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Stiffness of probability distributions of work and Jarzynski relation for initial microcanonical and
energy eigenstates
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We consider closed quantum systems which are driven such that only negligible heating occurs. If driving
only affects small parts of the system, it may nonetheless be strong. Our analysis aims at clarifying under which
conditions the Jarzynski relation (JR) holds in such setups, if the initial states are microcanonical or even energy
eigenstates. We find that the validity of the JR for the microcanonical initial state hinges on an exponential
density of states and on stiffness. The latter indicates an independence of the probability density functions (PDFs)
of work of the energy of the respective microcanonical initial state. The validity of the JR for initial energy
eigenstates is found to additionally require smoothness. The latter indicates an independence of the work PDFs
of the specific energy eigenstates within a microcanonical energy shell. As the validity of the JR for pure initial
energy eigenstates has no analog in classical systems, we consider it a genuine quantum phenomenon.
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I. INTRODUCTION

The long-standing question regarding whether, and in
what way, closed finite quantum systems approach thermal
equilibrium has recently gathered renewed attention. On the
theoretical side, thermalization and equilibration have been
investigated, e.g., for rather abstract settings [1–6] and also
for more specific condensed-matter-type systems [7–10]. In
these works major concepts are the eigenstate thermalization
hypothesis and typicality, both of which will also play certain
roles in the present paper. The developments on experiments
on ultracold atoms now allow for testing what had been
merely theoretical results before (see, e.g., Refs. [11–13]).

Rather than just the existence of equilibration within closed
quantum systems, the very peculiarities of the dynamical
approach to equilibrium have moved to the center of in-
terest [11,14]. Questions addressed in this context include
limits on relaxation time scales and agreement of unitary
quantum dynamics of closed quantum systems with standard
statistical relaxation principles, such as Fokker-Planck equa-
tions [15–18] or more general standard stochastic processes
[19,20]. Also, the emergence of universal nonequilibrium be-
havior involving work and driven systems is currently under
discussion [21].

To a large extent, universal nonequilibrium behavior may
be captured by fluctuation theorems (see, e.g., Ref. [22] and
references therein). The Jarzynski relation (JR), a general
statement on work that has to be invested to drive processes
also and especially far from equilibrium, is a prime example of
such a fluctuation theorem. Many derivations of the JR from
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various starting grounds have been presented. These include
classical Hamiltonian dynamics, stochastic dynamics such
as Langevin or master equations, and quantum mechanical
starting points [22–27]. However, all these derivations (except
for Ref. [28]) assume that the system, which is acted on
with some kind of force, is strictly in a Gibbsian equilibrium
state before the process starts. (The notion of the system here
routinely includes the bath.) Thus, this starting point differs
significantly from the progress in the field of thermalization:
There, the general features of thermodynamic relaxation are
found to emerge entirely from the system itself without any
necessity of evoking external baths or specifying initial states
in detail. Clearly, the preparation of a strictly Gibbsian initial
state requires the coupling to a (super)bath prior to starting the
process.

This situation renders the question whether or not the
standard JR also holds for systems starting in other than Gibb-
sian states (e.g., microcanonical states) rather exigent. Note
that, other than for Gibbsian initial states, the answer to this
question is expected to depend on specific properties of the
considered systems.

In this context, a property (which we call stiffness) of
work distributions has been suggested as a key ingredient
for the validity of the JR for microcanonical initial states
in Ref. [28]. In this pioneering work, the validity of the JR
is proven for classical systems initialized in microcanonical
initial states given the systems feature stiffness and microre-
versibility. Moreover, for a classical Lorentz gas, stiffness
and the validity of the JR for microcanonical initial states
are numerically demonstrated. Furthermore, the JR was found
to hold for microcanonical initial states for some quantum
spin models exhibiting stiffness in Ref. [29] in a numerical
study. The present work extends this line of research in various
directions: We examine the validity of the JR not only for
microcanonical initial states but also for initial pure energy

2470-0045/2021/103(6)/062139(10) 062139-1 ©2021 American Physical Society

https://orcid.org/0000-0002-0124-4707
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.062139&domain=pdf&date_stamp=2021-06-23
https://doi.org/10.1103/PhysRevE.103.062139


KNIPSCHILD, ENGEL, AND GEMMER PHYSICAL REVIEW E 103, 062139 (2021)

eigenstates; the latter is conceptually beyond the scope of
Ref. [28]. It is also important to note that stiffness is a suf-
ficient but not a necessary condition for the validity of the
JR; thus the practical relevance of stiffness is challenged. The
numerical modeling in the present paper allows us to address
this practical relevance by means of an investigation of the
validity of the JR in the presence of stiffness, as well as in its
absence (the latter, to the best of our knowledge is, lacking in
the literature).

