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Kinetics of phase separation in thermally isolated critical binary fluids

James P. Donley*

Valence4 Technologies, Eugene, Oregon 97405, USA

(Received 1 February 2021; accepted 28 May 2021; published 23 June 2021)

Spinodal decomposition in a near-critical binary fluid is examined for experimental scenarios in which the
liquid is quenched abruptly by changing the pressure and the subsequent phase separation occurs with no heat
flow from the outside, i.e., adiabatically. Equations of motion for the system volume and effective temperature are
derived. It is shown for this case that the nonequilibrium decomposition process is well approximated as one of
constant entropy, i.e., as thermodynamically reversible. Quantitative comparison, with no adjustable parameters,
is made with the experimental light scattering data of Bailey and Cannell [Phys. Rev. Lett. 70, 2110 (1993)]. It is
found that including these adiabatic effects accounts for most of the discrepancies between these experiments and
previous isothermal theory. The equilibrium static critical properties of the isothermal theory are also examined,
this discussion serving to justify some approximations in the current theory.
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I. INTRODUCTION

Spinodal decomposition is the process of phase separation
of a thermodynamically unstable mixture [1–4]. It and its
complement, nucleation, are two of the most common mech-
anisms of phase transformation for systems governed by a
conserved order parameter. Decomposition is a common way
to create alloy materials, particularly metals, commercially,
and has been predicted under conditions thought to occur in
the early universe [5].

Decomposition was studied initially for systems in which
phase separation is driven by single-particle diffusion, such as
metal alloys. The first theories of the early stage of decompo-
sition in such substances were due to Cahn and Hilliard [1]
and Cook [6]. Later, Langer, Bar-on and Miller (LBM) [7]
employed the more formal methods of the master equation
vein of the theory of stochastic processes [8]. More recent
research has used the framework of quantum thermodynamics
to explore this phenomenon [9]. Experimental tests of any of
these theories have not been entirely unambiguous though.
For metal alloys, lattice mismatch of the two components
can cause stresses to build during unmixing, which slows the
rate of decomposition. These strains can be minimized by
matching the lattice constants of the individual components
[10] or avoided entirely by examining unmixing in liquids
[11,12]. In liquids though, unmixing is greatly accelerated
by advection. Kawasaki and Ohta (KO) extended the LBM
theory to binary liquids by incorporating these hydrodynamic
effects [13].

A careful set of experiments to test this KO theory was
done by Bailey and Cannell (BC) using 3-methylpentane
and nitroethane (3MP+NE) in the critical region [14,15].
The critical equilibrium properties of 3MP+NE have been
well characterized. Further, the components of this binary
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liquid have very similar indices of refraction, which mini-
mizes multiple scattering effects during decomposition. Since
all the parameters of the KO-LBM theory can be obtained
from equilibrium measurements, a clear comparison with the
theory would seem to be possible. However, as BC have
discussed, their experiments violated an almost universal
theoretical assumption for this class of nonequilibrium phe-
nomena, namely, that the temperature is a control parameter.
Rather, the quenches occurred by rapidly decreasing the pres-
sure and then holding it constant during the decomposition.
On the timescale of their experiments, no heat from the con-
tainer walls was able to reach the portion of the liquid being
probed; thus the decomposition occurred adiabatically rather
than isothermally.

The problem with controlling only the pressure is that
unmixing releases heat (being exothermic for most simple
liquids), which causes the temperature of the sample to in-
crease with time. Further, fluid motion is enhanced during
decomposition. Theories of dynamic critical phenomena and
the KO theory itself predict that the characteristic relaxation
time of a binary liquid scales as ξ 3+zη ∼ |ε|−1.94, where ε =
T/Tc − 1 is the reduced temperature, with T and Tc being
the absolute and critical temperature, respectively [16]. The
experiments of BC were done at reduced temperatures around
10−5, and so small changes in T could cause large changes
in the relaxation time, making comparison with theory po-
tentially troublesome. More fundamentally though, what does
one mean by “temperature” when a system is driven so far
from equilibrium?

The kinetics of phase transformation under adiabatic con-
ditions was first examined theoretically by Schmelzer and
Ulbricht for nucleation [17]. Onuki later performed a more
careful analysis appropriate to near the gas-liquid critical
point [18]. Schmelzer et al. extended their earlier study to
decomposition [19,20]. This research focused on systems
dominated by single-particle diffusion, such as metals, far
away from any critical point, in the approximation of uniform

2470-0045/2021/103(6)/062138(18) 062138-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.062138&domain=pdf&date_stamp=2021-06-23
https://doi.org/10.1103/PhysRevLett.70.2110
https://doi.org/10.1103/PhysRevE.103.062138


JAMES P. DONLEY PHYSICAL REVIEW E 103, 062138 (2021)

TABLE I. Equilibrium one-phase (T > Tc) data of an on-critical mixture of 3MP+NE relevant to the present paper. All units are meter,
kilogram, and second (MKS).

Parameter Ref.

Critical temperature Tc = 300◦ K [25]
dTc/dP = 3.497 × 10−8 K/Pa [15]

Critical mass density ρc = 7.92 × 102 kg/m3 [33]
Correlation length ξ = ξ+

0 |ε|−ν

ξ+
0 = 2.207 × 10−10 m [15]

with ν = 0.632
Hydrodynamic shear ηs = η̄(Q0ξ )zη

Viscosity η̄ = 3.76 × 10−4 Pa-sec [34]
Q0 = 1.4 × 108 m−1 [35]

zη = 0.063 [35]
Isobaric heat capacity Cp = C+

0 |ε|−α + Cb

C+
0 = 2.881 × 102 J/(K-kg) [15]

Cb = 1.7074 × 103 J/(K-kg) [15]
with α = 0.105

Thermal expansion αp = A+
0 |ε|−α + Ab

Coefficient A+
0 = 2.6597 × 10−5 K−1 [15]

Ab = 1.284 × 10−3 K−1 [15]
with α = 0.105

Adiabatic compressibility Ks ≈ 1.07 × 10−9 Pa [36]

temperature changes only. More recent work has examined
the effects of coupling nonuniform temperature changes to
the local concentration field during decomposition [21]. There
has also been research in biology regarding kinetic processes
under adiabatic conditions [22,23].

This paper has two purposes. First, it examines decom-
position under conditions appropriate to the experiments of
BC in critical binary liquids. It goes beyond the mean-field
Cahn-Hillard approach of Schmelzer et al. by generalizing
the stochastic theory of KO/LBM appropriate to binary liq-
uids, but also by considering the partition of the degrees of
freedom into slow and fast modes and the relevance of that to
the meaning of temperature. Second, it makes a quantitative
comparison, with no adjustable parameters, with the experi-
ments of BC. A Letter describing this work has been published
[24]. The present paper describes in detail the theory and also
explores some necessary concepts not covered in the Letter.

II. ADIABATIC DECOMPOSITION

In this section, a theory of adiabatic decomposition in a
binary substance is presented. The theory generalizes any
isothermal, statistical theory of decomposition, such as KO
or LBM.

In what follows, the equilibrium properties of critical
binary fluids will be used to justify some theoretical approxi-
mations. Table I below contains equilibrium data of 3MP+NE
relevant to the theory here. Table II below contains rele-
vant critical exponent values and amplitude relations. In this
paper, the critical point for a given pressure P is denoted
by the concentration cc and temperature Tc. As mentioned
above, the reduced temperature ε = T/Tc − 1. For 3MP+NE
at the pressures of interest, Tc varies linearly with pressure, so
dTc/dP is a constant [25]. In the critical region, the miscibility
gap has the scaling form �c = 2B|ε|β , the correlation length
ξ = ξ±

0 |ε|−ν , and the susceptibility χ = �±|ε|−γ , with β, γ ,

and ν being critical exponents and B, ξ±
0 and �± being critical

amplitudes. Here, + refers to a one-phase value obtained on
the critical isobar above Tc, while – refers to a two-phase
coexistence value below Tc. The quantities cc, B, ξ0, � and any
other critical amplitude mentioned in this text have either been
shown experimentally to be or are assumed to be constant over
the pressures of experimental interest [25].

A. Basic theory

The essence of the theory here is to exploit how one
constructs the coarse-grained free energy F used in previous
theories of decomposition. It is defined as follows [26]. Con-
sider a binary mixture of A- and B-type molecules in strong
contact with an external reservoir at temperature T . Let c(r)
be the concentration of A-type molecules in a cell of size a3

centered at position r. The cell size is mesoscopic on the order
of the equilibrium correlation length ξ , which for mixtures
in the critical region can be hundreds or even thousands of

TABLE II. Theoretical critical exponent and amplitude relations
relevant to binary fluids in the present paper.

Exponent Value Ref.

ν 0.632 [37]
γ 1.2395 [37]
α 0.105 [37]

Amplitude ratio Value Ref.

�+/�− 4.95 [38]
ξ+

0 /ξ−
0 1.96 [38]

C+
0 /C−

0 0.523 [38]
TcA±

0 /(ρcC
±
0 ) dTc/dP [39]

αρcC
+
0 �+/(kBB2) 0.0581 [38]

ξ+
0 (αρcC+

0 /kB )1/3 0.265 [38]
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angstroms. The coarse-grained free energy F ≡ F[c], is a
functional of the concentration field c(r). In mean-field the-
ories a change in F[c] due to a change in the concentration at
some point r acts as a local thermodynamic driving force or
chemical potential μ(r). Gradients in μ(r) in turn cause mass
diffusion.

The coarse-grained free energy is constructed by fixing the
value of c(r) in each cell and performing the partition sum
over all states of the system consistent with the configuration
[c]. Let the microscopic Hamiltonian be H , then

exp

(
−F[c] + Fr

kBT

)
=

∑
states

consistent
with[c]

exp

(
− H

kBT

)
, (2.1)

where kB is Boltzmann’s constant. The coarse-grained free
energy F then describes the properties of all concentration
modes of wave number k less than some cutoff  ∼ 1/a.
The quantity Fr is the part of the total equilibrium free
energy that is independent of the configuration [c]. For ex-
ample, it is assumed that Fr contains all vibrational degrees
of freedom, which give the dominant contribution to a liq-
uid’s entropy. In addition, the short wavelength concentration
modes (k > ) contribute to Fr , but they also contribute to
F by renormalizing its coefficients. Because the long wave-
length concentration modes don’t contribute to Fr , Fr is an
analytic function of T − Tc [27].

Since the interest here is in the kinetics of phase separation,
in integrating out these degrees of freedom it is assumed that
they relax very quickly compared to the modes described by
[c]. That is, the modes in Fr are able to equilibrate between
any characteristic change in [c]. Note that the strong contact
with an external bath appears to make possible the separation
of the partial free energy into two terms F and Fr . However,
what if there were not strong contact?

