ε that is the numerical value of
the energy of the LJ potential at its minimum at r = 21/6σ .

The WCA system was studied by molecular dynamics
(MD) simulations in the canonical (NV T ) ensemble using the
Nosé-Hoover thermostat [55]. The simulated system consisted
of 4000 particles in a cubic box with periodic boundaries. The
simulations were performed using the open-source Roskilde
University molecular dynamics software (RUMD) that runs
on GPUs (graphics processing units) [56,57]. For updating
the system state, the leapfrog algorithm was employed with
a reduced-unit time step of 0.0025. At each state point, a
simulation first ran for 25×106 time steps for equilibration.
This was followed by 50×106 time steps for the production
run.

The simulations were conducted in the reduced-unit sys-
tem of isomorph theory in which the energy unit is e0 ≡
kBT , the length unit is l0 ≡ ρ−1/3, and the time unit is t0 ≡
ρ−1/3√m/kBT , where m is the particle mass [7]. A few
simulations were also carried out in MD units to check for
consistency. Using reduced units in a simulation implies that
density and temperature are both equal to unity; the state point
is changed by varying σ and ε, i.e., by changing the pair
potential. In contrast, performing simulations in MD units
implies setting σ = ε = 1, i.e., fixing the pair potential and
varying ρ and T in order to change the state point. The two
methods are mathematically equivalent, of course. Simulating
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FIG. 1. (a) The three isomorphs in focus (denoted by 1–3) shown as full curves in the temperature-density thermodynamic phase diagram.
Each isomorph was generated as described in the text and in the Appendix, starting from the reference state point (ρ0, T0 ) with ρ0 = 0.84 and
T0 equal to 0.6, 1.0, and 2.0, respectively. A fourth isomorph (denoted by 0) marked by the red dashed line is in the supercooled liquid phase.
The horizontal lines are three isotherms and the vertical lines are three isochores, which are studied in order to compare their structure and
dynamics variation to those along the isomorphs. The freezing and melting lines are shown as yellow and orange lines, respectively [41,45];
note that these are parallel to the isomorphs. (b) The four isomorphs shown in a logarithmic temperature-density phase diagram. The slope γ

[Eq. (2)] increases significantly as the temperature is lowered along an isomorph. The stars mark the lowest simulated temperature and density
on each isomorph; these state points are used in Fig. 9 below.

in reduced units is convenient because the time step is then au-
tomatically adjusted to take into account the thermal velocity.

Reduced quantities are generally marked by a tilde, for
instance, r̃ ≡ r/l0 = ρ1/3r. These units are used below for all
quantities except for the density and the temperature; ther-
modynamic state points are reported by giving density and
temperature in standard MD units, i.e., ρ is given in units of
σ−3 and T in units of ε/kB.

III. SIMULATED STATE POINTS

Figure 1(a) shows the thermodynamic phase diagram of the
WCA system. The yellow and orange lines are the freezing
and melting lines [41,45]. The blue, green, and purple lines
marked 1, 2, and 3, respectively, are the isomorphs of main
focus below, while the red dashed line is a fourth isomorph
marked 0, which is in the liquid-solid coexistence region.
Note that the freezing and melting lines are both approximate
isomorphs [7,58].

Each isomorph was traced out starting from a reference
state point of density 0.84. Isomorphs are often identified by
integrating Eq. (2) using the simple first-order Euler integra-
tion scheme for density changes of order 1% [7,16,20]. The
extreme variation of γ found for the WCA system, however,
means that Euler integration can only be used reliably for
very small density changes and a more accurate integration
scheme is called for. We used the fourth-order Runge-Kutta
integration (RK4) as detailed in the Appendix, where it is
demonstrated that RK4 is 10–100 times more computationally
efficient than Euler integration for tracing out isomorphs with
a given accuracy. Data for selected state points of the four
isomorphs are listed in Table I.

In order to investigate the degree of isomorph invariance
of the reduced-unit structure and dynamics (Sec. V), for each
isomorph we also performed simulations along an isotherm
and an isochore, limiting all simulations to state points in the

equilibrium liquid phase. Figure 1(b) shows the isomorphs
and the melting and freezing lines in a diagram with log-
arithmic density and temperature axes. In this diagram the
density-scaling exponent γ is the isomorph slopes [compare
Eq. (2)], which increases significantly along each isomorph as
the density is lowered.

A configurational adiabat is an isomorph only for state
points with strong virial potential-energy correlations, i.e.,
when R � 0.9 at the relevant state points in which R is
given by Eq. (1). This condition is validated in Fig. 2, which
shows R for all state points simulated. Figure 2(a) shows R
as a function of the density, while Fig. 2(b) shows R as a
function of the temperature. We see that R increases with
increasing density and temperature, approaching unity. This
reflects the fact that the (r/σ )−12 term of the pair poten-
tial dominates the interactions in these limits and that an
IPL pair potential has R = 1. An important observation from
Fig. 2 is that strong correlations are maintained even at the
lowest densities and temperatures studied. A comparison of
Figs. 2(a) and 2(b) reveals that R is primarily controlled by
the temperature. This may be understood from a mean-field
theory, which assumes that the interactions at low tempera-
tures and densities are dominated by single-pair interactions
(Sec. IV).

