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Condensation transition in the late-time position of a run-and-tumble particle
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We study the position distribution P( �R, N ) of a run-and-tumble particle (RTP) in arbitrary dimension d , after
N runs. We assume that the constant speed v > 0 of the particle during each running phase is independently
drawn from a probability distribution W (v) and that the direction of the particle is chosen isotropically after each
tumbling. The position distribution is clearly isotropic, P( �R, N ) → P(R, N ) where R = | �R|. We show that, under
certain conditions on d and W (v) and for large N , a condensation transition occurs at some critical value of R =
Rc ∼ O(N ) located in the large-deviation regime of P(R, N ). For R < Rc (subcritical fluid phase), all runs are
roughly of the same size in a typical trajectory. In contrast, an RTP trajectory with R > Rc is typically dominated
by a “condensate,” i.e., a large single run that subsumes a finite fraction of the total displacement (supercritical
condensed phase). Focusing on the family of speed distributions W (v) = α(1 − v/v0 )α−1/v0, parametrized by
α > 0, we show that, for large N , P(R, N ) ∼ exp[−Nψd,α (R/N )], and we compute exactly the rate function
ψd,α (z) for any d and α. We show that the transition manifests itself as a singularity of this rate function at
R = Rc and that its order depends continuously on d and α. We also compute the distribution of the condensate
size for R > Rc. Finally, we study the model when the total duration T of the RTP, instead of the total number of
runs, is fixed. Our analytical predictions are confirmed by numerical simulations, performed using a constrained
Markov chain Monte Carlo technique, with precision ∼10−100.
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I. INTRODUCTION

In recent years there has been a surge of interest in the
study of simple stochastic models of self-propelled particles in
the context of active matter, both theoretically and experimen-
tally; for reviews see [1–5]. This class of stochastic models
can describe a wide range of artificial and natural systems,
e.g., vibrated granular matter [6], active gels [7,8], bacterial
motion [1,9,10], animal movements [7,11–13], etc. At vari-
ance with its passive counterpart (for instance the standard
Brownian motion, whose movement is driven by the random
collisions with the surrounding fluid), active particles can ab-
sorb energy directly from the environment and convert it into
persistent self-propelled motion. As a result, active motion
violates time-reversal symmetry and these models belong to
the category of out-of-equilibrium stochastic processes. In
order to describe theoretically the persistence of the particle
motion, one needs to introduce in the model a stochastic
noise with nonvanishing time correlations. This can be done in
several ways. For instance, in the active Ornstein-Uhlenbeck
(AOU) model, the noise is chosen to be a Ornstein-Uhlenbeck
process whose temporal correlation decays exponentially with
time [14–17]. Another possibility is to include the noise in the
rotational degree of freedom of the particle, as done for the ac-
tive Brownian particle (ABP) model [3,18–25], where the
orientation angle of the particle itself performs a Brownian
motion. Finally, yet another variant is the so called run-and-

tumble particle (RTP) model [1,10,26,27], where the active
particle is driven by a telegraphic noise with exponential time
correlations. In this paper, we will focus on this latter version,
i.e., the RTP model.

Originally known as the persistent random walk [26–31],
the RTP model has been employed in recent years to describe
the motion of a class of bacteria, e.g., E. coli [1,9,10,32,33],
which typically move alternating between phases of straight
motion with constant velocity (runs) and almost instanta-
neous changes of direction (tumblings), as shown in Fig. 1.
This model is known to exhibit complex and interesting
features not just in the many-particle setting with interac-
tions [1,3,10,32–35], but even at the single-particle level
[25,36–55]. Note that in the RTP model both the jump lengths
and the orientation after each tumbling are random. If instead
the jump length is fixed and only the orientation after each
tumbling is random, this is the celebrated Pearson random
walk [56], also known as Rayleigh flights.

In the single-particle case, the RTP model can be de-
scribed as follows. The particle starts initially from the origin
in a d-dimensional continuous space. It chooses a direction
isotropically and a speed v1 > 0, drawn from the probabil-
ity density function (PDF) W (v), and starts moving in that
direction ballistically with speed v1. After a random time
τ1, which is exponentially distributed with rate γ , the par-
ticle tumbles, i.e., it chooses a new random direction and
starts moving in the new direction with the new speed v2,
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FIG. 1. Left: Typical trajectory of a run-and-tumble particle (RTP) in two dimensions in the fluid phase. The particle starts at the origin,
it chooses a direction uniformly at random and starts moving in that direction with constant speed v1, drawn from the probability density
function W (v). After some random time, the particle tumbles, i.e., it changes its orientation at random and it chooses a new velocity v2,
drawn independently from W (v). Then it continues to move ballistically in this new direction, until it tumbles again, and so on. The different
runs contribute to the displacement by roughly the same amount. Right: Typical trajectory of an RTP in the condensed phase. One single run
(colored in red) dominates the trajectory.

independently drawn from W (v). Then, after running during
an exponentially distributed time τ2, it tumbles again, and so
on (see Fig. 1). One can either observe the trajectory for a
fixed duration T (fixed-T ensemble) or wait until the particle
undergoes exactly N complete running phases (fixed-N en-
semble). Even if at short times these two ensembles are quite
different, it is reasonable to expect that they display similar
behaviors when both T and N are large. The RTP dynamics is
thus parametrized by three quantities: (1) the tumbling rate γ

that characterizes the timescale (the motion persists in a given
direction during a typical time γ −1), (2) the spatial dimension
d in which the RTP lives, and (3) the speed distribution W (v),
which is normalized to unity, i.e.,

∫∞
0 W (v) dv = 1. Note that

in the canonical and perhaps the most well studied RTP model,
the speed of the particle is a constant v0 > 0 and does not
vary from one run to another, corresponding to the choice
W (v) = δ(v − v0). Nevertheless, RTP models with generic
W (v) have also been studied [42,46,47,55].