1. Closed system

To examine the case of poor or no contact with an external
bath, it is helpful to look first at a system that is closed, i.e.,
has a fixed total energy Et and fixed volume V . This is also
the case examined by Schmelzer and Milchev [19].

Now, will nonuniformities in the temperature T and pres-
sure P occur as the closed system evolves? For solids, the
answer is yes for temperature and for fluids the answer is
yes for both. For binary fluids, Mountain and Deutch exam-
ined the coupling of concentration, temperature and pressure
fluctuations in equilibrium. They developed a way to esti-
mate if this coupling is appreciable for any given simple
liquid [28]. Here, a standard approximation in the theory
of dynamic critical phenomena will be made and this cou-
pling will just be assumed to be small [29]. The focus then
is on uniform temperature and pressure changes caused by
unmixing and fluid motion, which themselves turn out to
be appreciable for 3MP+NE and indeed alter the unmixing
kinetics.

For the closed system, the relevant thermodynamic func-
tion is the entropy S. So, in analogy with the definition for F

and following Boltzmann, define

S([c], Et ) = kB ln

⎡
⎢⎢⎢⎢⎢⎣

∑
states

consistent
with[c]

δ(H − Et )

⎤
⎥⎥⎥⎥⎥⎦, (2.2)

as the entropy of a system with a fixed configuration [c]
and total energy Et . Here, δ(x) is the Dirac delta function at
point x.

However, for the approximations to follow, the interest is
still with F . To construct F , define the partition function

Z =
∑
states

consistent
with [c]

exp(−βH )

=
∫

dE ′ exp(−βE ′)�(E ′, [c]), (2.3)

where β is a parameter to be determined and �([c], E ′) =
exp(S([c], E ′)/kB) is the number of accessible states of the
system with an energy E ′ and coarse-grained configuration
[c]. Expanding S about Et it is found that, for the case in which
� is a macroscopic number, S is related to Z by

S([c], Et ) − kBβEt = kBln Z, (2.4)

with

kBβ =
(

∂S

∂Et

)
V,[c]

. (2.5)

Now, one can write S as the sum of two terms,

S([c], Et ) = S[c] + Sr, (2.6)

where Sr is the part of the entropy independent of the config-
uration [c]. Let the energy associated with Sr and S[c] be Er

and E[c], respectively. Then,

Et = E[c] + Er . (2.7)

If the concentration field [c] is held fixed, then so will be S[c]
and E[c]; thus, (

∂S

∂Et

)
V,[c]

=
(

∂Sr

∂Er

)
V

≡ 1

Tr
. (2.8)

Combining Eqs. (2.3)–(2.8) then gives

exp

(
−F[c] + Fr

kBTr

)
=

∑
states

consistent
with[c]

exp

(
− H

kBTr

)
, (2.9)

where the coarse-grained free energy

F = E − TrS, (2.10)

and

Fr = Er − TrSr . (2.11)

Comparing Eqs. (2.1) and (2.9), it can be seen for this
closed system that the degrees of freedom contributing to
Fr act explicitly as a reservoir for the concentration modes
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described by F . For the remainder of this work, the degrees
of freedom that contribute to Fr will be called the reservoir,
and those that are described by the concentration field [c] and
contribute to F[c] will be called the slow modes.

For this closed system, the equilibration process is as fol-
lows. The system is prepared in some nonequilibrium state
with reservoir energy Er and coarse-grained configuration [c]
(and thus energy E[c]). The system is then released and the
configuration [c] evolves. The evolution is driven by F[c],
which is a function of the reservoir temperature Tr . As the
[c] changes, the coarse-grained energy E[c] changes, and,
because the total energy is constant, the reservoir energy Er

changes. A change in Er implies a change in Tr , and this
change in Tr in turn affects the evolution of the [c] and so on.
The system eventually settles down into a state that maximizes
the total entropy.

With the ideas above, an equation of motion for the system
probability density, ρ([c], t ), for the case in which mass trans-
fer is dominated by single-particle diffusion (the solid model
[30]) can be derived [31]. But the coupling between the reser-
voir and slow modes through the total energy Et in Eq. (2.7)
makes the reservoir temperature Tr an implicit function of the
concentration field [c]. This equation is then not very useful.

However, as stated above, the primary concern is with
average temperature changes associated with the decomposi-
tion process, so a simpler approach can be made. If ρ([c], t )
exists, then an average slow mode energy, 〈E[c]〉, can be
computed. For this average slow-mode energy, there is a
corresponding reservoir energy, Er = Et − 〈E[c]〉. An aver-
age reservoir temperature, 〈Tr〉, can then be defined. Let this
average temperature then play the role of a pseudo control
parameter, let the thermodynamic driving force be F = E −
〈Tr〉S , and derive a separate equation of motion for 〈Tr〉. In
this way, the same equation for ρ([c], t ) that has been used
to describe isothermal decomposition will be used, but any
temperature-dependent parameter will now vary in time. It
can be shown in equilibrium that the reservoir temperature is
equal to the average system temperature (∂Et/∂St )V , where
St is the total equilibrium entropy [32]. When the system
is out of equilibrium, the relation between the reservoir and
system temperatures is unclear - assuming the latter can even
be defined in a consistent manner. However, as will be seen
below, such a relation is not necessary to determine the time
evolution of the concentration field.

For the remainder of this paper, let T denote this aver-
age reservoir temperature, i.e., T = 1/(∂Sr/∂Er )V , with Er ≈
Et − 〈E[c]〉. The time evolution of T can be obtained for the
closed system using the differential form of this equation:

dEt = 0 ≈ dEr + d〈E[c]〉. (2.12)

The reservoir energy is an equilibrium thermodynamic func-
tion so

dEr = CV rdT, (2.13)

where CV r = (∂Er/∂T )V is the reservoir heat capacity at con-
stant volume. Also,

d〈E[c]〉 = ∂〈E[c]〉
∂t

dt, (2.14)

where the partial time derivative of the average is defined by

∂〈E[c]〉
∂t

≡
∫

Dc E[c]
∂ρ([c], t )

∂t
, (2.15)

with
∫
Dc denoting an integral over the space of possible con-

centration fields. Note that the term 〈∂E[c]/∂T 〉dT does not
appear in Eq. (2.14) since in the above construction of F[c],
E[c] is independent of temperature. Combining Eqs. (2.12)–
(2.14) gives

dT

dt
= − 1

CV r

∂〈E[c]〉
∂t

. (2.16)

Since the free energies are additive,

CV r = CV − CV sm, (2.17)

where CV is the equilibrium heat capacity of the total system,
and CV sm is the contribution to CV from the slow modes. CV

can be obtained from experiment and CV sm can be calculated
once F[c] is defined:

CV sm = −T

(
∂2Fsm

∂T 2

)
V

, (2.18)

where Fsm = −kBT lnZsm is the portion of the total system
Helmholtz free energy from the slow modes, with the partition
function Zsm = ∫

Dc exp(−F[c]/kBT ).
Equation (2.16) will lead to a temperature change similar to

that of Eq. (22) in Ref. [19] but with an important difference:
the heat capacity in Eq. (2.16) is not for the entire system but
just the fast modes in the reservoir. Since the slow modes are
the source of the singularity of the heat capacity at the critical
point, the reservoir heat capacity can be much smaller than the
total heat capacity near there, causing the temperature change
to be larger than that predicted in Ref. [19].

2. Adiabatic system

These same ideas will now be applied to adiabatic decom-
position. In this case, there is no heat flow between the system
and the outside world, and the pressure P instead of the energy
E will be a control parameter. Under these conditions a system
undergoing phase separation will reach an equilibrium state
that minimizes its enthalpy He = E + PV .

However, as shown above, the Helmholtz free energy F =
E − T S seems to be the natural one to describe the decompo-
sition process theoretically. But if P is controlled, the system
volume V an fluctuate. The above construction of F does
not handle changes in volume well. With the coarse-grained
cell size a fixed, the number of cells changes as the volume
is changed. However, for a typical pressure change �P for
the quenches in the binary liquids of interest, the fractional
volume change �V/V � 10−5 	 1. So, given the level of
approximation of this theory, this ambiguity in the definition
of the slow mode fields will be ignored.

As mentioned above, the only slow modes considered here
will be those relevant to the isothermal case for critical dy-
namics in binary liquids, i.e., those described in model H [29]:
the concentration c(r, t ) and fluid velocity v(r, t ) fields, so
F = F[c, v]. Any effect of local fluctuations of the tempera-
ture and pressure are assumed to occur only in the reservoir,
with the slow modes being influenced only by their spatially
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uniform values. The justification in decomposition for this is
that average changes in T and P are expected to dominate
during unmixing.

Given these approximations, what will be done here is
determine how the temperature and volume change in time
during a pressure quench and subsequent decomposition.
These time-dependent values of T and V will then be inserted
into the coefficients of the coarse-grained free energy F to
determine the evolution of the slow modes.

Since both the temperature and volume will change if the
pressure changes, two independent relations are needed to de-
termined their time evolution. The first relation is as follows.

To move the near-critical binary liquid from the one-phase
region toward the unstable portion of the two-phase region,
the external pressure is dropped by a differential amount dP,
increasing the system (average) volume by dV . No heat is
allowed to flow between the system and the external world,
so the average work done by the system on the external world
(by a piston, say) equals the average change in the total system
energy. Thus,

dEt = −PdV, (2.19)

where dEt is given by Eq. (2.12) (though it is not zero in this
case, obviously).

What, though, is the pressure P? In equilibrium,

P = Pr + Psm, (2.20)

where Pr = −(∂Fr/∂V )T and Psm = −(∂Fsm/∂V )T are the
partial pressures of the reservoir and slow modes, respectively,
with Fsm being defined below Eq. (2.18). However, spinodal
decomposition is a nonequilibrium process. It necessarily
does not allow the slow modes to relax completely during the
quench. In the extreme case that the quench is so fast that
the slow modes are frozen, the contribution of these modes
to the pressure would be zero. Thus, the actual pressure of
the liquid on the container walls should be less than that
given by Eq. (2.20). On the other hand, it is assumed that
the movement of the piston that causes the drop in external
pressure is slow enough so that the degrees of freedom in
the reservoir are able to remain in equilibrium. For example,
any momentary density drop near the piston wall is rapidly
distributed throughout the liquid so no turbulence or other
inhomogeneous flow results [40]. Thus, P � Pr .