The present paper is organized as follows. In Sec. II we
introduce our basic hypothesis of the probability density func-
tion (PDF) of work being largely independent of the respective
energy for microcanonical initial states. We call this property
stiffness. The validity of the JR for microcanonical initial
states is shown to follow from this assumption (together with
the routinely applied assumption of an exponentially growing
density of energy eigenstates). With an additional assumption
about the system dynamics, which we call smoothness, we
derive the validity of the JR even for energy eigenstates. In
Sec. III we introduce our modeling, which is partly based on
random matrices. In Sec. IV we provide numerical results for
microcanonical initial states, indicating a very strong corre-
spondence between the validity of the JR and stiffness of the
system dynamics. In Sec. V we numerically show that also
the aforementioned smoothness assumption is fulfilled for our
modeling in the limit of large systems. This completes the
demonstration of the existence of a class of systems which
exhibits both stiffness and smoothness and thus fulfills the JR
even for energy eigenstates. We close with a summary and
discussion in Sec. VI.

II. STIFFNESS AND SMOOTHNESS OF WORK PDFS AND
JARZYNSKI RELATION FOR INITIAL

MICROCANONICAL STATES AND
ENERGY EIGENSTATES

The present analysis focuses on closed systems. It focuses
furthermore on setups in which the driving (which gives rise
to consumption or release of work) only acts on a small part
of the entire system. This specialization is intended to guar-
antee isothermality: Even if the driving is strong, the overall
temperature of the full system (according to a definition given
below) is to remain constant; the reasoning below will rely
on this feature. It may appear as if this setting would return
one to the standard case of the driven part being initially in a
canonical state; however, there is a pivotal difference: In the
present analysis we do not impose a limit to the strength of the
interaction between the small driven part and the large rest. If
this coupling is so small that its effect can be neglected during
the driving, one may indeed employ the standard reasoning
based on canonical initial states. Indeed, in this weak-coupling
limit we numerically recover the validity of the JR with-
out any further condition like the stiffness introduced below
(cf. Fig. 3, α → 0). However, our analysis goes beyond this
limit: If stiffness is present the JR holds at all interaction
strengths, as may be inferred from Fig. 3. To put all this into
a catchy picture, consider the paradigmatic unfolding of pro-
teins in a solvent [30]. Using standard reasoning, the validity
of the JR can be inferred if (i) the full compound of protein
and solvent is initially strictly in a canonical Gibbs state or

(ii) the influence of the solvent on the protein is negligible
during the unfolding process. In contrast, the below reasoning
establishes the validity of the Jarzynski equation, even if the
full compound state is in an microcanonical state (or energy
eigenstate) and the influence of the solvent on the protein is
non-negligible during the unfolding. This is achieved on the
basis of stiffness (and smoothness).

As the system is closed, there is no external source or sink
of heat; any energy change of the full system is to be counted
as work W (for an overview of different perspectives, see, e.g.,
Ref. [31]). The measurement of the inner energy is described
by a two-point projective measurement scheme. In this respect
we choose the same starting point as employed in derivations
of the JR as described, e.g., in Ref. [32] and references therein.

We consider a system described by a time-dependent
Hamiltonian H (t ) during the time t ∈ [0, T ], which induces
a nonequilibrium process. The corresponding unitary time-
propagation operator U is defined by

U := T exp

(
−i

∫ T

0
H (t ′)dt ′

)
, (1)

where T is the time-ordering operator and we tacitly set
h̄ = 1.

Let |i〉 be the eigenstates of H (0) and | f 〉 the eigenstates
of H (T ) and further let εi and ε f be the corresponding eigen-
values, respectively. Starting from the initial state |i〉, p f ←i

denotes the probability to make a transition into | f 〉:
p f ←i = Tr(| f 〉〈 f |U |i〉〈i|U †). (2)

The average over the work PDFs 〈h(W )〉W starting from an
initial state ρ(0) can be calculated for an arbitrary function
h(W ) of the work W :

〈h(W )〉W =
∑
i, f

Tr[ρ(0)|i〉〈i|]p f ←ih(ε f − εi ). (3)

Here Tr[ρ(0)|i〉〈i|] is the probability to find the system after
the first projective measurement in the initial state |i〉 and W =
ε f − εi is the work performed with the transition i → f .

One can easily show that these transition probabilities p f ←i

are doubly stochastic:
∑

i

p f ←i =
∑

f

p f ←i = 1. (4)

In general, these transition probabilities vary from eigenstate
to eigenstate. We thus define the probability pF←i to transition
from an eigenstate |i〉 into an energy interval EF :

pF←i =
∑

f |ε f ∈EF

p f ←i, En = [nδ, (n + 1)δ], n = I, F.

(5)
Here δ is to be chosen large compared to the level spacing
of the full system, but small compared to the involved energy
scales of E and W . Note that I and F are integers used to
address the initial (EI ) and final energy intervals (EF ), respec-
tively. This construction serves as a coarse graining of the
energy scale.