One of the simplest natural questions that one can ask
about a self-propelled active particle is: how does the position
distribution P( �R, T ) evolve with time T ? Here T stands either
for the real time T or the number of steps N , e.g., in the
fixed-N RTP model. While for the AOU model, the position
distribution is trivially Gaussian at all times since the driving
noise is Gaussian, for the other two models ABP and RTP, the
PDF P( �R, T ) is nontrivial. For times T � T ∗, where T ∗ is the
persistence time of the driving noise (e.g., T ∗ = γ −1 in RTP),
the noise correlation plays a stronger role. A typical manifes-
tation of this, for instance, in the ABP model starting from
an anistropic initial condition, is that the position distribution
at short times remains strongly anisotropic—a signature of
activity of the process at short times [20,24]. However, for
times T � T ∗, the diffusion takes over and the particle be-
haves more like a Brownian motion at late times. As a result,
the process becomes more and more isotropic as time pro-
gresses beyond T ∗, i.e., P( �R, T ) → P(R, T ), where R = | �R|.
Moreover, due to its convergence to a Brownian motion via the

central limit theorem (CLT), this position distribution P(R, T )
has a Gaussian shape near its peak at late times [1]. Since
the anisotropy in the position distribution is lost at late times,
one can ask: is there any other remnant signature of “activity”
in the position distribution P(R, T ) at late times T � T ∗? It
turns out that indeed one can still find signatures of activity
in P(R, T ) at late times, but one needs to investigate the
atypical large-deviation tails of P(R, T ), thus going beyond
the Gaussian shape near the peak. The non-Gaussian large-
deviation tails of P(R, T ) at late times has been computed
both in the ABP model [18,21] and in a class of RTP models
[42,53,54]. In both cases, the rate functions characterizing the
large-deviation behavior were found to carry clear signatures
of activity at late times. Thus, to detect the signature of activity
of the particle at late times, one needs to investigate the rare
events where the particle is far away from its starting point.
A relevant motivation to study such rare events is that many
biological phenomena, e.g., insemination, occur when a single
active particle reaches for the first time a faraway target. Let us
remark in passing that another method to detect the signature
of activity of a particle at late times is to confine it in an
external potential—the resulting stationary state position dis-
tribution is highly non-Boltzmann and carries the signatures
of activity [38,41,57–59].

The position distribution of an RTP in the canonical model
W (v) = δ(v − v0) was first computed in Ref. [28] in two
dimensions. Later, in Ref. [36] this result was extended to
arbitrary dimension d . However, these authors did not inves-
tigate the large-deviation regime, which was first studied in
detail in Ref. [53]. Remarkably, it was observed that in dimen-
sions d > 5 and with speed distribution W (v) = δ(v − v0),
the system undergoes a dynamical phase transition as one
increases the total displacement R of the particle. This turns
out to be a condensation transition, in the sense that above
a certain distance R from the origin, the total displacement
of the particle is dominated by a single very long run (see the
right panel in Fig. 1). Moreover, in [42] a similar condensation
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transition was observed for a one-dimensional RTP with a
half-Gaussian speed distribution W (v) = √

2/π e−v2/2 θ (v)
[where θ (v) is the Heaviside step function], when the particle
is driven by a constant force. In both cases, the transition
occurs in P(R, T ) by varying the total displacement R beyond
a critical value Rc [typically of O(T )], thus the total distance
R plays the role of a control parameter. These two examples
suggest that condensation could be a general feature of the
RTP model. Unfortunately, in the canonical RTP model with
fixed speed v0, this condensation occurs only in d > 5, which
is clearly not accessible physically. The motivation behind our
present work is to investigate if it is possible to observe this
interesting condensation transition in P(R, T ) in a physically
accessible dimension, e.g., in d = 1, 2, or 3. One of our main
results in this paper is to show that indeed this can be achieved
by appropriately choosing the speed distribution W (v).

Traditionally condensation transition is well known to oc-
cur in the momentum/energy space, e.g., the Bose-Einstein
condensation in an ideal Bose gas in d > 2 where a macro-
scopic number of particles condense in the single particle
ground state below a critical temperature. However, conden-
sation transition has also been observed to occur even in real
space in a variety of situations; for reviews see [60,61]. These
include traffic models [62–64], models of diffusion, aggrega-
tion and fragmentation [65–67], mass transport models
such as Zero Range-type processes [68–76], macroeconomic
models [77,78], network models [79], discrete nonlinear
Schrödinger equation [80,81], and financial models [82],
among other examples. If the parameters in these models
are chosen appropriately, a condensation transition may occur
upon increasing a control parameter such as the density of
particles. Beyond a critical density, typically a single conden-
sate forms in real space that contains a finite fraction of the
total number of particles. For example, in the context of traffic
models the analog of the condensate is a traffic jam, while in
the context of random network models, the condensate is a
single node that captures macroscopic number of connections.
In the RTP model studied here, the condensate is a single large
run whose duration is a finite fraction of the total run time.
Thus the RTP condensation provides yet another example of
this phenomenon of real-space condensation.

The condensation transition that we demonstrate in the
RTP model here also has implication in a broader context,
namely, in the classical problem in the probability theory
concerning the distribution of the sum of a large number of
independent and identically distributed (i.i.d.) random vari-
ables [83]. To establish this connection, consider the fixed-N
ensemble RTP model in d-dimensions defined above with a
given tumbling rate γ and a speed distribution W (v). Since
the direction after each tumbling is chosen isotropically, the
position distribution P( �R, N ) ≡ P(R, N ) is clearly isotropic,
i.e., it depends only on the total distance R of the particle after
N steps, but not on its direction. Note that, for simplicity, we
use the same notation for P(R, N ), in the fixed-N ensemble
and P(R, T ), in the fixed-T ensemble. It is then convenient
to study the probability distribution Z (X, N ) of the total dis-
placement X in any one of the directions (for instance, the
x-direction). Since X is the x-component of �R, it is easy to
show that Z (X, N ) and P(R, N ) are simply related (see Ap-
pendix A). Let fd (z) denote the probability distribution of the

x-component of a random unit vector in d-dimensions. This
can be very simply computed [see Eq. (6)]. Consequently,
given a random vector of fixed magnitude R = | �R|, its X com-
ponent has the distribution (1/R) fd (X/R). Finally, if R itself
is distributed isotropically according to P( �R, N ) ≡ P(R, N ), it
follows that

Z (X, N ) =
∫
Rd

d �R 1

R
fd

(
X

R

)
P(R, N ), (1)

where d �R = Sd Rd−1 dR with Sd = 2πd/2/	(d/2) denoting
the surface area of a d-dimensional unit sphere. Note that
Z (X, N ) is a probability distribution and is normalized to
unity, ∫ ∞

−∞
dX Z (X, N ) = 1. (2)

The notation Z (X, N ) for a probability distribution may seem
a bit strange at first sight. The reason for this choice comes
from the analogy to the mass-transport models (see the dis-
cussion later), where Z (X, N ) also plays the role of a partition
function. Hence, we stick to this somewhat unfamiliar nota-
tion Z (X, N ).