Estimates of Psm, and the change of it, �Psm, during the
quench would be helpful here. As discussed above, upper
bounds will be their equilibrium values. In equilibrium, Psm is
a finite function of ε and so will change little for a near-critical
quench. So, an estimate of it at any point during the quench
should be sufficient. Now, the number of of slow modes is
N = V/a3 ∼ V/ξ 3

f , where ξ f is the equilibrium correlation
length at the final temperature Tf . Each slow mode will have
an energy of order kBTf ∼ kBTc, and so the equilibrium free
energy of the slow modes is Fsm ∼ −kBTcV/ξ 3

f . In equilibrium
then,

Psm ∼ kBTc

ξ 3
f

. (2.21)

The short wavelength concentration modes also contribute
to F , so Eq. (2.21) may be an underestimate, but it should

be accurate within an order of magnitude. With |ε f | ∼ 10−5

for the quenches of 3MP+NE of BC [14], and using data
from Table I, it is found that Psm ∼ 1 Pa in equilibrium. The
experiments of BC were done near standard pressure at sea
level, which is around 105 Pa. Thus,

Psm

P
∼ 10−5 	 1. (2.22)

Also, the absolute change in pressure during a typical quench
for the BC experiments (e.g., εi = 10−5 to ε f = −εi) was
|�P| 
 104 Pa. An upper bound on |�Psm| is Psm, so

|�Psm|
|�P| � 10−4 	 1. (2.23)

Thus, P 
 Pr throughout the quench and decomposition pro-
cess.

Equation (2.19) is completed by obtaining expressions for
dEr and d〈E[c, v]〉. For this adiabatic case, both the reservoir
temperature and volume change, so

dEr =
(

∂Er

∂T

)
V

dT +
(

∂Er

∂V

)
T

dV. (2.24)

Likewise, the change in the average coarse-grained energy is

d〈E[c, v]〉 = ∂〈E[c, v]〉
∂V

dV + ∂〈E[c, v]〉
∂t

dt . (2.25)

It will be seen in the next section that ∂〈E[c, v]〉/∂V 

〈E[c, v]〉/V . As discussed above, the relative volume changes
for the near-critical quenches with 3MP+NE were very small,
so this term can be ignored. Combining Eqs. (2.19), (2.24),
and (2.25) gives a single equation relating dT and dV to dP
(i.e., dPr).

A second relation is that of the differential change in the
reservoir pressure Pr to changes in the reservoir temperature
and volume:

dPr =
(

∂Pr

∂T

)
V

dT +
(

∂Pr

∂V

)
T

dV. (2.26)

Combining Eqs. (2.19) and (2.24)–(2.26), then using stan-
dard thermodynamic relations [40,41], and letting dPr/dt ≈
dP/dt , gives

dT

dt
=

(
∂T

∂Pr

)
Sr

dP

dt
− 1

CPr

∂〈E[c, v]〉
∂t

(2.27)

and

dV

dt
= −V KSr

dP

dt
− 1

T

(
∂T

∂Pr

)
Sr

∂〈E[c, v]〉
∂t

, (2.28)

where (
∂T

∂Pr

)
Sr

= V T αPr

CPr
. (2.29)

Here, αPr = KTr (∂Pr/∂T )V = 1/V (∂V/∂T )Pr is the reservoir
isobaric thermal expansion coefficient, CPr = CV rKTr/KSr is
the reservoir isobaric heat capacity, KTr = −1/V (∂V/∂Pr )T

is the reservoir isothermal compressibility, and KSr =
−1/V (∂V/∂Pr )Sr is the reservoir adiabatic compressibility.

The meaning of the above equations is this: The pressure
is changed at a known rate dP/dt and work is done on the
system. In the above approximation all the work is done on
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the reservoir ( (∂T/∂Pr )Sr
and KSr are reservoir functions).

The reservoir reacts instantaneously and the temperature T
and volume V change at rates given by the first terms in
Eqs. (2.27) and (2.28). The coupling between the work source
and the slow modes is indirect. As the change in the reservoir
causes T and V to change, the change in T and V causes
the coefficients in F[c] to change. A change in F[c] causes
the slow modes to be out of equilibrium. These modes then
relax by exchanging energy with the reservoir at constrained
pressure, causing T and V to change at a rate given by the
second terms in Eqs. (2.27) and (2.28).

Looking more closely, consider a quench from the one-
phase to the two-phase region. For simplicity, assume that the
quench is very fast, so all the slow modes will be frozen during
it. Then, during the quench, the temperature will change at a
rate given by the first term in Eq. (2.27). The final temperature
Tf is estimated (perhaps roughly) using the full system ther-
modynamic function (∂T/∂P)S , where S is the total entropy
[25]. Now, the total isobaric heat capacity, CP = CV KT /KS ,
where KT and KS are the total isothermal and adiabatic com-
pressibility, respectively. Substituting this relation and that of
CPr above into Eq. (2.17) gives

CPr = KTr

KSr

KS

KT
Cp − KTr

KSr
CV sm. (2.30)

However, since the contribution to P from the slow modes has
been neglected, KS 
 KSr and KT 
 KTr . Further, KT 
 KS at
the temperatures of experimental interest. Thus,

CPr 
 CP − Csm, (2.31)

where Csm means either CV sm or CPsm. Further, from Tables I
and II it can be seen that the singular part of the thermal expan-
sion coefficient αP is much smaller than the background part
for the quenches we are considering. The slow modes con-
tribute only (or almost only) to the singular part of αP, which
is much smaller than the background part for 3MP+NE;
thus, αPr 
 αP. So, since (∂T/∂Pr )Sr


 V T αP/(CP − Csm ) >

V T αP/CP = (∂T/∂P)S , the temperature undershoots Tf and
reaches a value Tmin. Now after the quench the slow modes
will relax and the temperature will change at a rate given by
the second term of Eq. (2.27). As the system phase separates
∂〈E〉/∂t < 0 and so the temperature will increase, reaching
its final value Tf over time. On the other hand, since KSr and
(∂T/∂Pr )Sr

are both positive quantities, V increases monoton-
ically to its final value Vf . As t → ∞ the system reaches a
state of minimum enthalpy.

To complete the theory, useful expressions for αPr,CPr ,
F , and E are needed. First, consider CPr which is given
by Eq. (2.31). Since CP is known, one could presumably
determine CPr by calculating Csm 
 CV sm using Eq. (2.18).
Note though, that if 〈E[c, v]〉 is known, then so is Csm. In
the next section, an explicit expression for 〈E[c, v]〉will be
given, which can evaluated using equilibrium expressions of
the functions obtained from the KO/LBM theory. The slow
mode energy will be further approximated to depend only on
the reduced temperature ε. So,

Csm ≈ 1

Tc

(
∂〈E[c, v]〉

∂ε

)
, (2.32)

and the partial derivative implies holding fixed all parameters
but ε. Now, since Csm is expected to contain the singular
piece of Cp, CPr is expected to be an analytic function of
ε, which varies slowly around ε = 0. As such, CPr will be
further simplified by approximating it as its average value over
the interval {εi, ε f }, where εi is the initial value of ε. With
Eq. (2.32), averaging Eq. (2.31) over ε from the initial to the
final temperatures, εi and ε f , respectively, gives

CPr ≈ 1

�ε

∫ ε f

εi

dε[CP − Csm]

= 1

�ε

[ ∫ ε f

εi

dε CP − 1

Tc
(〈E[c, v]〉 f − 〈E[c, v]〉i )

]
,

(2.33)

where �ε = ε f − εi. This approximation should be sufficient
as long as εi ∼ −ε f , that is, the quenches are neither too deep
nor too shallow.

To calculate the equilibrium function αPr , consider a slow,
differential change in the pressure P that allows the system to
remain in equilibrium. Since this process is reversible, the en-
tropy will remain constant. Under these conditions, Eq. (2.27)
can be written as

1 =
{

V αPr

CPr
− 1

Tc

dTc

dP

}(
∂P

∂ε

)
S

− 1

TcCPr

(
∂〈E[c, v]〉

∂ε

)
,

(2.34)

where (
∂P

∂ε

)
S

= Tc

[(
∂T

∂P

)
S

− dTc

dP

]−1

(2.35)

is an equilibrium function that relates changes in pressure to
changes in the reduced temperature at constant entropy. In
terms of its components, (∂T/∂P)S = V T αP/CP. Combining
Eqs. (2.31), (2.32), (2.34), and (2.35) give

αPr = αP −
dTc
dP

V Tc
(CP − CPr ). (2.36)

Using Tables I and II, it can be shown that the singular parts
of αP and CP cancel in this equation. Thus, with the approxi-
mation above for CPr , αPr is a constant.

With the above equations, it is now possible to compute
the final temperature Tf for a quench knowing the initial
temperature Ti and pressure change �P. Since decomposition
is a nonequilibrium process, it is not expected that Tf will
equal that computed using (∂T/∂P)S , which assumes constant
entropy.

As the experiments are near Tc it is useful to work with
changes in ε rather than T . In terms of ε, Eq.(2.27) is

CPr

V
dε =

(
αPr − CPr

V Tc

dTc

dP

)
dP − 1

TcV
d〈E[c, v]〉. (2.37)

Substituting Eq. (2.33) for CPr , Eq. (2.36) for αPr , and then
integrating from the initial to final state gives∫ ε f

εi

dε
CP

V
=

(
Ab − Cb

V Tc

dTc

dP

)
(Pf − Pi ), (2.38)

where Pi and Pf are the initial and final pressures, respectively.
Also, Ab and Cb are the background contributions to the total
isobaric thermal expansion coefficient and isobaric heat ca-
pacity, respectively, which are the same above and below Tc
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(see Table I, but recognize that there the heat capacity is per
unit mass).

Note that the average energy of the slow modes does not
appear in Eq. (2.38). That is, 〈E[c, v]〉 determines the time
evolution, including the undershoot temperature Tmin, but not
the final temperature Tf . Also, Eq. (2.38) is the same equation
that would be obtained by assuming a reversible, constant
entropy process. In other words, the temperature rise pro-
duced during the phase separation exactly compensates for the
temperature undershoot caused by the lack of equilibration of
the slow modes during the quench.

It can be shown that this expression for the final tem-
perature ε f , Eq. (2.38), doesn’t depend on the specific
approximation, Eq. (2.33), for CPr . At the least, Eq. (2.38)
will hold as long as CPr is given by Eq. (2.31) and the approx-
imation for Csm is consistent with the value of 〈E[c, v]〉, which
depends only on ε in equilibrium.