In a similar way, we define the average probability to make
a transition from an initial state |i〉 from the energy interval EI

062139-2



STIFFNESS OF PROBABILITY DISTRIBUTIONS OF … PHYSICAL REVIEW E 103, 062139 (2021)

into an energy interval EF :

pF←I =
∑

i|εi∈EI

pF←i

�I
. (6)

Here �I and �F denote the number of eigenstates of H (0) in
the interval EI and of H (T ) in the interval EF , respectively,
with

�n = Tr(�n), �I =
∑

i|εi∈EI

|i〉〈i|, �F =
∑

f |ε f ∈EF

| f 〉〈 f |.

(7)
Hence, pF←I is the average over all pF←i with εi ∈ EI .

Note that these transition probabilities depend on the en-
ergy width δ. Closely related to these transition probabilities
is the so-called work probability density function, which de-
scribes the probability to perform the work W = (F − I )δ
starting from an initial energy E = Iδ:

PE (W ) = 1

δ
pF←I . (8)

The transition probabilities and the work PDFs are essentially
the same, up to a constant rescaling factor. However, in large
systems these work PDFs typically become independent of the
concrete choice of δ [29].

Starting from Eq. (3), the average over the work PDFs
〈h(W )〉W for a function h(W ), which does not vary signifi-
cantly on the scale of δ, can be calculated from pF←I :

〈h(W )〉W =
∑
I,F

Tr[ρ(0)�I ]pF←I h(ĒF − ĒI ). (9)

Here Ēn = nδ is an approximation of the energies in the initial
(n = I) interval EI and of the final (n = F ) interval EF . From
Eq. (4) we derive the following properties of pF←i and pF←I :∑

i

pF←i = �F , (10)

∑
I

�I pF←I = �F . (11)

Up to now we have only defined various quantities and de-
rived general statements, but have not made any assumptions.
We now arrive at the derivation of the JR for microcanonical
initial states. To begin with, we define the latter as

ρI
mc(0) = �I�

−1
I . (12)

In order to derive the JR for microcanonical initial states we
make two assumptions. First, we assume that the probability
to make a transition from a state from the energy interval EI

to the energy interval EF only depends on the difference of F
and I:

pF←I = p(F − I ). (13)

We call this assumption stiffness. For a discussion of the con-
ditions on its occurrence, at least in a regime in which Fermi’s
golden rule applies, see Appendix A. This assumption can also
be expressed in terms of work PDFs PE (W ). If these work
PDFs are independent of the initial energy E , then Eq. (13) is
fulfilled.

Our second assumption states that the densities of
states (DOSs) of the initial Dini(ĒI ) := δ−1�I and final

Hamiltonians Dfin(ĒF ) := δ−1�F grow exponentially:

Dini(ĒI ) = Zini exp(βĒI ),

Dfin(ĒF ) = Zfin exp(βĒF ). (14)

Up to now β, Zini, and Zfin are just some positive real numbers.
In the discussion below (16) these numbers are interpreted
in terms of standard statistical thermodynamics. Equations
(14) implement two assumptions. (i) The DOSs of the inital
Hamiltonian and the final Hamiltonian are both exponentially
growing at the respective energies. We elaborate on the physi-
cal implication of this assumption in Sec. III. (ii) The (inverse)
temperatures β initially and finally are the same. This corre-
sponds to the no-heating condition introduced at the beginning
of this section.

Of course Eqs. (13) and (14) are not expected to hold for all
energies E . Here we only require that these relations hold at
least for an energy interval which is large enough to comprise
almost the entire work PDF.

To arrive at the JR for microcanonical initial states, we start
by calculating the average of exp(−βW ) over the work PDFs
according to Eq. (9),

〈exp(−βW )〉W =
∑
I ′,F

Tr
[
ρI

mc(0)�I ′
]
pF←I ′ exp[−β(ĒF − ĒI ′ )]

=
∑

F

p(F − I ) exp[−β(ĒF − ĒI )]. (15)

In the last step we evaluated the sum over I ′ by using
Tr(�−1

I �I�I ′ ) = δI,I ′ and used the stiffness assumption (13).
By replacing F by F ′ + I − I ′, with I ′ the new summation
index and F ′ an arbitrary but fixed integer, we get

〈exp(−βW )〉W =
∑

I ′
p(F ′ − I ′) exp[−β(ĒF ′ − ĒI ′ )]

= 1

�F ′

Zfin

Zini

∑
I ′

pF ′←I ′�I ′ = Zfin

Zini
. (16)

In the second step we used that the DOSs of the initial and the
final Hamiltonians exponentially grow according to Eq. (14).
In the last step we used Eq. (11).

Equation (16) formally is a JR for the work PDFs obtained
by starting from microcanonical initial states, with the tem-
perature replaced by a parameter describing the exponential
growth of the DOS of the full system. As such Eq. (16) already
represents the main result of the present section. Note that
Eq. (16) holds for arbitrary processes and its right-hand side
only contains static, process-independent model parameters.