In the limit of large N , we expect that the position distri-
bution will exhibit the large-deviation behavior, P(R, N ) ∼
exp[−Nψ (R/N )] where ψ (z) is the associated rate func-
tion. Then, using Eq. (1), it is easy to show that Z (X, N ) ∼
exp[−Nψ (X/N )], i.e., both P(R, N ) and Z (X, N ) share the
same rate function ψ (z) (see Appendix A). To compute the
rate function ψ (z) it is more convenient to consider the large-
deviation behavior of Z (X, N ), and in this paper we will
follow this route. Now, denoting by xi the x-component dis-
placement of the particle during the ith run, one sees that

Z (X, N ) =
∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxN

[
N∏

i=1

p(xi )

]
δ

(
X −

N∑
i=1

xi

)
,

(3)

where p(x) denotes the PDF of the x-component of a single
run vector, and we have used the fact that the run vectors
are statistically independent. The δ function in Eq. (3) just
enforces the total x-displacement after N steps to be X .
Clearly p(x) is symmetric around x = 0. The dependence
on the parameters d , γ , and W (v) is encoded in p(x) [see
Eq. (5)]. Since p(x) is normalized to unity, Z (X, N ) in Eq. (3)
manifestly satisfies the normalization condition in Eq. (2).
Thus, Z (X, N ) in Eq. (3) can be interpreted as the distribution
of the sum of N i.i.d. random variables each drawn from a
symmetric p(x). This classical problem is well studied in the
probability literature [83]. In particular, it is well known that,
when the second moment of p(x) is finite, Z (X, N ) has a
Gaussian shape for |X | ∼ O(

√
N ) (typical fluctuation), as a

consequence of the CLT. On the other hand, when |X | � N
(atypically large fluctuation), one obtains Z (X, N ) ∼ N p(X ),
corresponding to a randomly chosen variable that dominates
the sum [83]. However, it is not completely understood how
the crossover between these “typical” and “atypical” regimes
occurs in Z (X, N ), as the “control parameter” X varies. Given
a p(x), is there a “sharp” phase transition at some critical value
Xc, or is this just a smooth crossover? While for a few specific
examples of p(x) this crossover between the typical and the
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atypical regimes have been studied [84], a general criterion
on p(x) to determine whether a sharp phase transition occurs
is still missing. Our analysis of the large-deviation properties
of the RTP model with a general speed distribution W (v) [and
hence that of p(x)] thus sheds light on this general question as
well.

In this context, let us remark that such a criterion is well
established when the i.i.d. random variables are all positive,
i.e., p(x) has only positive support. This situation arises in a
class of mass transport models defined on a lattice of N sites
with some prescribed rates of mass transfer between neighbor-
ing sites [60,61,68–70]. Here xi � 0 denotes the mass at site i
and the dynamics conserves the total mass X = ∑N

i=1 xi. For
a large class of mass transfer rates, the system reaches at long
times a stationary state where the joint distribution of masses
{xi} factorize, with p(x) denoting each factor that depends
on the mass transfer rates [85]. Then Z (X, N ) in Eq. (3) just
denotes the partition function in the stationary state. In this
case where p(x) has only positive support (x being a mass), it
has been shown that the criterion for condensation depends on
the tail of p(x) for large x [60,61,68,69,71,82]. As one varies
the sum X , the condensation occurs at some critical value
Xc ∼ O(N ), if and only if e−c x < p(x) < 1/x2 as x → ∞,
where c is any positive constant. For example, if p(x) has a fat
tail, p(x) ∼ x−γ for large x with γ > 2, a condensation will
occur. Similarly, if p(x) ∼ exp[−a xα] for large x with a > 0
and 0 < α < 1 (stretched-exponential), again condensation
will occur [69]. However, if p(x) ∼ exp[−a xα] for large x
with a > 0 and α > 1, there is no condensation transition
but only a smooth crossover as X varies. In our problem,
the variable x′

is can be both positive and negative with p(x)
symmetric, and unfortunately we can not simply apply the
same criterion that is valid only for positive random variables.
However, by generalizing the method used in Ref. [69], we
show that it is possible to find a similar criterion for symmetric
random variables as well.

Our main results in this paper are threefold:
(1) We identify a general criterion for condensation, valid

for the sum of random variables with symmetric distribution
p(x). In the context of the RTP model, we show that, by
properly tuning the speed distribution W (v), one can observe
a condensation transition also in a physically accessible di-
mension d � 3.

(2) We focus on a family of speed distributions W (v) =
(α/v0)(1 − v/v0)α−1 θ (v0 − v) supported over v ∈ [0, v0]
and parametrized by α > 0, that allows a condensation tran-
sition according to the general criterion mentioned above. For
this family of W (v), we compute exactly the position distri-
bution Z (X, N ) for large N (see Fig. 2). In the regime where
X ∼ O(N ), we show that Z (X, N ) exhibits a large-deviation
form Z (X, N ) ∼ exp[−N ψ (X/N )] and we compute the asso-
ciated rate function ψ (z). As the control parameter X exceeds
a critical value Xc = zc N , we show that a condensation transi-
tion occurs. The signature of this transition is manifest in the
rate function ψ (z): it develops a singularity at z = zc.

(3) For any α and d , we also compute the marginal dis-
tribution p(x|X ) of a single-run displacement, conditioned on
the total displacement X (see Fig. 3). This marginal distribu-
tion p(x|X ) can be taken as a diagnostic of the condensation

FIG. 2. Schematic representation of the PDF Z (X, N ), for ν =
(d + 2α − 1)/2 > 2. For X ∼ O(

√
N ) the PDF Z (X, N ) is Gaussian,

while for X ∼ O(N ) it assumes the large-deviation form Z (X, N ) ∼
e−Nψd,α (X/N ), where the rate function ψd,α (z) is given in Eq. (59). A
dynamical phase transition occurs at Xc ∼ O(N ), where ψd,α (z =
X/N ) is singular. In a small region around the critical point Xc,
Z (X, N ) is described by the function pcond(y, N ) (see insets). For
2 < ν < 3, pcond(y, N ) has an anomalous shape, given in Eq. (16),
and it varies on a scale O(N1/(ν−1) ). For ν > 3, pcond(y, N ) is Gaus-
sian with fluctuations ∼O(

√
N ). As a consequence of the symmetry

Z (X, N ) = Z (−X, N ), an analogous transition occurs also at −Xc.
For |X | < Xc the system is in the fluid phase, while for |X | > Xc the
system is in the condensed phase.

transition, as it behaves very differently in the “subcritical”
(X < Xc) and the “supercritical” (X > Xc) phases. We show
that in the supercritical phase where X > Xc, a distinct bump
appears in the tail of p(x|X ), similar to what has been ob-
served in mass transport models [68,69].