To understand better how this constant entropy approxima-
tion can be quantitatively accurate, it is helpful to recall the
Rankine thermodynamic cycle, which is used to describe the
operation of steam turbines [42]. Like the Carnot and Brayton
cycles, two of the four steps are isentropic [40]. One of these
isentropic steps involves pressure quenching a superheated
vapor by driving it through the turbine, causing it to rotate.
The output product of this step is commonly a mixture of
saturated liquid and gas [42] and so this step has realizations
that are essentially identical to adiabatic decomposition. No
real steam turbine is ideal, yet efficiencies for this step can
reach 90%. Sources of inefficiency are friction, wear on the
turbine blades caused by condensed droplets, any generated
turbulence, and heat escaping to the outside. But the latent
heat released during phase transformation of the vapor to
liquid and gas does not affect the efficiency; it does not prevent
the mixture from following a constant entropy path.

In the theory here, the cause of the constant entropy result
is the use of properties of a binary liquid in the critical region,
which allows the neglect of the slow mode pressure Psm in and
out of equilibrium. If Psm were not small, then the pressure
response of the slow modes and thus the liquid would depend
on the quench rate, so if the quench were fast the fluid entropy
would increase in a manner similar to that of a gas expanding
into a vacuum. A second reason is that, while the entropy of
the slow modes is not necessarily small (thus the reason for
accounting for Csm), as it contains the liquid latent heat, the
dominant proportion of its change during phase separation is
already accounted for in an equilibrium, isentropic process
to get to the final state, as it is for the steam turbine. Thus,
the overall exchange of energy between degrees of freedom
in this nonequilibrium process is not much different than if
the process had been an equilibrium one. So whatever entropy
increase that does occur is small enough so it can safely be
approximated as zero. Contrary to the original expectation
then, the final temperature can be computed accurately by just
integrating Eq. (2.35).

B. Temperature-dependent coarse-grained free energy

The last elements of the adiabatic theory are expressions
for the temperature dependent coarse-grained free energy and
energy. In isothermal decomposition, F is taken to be that of

model H, which is a sum of a Cahn-Hilliard/Ginzburg-Landau
free energy for the concentration field, c(r), and the kinetic
energy of the fluid velocity field v(r):

F[u, v] =
∫



dr
[

K

2
(∇u(r))2 + f (u(r) + c0) + 1

2
ρv(r)2

]
,

(2.39)

where u(r) ≡ c(r) − c0, with c0 being the average concen-
tration. Also, f (c) is the free-energy density of a uniform
system at concentration c, the gradient term is the lowest order
correction to the free energy from deviations of u(r) from
zero [43], and ρ is the average mass density. In LBM and
KO, the implicit cutoff is set to be inversely proportional to
the correlation length at the quenched temperature, Tf , i.e.,
 ∼ 1/ξ f . Further, these theories also choose f (c) to have
the standard ϕ4 form, it being the dominant correction to the
quadratic term in the critical region [27].

Given this, follow LBM and let

f (c) = kBTf f1

ξ 3
f

φ(x), (2.40)

where

φ(x) = ζ

2
x2 + λ4

4
x4. (2.41)

Here, ζ and λ4 are constants to be determined. Also, x =
(c − cc)/us f is a reduced concentration, with us f = B|ε f |β
being half the miscibility gap at the quenched temperature
Tf , so the scaled free-energy density φ(x) is symmetric about
the critical concentration. Last, f1 = ξ 3

f u2
s f /χ f , where ξ f and

χ f are the correlation length and susceptibility, respectively,
at Tf . In the critical region, hyperscaling holds [41], so f1 =
(ξ−

0 )3B2/�−, which is a temperature-independent, dimension-
less ratio of two-phase amplitudes.

Last, the gradient energy coefficient

K = λK

kBTf ξ
2
f

χ f
, (2.42)

where χ f = �−|ε f |−γ is the susceptibility at Tf , and λK is a
dimensionless number very close to unity.

How then should F be generalized to describe kinetics
in which the temperature is not constant? While the early-
stage theories of KO and LBM can be used for computing
equilibrium states, they are not intended to describe properly
static critical phenomena. In spite of this, they do incorporate
fluctuations to some degree. Thus, it can be expected that
these fluctuations will at least shift the apparent distance from
the critical point, in a manner similar to how they shift the
coexistence concentrations away from the minima of f (c). So
a correction for this shift in Tc must be made in F .

What will be done here is just assume a simple
temperature-dependent form for F and compute its coeffi-
cients. Then, the free energy will be examined to determine
how well it predicts some equilibrium properties of a critical
binary mixture such as the equation of state and susceptibility.
If the free energy gives satisfactory results in regions impor-
tant to the adiabatic decomposition theory, then its form and
the scheme used to compute it will be considered adequate.
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FIG. 1. Our theoretical model of adiabatic decomposition in crit-
ical binary liquids. The piston (black) expands the liquid, which is
contained in an insulated container (brick red). All work by the piston
is done only on the reservoir (blue) subsystem of the liquid. The
reservoir temperature, T , and pressure, equal to the external pressure,
P, thus change. The slow mode (green-blue) subsystem of the liquid
feels this change through the reduced temperature, ε(T, P). The slow
modes then relax, changing their energy Esm ≡ 〈E[c, v]〉, which is
dumped back into the reservoir, causing a further change in T , etc.

In that spirit, and given the arguments above [including
those leading to Eq. (2.10)], assume that the dominant tem-
perature dependence in the theory is in ζ and λ4. The latter
changes to λ4T/Tf , recognizing that the x4 term arises from
the configurational entropy. The x2 term has both entropic and
energetic origins, so let ζ be linear in ε:

ζ → ζ (ε) ≈ (λ2 − λ0)
ε

|ε f | − λ0. (2.43)

So, ζ (0) = −λ0 and ζ (ε f ) = −λ2, assuming ε f < 0. Since
the experiments are in the critical region, any other temper-
ature or volume dependence of F will be ignored.

As Tc itself changes when the density changes, ε will be
a function of both T and V . However, for a system at con-
strained pressure, Tc is a function of pressure only, so ε will
be considered a function of T and P rather than T and V . In
that manner, the equation of motion for V , Eq. (2.28), will not
be used.

With Eqs. (2.10) and (2.39)–(2.43), the average coarse-
grained energy 〈E[c, v]〉 = −〈T 2∂ (F/T )/∂T 〉 can be com-
puted. In the Appendix, it is shown that the heat of mixing
dominates near the critical point, so

〈E[c, v]〉 ≈ −(λ2 − λ0)
1

|ε f |
f1

2
〈x2〉

(
kBTf V

ξ 3
f

)
. (2.44)

The one-point average 〈x2〉 can be obtained from the structure
factor or one-point probability density, these quantities being
the subject of the next section. The computation of the λi

parameters will be described in Sec. V below.
The theoretical model of adiabatic decomposition given

here is summarized in Fig. 1.

III. KAWASAKI-OHTA THEORY

As mentioned above, the KO/LBM theory of early-stage
decomposition will be used to compare with experiment. This
section describes the theory briefly.

KO is considered to be the most successful numerical the-
ory of decomposition in critical binary fluids. It, like LBM,
is built upon the theory of stochastic processes [8]. The KO
theory consists of a set of equations that describe the time
evolution of the structure factor Ŝ(k, t ), where k ≡ |k| is the
wave vector. Contact with experiment is made by relating
Ŝ(k, t ) to the scattered radiation intensity I (k, t ) [44].

Now, let uk be the Fourier transform of the concentration
deviation u(r). The structure factor Ŝ(k) is defined as

Ŝ(k) = 〈|uk|2〉, (3.1)

and is the Fourier transform of the concentration-
concentration correlation function

S(r − r0) = 〈u(r)u(r0)〉. (3.2)

This function can be obtained from theory by taking moments
of ρ([u], t ), which, as mentioned above, is the probability
density that the system is in a coarse-grained configuration
[u] at time t .

In KO theory, the time evolution of the probability density
ρ([u], t ) is determined by a Fokker-Planck equation [13],

∂ρ

∂t
= [L1 + L2]ρ, (3.3)

where the operators are given by

L1 = −
∫

dr1dr2
δ

δu(r1)
∇2

1 L(r1 − r2)

×
[

δF
δu(r2)

+ kBT
δ

δu(r2)

]
(3.4)

and

L2 =
∫

dr1dr2
δ

δu(r1)
∇1u(r1) · T(r1 − r2)

·∇2u(r2)

[
δF

δu(r2)
+ kBT

δ

δu(r2)

]
. (3.5)

Here, δ/δu(r) is a functional derivative with respect to the
concentration field at the point r, and T(r) is the Oseen tensor
with components Tαβ = [δαβ + r̂α r̂β]/(8πηsr), with ηs being
the hydrodynamic shear viscosity and r̂ ≡ r/r.

Eqs. (3.3)–(3.5) describe phase separation driven by
incompressible, overdamped fluid flow, the flow in turn
caused by gradients in the local chemical potential, μ(r) =
δF[u]/δu(r). These equations are renormalized versions [45]
of bare stochastic equations [46], which are formally equiva-
lent to the Langevin equations of model H of critical dynamics
[29] in the overdamped approximation, i.e., v = T · (μ∇u +
noise).

The operator L1 results from integrating out concentration
fluctuations of wave number k > . The Onsager function
L(r) that appears in L1 is weakly nonlocal and couples these
short-wavelength concentration modes, via the fluid velocity
field, to the long-wavelength modes k < . L(r) is the in-
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verse Fourier transform of [45]

L̂(k1) = 1

k2
1

∫
dk2

(2π )3
k1 · T̂(k1 − k2) · k1Ŝeq(k2). (3.6)

Here, the integral over k2 runs from  to an upper cutoff which
is approximated as infinity. T̂(k) is the Fourier transform
of the Oseen tensor with components [δαβ − k̂α k̂β]/(ηsk2).
Ŝeq(k) is the equilibrium structure factor of mode k (>), and
is taken to have a Lorentzian form

Ŝeq(k) = χ

1 + (kξ )2
, (3.7)

where χ and ξ are the susceptibility and correlation length,
respectively, at temperature ε and concentration c0. Clearly, as
the temperature changes, Ŝeq(k), and therefore L̂(k), will be
changing also. However, it can be shown [45] that a reasonable
approximation to Eq. (3.6) is

L̂ 
 χ

3π2ξ 2ηs
. (3.8)

Making use of Tables I and II for χ, ξ and ηs, it is found that
L̂ has a weak temperature dependence. Thus, if the quenches
are relatively fast, Ŝeq(k) can be set to its value at the final
equilibrium temperature ε f . Further, the weak temperature
dependence of the viscosity ηs will also be ignored. Then
with these approximations, the only temperature dependence
in (3.3) appears in the coarse-grained free energy, F[c, v].