Formally, the JR could be fulfilled for microcanonical ini-
tial states, even if Eqs. (13) and (14) do not hold. In this
sense these assumptions are stronger than the validity of the
JR; to rephrase, these assumptions represent sufficient but not
necessary conditions. This peculiarity will be investigated in
detail below.

In an analogous way we can derive Eq. (16) for initial
energy eigenstates ρ(0) = |i〉〈i| if we additionally assume that

pF←i ≈ pF←I (17)

holds for all i ∈ N with εi ∈ EI . This additional assumption
means that the transition probabilities from an eigenstate |i〉 to
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an energy interval EF are smooth functions of the initial and
final energies. We therefore call it smoothness. The validity
of this assumption is investigated in Sec. V for a finite-size
scaling.

To demonstrate an even closer analogy of Eq. (16) with
the standard JR, it remains to be explained in what sense the
right-hand side of Eq. (16) may be considered as the familiar
right-hand side of the standard JR, e−β	F , where F is the free
energy. Such an identification would hold if

− ln Zα

β

?= Fα. (18)

In order to judge whether or not Eq. (18) is justified, consider
the logarithm of Eq. (14),

ln Dα (U ) = ln Zα + βU . (19)

The index α ∈ {ini, fin} signals whether the equation refers
to the initial or final Hamiltonian, respectively. Moreover,
the discrete average energies ĒI and ĒF are replaced by the
continuous parameter U .

If one identifies, along the lines of Boltzmann’s original
approach, the entropy Sα as

ln Dα := Sα (20)

(where we tacitly set kB = 1), one may convert Eq. (19)
into

− ln Zα

β
= U − Sα

β
. (21)

Note that, in accordance with Eq. (14), ∂U Sα = β; hence β has
the meaning of inverse temperature and the right-hand side of
Eq. (21) is, accordingly, the free energy F as introduced in
standard textbooks on phenomenological thermodynamics. In
this sense Eq. (18) indeed holds, which entails the rewriting
of Eq. (16) in a form closer to the familiar one,

〈e−βW 〉E = e−β	F , (22)

where 〈· · · 〉E denotes the microcanonical expectation value
corresponding to energy E . This concludes our consideration
of the validity of a JR for microcanonical initial states under
the assumption of stiff work PDFs.

III. MODELS AND DRIVING PROTOCOL

With the following numerical investigations we ascertain
the pivotal relevance of stiff work PDFs for the validity of the
JR for microcanonical initial states. We therefore introduce
a model that is partly based on random matrices. Within
this model we can control the stiffness of the resulting work
PDFs via a single parameter ξ . This allows us to observe
the influence of stiffness on the JR for microcanonical initial
states.

We consider an isolated system comprising a relatively
small subsystem Hsys and a bigger part serving as the heat
bath Hbath. Both parts may interact via Hint; the strength of
this interaction is not limited. Finally, a time-dependent force
periodically drives the system Hprot. Concretely, we choose
the small subsystem to be a spin and the time-dependent
force to be a kind of microwave field such that the whole
model allows for an interpretation in terms of a spin-resonance

FIG. 1. Schematic structure of the numerical model. A two-level
system is coupled via a random interaction to a bath with an expo-
nentially growing DOS. The structure of the interaction influences
the resulting work PDFs.

experiment with a finite lifetime of the spin excitation (see
Fig. 1). A very similar model (the spin–Gaussian orthogonal
random matrix model) was previously used to study relax-
ation in finite environments [33]. The bath is only specified
by a relatively large and exponentially growing DOS; these
are the features that make the bath much “larger” than the
system.

Specifically, the Hamiltonian of the full system reads

H (t ) = Hsys + Hbath + αHint + λHprot (t ). (23)

The small subsystem is a simple two-level system, e.g., a
spin- 1

2 particle in a magnetic field Bz. The Hamiltonian of this
subsystem is characterized as

Hsys

∣∣E sys
j

〉 = E sys
j

∣∣E sys
j

〉
, E sys

1|2 = ∓Bz

2
. (24)

The |E sys
j 〉 obviously denote the eigenstates of Hsys. We choose

Bz = 0.5 throughout this paper.
The bath part is also defined by its energy levels,

Hbath

∣∣Ebath
j

〉= Ebath
j

∣∣Ebath
j

〉
,

Ebath
j = 1

β
ln

{ j

N
exp

(
βEbath

max

)+(
1− j

N

)
exp

(
βEbath

min

)}
,

(25)

while N denotes the dimension of the bath. This definition
yields a (strictly) exponentially growing DOS �bath(E ) ∝
exp βE comprising energies from Ebath

min = 0 to Ebath
max = 4.5.

The constant β (which takes the role of a temperature here)
is chosen to be 1. This modeling corresponds to a bath
with infinite heat capacity, i.e., the temperature is always
1/β, regardless of the actual bath energy (as is well known,
practically all sufficiently large real systems with short-range
interactions approximately feature this property [34]). The
below choice of the interaction guarantees that the exponen-
tially growing DOS of the bath induces an approximately
exponentially growing DOS of Hsys + Hbath + αHint for all
parameters.