The rest of the paper is organized as follows. In Sec. II
we present the details of the RTP model and provide a

FIG. 3. Numerical curves of the marginal probability p(x|X ) of
a single-run displacement, for α = 0 and d = 8. For z < zc (dotted
brown line), the system is in the fluid phase and p(x|X ) decays
exponentially fast for large x. At the critical point z = zc (orange
dashed line), p(x|X ) develops a power-law tail. For z > zc (blue
continuous line), the system is in the condensed phase and p(x|X )
still has a power-law tail and a condensate bump appears at x = Xex.

062134-4



CONDENSATION TRANSITION IN THE LATE-TIME … PHYSICAL REVIEW E 103, 062134 (2021)

summary of our main results. In Sec. III, using a grand canoni-
cal description of the system, we present a general criterion for
condensation, valid for a large class of RTP models. In Sec. IV
we study the late-time position distribution, both in the typical
and large-deviation regimes for the fixed-N ensemble. We
show that the phase transition manifests itself as a singularity
of the rate function and we compute its order. To clarify the
nature of the transition, in Sec. V we study the marginal prob-
ability of a single-run displacement. In Sec. VI we investigate
the position distribution for the fixed-T ensemble. In Sec. VII
we present the details of the numerical simulations. Finally,
in Sec. VIII we conclude with a summary and some open
questions. Some details of the computations are presented in
the Appendixes.

II. THE MODEL AND THE SUMMARY
OF THE MAIN RESULTS

Since the paper is long, it is useful to provide a description
of the model and a summary of the salient features of the main
results, so that the reader is not lost in the details given in later
sections. This is precisely the purpose of this section, where
we also direct the reader to specific equations in later sections.

We consider a single RTP, starting from the origin and
moving in d dimensions. At each tumbling the speed of the
particle is independently drawn from the distribution W (v).
As anticipated in the introduction, there are two possible se-
tups: the fixed-N and the fixed-T ensemble. Note that if the
number N of running phases is fixed, then the total time T
can fluctuate. Alternatively, in the fixed-T ensemble one fixes
the total time T , letting N fluctuate. One important difference
between the two models is that in the fixed-T ensemble the
last running phase is yet to be completed. Therefore, the
displacement of the particle during the last running phase
has a different distribution with respect to the previous dis-
placements [46,47]. On the other hand, in the fixed-N case,
all displacements have the same distribution. For this reason,
the analytic study of the fixed-N ensemble is usually simpler.
Since, as we shall see, the late-time properties of the two
ensembles are very similar, we will focus on the fixed-N
ensemble for most of this paper. We will consider the fixed-T
ensemble in Sec. VI, where we show that the behavior of the
system is qualitatively similar for the two models.

Denoting by x1, . . . , xN the displacements in the x-
direction of the RTP during the N running phases, we have

X =
N∑

i=1

xi. (4)

These increments xi, that can be positive or negative,
are i.i.d. random variables, drawn from the symmetric
probability distribution [46,47] (reproduced, for convenience,
in Appendix B)

p(x) =
∫ ∞

0
dv

1

v
W (v)

∫ ∞

0
d�

1

�
fd

(
x

�

)
γ e−γ �/v, (5)

where

fd (z) = 	(d/2)√
π	[(d − 1)/2]

(1 − z2)(d−3)/2θ (1 − |z|), (6)

and 	(y) is the Gamma function. It is easy to check that p(x)
is symmetric around x = 0. The behavior of Z (X, N ) depends
on the dimension d and the speed distribution W (v) through
p(x) in Eq. (5). Since p(x) is symmetric, Z (X, N ) is also
symmetric, and hence it is sufficient to focus on the positive
side, i.e., for X > 0. This PDF Z (X, N ) can be expressed
explicitly as an N-fold integral in terms of p(x)′s, as shown in
Eq. (3). In this paper, we show that under specific conditions
on W (v) and d the system undergoes a condensation phase
transition at a critical value Xc of the position X . For X < Xc

(subcritical phase), all the different runs x1, . . . , xN contribute
to the total displacement by roughly the same amount. On
the other hand, for X > Xc (supercritical phase), a single
run, which is referred to as the condensate, contributes to a
macroscopic fraction of the displacement (see the right panel
of Fig. 1). Our goal is (1) to determine the criterion on p(x)
for the condensation transition in Z (X, N ) as X varies, (2)
then when this criterion is satisfied, to determine the specific
value Xc at which the system forms a condensate, and (3) to
study, for X > Xc, the nature of this condensate, e.g., what is
the distribution of run lengths carried by the condensate. The
salient features of our results are highlighted below.

A. Criterion for condensation

As in mass transport models where p(x) only has positive
support, we formulate a criterion for condensation in the case
of symmetric p(x). We show that this criterion only depends
on the large-|x| behavior of p(x) (see Sec. III). By choosing
the speed distribution W (v) appropriately, one can find p(x)′s
that allow for condensation. In particular, we focus on the
family of speed distributions

W (v) = α

v0

(
1 − v

v0

)α−1

where 0 � v � v0, (7)

parametrized by α > 0. The constant v0 > 0 represents the
maximal speed that the particle can reach. Note that this
family includes, as a special case, the canonical RTP model
where the speed is constant from run to run. Indeed, by taking
the limit α → 0 in Eq. (7), one finds

W (v) = δ(v − v0). (8)

Moreover, many other relevant speed distributions belong
to this class. For instance, choosing α = 1, one obtains the
uniform speed distribution. Since one can always rescale
space and time, without any loss of generality we set

v0 = γ = 1 (9)

in the rest of the paper. Thus, our system is parametrized by
the two scalars d and α. It turns out that several (but not all)
properties of the condensation transition depend only on the
single parameter

ν = (d + 2α − 1)

2
. (10)

Indeed, applying the criterion for condensation to the speed
distribution in Eq. (7), we find that condensation occurs only
for ν > 2.
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B. Position distribution Z(X, N)

Due to the symmetry Z (X, N ) = Z (−X, N ), it is suffi-
cient to focus on the case X > 0. In the late-time limit N �
1, we consider two distinct regimes. In the typical regime
X ∼ O(