An equation of motion for the structure factor Ŝ(k, t ) was
derived by KO using Eqs. (2.39) and (3.3)–(3.6). To evaluate
two-point correlation functions in L1 other than S(r), they
used the LBM self-consistent, first-order expansion for the
two-point probability density:

ρLBM
2 (u1, u2) = ρ1(u1)ρ1(u2)

[
1 + u1u2

〈u2〉2
S(r12)

]
, (3.9)

where r12 ≡ |r1 − r2|, u1 ≡ u(r1), etc. This approximation is
expected to work best during the early stage of decomposition
when the growing domains are not much larger than a few
equilibrium correlation lengths and sharp interfaces have not
yet formed [7]. Implicit in the LBM derivation is an important
constraint that averages taken with respect to ρ2 must reduce
to their exact form in the limit r12 → 0. That is, for arbitrary
functions h(u) and g(u), 〈h(u1)g(u2)〉 → 〈h(u)g(u)〉 as r12 →
0, where the latter average is taken with respect to the one-
point probability density ρ1(u). Implementing this constraint
in a simple way, and using the LBM approximation above,
gives an equation for ρ2:

ρ2(u1, u2) ≈ ρLBM
2 (u1, u2) + a3δ(r1 − r2)

× [
ρ1(u1)δ(u1 − u2) − ρ

LBM(
2 u1, u2)

∣∣
r12→0

]
.

(3.10)

The L2 contribution to Ŝ(k, t ) contains a four-point cor-
relation function. KO argued that during the early stage of
decomposition the coupling between modes in this correlation
function would be close to Gaussian. In this approximation,
the four-point correlation function reduces to a product of
two-point ones [13].

The result is

∂ Ŝ(k1)

∂t
= −2L̂(k1)k2

1

[(
Kk2

1 + A
)
Ŝ(k1) − kBT

]
+ 2

∫  dk2

(2π )3
k1 · T̂(k1 − k2) · k1

× [
K

(
k2

2 − k2
1

)
Ŝ(k2)Ŝ(k1)

+ kBT Ŝ(k2) − kBT Ŝ(k1)
]
. (3.11)

Here,

A = 1

〈u2〉
〈
u
∂ f (u + c0)

∂u

〉
, (3.12)

where the averages are taken with respect to ρ1(u).
It can be shown [13] that the operator L2 doesn’t contribute

directly to the equation of motion for ρ1(u). Given this, the
derivation of the equation of motion for ρ1(u, t ) from Eq. (3.3)
is almost identical to the one in LBM. It is found

∂ρ1(u)

∂t
= ∂

∂u

[
G(u)ρ1(u) + kBT

L

a3

∂ρ1(u)

∂u

]
, (3.13)

where

G(u) = W
u

〈u2〉 + L

[
∂ f

∂u
−

〈
∂ f

∂u

〉
− uA

]
, (3.14)

W =
∫ 

0

dk

2π2
k4L̂(k)(Kk2 + A)Ŝ(k), (3.15)

and

L = a3
∫ 

0

dk

2π2
k4L̂(k). (3.16)

For the initial conditions of these equations, the equilib-
rium solution of them will be used. Setting the right-hand side
(RHS) of Eq. (3.13) to zero yields

ρ1eq(u) = exp

[
− u2

2〈u2〉 + b0

− a3

kBT

(
f (u + c0) − uμ − u2

2
A

)]
(3.17)

where b0 is a normalization constant, and μ ≡ 〈∂ f /∂u〉 is
the chemical potential. Both μ and A are determined self-
consistently, while 〈u2〉 = S(0) is an input obtained from the
Fourier transform of the structure factor. The equilibrium
structure factor is found by setting the RHS of Eq. (3.11) to
zero, giving

Ŝeq(k) = kBT

Kk2 + A
. (3.18)

These kinetic and equilibrium equations were solved nu-
merically.

IV. SCALING AND NUMERICAL SOLUTION

A. Scaling of the equations

For numerical computation, it is helpful to scale the above
equations. While in adiabatic decomposition the temperature
will necessarily be changing with time after the quench, the
final equilibrium temperature will still be the relevant one. So,
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as in KO and LBM, the scaling will be done with respect to
system properties at ε f .

Define the scaled wave-vector cutoff α∗ = ξ f , where
α∗ is a number close to 1. Define also the dimensionless
wave vector, q = kξ f ; distance, r̃ = r/ξ f ; structure factor,
S̃(q) = Ŝ(k)/χ f ; relative concentration, y = u/us f ;
average concentration, x0 = (c0 − cc)/us f ; and time,
τ = kBT/(6πηsξ

3
f )t . As for LBM, the cell volume

a3 = (
∫

dk/(2π3))−1 = 6π2ξ 3
f /(α∗)3.

It is convenient to scale the Onsager function, Eq. (3.6), as

σ (q) = 6πξ f ηs

χ f
L̂(q/ξ f )

= K (q) − 3

2π

∫ α∗

0
dm Q(q/m)

1

1 + m2
, (4.1)

where K (q) is a Kawasaki function [13]:

K (q) = 3

4

[(
1

q
− 1

q3

)
arctan(q) + 1

q2

]
(4.2)

and

Q(x) = 1

2

[
1

x
+ 1

x3

]
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ − 1

x2
. (4.3)

Changing to the new scaled variables and performing any
angular integration, the equation of motion for the structure
factor becomes

∂ S̃(q)

∂τ
= −2σ (q)q2[(λK q2 + Ã)S̃(q) − 1]

+ 3

π
q2

∫ α∗

0
dm Q(q/m)

× [λK (m2 − q2)S̃(q)S̃(m) + S̃(m) − S̃(q)], (4.4)

where

Ã = 1

〈y2〉
〈
y
∂φ(y + x0)

∂y

〉
. (4.5)

The kinetic equation for the one-point probability density
ρ1 is now

∂ρ1(y)

∂τ
= ω

∂

∂y

[
g(y)ρ1(y) + ∂ρ1(y)

∂y

]
, (4.6)

where

ω = 1

f1

∫ α∗

0

dq

2π2
q4σ (q), (4.7)

and

g(y) = W̃ y

〈y2〉 + f0

[
∂φ

∂y
−

〈
∂φ

∂y

〉
− yÃ

]
, (4.8)

with

W̃ = 1

f1ω

∫ α∗

0

dq

2π2
q4σ (q)(λK q2 + Ã)S̃(q). (4.9)

Here, f0 = 6π2 f1/(α∗)3.
Last, using Eq. (2.27), it can be found that the equation of

motion for the reduced temperature is

dε

dτ
=

[
αPr

ρcCPr
− 1

Tc

dTc

dP

]
dP

dτ
− kB

ξ 3
f ρcCPr

dẽ

dτ
, (4.10)

where ρc is the critical mass density and CPr is now the
reservoir heat capacity per unit mass, and the average coarse-
grained energy, Eq. (2.44), properly scaled, is

ẽ = ξ 3
f

V kBTf
〈E[c, v]〉 = −(λ2 − λ0)

f1

2|ε f | 〈x
2〉. (4.11)

The scaled form of the equilibrium equations, (3.18) and
(3.18), are, respectively,

ρ1eq(y) = exp

[
− y2

2〈y2〉 + b0

− f0

(
φ(y + x0) − y

〈
∂φ

∂y

〉
− y2

2
Ã

)]
, (4.12)

and

S̃eq(q) = 1

λK q2 + Ã
, (4.13)

where again b0 is a normalization constant.
From these equations, it can be seen that an (linear) isother-

mal quench and subsequent decomposition is completely
specified by the quench time τquench, the ratio of the initial to
the final scaled temperature, εi/ε f , and the average concentra-
tion x0. In addition to the properties of the particular fluid one
wants to study, an adiabatic quench is completely specified
by these same quantities plus the change in pressure, �P.
The predictions of the theory are also somewhat dependent on
the value of the scaled cutoff α∗. However, the degree of this
dependence will be minimized by the method of computing
the λi parameters in the coarse-grained free energy, discussed
below.

B. Numerical solution

The scaled adiabatic equations were solved numerically as
follows.

S̃(q) was solved on a grid of Nq points qi = i�q, i =
1, ..., Nq in q space, with spacing �q = 2α∗/Nq. S̃(q) was
set to zero for all grid points qi > α∗. The reason the grid
was extended in this manner was to be able to inverse Fourier
transform S̃(q) if need be. The q grid point number Nq was set
to 29 = 512 for any run with a maximum time τmax � 103, and
was set to 210 = 1024 for longer runs of 103 < τmax � 104.
Similarly, ρ1(y) was solved on a grid of Ny equally spaced
points yi, i = 1, .., Ny in y space, with y1 = ymin + �y/2,
y2 = ymin + 3/2�y, and yNy = ymax − �y/2, where �y =
Ny/(ymax − ymin) and ymin = −ymax. To ensure that ρ1(y)
could model properly behavior near the coexistence curve at
ε f , ymax was set to 2.5. Also, Ny = 120 for all results shown
in this work. It was found that no result shown here changed
appreciably if Nq and Ny were increased beyond the above
values.

Now, the adiabatic theory consists of an ordinary differ-
ential equation (ODE) for S̃(q, τ ) and another for ε(τ ), and
a partial differential equation (PDE) for ρ1(y, τ ). To simplify
the computation, the PDE for ρ1(y, τ ) was converted into a
set of coupled ODE’s, using a simple finite difference scheme.
Let ρ1i and gi be the values of ρ1(y) and g(y) at the ith grid
point yi. Then, Eq. (4.6) becomes
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dρ1i

dτ
= ω[gi+1ρ1(i+1) − gi−1ρ1(i−1)]/(2�y)

+ω[ρ1(i+1) + ρ1(i−1) − 2ρ1i]/�y2, (4.14)

with the boundary conditions ρ11 = ρ1Ny = 0. A total of N =
Nq/2 + Ny − 2 + 1ODE’s result. The integration of these in
time was done using the Bulirsch-Stoer method [47]. The
structure factor equations are stiff in the sense that the relax-
ation of the high-q modes is much faster than the low-q ones.
The Bulirsch-Stoer method is not usually used for solving
such an ODE type. Given that, initially the equations were
also solved using a commercial package built for solving stiff
ODE’s [48]. It was found that both methods yielded the same
results.

In past work, the PDE for ρ1(y) was solved instead using
the much faster “double Gaussian” method. [7] This method
was analyzed for on-critical quenches, x0 = 0, and found to
give essentially identical results to the finite difference method
at early times. However, it over-estimated the phase separation
at later times when the wavevector qm of the peak of the struc-
ture factor was less than 0.3. For the BC experiments, data was
available out to times such that qm < 0.2. As a consequence,
this approximation was not used here.