We now define the interaction between the system and
the bath. This is the most subtle part of our modeling. We
introduce the following notation:

∣∣E sys
m , Ebath

n

〉
:= ∣∣E sys

m

〉 ⊗ ∣∣Ebath
n

〉
. (26)
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FIG. 2. Work PDFs for two different bath couplings α. For the weaker coupling we see two sharp peaks at W = ±Bz, resulting from spin
flips induced by the resonant irradiation. For the stronger coupling the work PDF is much broader.

Regarding this product basis, we define the interaction part〈
E sys

m , Ebath
n

∣∣Hint

∣∣E sys
k , Ebath

l

〉
= (1 − δmk )g

(
Ebath

n + Ebath
l

)
f
(|Ebath

n − Ebath
l |)Rnl , (27)

g(Ē ) = exp

(
−βξ

(
Ē − Ebath

max

)
4

)
,

f (ω) = exp

(
− ω2

2σ 2
int

)
. (28)

Here Rnl = Rln denote normally distributed random numbers
with zero mean and unit variance.

To assess the rationale behind this modeling, consider the
following. The interaction Hint only allows transitions (for
the nondriven model, i.e., for λ = 0) between energetically
similar bath states. Direct transitions between states with
significantly different bath energies are suppressed by the
Gaussian function f (ω), i.e., their suppression is controlled
by the respective variance σ 2

int = 0.5. Within the validity of
Fermi’s golden rule, the decay rate γ of the z component of
the magnetization of the spin for some initial bath energy Ebath

can be estimated as γ ∝ exp[β(1 − ξ )Ebath] for our model.
In a physical system we would expect γ to depend on the
temperature 1/β of the bath, but not on its actual energy
within a regime of equal temperature. For ξ = 1 the rate γ

actually becomes independent of the bath energy Ebath. We
thus consider this the most physical case.

While it is not obvious, it is an actual and most important
fact that ξ also controls the stiffness of the model. It turns out
that stiff work PDFs arise precisely at the above most physical
case ξ = 1. For smaller and larger ξ stiffness is lost. For
clarity of presentation, we do not discuss the inner workings
of this stiffness control mechanism here, but simply present
clear numerical evidence for its existence in Appendix B.

We finally introduce the time-dependent protocol exclu-
sively acting on the system part:

Hprot (t ) = sin(ωprott )(|E sys
1 〉〈E sys

2 | + H.c.). (29)

Thinking again of the system in terms of a spin- 1
2 particle, the

protocol describes a sinusoidally modulated magnetic field in
the x direction, as routinely used in spin resonance experi-
ments. We choose ωprot = Bz = 0.5, i.e., the irradiation is on
resonance. The duration of the protocol is set to T = 3.5 2π

ωprot

throughout this paper. For small bath-couplings α the result-

ing work-PDFs comprises two sharp peaks, corresponding to
Rabi-oscillations, while for larger values of α the resulting
work-PDFs are much broader (see Fig. 2)

IV. JARZYNSKI RELATION FOR MICROCANONICAL
INITIAL STATES AND VARIOUS SYSTEM

CONFIGURATIONS

We consider a microcanonical ρI0
mc(0) initial state from the

center of the spectrum of the initial Hamiltonian H (0) with an
energetic width of about δ ≈ 0.06:

ρI0
mc(0) = �−1

I0
�I0 , I0 =

⌊
E0

δ

⌋
,

E0 = max(ε j ) + min(ε j )

2
. (30)

The dimension of the bath is set to N = 4000. For this ini-
tial state we numerically check the JR for three different
stiffness parameters ξ = 0.6, 1.0, 2.0 with various bath cou-
plings α = 0, 0.05, 0.1, . . . , 0.5 and irradiation strengths λ =
0, 0.025, 0.05, . . . , 0.25.

In order to quantify deviations from the perfectly fulfilled
JR [Eq. (22)], we introduce the following definition:

Dmc(ξ, α, λ) := Tr
(
UρI0

mc(0)U † exp{−β[H (T ) − E0]})

− exp(−β	F ). (31)

Since we consider cyclic processes 	F is equal to zero and
exp(−β	F ) becomes equal to 1. If the JR holds for the
considered set of parameters (ξ , α, and λ), the corresponding
quantifier D(ξ, α, λ) vanishes.

The results for the microcanonical initial states are dis-
played in Fig. 3. Light green means that the JR is fulfilled,
while other colors indicate deviations.