√
N ), we find the central limit behavior as expected,

Z (X, N ) 
 1√
4πDN

e−X 2/(4DN ), (11)

with

D = 2

d (α + 1)(α + 2)
. (12)

At this scale, no sign of activity is present. However, the
signatures of the active nature of the particle can be observed
in the tails of Z (X, N ), outside the typical Gaussian region.
Indeed, in the atypical regime X ∼ O(N ), we show that the
PDF of X admits the large-deviation form

Z (X, N ) ∼ exp

[
− N ψd,α

(
X

N

)]
. (13)

The rate function ψd,α (z) depends on both parameters d and
α, and its exact expression for any d and α > 0 is given in
Eq. (55) for ν < 2 and in Eq. (59) for ν > 2. We will consider
the scaled displacement z = X/N as our control parameter. In
particular, for ν < 2, ψd,α (z) is analytic for any z > 0, while
for ν > 2 it becomes singular at the critical point z = zc. The
critical value zc also depends on both parameters d and α and
is given explicitly in Eq. (60). For z > zc, the rate function
becomes exactly linear. The nonanalyticity of the rate function
signals the presence of a dynamical phase transition at the crit-
ical position Xc = zcN . This is equivalent to the nonanalyticity
of the free energy in the case of equilibrium phase transitions,
with the rate function playing the role of free energy. The
free energy in equilibrium systems at the critical point is
characterized by the order of its nonanalyticity. The transition
is of order n if the nth derivative of ψd,α (z) is discontinuous,
while all the lower-order derivatives are continuous. In our
model, we find that the order of the nonanalyticity n at the
condensation transition is given by

n =
{⌈

ν−1
ν−2

⌉
for 2 < ν < 3

2 for ν > 3
, (14)

where �y� denotes the smallest integer larger than or equal to
y. As a consequence of the X → −X symmetry of the process,
an analogous transition occurs also at −Xc.

For ν > 2, we next zoom in the region around the critical
point z = zc and investigate Z (X, N ) on a finer scale around
X = Xc (see Fig. 2). By computing Z (X, N ) in the vicinity of
Xc = zc N , we find that

Z (X, N ) 
 CN pcond(Xc − X, N ), (15)

where CN is a positive constant and the function pcond(y, N )
depends on N , α, and d . For 2 < ν < 3, we find that

pcond(y, N ) 
 1

N1/(ν−1)
Vν

(
y

N1/(ν−1)

)
, (16)

where the function Vν (y) is given in Eq. (95) (see also Fig. 10
for a plot of this function). On the other hand, for ν > 3, we

obtain that, for |y| � √
N log(N ),

pcond(y, N ) 
 1√
4πad,αN

e−y2/(4ad,αN ), (17)

where ad,α is a positive constant given in Eq. (64). For ν > 3,
the Gaussian shape in Eq. (17) is valid only for |y| �√

N log N . Outside this region, pcond(y, N ) has a power-law
tail [see Eq. (118)]. Adapting the same terminology as in mass
transport models [68,69], we will call the condensate “anoma-
lous” for 2 < ν < 3 and “normal” for ν > 3. Interestingly, as
we will see later, the behavior of Z (X, N ) close to the critical
point in Eq. (15) also determines the size and the nature of
the condensate that forms when X > Xc. More precisely, we
show that the same function pcond(y, N ) that characterizes
Z (X, N ) near the critical point in Eq. (15) and that is positive
and normalized to one indeed also describes the size distribu-
tion of the condensate, i.e., the probability distribution of the
run length carried by the condensate [hence the subscript in
pcond(y)] when the condensate forms. A schematic represen-
tation of the different regimes of Z (X, N ) as a function of X
is shown in Fig. 2.

C. Single-run marginal distribution p(x|X )

To understand better the nature of the dynamical phase
transition described above, it is useful to study the PDF of
the single-run marginal distribution p(x|X ), conditioned on
the total displacement X . This is obtained by integrating
the joint distribution of {xi}′s over (N − 1) variables, while
keeping fixed the sum X = ∑N

i=1 xi and the value of one of
them, say, the first one, at x1 = x. We consider only the case
ν > 2, where the transition surely occurs. This conditional
distribution p(x|X ) can be taken as a clear diagnostic for the
condensation transition, since it behaves very differently in
the subcritical (0 < z < zc) and supercritical (z > zc) phases
(see Fig. 3).

1. Subcritical phase (0 < z < zc)

In this case, we show that p(x|X ) decreases monotonically
with increasing x and for x � 1:

p(x|X ) ∼ 1

xν
e−x/ξ , (18)

where ξ > 0 depends on z = X/N . Thus, below the transition
z < zc, the marginal distribution p(x|X ) decays exponentially
fast over a scale ξ . For this reason, all the displacements
x1, . . . xN contribute “democratically” to the total displace-
ment X , and thus this subcritical regime behaves like a fluid.
Notably, when z → zc from below the typical length ξ di-
verges.

2. Critical phase (z = zc)

Exactly at the critical point z = zc, the conditional distribu-
tion still decays monotonically with increasing x, but develops
a power-law tail for large x:

p(x|X ) ∼ 1

xν
, (19)

where we recall ν = (d + 2α − 1)/2.
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FIG. 4. Qualitative behavior of the marginal probability p(x|X )
versus x in the condensate phase. When x ∼ O(1), we find that
p(x|X ) ∼ p(x), where p(x) is the distribution of a single displace-
ment, given in Eq. (5). For 1 � x � N , we find that p(x|X ) ∼
[x(1 − x/Xex )]−ν , where Xex = X − Xc and ν = (d + 2α − 1)/2. At
x 
 Xex ∼ O(N ), a condensate bump appears in the tail of p(x|X ).
The shape pcond(y, N ) of the bump depends continuously on ν. For
2 < ν < 3, the condensate bump has an anomalous shape, with fluc-
tuations of order N1/(ν−1) [see Eq. (16)]. For ν > 3, the bump has a
Gaussian shape with fluctuations of order

√
N .