For each timestep, ρ1 was normalized to prevent accumu-
lation of round-off errors. The first moment, 〈y〉 of ρ1 was
monitored to ensure that it remained zero. The integral of S̃(q)
and ρ1 were also monitored to ensure that they gave the same
result for 〈y2〉.

The equilibrium equations, (4.13) and (4.13), were solved
using the same grids for q and y, though here Nq was set to
212 = 4096. Simple iteration was used for them. The initial
guess for S̃eq(q) was a scaled version of Eq. (3.7) at the rele-
vant initial ε and x0. However, if the LBM solution of S̃eq(q)
differed appreciably from the known value, bootstrap, i.e., a
previous guess at a nearby temperature and concentration, was
used instead.

V. COMPUTING THE COARSE-GRAINED FREE ENERGY

The last ingredients of the theory are values for the λi pa-
rameters in the coarse-grained free energy, defined in Sec. II B
above. Similar to LBM, these parameters were determined by
using F to compute the equilibrium structure factor and chem-
ical potential on coexistence at the final temperature ε f , and at
the critical point ε = 0. There are a number of ways to accom-
plish this task. The one probably most accurate for the least
amount of effort is to use the LBM equilibrium solution for
S̃(q) and ρ1(y) [49]. This scheme was used here. It amounts to
applying N equilibrium conditions to the LBM equations for
the N unknowns, and finding the solution of them using the
Newton-Raphson method [47]. Here, all derivatives required
by this method were computed numerically.

For here and elsewhere in this work, the free energy ampli-
tude f1 was set to 0.210, consistent with the critical amplitude
values in Table II.

On coexistence, ε = ε f and x0 = 1, the scaled equilibrium
structure factor S̃(q) = 1/(1 + q2). Two conditions obtained

TABLE III. Coarse-grained free energy coefficients λi for vari-
ous wave vector cutoffs α∗.

α∗ λK λ0 λ2 λ4

1.0 1.0 0.3203 0.6915 0.6020
1.4 1.0 0.5169 0.8734 0.6704
π/2 1.0 0.6054 0.9533 0.6913

from this equation were S̃(0) = 1 and

〈y2〉 = 1

2π2 f1

∫ α∗

0
dqq2S̃(q)

= 1

2π2 f1
[α∗ − arctan(α∗)]. (5.1)

A third condition is that the exchange chemical potential must
vanish on coexistence: μ̃ = 〈∂φ/∂x〉 = 0. These three condi-
tions are sufficient to determine λK , λ2, and λ4 for any cutoff
α∗. The last parameter λ0 was determined by requiring that
S̃(0) = ∞, i.e., Ã = 0, at the critical point, ε = 0 and x0 = 0.
Values for the λi parameters for various cutoffs are shown in
Table III. Note that the value of λ0 does not depend on the
form of the temperature dependence of ζ , Eq. (2.43), only that
it reduces to −λ0 at ε = 0.

To justify some approximations made previously, it is help-
ful to examine the predictions of the equilibrium LBM theory
on critical above Tc and on coexistence below it.

Figure 2 shows LBM predictions for the equilibrium, on-
critical inverse susceptibility S̃−1(0) as a function of ε/|ε f | >

0 for two cutoff values α∗ = 1 and π/2. Also shown are the
expected scaling predictions for a simple binary fluid (3D
Ising universality class): S̃(0)−1 = �−/�+|ε/ε f |γ , where the
amplitude ratio and exponent are obtained from Table II. For
ε/|ε f | 	 1, it is found that LBM also predicts scaling be-
havior, with the exponent γ approximately equal to the mean

FIG. 2. LBM predictions, using the temperature-dependent
coarse-grained free energy defined in Sec. II B, for the equilibrium,
one-phase, on-critical, inverse susceptibility S̃(0)−1 as a function of
the scaled temperature ε/|ε f | > 0. Results for two cutoffs α∗ are
shown, along with exact scaling values.
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FIG. 3. LBM predictions, using the temperature dependent
coarse-grained free energy defined in Sec. II B, for the coexistence
curve ε(x0 ) for two cut-offs α∗. Also shown is the “exact” scaling
form in the critical region, ε/|ε f | = −x1/β

0 , where β ≈ 0.33.

spherical model value of 2 [41]. Since the accepted 3D Ising
value of γ ≈ 1.240, the LBM theory does not perform well in
this limit as expected. However, it can seen for higher temper-
atures the theory performs much better. For 0.5 � ε/|ε f | �
10, the LBM predictions for S̃(0) are within 10% and 20% of
the exact values for α∗ = 1 and α∗ = π/2, respectively. For
higher temperatures, the agreement lessens but S̃(0) is small
there anyway. It was found that the predictions of the hy-
drodynamic theory are pretty much insensitive to such small
variations in the initial conditions. (More important is that
S̃(q) and ρ1(y) be consistent with each other.)

Define an effective susceptibility exponent

γeff = −ln[S̃(0, ε1)/S̃(0, ε2)]/ln[ε1/ε2], (5.2)

where the temperatures ε1 and ε2 are close to each other
in some sense. Then, over this temperature range, 0.5 �
ε/|ε f | � 10, LBM predicts that γeff varies from 1.39 down to
1.10 for α∗ = 1, and 1.47 down to 1.15 for α∗ = π/2. Also,
for α∗ = 1 and ε/|ε f | = 1.5, and α∗ = π/2 and ε/|ε f | = 2.3,
γeff = 1.24, i.e., is exact.

Thus, the LBM theory seems to properly describe the tem-
perature dependence of critical fluctuations within a window
near ε/|ε f | = 1. It is concluded then that using the equilib-
rium LBM theory, along with F defined in Sec. II B above, to
give initial conditions for S̃(q) and ρ1(y) is acceptable as long
as the quenches are not too deep, ε/|ε f | > 0.5.

Examining the LBM predictions for the two-phase coexis-
tence curve ε(x0) is also illuminating. Figure 3 shows ε(x0)
for positive x0 (the curve is symmetrical about x0 = 0) for
cutoffs α∗ = 1 and π/2. Also shown is the accepted scal-
ing form for a system in the 3D Ising universality class:
ε(x0) ∼ −|x0|1/β , with β ≈ 0.33. Thus, ε(x0) should have a
maximum at x0 = 0. However, as can be seen, instead of a
maximum at x0 = 0, the LBM predictions overshoot ε = 0
and have a maximum at around x0 = 0.2 and 0.25 for α∗ = 1
and π/2, respectively. Thus, the LBM theory should not be
used to describe the initial state for quenches that are deep,

ε/|ε f | 	 1, and off-critical. Also, contrary to its behavior
above Tc, the LBM predictions for γeff below Tc are always
below the accepted 3D Ising scaling value of 1.240, at best
reaching 0.9 at ε/|ε f | = −2.0.

On the other hand, the theory’s predictions for an effec-
tive β exponent, βeff, defined analogously to γeff in Eq. (5.2)
above, are near the accepted 3D Ising value for temperatures
near ε f . For α∗ = 1 and ε/|ε f | = −0.85, and α∗ = π/2 and
ε/|ε f | = −1, βeff equals the accepted β value of 0.328. Also,
for temperatures near ε f , the predictions of LBM for ε(x0)
are in good agreement with the accepted values in the range
−2.0 � ε/|ε f | � −0.5. As will be seen below, the adiabatic
theory predicts that the temperature undershoot after an on-
critical quench of 3MP+NE does not go below −2ε f . Thus, if
the quenches are fast, the on-coexistence equilibrium predic-
tions of the LBM theory should be acceptable.

It is concluded that if the quenches are not too deep, and are
fast enough so the fluid spends little time exploring the region
near Tc, then the temperature-dependent coarse-grained free
energy defined in Sec. II B is adequate.

VI. RESULTS

In this section, general predictions of the adiabatic and
isothermal decomposition theories are discussed, and then the
theories are compared with experiment. In an unpublished
work, Schwartz showed that the original numerical scheme
of KO was not quite right [50], leading to erroneous results
for the structure factor at intermediate and late times. Given
this, aspects of the isothermal KO theory by itself will also be
discussed.

A. General predictions

In the isothermal decomposition theory, the equations scale
completely. That is, no system or temperature dependent pa-
rameter appears in the theory when the equations are scaled
using parameters appropriate to the critical region. Thus, if
initial (and quench) conditions are ignored, the theory predicts
that if the experimental data is appropriately rescaled then the
data should superimpose for any binary fluid and any quench
temperature.

However, the adiabatic theory does not scale. The parame-
ters appearing in the equation for ε, (4.10), are strongly system
dependent and some, αP and CP, are temperature dependent.
To illustrate the adiabatic results in this section then, data
for 3MP+NE will just be used. The equation for ε requires
αP,CP, ρc, Tc, dTc/dP and ξ±

0 , which, for 3MP+NE, can be
obtained from Tables I and II.

The other parameters appearing in the theory are the uni-
versal amplitude f1, the cutoff α∗, and the cutof-dependent
free energy parameters λi. As mentioned above, f1 was set
to 0.210, and in Sec. V values for the λi were computed for
various cutoff values. What remains then is to determine an
appropriate cut-off.

In isothermal decomposition, α∗ is determined by requiring
that it be large enough so that no unstable modes are inte-
grated out. In the mean-field theory of Cahn [1], the dominant
unstable wave vector is at q = 1/

√
2, with the largest unstable

mode occurring at q = 1. Thus, α∗ � 1. While the statistical
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FIG. 4. Scaled temperature ε/|ε f | as a function of scaled time τ

for three adiabatic runs. The final temperatures Tcε f are indicated in
the figure and the initial temperatures are εi = −10ε f . The straight
line denotes the final equilibrium temperature.

theory here gives free-energy parameters that are cutoff de-
pendent, this relation roughly holds here too.

On the other hand, the time-dependent inverse susceptibil-
ity, A(t ), appearing in the equation of motion for the structure
factor, Eq. (3.11), does not vary with the wave vector k of the
mode. In other words, the LBM ansatz produces a mean-field
form for this time-dependent inverse susceptibility [7]. The
goal then should be to include as few concentration modes as
possible into this mean-field approximation, that is, to make
α∗ as small as possible. A good compromise between these
opposing needs is to follow LBM and just let α∗ = 1 for
isothermal decomposition.

In adiabatic decomposition, the wave vector of the largest
unstable mode will depend upon the degree of temperature
undershoot. What has been done here is set α∗ and then
examine the temperature undershoot at a short time after the
end of the quench, say, τ = 0.1. The inverse of the equilibrium
correlation length for that temperature at that time was then
identified to be the minimum cutoff value, in analogy with
the isothermal case. For the quenches considered here, it was
found that setting α∗ = 1.4 was reasonable. For consistency,
this cutoff was also used for the isothermal runs.