Figure 3 gives data for the density-scaling exponent γ at
the state points simulated, plotted in different ways using the
same symbols as in Fig. 2. We see that γ increases monoton-
ically as either density, pressure, or temperature is lowered,
eventually reaching values above 500. Figure 3(a) shows γ

as a function of the density ρ. Clearly, knowledge of ρ is
not enough to determine γ , implying that Eq. (4) does not
apply for the WCA system. It has been suggested that γ is
controlled by the pressure [59]. This works better than the
density for collapsing data, but there is still some scatter
[Fig. 3(b)]. Figure 3(c) plots γ as a function of the temper-
ature. We here observe a quite good collapse, concluding that
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TABLE I. State-point data for (a) isomorph 0, (b) isomorph 1, (c) isomorph 2, and (d) isomorph 3 (see Fig. 1).

ρσ 3 kBT/ε Pσ 3/ε γ R U/Nε W/Nε

(a)
1.714 13.41 464.2 4.288 0.9995 50.67 257.5
1.636 10.98 357.7 4.329 0.9993 39.92 207.7
1.493 7.360 211.9 4.435 0.9988 24.52 134.6
1.366 4.933 125.2 4.582 0.9978 14.84 86.70
1.254 3.307 73.86 4.787 0.9961 8.841 55.59
1.156 2.217 43.60 5.068 0.9936 5.190 35.49
1.071 1.486 25.81 5.445 0.9902 3.007 22.60
0.9985 0.9960 15.35 5.939 0.9860 1.721 14.38
0.9364 0.6677 9.200 6.571 0.9808 1.298 9.157
0.9091 0.5466 7.145 6.945 0.9782 0.7332 7.313
0.8610 0.3664 4.341 7.835 0.9726 0.4117 4.675
0.8400 0.3000 3.396 8.353 0.9698 0.3079 3.743
0.8207 0.2456 2.664 8.932 0.9671 0.2300 2.100
0.7592 0.1104 1.034 11.94 0.9566 0.0711 1.251
0.7168 0.04960 0.4159 16.42 0.9475 0.0218 0.5306
0.6877 0.02230 0.1725 23.09 0.9402 0.006653 0.2285
0.6680 0.009059 0.06587 33.06 0.9349 0.001742 0.08984
0.6546 0.004972 0.03509 47.83 0.9304 0.0007115 0.04379
0.6456 0.002021 0.01382 69.90 0.9277 0.0001853 0.01938
0.6353 0.0004081 0.002703 152.0 0.9243 0.00001690 0.003846

(b)

1.565 14.72 340.4 4.337 0.9993 39.48 202.9
1.495 12.05 262.7 4.385 0.9991 31.11 163.7
1.366 8.078 156.1 4.506 0.9983 19.14 106.2
1.252 5.415 92.69 4.671 0.9971 11.61 68.63
1.151 3.630 55.03 4.893 0.9954 6.956 44.18
1.024 1.992 25.27 5.366 0.9913 3.149 22.70
0.9527 1.335 15.12 5.799 0.9875 1.830 14.53
0.8916 0.8951 9.101 6.351 0.9831 1.053 9.310
0.8400 0.6000 5.520 7.041 0.9782 0.6015 5.972
0.7961 0.4022 3.377 7.899 0.9730 0.3412 3.840
0.7590 0.2696 2.085 8.955 0.9677 0.1925 2.477
0.7280 0.1807 1.299 10.25 0.9624 0.1081 1.603
0.7019 0.1211 0.8161 11.84 0.9574 0.06048 1.041
0.6708 0.06648 0.4129 14.88 0.9504 0.02517 0.5491
0.6543 0.04456 0.2646 17.48 0.9465 0.01399 0.3598
0.6245 0.01639 0.08940 26.75 0.9380 0.003198 0.1268
0.6060 0.006031 0.03111 42.01 0.9319 0.0007245 0.04532
0.5945 0.002219 0.01105 67.19 0.9282 0.0001632 0.01637
0.5787 0.00002724 0.0001290 579.6 0.9222 0.0000002251 0.0001957

(c)

1.403 13.46 219.9 4.415 0.9989 27.20 143.3
1.341 11.02 169.8 4.474 0.9985 21.39 115.6
1.228 7.389 101.2 4.620 0.9976 13.12 75.04
1.128 4.953 60.34 4.814 0.9961 7.946 48.53
1.040 3.320 36.01 5.070 0.9940 4.756 31.30
1.001 2.718 27.85 5.225 0.9926 3.664 25.11
0.9637 2.226 21.56 5.399 0.9919 2.814 20.14
0.8972 1.492 12.96 5.820 0.9876 1.648 12.95
0.8675 1.221 10.07 6.071 0.9856 1.256 10.39
0.8400 1.000 7.837 6.350 0.9834 0.9557 8.330
0.8146 0.8187 6.110 6.663 0.9811 0.7256 6.683
0.7494 0.4493 2.930 7.828 0.9737 0.3141 3.461
0.6987 0.2466 1.432 9.411 0.9659 0.1342 1.803
0.6295 0.07427 0.3613 14.45 0.9515 0.02378 0.4998
0.5945 0.02734 0.1204 21.64 0.9420 0.005505 0.1752
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TABLE I. (Continued.)