3. Supercritical phase (z > zc)

For z > zc, the distribution p(x|X ) becomes a nonmono-
tonic function of x (see Fig. 3). When x ∼ O(1), we show that
p(x|X ) ∼ p(x), i.e., the conditioned distribution is insensitive
to the constraint and behaves like a constraint-free system. For
x � 1, the function decays with increasing x as a power law,
as at the critical point in Eq. (19). However, this power-law be-
havior ceases to hold when x approaches Xex = X − zcN > 0
(analogously to the excess mass Mex in the mass transport
models [68,69]). For 1 � x � Xex we get

p(x|X ) 
 Ad,α

xν

1

(1 − x/Xex)ν
, (20)

where Ad,α > 0 is given in Eq. (33). This describes the shoul-
der region before the bump in Fig. 3 in the supercritical phase.
The approximate expression in Eq. (20) breaks down when
x → Xex. Indeed, at x ∼ Xex, a bump appears in the tail of
p(x|X ), where

p(x|X ) = 1

N
pcond(x − Xex, N ). (21)

Thus, the function pcond(x − Xex, N ) describes the shape of the
condensate. The bump is centered at Xex and its width vanishes
relative to its location for large N (see Fig. 4). The area under
this bump is the probability that a condensate appears in a
particular single-run displacement. We find that∫ ∞

−∞
dy

1

N
pcond(y, N ) = 1

N
, (22)

meaning that only one condensate appears in the system. We
recall that, for 2 < ν < 3, pcond(y, N ) is given in Eq. (16) and
the condensate has anomalous fluctuations of order N1/(ν−1),
where 1/2 < 1/(ν − 1) < 1. For this reason, we denote the
phase 2 < ν < 3 as the anomalous condensate phase. On the

other hand, for ν > 3, pcond(y, N ) is given in Eq. (17) and the
bump has a normal shape around its peak, with fluctuations of
order

√
N . Hence, we call this region the normal condensate

phase. Note, however, that the Gaussian shape is valid only
for |y| � √

N log N and that outside this region, the bump has
a power-law tail.

Finally, for x � Xex and for any ν > 2, we observe that
p(x|X ) gets cut off around X ∼ O(N ) (finite-size effect) and
this cutoff behavior can be described by a large-deviation form

p(x|X ) ∼ exp

[
− Nχ

(
x

N
,

X

N

)]
, (23)

where the rate function χ (y, z) > 0 is given in Eq. (131).
Thus, configurations where a single-run displacement is larger
than Xex become exponentially rare for large N .

The qualitative behavior of p(x|X ) in the three phases (sub-
critical, critical, and supercritical) is shown in Fig. 3. In Fig. 4
we focus on the condensed phase X > Xc, and we present a
schematic representation of the different regimes of p(x|X ) as
a function of x.

To sum up, we find that
(1) For ν < 2, the system is always in the fluid phase
(2) For 2 < ν < 3, the system is in the anomalous conden-

sate phase for X > Xc and the order of the transition depends
continuously on ν

(3) For ν > 3, the system is in the normal condensate
phase for X > Xc and the transition is of second order.

For the RTP model, we thus also find the two different
types of condensed phases “anomalous” and “normal,” as in
the case of mass transport models [68,69]. The behavior of
the system is determined by three parameters: the two sys-
tem parameters (α, d ) and the control parameter z = X/N .
This would correspond to a three-dimensional phase diagram,
which is of course complicated to display. For this reason, we
present two different slices of the phase diagram. In the left
panel of Fig. 5, we focus on the physical dimension d = 3
and we show the (α, z) phase space. In three dimensions and
for α < 1, condensation cannot occur. Conversely, for α > 1,
above some critical value zc of the parameter z [given in
Eq. (60)], the system undergoes a condensation transition.
In particular, for 1 < α < 2 and z > zc, the condensate is
anomalous. In contrast, for α > 2 and z > zc, the conden-
sate is normal. Increasing the dimension d , the region of
the phase space corresponding to the anomalous condensate
phase shrinks, until, at d = 7, it disappears. Indeed, for d � 7,
the system can either be in the fluid (z < zc) or in the normal
condensate phase (z > zc). In the right panel of Fig. 5, we
present the (z, α) phase diagram for d = 7 which shows that
only two phases “fluid” and “normal condensate” can occur.

III. GRAND CANONICAL CRITERION
FOR CONDENSATION

In this section, we provide a general argument that al-
lows us to determine the conditions that are necessary for
condensation. This approach is based on a grand canonical de-
scription of the system and will also allow us to determine the
critical value Xc of the total displacement X at which the phase
transition occurs. Note, however, that the method presented
below does not give any information about the nature of the

062134-7



MORI, LE DOUSSAL, MAJUMDAR, AND SCHEHR PHYSICAL REVIEW E 103, 062134 (2021)

0 1 2 3

1

3

α

z

F
L
U

ID
P

H
A

SE

A
N

O
M

A
L
O

U
S

C
O

N
D

E
N

SA
T

E

N
O

R
M

A
L

C
O

N
D

E
N

SA
T

E

d = 3

0 1 2 3

1

α

z

FLUID PHASE

NORMAL CONDENSATE

d = 7

FIG. 5. Left: Phase diagram in the (α, z) plane, for d = 3. For α < 1 the system is always in the fluid phase, where all runs contribute by
roughly the same amount to the total displacement of the particle. For α > 1, the system undergoes a dynamical condensation transition at a
critical value zc of the control parameter z (continuous black line). The exact expression of zc is given in Eq. (60). For z < zc, the system is in
the fluid phase, while above the transition the system is in the condensate phase. In particular, for 1 < α < 2, the system is in the anomalous
condensate phase, while for α > 2 the system is in the normal condensate phase. Right: Phase diagram in the (α, z) plane, for d = 7. For
z < zc, the system is in the fluid phase, while for z > zc it is in the normal condensate phase. For d � 7, the system is never in the anomalous
condensed phase.

condensed phase, which will be analyzed in detail in the next
sections.