With the parameters in the equations determined, a quench
is specified by the initial reduced temperature εi, the pressure
change �P, and the quench time τquench. The final temperature
was determined by integrating Eq. (2.35). The quench time
varied with experiment, but was either known or could be
deduced.

Figure 4 shows the scaled temperature, ε/|ε f | as a function
of the scaled time τ for three adiabatic runs ending at the
temperatures Tcε f = −0.04 mK, −0.4 mK, and −4.0 mK,
with initial temperatures εi = −10ε f . The quenches were on
critical, so x0 = 0. The scaled quench time τquench has been
set to be 0.01; thus the initial temperature drop does not
appear on the graph. Clearly, the temperature undershoot is
large; the temperature reached immediately after the quench is
roughly −1.8|ε f |, with the smaller final temperatures giving
the greater undershoot. As can be seen, there is a sharp rise

FIG. 5. Scaled structure factor peak S̃(qm ) as a function of scaled
time τ for an adiabatic and isothermal run of the KO theory. Also
shown are predictions of an isothermal run from an LBM version
of the theory. The adiabatic run is the same as the middle one in
Fig. 4: Tcε f = −0.4 mK and εi/ε f = −10; the isothermal runs have
the same ratio of initial to final temperature. Results for adiabatic
runs for other temperatures shown in Fig. 4 gave peak values that
differed at most by 5% from the Tcε f = −0.4 mK run here.

from this minimum at early times τ < 5, and then a gradual
rise later. This qualitative behavior has been seen by Milchev
et al. in a 2D Ising simulation of adiabatic decomposition [20].
Note also that there is not much difference in the scaled tem-
perature trajectories even though the final scaled temperatures
differ by a factor of 100.

Figures 5 and 6 show results for the scaled peak inten-
sity, S̃(qm), and scaled peak wavevector, qm as functions of
the scaled time τ . Results of the middle adiabatic quench
in Figure 4, Tcε f = −0.4 mK, are shown along with results

FIG. 6. Scaled peak wave vector qm as a function of scaled time τ

for an adiabatic and isothermal run of the KO theory. Also shown are
predictions of an isothermal run from an LBM version of the theory.
The conditions are the same as for the results shown in Fig. 5. Results
for the other adiabatic runs in Fig. 4 were essentially identical to the
one shown here.
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from an isothermal run with the same ratio of εi/ε f = −10.
Also shown are results from an “LBM” version of the theory
in which σ (q), Eq.(4.1), is set to 1 and the second term in
Eq. (4.4) due to the hydrodynamic operator L2 is dropped.
Setting σ (q) = 1 assumes all modes have equilibrated, which
clearly is not the case, so that value should be considered an
upper bound. In Figure 5 it can be seen that the temperature
undershoot causes S̃(qm) for the adiabatic quench to grow
initially more rapidly than the isothermal quench.

Interestingly, S̃(qm) for the adiabatic quench in Figure 5
never differed from the peak height of the other two adiabatic
quenches in Figure 4 (not shown) by more than about 5%
at late times even though there is a spread of two orders of
magnitude in their final temperatures. This weak violation of
scaling is caused by the weak divergence (α = 0.105) of αP

and CP. On the other hand, S̃(qm) for the isothermal quench
differs by at least a factor of 2 from the adiabatic runs. At very
early times, the LBM prediction is greater than either version
of the KO theory, due presumably to the overestimation of the
transport function σ (q). At later times, LBM lags appreciably
behind KO as expected.

In Figure 6 it can be seen that initially the adiabatic run
predicts a larger peak wavevector than the isothermal one,
but the adiabatic quickly overtakes the isothermal. This is
behavior has also been seen by Milchev et al. [20]. It is due to
the adiabatic run quenching to a lower temperature causing the
fluid to coarsen on a smaller lengthscale and at a faster rate (as
stated before, the characteristic decomposition time ∼|ε|−1.94

in liquids). At large times, the time dependence of both types
of runs are the same, though the adiabatic one gives a slightly
smaller qm. Thus, one may not be able to determine any great
discrepancy between the isothermal theory and experiment if
one looks only at the peak wave vector.

While KO, like LBM, was created to describe the early
stage of decomposition, it is interesting to examine its behav-
ior at later times, if only to estimate when it breaks down.
Define time-dependent exponents, aq and as, so qm ∼ τ−aq

and S(qm) ∼ τ as at any τ . For qm, aq increases monotonically
at early times, but appears to approach a constant for τ > 100.
It was found that in the isothermal case KO and LBM predict
that aq ≈ 0.47 and 0.22, respectively, for 100 < τ � 1000. At
larger times, 103 < τ < 104, the KO value decreases slightly
to 0.46. The exponent changed only slightly with cutoff, aq ≈
0.47 and 0.46, for α∗ = 1 and α∗ = π/2, respectively, for the
largest times examined, 103 < τ � 104. Note that at τ ≈ 104,
qm ≈ 0.02. In absolute terms, qm varied less than 5% with
cutoff out to τ = 100. The adiabatic theory predicted about
the same behavior for qm at these late times.

As mentioned above, the KO theory applies to fluid flow
at low Reynolds number, that is, when the viscous term in
the Navier-Stokes equation is much larger than the inertial
one. In this limit, it is expected that the dominant mechanism
in the very late stages of coarsening yields aq = 1 [51,52].
As a consequence, the KO value for aq can then at most be
considered valid for an intermediate stage of phase separation.
Given the results shown in Fig. 5, this limit is τ ≈ 100.

The effective time exponent of S̃(qm), as, also increases at
early times; however, at τ ≈ 100 for KO it reached a max-
imum of 1.8 and then dropped slowly, reaching a value of
1.46 at the largest times examined, τ ≈ 104. On the other

hand, experiments have shown that as increases monotoni-
cally with time, eventually approaching a constant [11,12]. So,
this slowing in the growth of S̃(qm) seems to indicate a gradual
breaking down of the theory. The peak height was more sensi-
tive to the cutoff with the maximum of as for KO being 2.1 and
1.7 for α∗ = 1 and π/2, respectively. On the other hand, this
maximum for KO always occurred when qm ≈ 0.2. (For LBM
it occurs for qm ≈ 0.35.) This value of qm corresponds to an
average fluctuation size of πξ f /qm ≈ 16ξ f . In Cahn-Hilliard
theory [43], the equilibrium interface separating two phases
has a width of around 4ξ f . Thus, at this time sharp interfaces
will be forming, which the LBM and thus KO theories cannot
describe [7]. At τ = 100, S̃(qm) for the isothermal KO theory
was 458, 285, and 239 for α∗ = 1, 1.4, and π/2, respectively,
so the cutoff dependence of the theory seems to decrease as
the cutoff is increased.

Scaling theory [53,54] predicts at late times that the func-
tion F (x) = q3

mS̃(q = xqm) becomes constant. Interestingly,
the peak of this function is almost a constant within the KO
theory: F (1) ∼ τ ζF , with ζF ≈ 0.07 at late times. This trend
of the theory persists at least out to τ ≈ 104.

B. Comparison with experiment

In this section, the adiabatic and isothermal theories will
be compared with light scattering data of BC [14].

As stated above, the experimental quenches of BC were
for on-critical mixtures, so x0 = 0. To compare the adiabatic
theory with these quenches, the thermodynamic quantities
Tc, dTc/dP, ρc, αP, and CP are needed. All can be found using
Tables I and II. Also needed are the two-phase values for ξ0

and ηs. The former can be deduced from data in the same
tables to be ξ−

0 = 1.130 Å.
As mentioned above, the hydrodynamic shear viscosity, ηs,

is not constant but is a singular function of ε. In addition,
the two-phase value of ηs has not been determined, and at
present there is no definite relation between the one and two-
phase amplitudes. However, since the scaling form for ηs is
so weakly singular and the quenches are expected to be fast,
ηs was simply set equal to its one-phase value at ξ = ξ f , i.e.,
ηs 
 η̄(Q0ξ f )zη , where η̄, Q0, and zη are given in Table I.

For each quench, the initial temperature, εi, and the
pressure change, �P, are known. In the constant entropy
approximation of the theory here, the final temperature, ε f ,
was determined by just integrating Eq. (2.35). Reevaluation
of the critical properties of 3MP+NE by BC allows us to
ignore any uncertainty in ε f . The experimental intensity data
was scaled by BC [15].

In Figs. 7 and 8, the scaled structure factor S̃(q) is shown
as a function of the scaled wavevector q for various scaled
times τ . The quenches shown all begin at Tcεi ≈ 10 mK and
have final temperatures that range from Tcε f = −0.116 mK
to −10.37 mK. The solid and dashed curves denote results for
the adiabatic and isothermal theories, respectively, while the
points represent data of BC. For the isothermal runs for each
time, the uppermost curve denotes the result for the deepest
quench shown and the lower one denotes the shallowest. This
meaning also holds for the adiabatics runs for τ = 1 and 5,
shown in Figs. 7(a) and 7(b), but the reverse becomes true
for larger times. The effect of a finite quench time is included
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FIG. 7. (a) Scaled structure factor S̃(q) as a function of scaled
wave vector q at scaled time τ = 1, (b) the same for τ = 5, and
(c) the same for τ = 20. The initial temperature for all quenches was
Tcεi= 10 mK. The symbols denote the experimental results of Bailey
and Cannell as follows: Tcε f = (�) −0.116 mK, (©) −0.210 mK,
(�) −0.538 mK, (×) − 1.036 mK, (•) −2.079 mK, (�) −5.156 mK,
and (�) -10.37 mK. The blue solid and red dashed curves denote
results of the adiabatic and isothermal theories, respectively. For the
isothermal runs for each time, the upper curve denotes results for
the deepest quench shown in that time frame, while the lower one is
for the shallowest. This meaning also holds for the adiabatic runs in
(a) and (b) but the reverse is true for (c).

in these results; the scaled quench time τquench ranged from
2 × 10−3 for the shallowest quench to 11 for the deepest.

At a very early time, τ = 1, the prediction of the adiabatic
theory for the peak height S̃(qm) lags behind the data by
a factor of 2. However, at later times, τ = 20 and 50, the
agreement with experiment is very good, within 20%. At the
largest time for which data is available, τ = 100, the adiabatic
theory appears to start lagging behind the data again, with the
difference being 30%. On the other hand, the predictions of
the adiabatic theory for the peak wave vector qm are within a
few percent of the data at all times.