In the case of weak bath couplings α or weak irradiation
strengths λ the JR is trivially fulfilled, even for microcanonical
initial states and regardless of stiffness (ξ �= 0): For λ ≈ 0 we
are in the limit of adiabatic following and thus no work will be
performed. For α ≈ 0 the coupling between system and bath
parts may be neglected during the driving. Nevertheless, the
reduced initial Hsys state is a thermal state with the inverse
temperature β. So the protocol acts on a system prepared in a
Gibbsian state. For this scenario it is well known that the JR
holds. In the center of interest are thus the regions of larger α

and λ.
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(a) (b) (c)

FIG. 3. Plot of Dmc(ξ, α, λ) for various system configurations:
(a) ξ = 0.6, (b) ξ = 1.0, and (c) ξ = 2.0. Light green (zero) indicates
that the system complies with the JR, while other colors (nonzero
values) quantify the deviations from the JR. Apparently, the JR is
always fulfilled for ξ = 1, even for microcanonical initial states.

For ξ = 1.0 the resulting work PDFs are stiff, up to small
fluctuations (see Appendix B). Since stiff work PDFs imply
the JR for microcanonical initial states, the respective devia-
tions in Fig. 3 are nearly zero, at all α and λ. This is our main
numerical result.

For ξ = 0.6, 2.0 the resulting work PDFs are not stiff
(see Appendix B). In principle, the JR could still be fulfilled
for microcanonical initial states, since stiffness is formally
not a necessary condition. However, at both values, i.e.,
ξ = 0.6, 2.0, we find deviations from the JR “to both sides”
[Dmc(ξ, α, λ) positive as well as negative]. These deviations
appear to systematically depend on α and λ and are nonzero
for most α and λ. However, there are a few combinations of α

and λ for which the JR is fulfilled (see the corresponding light
green corridors in Fig. 3).

In Appendix C the dependence of the deviations
Dmc(ξ, α, λ) on the initial energy E0 is numerically investi-
gated in more detail. We find that at ξ �= 1 the initial energy
plays a crucial role for the resulting deviations, but not so at
ξ = 1. In particular, at the light green corridors in Figs. 3(a)
and 3(c), the JR is violated for initial microcanonical states
with energies other than E0. These numerical finding suggests
that the stiffness of work PDFs is crucial for the validity of the
JR for microcanonical initial states.

V. VALIDITY OF THE JARZYNSKI RELATION FOR
ENERGY EIGENSTATES AND FINITE-SIZE SCALING

Up to now we have investigated only the validity of the JR
for microcanonical initial states (30). We now turn to initial
states being eigenstates of the initial Hamiltonian H (0). We
define these initial states as

ρ i
es(0) = |i〉〈i|. (32)

The energetic width of these states is δ = 0. In this sense they
are fundamentally different from microcanonical initial states.
However, in this section we will demonstrate that in the limit
of large bath dimension, both behave similarly regarding the
JR.

Again, we use Eq. (31) to check whether or not the JR is
fulfilled. We define the corresponding deviations Des(ξ, α, λ)
completely analogously to the Dmc(ξ, α, λ) [cf. Eq. (31)]
but with ρI0

mc(0) replaced by ρ i
es(0). Note that the average

of the Des(ξ, α, λ) over a pertinent range of i equals a

FIG. 4. Finite-size scaling of Des(ξ, α, λ) for eigenstates (from
the center of the spectrum) of the respective initial Hamiltonians
H (0). Displayed are averages (symbols) and standard deviations
(bars) for three different model parameter sets: (ξ = 1, α = 0.4, λ =
0.25), red; (ξ = 0.6, α = 0.4, λ = 0.25), blue; and (ξ = 2.0, α =
0.4, λ = 0.25), green. The standard deviations are shown clearly by
tilted parabolas. This suggests that the standard deviations decrease
as N−0.5.

corresponding Dmc(ξ, α, λ). Thus the following numerical
results (Fig. 4) hold information not only about the sizes
of the Des(ξ, α, λ) but also about the finite-size scaling of
the Dmc(ξ, α, λ).

A systematic survey of the Des(ξ, α, λ) for all α and λ is
numerically very costly. We thus concentrate on cases where
the violation of the JR is pronounced for ξ �= 1, i.e., α = 0.4
and λ = 0.25 (cf. Fig. 3).

Figure 4 shows statistical results of the Des(ξ, α, λ) for
increasing bath sizes N . (For clarity, the results are displayed
over the inverse bath size 1/N .) Displayed are the averages
(diamonds) and standard deviations (vertical error bars) for a
stiff system ξ = 1 and two nonstiff systems ξ = 0.6, 2. The
statistics encompass 100 different Des(ξ, α, λ) for adjacent i
from the middle of the respective spectra for each parameter
set.

The following principles may be inferred from Fig. 4. The
averages appear to be independent of the system size N , and
thus the Dmc(ξ, α, λ) are independent of the system size;
hence Fig. 3 provides a representative picture also for (larger)
bath sizes other than N = 4000. The standard deviations of the
Des(ξ, α, λ) decrease with bath size, presumably proportional
to N−0.5, as suggested by the tilted parabolas.