In order to investigate the condensation transition, we will
focus on the large-deviation regime where X scales linearly
with the number N of runs, in the limit N → ∞. We define the
scaled distance z = X/N , which will be the control parameter
of our system. To establish when condensation occurs, we
adopt a grand canonical description, as was done for positive-
only i.i.d. random variables in the context of mass models
[68,69]. There will be important differences, however, from
the mass models. In the grand canonical approach we assume
that the variables xi in Eq. (3) become decoupled from each
other. To do this, we remove the hard δ function constraint in
Eq. (3) and replace it by a factor e−μ

∑N
i=1 xi where μ plays

the role of the negative chemical potential or equivalently
a Lagrange multiplier. We fix the value of μ by fixing the
average 〈X 〉. In other words, we let the total displacement X
free to fluctuate in the grand canonical description, but with
its average 〈X 〉 kept fixed. Provided this approach works, the
canonical partition function given by the N-fold integral in
Eq. (3) is replaced by the grand-canonical partition function
defined as

ZGC(μ, N ) =
∫ ∞

−∞

N∏
i=1

p(xi ) e−μ xi dxi

=
[∫ ∞

−∞
p(x) e−μx dx

]N

, (24)

with p(x) given in Eq. (5). Thus, in the grand canonical en-
semble, the N runs are completely independent, each drawn
from the normalized PDF:

pμ(x) = e−μx p(x)∫∞
−∞ dx e−μx p(x)

. (25)

We recall that the PDF p(x) is symmetric around x = 0. The
parameter μ can be determined from the following condition
on the average displacement:

〈X 〉 =
N∑

i=1

〈xi〉 = z N, (26)

where the average is with respect to the distribution pμ(x) in
Eq. (25). This gives

z = f (μ) ≡
∫∞
−∞ dx x e−μx p(x)∫∞
−∞ dx e−μx p(x)

. (27)

The main idea behind the condensation criterion that we are
going to present is that, when Eq. (27) admits a solution,
the canonical and grand canonical descriptions are equivalent
and we will call the system to be in the “fluid” phase. On
the other hand, if for some value of z, Eq. (27) ceases to
have a solution for μ, then the two ensembles are no longer
equivalent, signaling a possible phase transition. To proceed,
it is useful to define the limiting value

c = − lim
x→∞

log(p(x))
x

. (28)

We distinguish different cases, depending on c.

A. The case c = ∞
First, we consider the case c = ∞, corresponding to a

PDF p(x) that decays faster than any exponential for large
|x|. Let us first examine the two integrals, respectively in the
numerator and the denominator of Eq. (27). When p(x) decays
faster than any exponential, clearly both integrals in Eq. (27)
exist for any μ, i.e., for all −∞ < μ < ∞. Then the function
f (μ) in Eq. (27) is a monotonically decreasing function of
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FIG. 6. The function f (μ) versus μ. If f (μ) diverges when μ →
−c (continuous blue curve), Eq. (27) will admit a solution for μ and
no transition occurs. If f (μ) goes to a finite value f (−c) when μ →
−c (dashed red curve), Eq. (27) will always admit a solution only for
z < f (−c) and at z = f (−c) a condensation transition occurs.

μ in the range μ ∈ [−∞,∞], going from ∞ (as μ → −∞)
to −∞ (as μ → ∞). Then, for any value of z, there is a
unique solution of the equation (27) for μ. This means that
the canonical and grand canonical descriptions are equivalent,
the system remains a fluid for all z, and never develops a
condensate.

B. The case 0 < c < ∞
This corresponds to a distribution p(x) that decays expo-

nentially fast as p(x) ∼ e−c|x| for large |x|. Then the parameter
μ can take values only in the interval (−c, c) in order that
both integrals in Eq. (27) converge. It is useful to define the
auxiliary function

p̃(x) = p(x)ec|x|. (29)

The function f (μ) in Eq. (27) is again a decreasing odd
function of μ, but now only in the bounded range μ ∈ [−c, c].
It is then easy to see from Eq. (27) that if p̃(x) decays slower
than 1/|x|2 for large |x|, then f (μ) diverges at the two edges:
f (μ) → +∞ as μ → −c and f (μ) → −∞ as μ → c (see
Fig. 6). Hence, for a given z, one can always find a solution to
the equation f (μ) = z in Eq. (27). Consequently, there is no
transition.

On the other hand, if p̃(x) decays faster than 1/|x|2 then
the integrals in Eq. (27) are convergent for all μ ∈ [−c, c]. In
particular, at the left edge, the function f (μ) approaches

zc = f (−c) =
∫∞
−∞ dx x ecx p(x)∫∞
−∞ dx ecx p(x)

< ∞. (30)

Thus, for z < f (−c), a solution of Eq. (27) always exists. On
the other hand, for z > f (−c), there is no solution to Eq. (27),
signaling a condensation transition. Thus, the phase transition
occurs at the critical value zc = f (−c). Using the symmetry,
a similar condensation will also occur for z < −zc = f (c).
Note, however, that this grand canonical description does
not shed light on the precise nature of the condensed phase.
Indeed, to understand the behavior of the system above the

transition, a detailed analysis of the canonical PDF in Eq. (3)
is required as in the case of mass transport models [69].

C. The case c = 0

In this case, p(x) decays slower than an exponential as
|x| → ∞. Thus, the integrals in the denominator and nu-
merator of Eq. (27) exist for μ = 0. For any nonzero μ,
the integrals diverge, either as x → −∞ (if μ > 0), or as
x → ∞ (if μ < 0). Thus, the grand canonical description fails
completely here. However, we believe that the system still
undergoes a condensation transition if p(x) decays, for large
|x| faster than 1/|x|3. The reason behind this conjecture is the
following. If p(x) decays faster than 1/|x|3, then its second
moment is finite and the CLT applies. Therefore, for X ∼ √

N ,
Z (X, N ) assumes a Gaussian shape. On the other hand, for
X ∼ N , we expect

Z (X, N ) ∼ N p(X ), (31)

where the right-hand side corresponds to a configuration
where one of the runs absorbs the whole displacement X .
Thus, Z (X, N ) is described by two regimes: the typical Gaus-
sian regime for X ∼ √

N and the fat-tailed regime for X ∼ N .
In this case, for X ∼ O(N ), the distribution Z (X, N ) does
not have a large-deviation behavior of the type, Z (X, N ) ∼
exp[−N ψ (X/N )], and thus condensation can not happen on
a scale X ∼ O(N ). However, if the central CLT region has
to match the tail behavior in Eq. (31), we believe that a
condensation should occur at a shorter scale X ∼ Nγ , where
1/2 < γ < 1. This has already been hinted in Ref. [42] which
studied a particular example, though there p(x) was asymmet-
ric.

In the complementary case when p(x) decays slower than
1/|x|3, the CLT does not hold and, already in the typical
regime, X is dominated by the maximum of x1, . . . , xN [86].
Thus, in this case, condensation spontaneously occurs at any
scale and no dynamical phase transition takes place.

In the rest of this section, we will show that one can obtain
several RTP models that satisfy the condensation criterion.
This can be achieved by properly tuning the speed distribution
W (v). Below, we provide few examples of W (v) that lead to
condensation:

(a) W (v) = α(1 − v)α−1 with 0 < v < 1, as mentioned in
Eq. (7) with v0 = 1. In this case, for arbitrary d , one can show
that for large |x| (see Appendix C)

p(x) 
 Ad,αe−|x| 1

|x|ν , (32)

where

Ad,α = 	(d/2)α	(α)√
π

2(d−3)/2 and ν = (d + 2α − 1)

2
.