The LBM and thus KO theories are expected to work best
at early times. For example, Mainville et al. obtained good
agreement throughout the early stage, albeit with some fitting,

q

τ = 50

τ = 100
(b)

(a)

S̃
(q

)
FIG. 8. (a) Scaled structure factor S̃(q) as a function of scaled

wave vector q at scaled time τ = 50, and (b) the same for τ = 100.
The meaning of the symbols, curves and conditions are the same as
in Fig. 7(c).

between their experimental scattering data and the LBM the-
ory [10]. Therefore, the disagreement between the adiabatic
theory and experiment for the peak height S̃(qm) at very early
times is perplexing. One possibility is that setting the cut-off
to a finite value removes the relaxation of high wave-vector
modes, q > α∗, right after the quench. The relaxation of these
modes then couple to lower q ones, increasing their relax-
ation, like a wave moving through q space. To examine this
hypothesis, the cutoff of the theory was varied from α∗ = 1 to
α∗ = π/2. It was found that S̃(qm) at τ = 1 varied by only 9%
and 3% for the adiabatic and isothermal theories, respectively,
for this cut-off range.

Another possible explanation is that the adiabatic the-
ory has underestimated the temperature undershoot. Though
whatever the cause, further research is needed.

The disagreement between theory and experiment at late
times is that at τ = 50, qm 
 0.2, which, as has been dis-
cussed above, appears to be where the KO theory begins to
break down. The isothermal theory predicts a peak height and
peak wave vector that lags behind experiments at all times, the
difference in S̃(qm) becoming over a factor of 3 at the latest
times.

Note that the theory results shown in Figs. 7 and 8 are not
quite the same as those in a previous report of the adiabatic
theory, Ref. [24]. One reason is that in Ref. [24] the double
Gaussian approximation was used to solve for the time evolu-
tion of ρ1(y). As mentioned above, while this approximation
is more computationally efficient than solving the full PDE for
ρ1(y), Eq. (4.6), it tends to overestimate the growth of S̃(q)
for times such that qm � 0.3. Advances in computer power
in the years since Ref. [24] was published have made this
approximation unnecessary. A second reason is that the form
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for the scaled free-energy density φ(x) was different in the
previous work. This previous form was constructed to satisfy
a constraint in the limit of the cutoff α∗ → 0 (see Ref. [32]
for a detailed description). It was subsequently concluded
that the added complexity to φ(x) needed for this constraint
outweighed any improved accuracy of the theory, and so here
the standard ϕ4 form for φ(x) was used instead.

As mentioned above, the isothermal theory predicts that
if the fluid is in the critical region, the experimental data is
scaled properly, and the scaled initial conditions and quench
times are the same, then the scaled time evolution of any
experimental run should be identical. It is interesting then
whether the experimental data of BC show any violation of
this scaling. Consider two experimental runs of BC with final
temperatures Tcε f = −2.079 mK and −0.202 mK [15], The
initial temperatures were both at εi 
 5|ε f | to eliminate the
effect of initial conditions [55]. The times for these quenches
were estimated from other data by assuming that the rate of
change of the pressure was the same for all quenches. At
τ = 10, S̃(qm) was measured to be 16.6 and 18.8 for the first
(−2.079 mK) and second (−0.202 mK) quench, respectively.
The adiabatic theory predicts that S̃(qm) = 11.4 and 12.3, for
the first and second quench, respectively, while the isothermal
theory predicts that S̃(qm) = 7.6 and 7.7 for those quenches.
Both the adiabatic and isothermal theories predict that qm ≈
0.47 in agreement with both experimental runs. While the
experimental violation of scaling is not large, the difference
in S̃(qm) for the two runs being 12%, the trend is in agreement
with the adiabatic theory, which predicts a difference of 8%.
So though there is certainly scatter in the data, this agreement
at the least is suggestive that the temperature change during
decomposition is appreciable for this fluid.

VII. SUMMARY AND DISCUSSION

In summary, the KO-LBM theory of spinodal decomposi-
tion in binary fluids was generalized to model experimental
scenarios in which the fluid is quenched by changing the pres-
sure and the subsequent phase separation occurs adiabatically.

The central idea of the approach here is that the coarse-
grained free energy, F , which governs the time evolution of
the slowest modes, is constructed in a manner that creates a
natural split in the degrees of freedom of the system. Those
fast degrees of freedom that have been integrated out con-
tribute to F , but also to a free energy, Fr , that is independent
of the configuration of the slow modes. It was shown that
the fast degrees of freedom, through Fr , are able to act as a
thermal reservoir for the slow modes. Any global constraint
though, such as constant energy or entropy, indirectly relates
the state of the reservoir, and thus its temperature, to the
particular state of the slow modes. However, it was argued that
these states need be related only in an average sense. With
that approximation, an equation of motion for the average
reservoir temperature was derived, it playing the same role as
the assumed constant global system temperature in previous
isothermal theories of decomposition.

In other words, if in a system there exists degrees of
freedom that are able to sample their accessible states on
timescales smaller than the characteristic change of the slower

degrees of freedom, then these fast degrees of freedom can act
as a reservoir to the slow ones. This model of nonequilibrium
processes has become a common one [22,56,57].

The extension of the isothermal theories of KO and LBM to
adiabatic conditions then consisted of this equation of motion
for the reservoir temperature; estimates for various reservoir
thermodynamic derivatives, such as the heat capacity, which
appear in the temperature equation; and a specification of a
temperature dependent coarse-grained free energy.

This adiabatic theory was then applied to an on-critical
mixture of 3MP+NE. It was shown that the temperature
change during decomposition is appreciable and accelerates
the coarsening. The adiabatic and previous isothermal the-
ories were then compared quantitatively, with no adjustable
parameters, with data of Bailey and Cannell on 3MP+NE for
the structure factor at various times during the early stage
of decomposition. It was shown that there is a definite lack
of agreement between the data and previous theory for the
structure factor peak height, and that the adiabatic theory
accounts for a substantial amount of this difference. The adi-
abatic theory also improves the agreement with experiment
for the wave vector, qm, of the structure factor peak. Differ-
ences between theory and experiment though indicate that
the adiabatic theory may still be underestimating the effects
of temperature changes during decomposition for 3MP+NE.
Further research is needed to determine the cause.

The large temperature change during decomposition pre-
dicted for 3MP+NE is due partly to the size of the singular
term in the isobaric heat capacity compared to the background
term (see Table I). Another binary fluid, isobutyric acid and
water, has a much smaller singular term, and for it, at the same
reduced temperatures as the Bailey and Cannell experiments,
the predictions of the adiabatic and isothermal decomposition
theories are essentially the same [32]. It is possible though that
there are other binary fluids with even larger relative singular
contributions to their heat capacity than 3MP+NE, making
the adiabatic effect even more pronounced.

The adiabatic theory could possibly be extended to temper-
atures outside the critical region, e.g., for mixtures with longer
range interactions such as polymers. However, if 3D Ising
critical scaling no longer holds, the isothermal KO/LBM the-
ory itself becomes temperature dependent through at least the
parameter f1 (see Sec. II B). So it is unclear how the predic-
tions of this extended adiabatic theory would differ from the
near-critical one developed here, especially as thermodynamic
quantities such as the heat capacity are system dependent.

The behavior of the isothermal KO theory at later times
was also analyzed. It was found for times 102 < τ � 104, that
qm scaled as τ−aq , with aq ≈ 0.46.

While off-critical quenches were not examined here, it is
expected that the adiabatic effect to be less for them since the
heat released during phase separation should be largest for an
on-critical mixture, it being roughly proportional to 1 − x2

0,
using Eq. (2.44).

Interestingly, it was shown in Sec. II A 2 that the entropy
increase during this adiabatic decomposition is well approx-
imated as zero. That is, in the model here, the temperature
rise from phase separation exactly compensates for the tem-
perature undershoot caused by the incomplete relaxation of
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the slow modes during the quench, so the final temperature
reached is as if the whole process had been reversible. In that
manner, if a fluid were quenched, allowed to phase separate at
least partially, and then the pressure were reversed, the fluid
upon remixing should reach a temperature very near its initial
value. A similar two-step experiment was done by Siebert
and Knobler in their study of nucleation [3,58]. While the
arguments leading to this prediction of a (almost) constant
entropy decomposition relied partly on the system being a
near-critical binary fluid, it might be more general. Answers
are left to future research.
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APPENDIX: COARSE-GRAINED ENERGY

In this Appendix, it is shown that in the critical region, the
dominant contribution to the average coarse-grained energy,
〈E[c, v]〉, comes from the heat of mixing. First, except when
stated otherwise, all quantities are evaluated on-coexistence
at the final equilibrium temperature, Tf , with a reduced cutoff
α∗ = 1. Now, using results of Sec. II B, 〈E[c, v]〉 is the sum of
three terms: the gradient energy,

〈EK 〉 = KV

2
〈(∇c(r))2〉 = KV

4π2

∫ 

0
dkk4Ŝ(k)


 0.003

(
kBTf V

ξ 3
f

)
, (A1)

the heat of mixing,

〈Emix〉 = −V

〈
T 2 ∂ ( f (c)/T )

∂T

〉

= −
[

(λ2 − λ0)
1

|ε f | + λ0

]
f1〈x2〉kBTf V

ξ 3
f


 −0.08

|ε f |
(

kBTf V

ξ 3
f

)
, (A2)

and the fluid kinetic energy,

〈Ev〉 = 1

2
ρV 〈v(r)2〉

≈ 1

2
ρKV

∫  dk1

(2π )3

1

ηsk2
1

∫  dk2

(2π )3
k2 · T̂(k1) · k2

× [
k2

2 − (k1 − k2)2][Kk2
2 + A(t )

]
Ŝ(|k1 − k2|)Ŝ(k2)

=
(

kBTf V

ξ 3
f

)
�Iv. (A3)

Here, Iv is a scaled integral and � ≡ ρkBT/(η2
s ξ ) is a dimen-

sionless number. To evaluate Eq. (A3), the same overdamped
approximation for v done in the KO theory was used, except
that the noise term was dropped as it gives a term that is
constant in the critical region. So, v ≈ T · (μ∇c). Similarly,
four-point averages arising in Eq. (A3) were evaluated in the
manner done by KO for the equation of motion of Ŝ(k, t ),
Eq. (3.11).

The quenches for BC had final temperatures, |ε f | ∼ 10−5.
Then, � ≈ 10−5. The scaled integral Iv was zero in equi-
librium. Out of equilibrium during a typical quench it was
nonzero, but remained very small, ∼10−6. So, 〈EK〉/〈Emix〉 ∼
10−6 and 〈Ev〉/〈Emix〉 � 10−15, and so only 〈Emix〉 need be
considered. It is interesting that while advection dominates the
kinetics of unmixing, in the critical region its contribution to
the energetics is negligible.
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