These findings strongly indicate that the JR is indeed ful-
filled even for pure initial energy eigenstates for stiff systems
in the limit of large bath (total system) sizes. Note that in this
case the statistical character of the corresponding work PDFs
is entirely due to pure quantum uncertainties. Furthermore,
the JR appears to be always violated for pure initial energy
eigenstates in the limit of large bath (total system) sizes if the
system is nonstiff.

VI. CONCLUSION

In this article we have shown analytically that the Jarzynski
relation holds for a broad class of non-Gibbsian initial states in
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quantum systems under certain conditions. For microcanon-
ical initial states these conditions are (i) an exponentially
growing DOS with the same growth rate of the initial and final
Hamiltonians in the relevant energy region (this no-heating
condition may hold even at strong driving, if the driving only
acts on a small part of the full system) and (ii) stiff work
PDFs, i.e., work PDFs that are independent of the initial
energy. Moreover, numerics indicate that the converse also
holds: Systems that do not comply with the stiffness condition
actually do violate the JR for microcanonical initial states,
independent of the size of the system.

In order to analytically show the validity of the Jarzynski
relation for initial energy eigenstates, we exploited an addi-
tional assumption about the work PDFs called smoothness,
which is expected to hold for large systems. This expectation
was supported by numerics for some examples, which showed
that the Jarzynski relation is fulfilled in the limit of large
systems for systems that do exhibit smoothness and violated
for systems which do not.

To conclude, there appears to be a very tight link between
the applicability of the Jarzynski relation and stiffness or
smoothness for non-Gibbsian initial states which deserves
further exploration.
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APPENDIX A: STIFFNESS CONDITION

The condition (13) may appear puzzling, since transition
rates usually depend on the DOS at the final energy, but
not on the DOS at the initial energy. So how can transi-
tion rates possibly depend only on the energy difference?
In the following we try to elucidate under what conditions
stiffness may nevertheless occur. The mere fact of the actual
occurrence of stiffness in standard spin models may also be
inferred from Ref. [29], where stiffness was boldly verified
numerically.

Consider an Hprot (t ) of the form

Hprot (t ) = V sin ωt . (A1)

Let Vf i denote the elements of V in the energy eigenbasis
of H0 := Hsys + Hbath + αHint. Assume for simplicity that V
conforms with the eigenstate thermalization ansatz as sug-
gested by Srednicki [35], i.e.,

Vf i = A(ε)δi f + D(ε)−1/2 f (ε, |ω|)Ri f , (A2)

where ε := (εi + ε f )/2 and ω := ε f − εi, with εi and ε f

eigenvalues of H0; A and f are real and smooth functions of
their arguments; D is the DOS of H0; and “Ri f is a numerical
factor that varies erratically with i and f . It is helpful to think
of the real and imaginary parts of Ri f as random variables,
each with zero mean and unit variance” [35]. To simplify even
further we assume A(ε) ≈ 0 (this assumption may in principle
be dropped, but it eases calculations significantly). A second,

crucial assumption that is practically the same as Eq. (14) is
the exponential form of D(ε), i.e.,

D(ε)
!∝ eβε. (A3)

We are now set to calculate transitions rates as induced by
Hprot (t ), given that the whole setup is such that these rates
may be calculated on the basis of Fermi’s golden rule (FGR):

γ f ←i ∝ f 2(ε, |ω|)D(ε)−1D(ε f )δ(|ω|). (A4)

Simplifying the product of the D’s and taking Eq. (A3)
into account as well as the definitions below Eq. (A2), we
arrive at

γ f ←i ∝ f 2(ε, |ω|) exp

(
βω

2

)
δ(|ω|). (A5)

From this it is plain to be seen that this scenario will exhibit
stiffness if

f (ε, |ω|) != f (|ω|), (A6)

since in this case the rates will only depend on ω, which is
simply the difference between final and initial energies. Thus,
in this FGR scenario, if and only if Eqs. (A3) and (A6) apply,
stiffness occurs. Equation (A3) is likely fulfilled in a wide
energy range for large and short-range interacting systems;
Eq. (A6) plays also an important role in the dependence of
expectation value dynamics on initial states [36]. As already
mentioned, strong direct numerical evidence for the actual
occurrence of stiffness in models like the present one with the
bath being a kind of Heisenberg spin system is presented in
Ref. [29].

APPENDIX B: STIFFNESS OF WORK PDFS

In the main text we varied the model parameter ξ and just
claimed it would affect the stiffness of the work PDFs. In this
Appendix we numerically check the actual influence of this
model parameter on the work PDFs.

We therefore calculated the work PDFs pE (W ) for various
model parameters. In Fig. 5 we exemplarily present the data
for d = 4000, α = 0.4, λ = 0.25, and ξ = 0.6, 1.0, 2.0 for
eigenstates of H (0) with E0 ≈ 2.25.