ρσ 3 kBT/ε Pσ 3/ε γ R U/Nε W/Nε

0.5694 0.008230 0.03360 36.68 0.9337 0.0009355 0.05084
0.5591 0.003698 0.01464 53.01 0.9300 0.0002851 0.02248
0.5507 0.001360 0.005242 85.02 0.9268 0.00006423 0.008158
0.5436 0.0002747 0.001034 185.1 0.9238 0.000005878 0.001628

(d)

1.261 14.79 160.7 4.468 0.9986 21.25 112.7
1.206 12.10 124.4 4.531 0.9982 91.04 16.73
1.106 8.110 74.47 4.687 0.9971 10.30 59.25
1.060 6.640 57.64 4.781 0.996 8.044 47.75
0.9766 4.451 34.57 5.011 0.9946 4.870 30.95
0.9389 3.644 26.80 5.148 0.9934 3.774 24.90
0.9036 2.984 20.79 5.304 0.9922 2.917 20.03
0.8400 2.000 12.55 5.675 0.9890 1.730 12.94
0.8114 1.638 9.771 5.892 0.9873 1.327 10.41
0.7603 1.098 5.947 6.410 0.9833 0.7760 6.725
0.6787 0.4932 2.248 7.836 0.9741 0.2592 2.820
0.6196 0.2216 0.8762 9.977 0.9641 0.08440 1.192
0.5776 0.0996 0.3520 13.15 0.9548 0.02690 0.5098
0.5481 0.04474 0.1453 17.89 0.9466 0.008466 0.2204
0.5276 0.02010 0.06135 24.92 0.9395 0.002630 0.09617
0.5135 0.009033 0.02636 35.42 0.9347 0.0008093 0.04231
0.5038 0.004059 0.01148 50.9571 0.9305 0.0002475 0.01873
0.4973 0.001824 0.005048 74.1566 0.9278 0.00007535 0.008328
0.4920 0.0006709 0.001824 119.9858 0.9254 0.00001656 0.003037

γ is primarily controlled by the temperature. Figures 3(d)–3(f)
show data for all the state points simulated in logarith-
mic plots as functions of density, pressure, and temperature,
respectively.

IV. MEAN-FIELD THEORY FOR R
AND γ AT LOW DENSITIES

This section presents a mean-field theory for estimat-
ing the virial potential-energy correlation coefficient R
and the density-scaling exponent γ . Along the lines of

Refs. [18,33,60,61], we assume that the individual pair inter-
actions are statistically independent; this is expected to be a
good approximation at relatively low densities.

In MD units the truncated WCA pair potential (6) is

v(r) = 4r−12 − 4r−6 + 1 for r < rc ≡ 21/6 = 1.122 . . .

(7)

and zero otherwise. The virial of the configuration R is given
by W (R) = ∑N

i> j w(ri j ), in which the pair virial is defined
as w(r) ≡ −(r/3)v′(r) [55]. Although the WCA potential is

FIG. 2. Virial potential-energy correlation coefficient R [Eq. (1)] for all state points studied (Fig. 1): (a) R as a function of the density,
(b) R as a function of the temperature. There are strong correlations everywhere (R > 0.9). The horizontal dash-dotted lines mark the low-
temperature low-density limit of the mean-field-theory prediction R0 = √

8/3π = 0.921 [Eq. (20)]. The correlations are mainly controlled by
the temperature.
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FIG. 3. Density-scaling exponent γ defined in Eq. (2) for the state points studied (Fig. 1). Closed symbols are isomorph state-point data
and half open circles are isochore and isotherm data. Data are given for (a)–(c) state points with γ below 50 and (d)–(f) all state points: (a) γ

as a function of the density, (b) γ as a function of the pressure, (c) γ as a function of the temperature, (d) γ as a function of the density in
a log-log plot, (e) γ as a function of the pressure in a log-log plot, and (f) γ as a function of the temperature in a log-log plot. γ is clearly
primarily a function of the temperature. The dashed line in (f) marks the low-temperature limit of the mean-field theory [Eq. (19)].

our primary focus, the arguments given below apply to any
truncated purely repulsive potential.

In general, the partition function of the con-
figurational degrees of freedom is given by Z ∝∫

V N dr1 · · · drN exp[−∑
i< j v(ri j )/kBT ]. At low densities it

is reasonable to regard the pair distances as uncorrelated,
i.e., to treat the interactions in a mean-field way.
This leads to the approximation Z ∝ ZN

s , in which
Zs = ∫

V dr exp[−vs(r)/kBT ] is the partition function of
a single particle moving in the potential vs(r) of all other
particles frozen in space. In the low-density limit, none of the
frozen particles overlap and Zs has two contributions, one for
the positions for which v(r) = 0 and one for the positions at
which the particle interacts with one of the frozen particles.
The former is the free volume that in the low-density limit
approaches the entire volume V . The latter is N times the
following integral (putting, for simplicity, kB = 1 in this
section):

Z1(T ) =
∫ rc

0
4πr2 exp

(
−v(r)

T

)
dr. (8)

In terms of Z1(T ) the single-particle partition function is thus
in the thermodynamic limit given by

Zs(ρ, T )

N
= Z1(T ) + 1

ρ
. (9)

Based on the above, any pair-defined quantity A(r) that
is zero for r > rc has an expectation value that is computed
as (in which p(r) = 4πr2 exp[−v(r)/T ] is the unnormalized

probability)

〈A〉 =
∫ rc

0

A(r)p(r)dr

Zs(ρ, T )
. (10)

Based on Eqs. (2) and (1), one gets

γ (ρ, T ) = 〈wv〉 − 〈w〉〈v〉
〈v2〉 − 〈v〉2

(11)

and

R(ρ, T ) = 〈wv〉 − 〈w〉〈v〉√
(〈w2〉 − 〈w〉2)(〈v2〉 − 〈v〉2)

. (12)

Figure 4 compares the predictions of the mean-field
theory (lines) to data along isomorphs and isochores. There
is good overall agreement. Systematic deviations are visible
in Figs. 4(b) and 4(d), however, which focus on densities that
are not low enough to avoid frozen-particle overlap.

We proceed to discuss the low-density limit in which Zs →
∞. Terms that involve a single expectation value (〈v2〉, 〈w2〉,
and 〈wu〉) scale as 1/Zs, while terms that involve a multi-
plication of expectation values, i.e., 〈v〉2, 〈w〉2, and 〈v〉〈w〉,
scale as 1/Z2

s . Consequently, at low densities one can ne-
glect terms that involve multiplications of expectation values
[18,33,60,61], leading to

γ (T ) = 〈wv〉/〈v2〉 (13)

and

R(T ) = 〈wv〉/
√

〈w2〉〈v2〉. (14)
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FIG. 4. Comparison of the predictions of the mean-field theory for γ and R as functions of the temperature (lines) to simulation results.
(a) and (c) Results along the three isomorphs. (b) and (d) Results along the three isochores, focusing on higher densities where the mean-field
theory is not expected to be accurate.

Note that these averages do not depend on Zs since both
numerators and denominators scale as 1/Zs. This implies that
γ and R at low densities depend only of T , which explains the
observation in Fig. 3.

Consider now the further assumption of a low temperature.
In that case the probability distribution p(r) concentrates near
rc and one can expand around x ≡ rc − r = 0 by writing the
pair potential as

v(x) = k1x + k2x2

2
+ k3x3

6
+ · · · . (15)

The pair virial then becomes [15]

w(x) = (rc − x)

(
k1

3
+ k2x

3

)
+ k3rcx2

6
+ O(x3). (16)

For the WCA potential k1 = 0 and k2 = 36 3
√

4. Since p(x) is
concentrated near x = 0, the upper limit of the integral (17)
may be extended to infinity, leading to

〈A〉 =
∫ ∞

0

A(x)p(x)dx

Z
(T → 0), (17)

in which

p(x) = 4π (rc − x)2 exp

(
−k2x2

2T

)
. (18)

The Gaussian integrals can be evaluated by hand or, e.g., using
the SYMPY PYTHON library for symbolic mathematics. We find

that γ and R are given by

γ0 = 4rc
√

2k2

9
√

πT
= 16

3
√

πT
(T → 0) (19)

and

R0 =
√

8

3π
= 0.921 . . . (T → 0). (20)

Figure 5 shows the mean-field predictions for γ and R at
T = 0.01 plotted as a function of the density. As expected, the
theory works well at low densities, even though one is here
still not quite at the T → 0 limit marked by the horizontal
lines.

V. VARIATION OF STRUCTURE AND DYNAMICS ALONG
ISOTHERMS, ISOCHORES, AND ISOMORPHS

The considerable γ variation of the WCA system
means that it cannot be described approximately by an
Euler-homogeneous potential-energy function. This section
investigates to which degree the reduced-unit structure and
dynamics are, nevertheless, invariant along isomorphs 1–3.
Isomorph invariance is rarely exact, so in order to put the
simulation results into perspective, we present also results
for the variation of the reduced-unit structure and dynamics
along isotherms and isochores. As a measure of the structure,
we look at the radial distribution function (RDF) as a function
of the radial distance. As a measure of the dynamics, we
look at the mean-square displacement (MSD) as a function
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FIG. 5. Density dependence of (a) γ and (b) R at T = 0.01. The full blue lines are the mean-field theory predictions. The horizontal black
dashed lines mark the low-temperature limits of the mean-field theory. Results are also shown for high-density samples that crystallized during
the simulations.