Figure 5 shows the probabilities to perform zero work. For
ξ = 1.0 the probabilities pE (0) appear to be approximately
independent of E , while for ξ = 0.6 and 2.0 we find a signifi-
cant dependence. While for larger bath dimensions d the work
PDFs become smoother, the slope for ξ = 0.6, 2.0 appears to
be independent of d .

APPENDIX C: JARZYNSKI RELATION FOR DIFFERENT
INITIAL ENERGIES

In Sec. IV we considered deviations from the JR for various
combinations of ξ , α, and λ but a fixed initial energy E0 and
found that for some combinations of these parameters the JR
appeared to be fulfilled, even though the condition (13) is
violated. We now consider the dependence of these deviations
on the energy of the initial state ρ(0) with the aforementioned
parameters held constant. We consider microcanonical initial
states, defined according to Eq. (30), with various energies E .
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FIG. 5. For ξ = 1.0 the probability to perform zero work is ap-
proximately independent of the initial energy, while for ξ = 0.6 and
2.0 we find a significant dependence.

The resulting deviations D(ξ = 2.0, α = 0.45, λ = 0.15) are
displayed in Fig. 6.

Note that for this parameter combination we found the
JR fulfilled for the previously considered initial energy E0.
The data suggest that there is only a small energy range for
which the JR is approximately fulfilled and E0 coincidentally
is within this region. The energy dependence for other α and
λ looks quite similar. So we can find specific microcanonical
initial states, which comply with the JR, even if the condition

FIG. 6. Energy dependence of D(ξ, α, λ).

(13) is not fulfilled. However, since this is a feature of a very
specific combination of system and initial state, we conclude
that the JR is not fulfilled by this system and driving protocol
in general. In contrast, for ξ = 1 there is a wide region of ini-
tial energies that fulfill the JR, which is a direct consequence
of the conditions (13) and (14).

APPENDIX D: JARZYNSKI RELATION FOR
NONDIAGONAL INITIAL STATES AND
NONPROJECTIVE MEASUREMENTS

So far, only initial states that are diagonal in the energy
eigenbasis of the initial Hamiltonian have been considered.
However, some arguments related to “typicality” suffice to
establish that, given the validity of Eq. (13), the validity of
a JR will hold, even for a very large majority of pure states,
which are not diagonal. These states also could be seen as a
result of a nonprojective (weak) measurement of the initial
energy. Consider to this end pure states |ψE 〉 with the energy
E = δI which are drawn at random according to the unitary
invariant Haar measure from the Hilbert space spanned by the
projector �I . The corresponding work PDF is then given by

PE (W ) := 1

δ
〈ψE |U †�FU |ψE 〉, W = (F − I )δ. (D1)

Of course, here PE (W ) technically depends on the specific
|ψE 〉. However, employing the methods and results of typical-
ity [34,37], one finds for the Hilbert-space average HA[· · · ]
of PE (W ) over the above |ψE 〉,

HA[PE (W )] = 1

δ
Tr(�FUρI

mcU
†), (D2)

which equals the corresponding result for the mixed micro-
canonical initial state ρI

mc [cf. Eq. (8)]. While this finding
points in the direction of the JR being fulfilled for the
vast majority of the |ψE 〉, it is, by itself, not sufficient
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to conclude the latter. In order to do so, it remains to
be shown that the corresponding Hilbert-space variance
HV[· · · ] is small. Fortunately, expressions for such Hilbert-
space variances may also be found in the literature [34,37].
Prior to computing these expressions for the present case
we introduce some convenient notation. Let σ 2(A) denote
the variance of the spectrum of some operator A, with
A being Hermitian, i.e., featuring real eigenvalues. Then
the Hilbert-space variance for the work PDF is given by
[34,37]

HV[PE (W )] = σ 2(�IU †�FU�I )

Tr(�I ) + 1
. (D3)

Since the operator for which the spectral variance has to
be determined contains only projectors and unitaries, i.e.,
has only eigenvalues with absolute values between zero and
one, an upper bound on the spectral variance is readily
found:

σ 2(�IU
†�FU�I ) < 1. (D4)

(This bound may easily be tightened, but this is of no further
relevance here.) This yields an upper bound for the Hilbert-
space variance

HV[PE (W )] <
1

Tr(�I ) + 1
. (D5)

The crucial quantity here is obviously Tr(�I ), which is just
the number of eigenstates of the initial Hamiltonian H (0)
within the energy interval of size δ around E . For any given
δ it is to be expected that this number of eigenstates increases
quickly (exponentially) with increasing bath size. Hence, for
large baths HV[PE (W )] becomes very small, thus rendering
the outcome for PE (W ) for the overwhelming majority of
individual |ψE 〉 indeed very close to the outcome one obtains
from the microcanonical initial state ρI

mc. In other words, all
the above findings on microcanonical initial states ρI

mc transfer
to pure initial states |ψE 〉 for all practical purposes. In this
sense the JR also applies to many pure states.
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