FIG. 6. Reduced-unit radial distribution functions for the three isotherms, isochores, and isomorphs (Fig. 1). The green curves give
the lowest temperature and density, the orange curves give the intermediate temperature and density, and the blue curves give the highest
temperature and density. Although the first-peak maximum is not entirely isomorph invariant, in comparison to isotherms and isochores
we see an excellent RDF invariance along the isomorphs. This is the case even though the density variation of the isotherms and the
temperature variation of the isochores are somewhat smaller than those of the isomorphs (compare Fig. 1). For the isotherms, the green
curves give data for (ρ, T ) = (0.56, 0.60), (0.82, 2.72), and (0.81, 12.1); the orange curves for (ρ, T ) = (0.69, 0.60), (1.0, 2.72), and
(1.21, 12.1); and the blue curves for (ρ, T ) = (0.84, 0.60), (1.22, 2.72), and (1.47, 12.1). For the isochores, the green curves give data for
(ρ, T ) = (0.84, 0.33), (1.00, 0.82), and (1.21, 2.44); the orange curves for (ρ, T ) = (0.84, 1.99), (1.00, 3.32), and (1.21, 6.64); and the blue
curves for (ρ, T ) = (0.84, 14.72), (1.00, 13.46), and (1.21, 14.78). For the isomorphs, the green curves give data for the reference state points
(ρ, T ) = (0.84, 0.60), (0.84, 1.00), and (0.84, 2.00); the orange curves for (ρ, T ) = (1.06, 2.43), (1.04, 3.32), and (0.94, 3.64); and the blue
curves for (ρ, T ) = (1.57, 14.72), (1.40, 13.46), and (1.26, 14.78).
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FIG. 7. Reduced-unit radial mean-square displacement plotted against time for the three isotherms, isochores, and isomorphs (Fig. 1). The
state points and color codings are the same as in Fig. 6. The dynamics is isomorph invariant to a very good approximation.

of the time, as well as of the reduced diffusion coefficient D̃
identified from the long-time MSD.

Starting with structure, Fig. 6 shows reduced-unit RDF
data along the three isotherms, isochores, and isomorphs of
Fig. 1. The isotherms span almost the same density range
and the isochores span almost the same temperature range
as the corresponding isomorphs (restricted to the equilibrium
liquid phase, i.e., to data above the freezing line). Along the
isomorphs the RDFs show some variation at the first peak
maximum (bottom row), but in comparison to the isotherms
and isochores, there is excellent overall isomorph invariance
of the RDF.

For all three isomorphs we find that the peak height in-
creases as the temperature decreases. This is an effect of
larger γ resulting in a higher first peak, which may be un-
derstood as follows. Consider the IPL pair-potential system
with v(r) ∝ r−n, which has γ = n/3 and perfect isomorphs
[62]. The larger n is, the more harshly repulsive the forces
are. From the Boltzmann probability of finding two particles
at the distance r, proportional to exp[−v(r)/kBT ], it follows
that particle near encounters become less likely as n → ∞,
thus suppressing the RDF at distances below the first peak.
If there is isomorph invariance of the number of particles
within the first coordination shell, as n increases some of the
RDF must therefore move from small r to larger r within
the first coordination shell, resulting in a higher first peak.
This argument has recently been confirmed by the observation
that the bridge function, a fundamental quantity of liquid-state
theory [54], is isomorph invariant to a very good approxima-

tion [63]. A similar increase of the height of the first RDF
peak with increasing γ has been observed for the exponential
system (Fig. 5 in Ref. [33]). In that case it was a much less
dramatic effect, however, because the exponential system’s
γ variation at the investigated state points covered less than
a factor of 3 compared to more than a factor of 100 for the
WCA state points studied here. Interestingly, for both systems
the data imply that γ → ∞ as T → 0 along an isomorph, i.e.,
both systems become more and more hard-sphere-like as the
temperature is lowered.

Proceeding to investigate the dynamics, Fig. 7 shows data
for the reduced-unit MSD as a function of the reduced time
along the three isotherms, isochores, and isomorphs. There
is only invariance along the isomorphs. Along the isotherms,
the lowest density (green) gives rise to the largest reduced
diffusion coefficient. This is because the mean collision length
increases when the density is decreased. Along the isochores,
the lowest temperature (green) has the smallest reduced dif-
fusion coefficient. This is because the effective hard-sphere
radius increases when temperature is decreased, leading to a
smaller mean-collision length. In MD units, the MSDs are
also not invariant along the isotherms or isochores (data not
shown); thus the lack of invariance for the isotherms and
isochores is not a consequence of the use of reduced units. In
regard to the isomorph data, with Fig. 6 in mind we conclude
that the noninvariant first-peak heights of the RDFs along
the isomorphs have little influence on the dynamics. This
is consistent with expectations from liquid-state quasiuniver-
sality, according to which many systems have structure and
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FIG. 8. Diffusion coefficients along isomorphs 1–3 in MD units
(top row) and in reduced units (bottom row), plotted as functions
of the logarithm of the temperature. When given in MD units, the
diffusion coefficients vary significantly along the isomorphs, while
they are fairly constant in reduced units. This illustrates the impor-
tance of using reduced units when checking for isomorph invariance.
From end point to end point of the isomorphs, the variation in the
reduced diffusion coefficient D̃ is, respectively, 39%, 23%, and 14%.
The corresponding numbers are 1000%, 880%, and 549% along the
isochores and 214%, 893%, and 305% along the isotherms.

dynamics similar to those of the exponential generic liquid
system, which as mentioned also exhibits varying first-peak
heights along its isomorphs [33].

The reduced diffusion coefficient D̃ ≡ ρ1/3√m/kBT D is
extracted from the data in Fig. 7 by making use of the fact
that the long-time reduced MSD is 6D̃t̃ . Figure 8 shows how
both D and D̃ vary along the three isomorphs. The top row
demonstrates a large variation in D along each isomorph. The
bottom row shows D̃, which is rigorously invariant for a sys-
tem with perfect isomorphs (R = 1). This is not the case for
the WCA system, but the variation is below 40% for all three
isomorphs in situations where the temperature varies by more
than four orders of magnitude. Thus the reduced diffusion
coefficient is isomorph invariant to a good approximation.

Figure 8 suggests that D̃ stabilizes as T → 0, and for each
isomorph one can tentatively identify this low-temperature
limit. Figure 9 plots estimates of these limiting values ob-
tained at the lowest density simulated on each isomorph.
An obvious question is which density corresponds to D̃ = 0.
At very low temperature, because γ becomes very large the
WCA system behaves increasingly as a system of hard spheres
(HSs). The disordered HS system has a maximum density
corresponding to the random closed-packed structure at
roughly 64% packing fraction. In Fig. 9, the black star at
D̃ = 0 marks the corresponding density. Our data are consis-
tent with a convergence to this point.

VI. DISCUSSION

We have studied three isomorphs of the WCA system and
showed that along them the density-scaling exponent varies
by more than a factor of 100. This extreme variation means
that the WCA system cannot be considered as an effective

FIG. 9. Reduced diffusion coefficients at the lowest temperature
and density for isomorphs 1–3 supplemented by data for isomorph
0, plotted versus the density of the lowest-temperature state point
simulated on the isomorph in question. The points are fitted by a
cubic spline function (dashed curve), which by construction goes
through the random close packing (rcp) density (ρ = 0.864) marked
by the half black star on the y axis. As rcp is approached, one expects
D̃ → 0 because the system jams. This is consistent with our data.
The rcp density is calculated as follows. With rc = 21/6 one finds
Vsphere = πr3

c /6 = 0.740. The rcp volume fraction is roughly 64%;
setting this equal to ρVsphere, one arrives at ρ = 0.864.

IPL system [15]. In the LJ case, the pair potential may be
approximated by the so-called extended IPL pair potential,
which is a sum of an IPL term ∼r−18, a constant, and a term
proportional to r [15]. The latter two terms contribute little
to the fluctuations of virial and potential energy [15], which
explains the strong correlations of the LJ system as well as
why γ is close to 6 (not to 4 as one might guess from the
repulsive r−12 term of the potential). The WCA situation is
very different. Because the WCA system is purely repulsive,
it has no liquid-gas phase transition and no liquid-gas
coexistence region. This means that isomorphs may be
studied over several orders of magnitude of temperature and,
in particular, followed to very low temperatures. Interestingly,
even here the strong-correlation property is maintained. At
the same time, γ increases dramatically. Despite this, the
reduced-unit structure and dynamics are both invariant to
a good approximation along the isomorphs. The significant
difference between the LJ and WCA systems in regard to
isomorph properties is also emphasized by the fact that the
density-scaling exponent γ of the LJ system is primarily a
function of the density and well described by Eq. (3). This is
explained by the above-mentioned approximate extended IPL
pair-potential argument [15].

The finding that R and γ of the WCA system are both
primarily functions of the temperature is accounted for by a
mean-field theory based on the assumption of statistically in-
dependent pair interactions. The same feature is observed for
the exponential pair-potential system [33], and also here both
R and γ at low densities primarily depend on the temperature.
Another situation where this is expected to apply is for the re-
pulsive Yukawa pair-potential system at low densities [29,30].
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In summary, the WCA systems presents a striking case
where the density-scaling exponent is very far from being con-
stant throughout the thermodynamic phase diagram [35,36].
Nevertheless, the system is R-simple and has good isomorph
invariance of the structure and dynamics.
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APPENDIX: USING THE RUNGE-KUTTA METHOD
FOR TRACING OUT ISOMORPHS EFFICIENTLY

The density-scaling exponent γ is the slope of the lines of
constant Sex in the (ln T, ln ρ) plane [Eq. (2)]. By numerical
integration one can, from Eq. (2), compute the lines of con-
stant Sex, the configurational adiabats, which are isomorphs
for any R-simple system. The density-scaling exponents re-
quired for the integration are determined from the thermal
equilibrium virial potential-energy fluctuations in an NV T
simulation [Eq. (2)]. In the following we denote the theoretical
slope by f , i.e., the slope without the unavoidable statistical
noise of any MD simulation. Let (x, y) be (ln ρ, ln T ) [occa-
sionally it is better to choose instead (x, y) = (ln T, ln ρ)]. In
this notation, let

dy

dx
= f (x, y) (A1)

be the first-order differential equation to be integrated. Sev-
eral methods have been developed to do this numerically
[64]. The simplest one is Euler’s method. Imagine that one
has estimated the slope at some point (xi, yi ) by computing
γ = f (xi, yi ) from the virial potential-energy fluctuations by
means of Eq. (2). The point (xi+1, yi+1) is then calculated from

xi+1 = xi + h,

yi+1 = yi + h f (xi, yi ) + O(h2). (A2)

Here h is the size of the numerical integration step along
x. The truncation error on the estimated yi+1 scales as h2.

The statistical error on the numerical calculation of the slope
f scales as 1/

√
τ , where τ is the simulation time. Thus,

the statistical error on yi+1 scales as h/
√

τ (rounding er-
rors from the finite machine precision are not relevant for
the h’s investigated here). The scaling of the total error is
thus proportional to h2 + ch/

√
τ , in which c is a constant.

We are interested, however, in the global truncation error,
i.e., the accumulated error for some integration length �x.
Let N = �x/h be the number of steps needed to complete
the integration. The total simulation time is t = N (τ + τeq),
where τeq is the time it takes for the system to come into
equilibrium when temperature and density are changed. Thus
τ = t/N − τeq, and with h = �x/N the statistical error on y is
ch/

√
τ = c�x/

√
Nt − N2τeq. The global error from trunca-

tion scales as N since it is systematic, while the statistical error
scales as

√
N due to its randomness. Thus, the total global

error is proportional to (�x)2/N + c�x/
√

t − Nτeq. The first
term is lowered by making N large, while the second term
favors small N’s and diverges as N → t/τeq. Thus, since c is
in general unknown, the optimal choice of N for a given t
and �x is not straightforward to determine. We give below
a recipe for the optimal parameter choice. First, however,
we show how to reduce the truncation error significantly by
adopting a higher-order integration method, using the often
favored fourth-order Runge-Kutta (RK4) method: For a given
point (xi, yi ), if one defines

k1 = h f (xi, yi ),

k2 = h f

(
xi + h

2
, yi + k1

2

)
,

k3 = h f

(
xi + h

2
, yi + k2

2

)
,

k4 = h f (xi + h, yi + k3), (A3)

the next point (xi+1, yi+1) is computed as

xi+1 = xi + h,

yi+1 = yi + k1

6
+ k2

3
+ k3

3
+ k4

6
+ O(h5). (A4)

FIG. 10. Configurational adiabat of the WCA system traced out in the thermodynamic phase diagram for (a) the Euler method and (b) the
RK4 method. The Euler integration uses a log-density step of size h = 0.1 (steps in density of e0.1 − 1 � 10%), while the RK4 uses h =
0.4, corresponding to a density variation of e0.4 − 1 � 50%. The temperature difference of the here presented combined forward-backward
integration �T provides a convenient measure of the maximum error of the predicted temperature. We find �T ∼= 0.186 for the Euler algorithm
and �T ∼= 0.002 for the RK4 algorithm. The solid lines are interpolations using a cubic Hermite spline.
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FIG. 11. (a) Temperature difference �T of the forward-backward integration in Fig. 10, for different steps sizes h. The blue circles show
results for Euler integration and the orange circles show results for RK4 integration. The temperature difference measures the maximum error
in the integration interval 0.84 � ρ � 1.30. The RK4 is significantly more accurate than the Euler algorithm, which allows for larger h steps.
The dashed lines indicate the expected scaling of the global error from truncation; deviations stem from statistical errors on the estimated
slopes (slopes are evaluated using simulations lengths of τ = 655). The arrow connects Euler and RK4 calculations with approximately the
same computational cost (see Fig. 10). (b) Same analysis for the integration interval 0.58 � ρ � 0.84.

While the simple Euler method has a truncation error scaling
as O(h2), the truncation error of RK4 scales as O(h5). This
allows for significantly larger steps along x and thus smaller
N . From the same type of arguments as given above for the
Euler method, the global error of the RK4 method scales
approximately as (�x)5/N4 + c�x/

√
t − Nτeq, where c is a

(new) unknown constant.
To compare the Euler and RK4 methods, we use each

of them for integrating from the initial state point (ρ, T ) =
(0.84, 0.694) to density 1.25 and back again to the initial
density of 0.84 (see Fig. 10). This involves a γ variation
from 6.825 at the initial density to 4.539 at ρ = 1.25. The
difference between the final temperature of the down integra-
tion and the initial temperature, denoted by �T , provides a
measure of the maximum temperature error. Ideally �T = 0.
Since the RK4 involves four simulations per step, we com-
pare its accuracy where h is four times larger than for the
Euler method, which corresponds to approximately the same
wall-clock time for the computation. With this constraint, the
RK4 is still about two orders of magnitude more accurate: We
find �T = 0.186 for the Euler algorithm and �T ∼= 0.002 for
RK4. Figure 11 shows estimates of the maximum error �T for
several values of h. To focus on the truncation error, we per-
formed long-time simulations with τ ∼= 650. Nonetheless, this
analysis demonstrates that a significantly smaller N (larger h)
is allowed for with the RK4.

Since the RK4 algorithm allows for large h, it can be
necessary to interpolate in order to identify additional state
points on the isomorph. The solid lines in Fig. 10 show such
interpolations using a cubic Hermite spline. Define xφ as a
point between the two adjacent points xi and xi+1, i.e., let
xi � xφ < xi+1, where xφ = xi + φ[xi+1 − xi] and 0 � φ � 1.
The interpolated yφ is given by the third-degree polynomial
yφ = Ax3

φ + Bx2
φ + Cxφ + D, where yφ = yi + [yi+1 − yi]

[aφ3 + bφ2 + cφ]. For simplicity, we introduce the notation
y′
φ = [yφ − yi]/[yi+1 − yi] and write the polynomial as

y′
φ = aφ3 + bφ2 + cφ. The coefficients yielding smooth

first derivative are a = f ′
i + f ′

i+1 − 2, b = 3 − 2 f ′
i − f ′

i+1,

and c = f ′
i , in which f ′

i = fi(xi+1 − xi )/(yi+1 − yi ) and
f ′
i+1 = fi+1(xi+1 − xi )/(yi+1 − yi ) are reduced slopes at the

start and end points, respectively. The f ′ slopes are given by
known γ ’s along the configurational adiabat; thus no extra
simulations are needed to evaluate the interpolation.

We investigated the local error by comparing a full h step
to two half steps of size h/2. The small black circle near
the middle of Fig. 10(b) shows the results of two such half
steps. The truncation error for the half-step approach is then
raised to the sixth order [64], one order higher than RK4
(the consequence is that one must perform twice as many
simulations for each integration step). The triangles in Fig. 12
show the resulting Ti+1 starting from the reference state point
(ρ, T ) = (0.84, 0.694), using a full step with h = 0.4 and

FIG. 12. Difference in temperature between using a full step of
h = 0.4 and two half steps of h = 0.2 when integrating from ρ =
0.84 up to ρ = 1.25, plotted against the simulation time per slope
evaluation. The desired h can change and the simulation time changes
accordingly. The error bar indicates the bad statistics with few blocks
mentioned in the text, computed from Eq. (28) in Ref. [65]. The red
× marks the simulation time used in the paper.
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FIG. 13. Estimate of the statistical error on γ from the blocking
method. The analysis indicates that NB = 128 is a good choice for
the number of blocks. This gives SE(γ ) = 0.03 on the estimated
γ = 6.82.

varying τ ’s. For comparison, the dashed line results from
long-time simulations using the half-step algorithm. The dis-
tance from triangles to the dashed line provides an estimate
of the total error. For short simulation times (small τ ’s)
the statistical error dominates, as shown by the scatter. The
truncation error dominates at long simulation times, as
shown by the triangles’ systematic deviation from the dashed
line. For efficient calculation we suggest choosing h and
τ such that the statistical and truncation errors are of the
same order of magnitude. The red cross in Fig. 12 in-
dicates the simulation time τ used for the figures in the
paper.

The above analysis to arrive at the optimal computation
time τ is tedious and involves computationally expensive
simulations. We proceed to suggest an efficient optimization
recipe that utilizes the fact that the local statistical error of
the slopes can be estimated by dividing a given simulation
into blocks. If the simulation time for each block is suf-
ficiently long, the blocks are statistically independent. The
67% confidence standard error is then given by SE(γ ) =√

Var(γ )/(NB − 1), where Var(γ ) is the variance of the γ ’s
using NB blocks [65]. If the blocks are independent, Var(γ )
scales as NB and SE(γ ) will be independent of the num-
ber of blocks. If we divide the simulation into few blocks,
Var(γ ) may give a bad estimate of the underlying distribu-
tion’s theoretical variance. On the other hand, if one divides
the simulation into many blocks, the simulation time for each
block (τ/NB) may be brief and the blocks are not independent.
In effect, the above formula for SE(γ ) gives an overestimate.
The optimal NB is determined by tests of several different NB,
as shown in Fig. 13 (the red cross corresponds to a good
choice of NB = 128). The statistical error on yi+1 can now
be estimated as SE(yi+1) = SE(γ )h/2. Here 2 = √

4 enters
since the RK4 algorithm includes four independent estimates

FIG. 14. Excess entropy values plotted against the densities of
the state points on the configurational adiabat traced out for the
single-component LJ system starting from the triple point (ρ =
0.84, T = 0.694) using RK4 with h = 0.04. The view is zoomed in
on the values to see the deviation from the average value, the black
dotted line.

of slopes (the factor is unity for the Euler algorithm and
√

8
for the double-step RK4).

Based on the above analysis, we propose the following
recipe for efficient and accurate computation of a configura-
tional adiabat.

(i) Make an NV T simulation at a reference state point of
temperature T0 and density ρ0. The simulation time τ should
be sufficiently long that the equilibration time τeq can be
determined using any standard method (e.g., as the time when
the mean-square displacement has reached the diffusive limit).
Use the block method to determine SE(γ ), using only the
equilibrated part of the trajectory.

(ii) Choose h. Make a full RK4 step and estimate the local
statistical error using SE(yi+1) = h SE(γ )/

√
4. Use the RK4

two–half-step approach to estimate the total local error. If the
total local error is unacceptably large, then either (a) increase
τ if the statistical error is of the same magnitude as the total
error or (b) decrease h if the total error is larger than the
statistical error. Small errors suggest that the simulation time
τ could be decreased or that h can be increased to make
the calculation more efficient; h may safely be increased or
τ decreased if the statistical and total errors are of similar
magnitude.

(iii) Compute adiabatic state points using the RK4 algo-
rithm with the parameters determined in the above steps.
Based on these, a continuous curve can be produced by in-
terpolation using a cubic spline.

(iv) Estimate the maximum error by integrating backward.
This error estimate quantifies the accuracy of the computed
adiabat.

As a consistency check of this recipe, Fig. 14 shows the
excess entropy from the equation of state (EOS) of the single-
component LJ system in Ref. [66]. The agreement with the
configurational adiabat of this EOS is excellent.
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