(33)

In this case c = 1 from Eq. (28) and, applying the crite-
rion described above, we find that the transition is possible
only for ν > 2, i.e., for d + 2α > 5. Recalling that the limit
α → 0 corresponds to the canonical RTP model with fixed
velocity [i.e., W (v) = δ(v − 1)], we recovered that for the
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fixed-velocity RTP model condensation is possible only for
d > 5. This was first observed in [53]. Plugging the expres-

sion for p(x), given in Eq. (5), into Eq. (30), we obtain the
critical value zc explicitly, valid for arbitrary d and α,

zc = 4

d (1 + α)(2 + α)
4F3[3/2, 3/2, 2, 2; (2 + d )/2, (3 + α)/2, (4 + α)/2; 1]

4F3[1/2, 1/2, 1, 1; d/2, (1 + α)/2, (2 + α)/2; 1]
, (34)

where 4F3 is the standard hypergeometric function defined
more precisely in Eq. (41). In the next sections, we will focus
on this family of speed distributions, parametrized by α.

(b) W (v) =
√

2
π

e−v2/2 with v > 0. Considering d = 1
and using Eq. (5), one can show that, for |x| � 1,

p(x) ∼ |x|−1/3e−3|x|2/3/2. (35)

In this case p(x) decays slower than any exponential, thus c =
0. Moreover, p(x) decays faster than 1/|x|3 and thus according
to our conjecture, a condensation transition should occur. The
condensation transition in the RTP model with this particular
half-Gaussian speed distribution was studied in Ref. [42], but
in the presence of an additional constant force.

(c) W (v) ∼ 1/vβ for large v with β > 1. In this example,
for d = 1, it is easy to show from Eq. (5) that p(x) ∼ 1/|x|β
for large |x|. Thus, we find c = 0 and one has condensation
only if β > 3, according to our conjecture.

Let us recall that in the case of the sum of positive-only
i.i.d. random variables, a similar condensation criterion was
established [69]. In that case, one can still define the limiting
value c in Eq. (28). Then, if c = ∞, no condensation happens.
For 0 � c < ∞, condensation happens only if p̃(x) = ecx p(x)
decays faster than 1/x2.

IV. POSITION DISTRIBUTION

In this section, we want to investigate the PDF Z (X, N ) of
the total x-component displacement X , where X = ∑N

i=1 xi,
by analyzing fully the N-fold integral in Eq. (3), thus go-
ing beyond the grand canonical description discussed in the
previous section. We will first derive an exact expression
for Z (X, N ), valid for any X and N . Then, focusing on
large N , we study both the typical regime X ∼ O(

√
N ),

where Z (X, N ) is Gaussian, and the large-deviation regime
X ∼ O(N ), where Z (X, N ) assumes a large-deviation form,
Z (X, N ) ∼ exp[−Nψd,α (X/N )], with a rate function ψd,α (z)
that we compute exactly. Under specific conditions on d and
α, we show that ψd,α (z) becomes singular at a critical value
zc of the scaled displacement z = X/N . This singularity cor-
responds to a condensation phase transition.

We recall that the PDF Z (X, N ) can be written as [see
Eq. (3)]

Z (X, N ) =
∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxN

N∏
i=1

p(xi ) δ

(
X −

N∑
i=1

xi

)
,

(36)

where the δ function constraints the final position to be X
and p(x) is given in Eq. (5), with W (v) = α(1 − v)α−1 for
0 � v � 1 and W (v) = 0 otherwise. To proceed, we recall the

integral representation of the δ function

δ(X ) = 1

2π i

∫
	

dq e−qX , (37)

where the integral is performed over the imaginary-axis
Bromwich contour 	 in the complex q plane. Plugging this
integral expression into Eq. (36), we find

Z (X, N ) = 1

2π i

∫
	

dq eqX [ p̂(q)]N , (38)

where

p̂(q) =
∫ ∞

−∞
dx e−qx p(x). (39)

Substituting W (v) = α (1 − v)α−1 over v ∈ [0, 1] in
Eq. (5), we first evaluate p(x) and then compute p̂(q) using
Eq. (39). Using Mathematica, we get

p̂(q) = 4F3

(
1

2
,

1

2
, 1, 1;

d

2
,

1 + α

2
,

2 + α

2
; q2

)
, (40)

where pFq(α1, . . . , αp; β1, . . . , βq; q) denotes the generalized
hypergeometric function, defined as

pFq(α1, . . . , αp; β1, . . . , βq; z) =
∞∑

n=0

(α1)n · · · (αp)n

(β1)n · · · (βq)n

zn

n!
,

(41)
where (a)n is the rising factorial (or Pochhammer symbol),
defined as

(a)n =
{

1 if n = 0
a(a + 1)(a + 2) · · · (a + n − 1) if n � 1 . (42)

Thus, we find

Z (X, N ) = 1

2π i

∫
	

dq exp [qX + NSd,α (q)], (43)

where

Sd,α (q) = log

[
4F3

(
1

2
,

1

2
, 1, 1;

d

2
,

1 + α

2
,

2 + α

2
; q2

)]
.

(44)

Note that this result is exact for any X and N . We are now
interested in extracting the behavior of Z (X, N ) in the limit of
large N .

A. Typical regime

First, we investigate the typical regime where X ∼ √
N .

Substituting X = √
N y in Eq. (43), where the variable y is

assumed to be of order one, we obtain

Z (X =
√

N y, N ) = 1

2π i

∫
	

dq exp
[
q
√

N y + N Sd,α (q)
]
.

(45)
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We now perform the change of variable q → q
√

N , and we
obtain

Z (X =
√

Ny, N )

= 1

2π i
√

N

∫
	

dq exp

[
q y + NSd,α

(
q√
N

)]
. (46)

We expand the right-hand side of Eq. (46) for large N , using
Eq. (44) and the small-argument expansion of the generalized
hypergeometric function [87], and we find

Z (X =
√

Ny, N )


 1

2π i
√

N

∫
	

dq exp

[
q y + 2q2

d (α + 1)(α + 2)

]
. (47)

Finally, performing the Gaussian integral over q we obtain the
results announced in Eqs. (11) and (12). Thus, in this regime,
the distribution of the final position of the particle is Gaussian.
This is a consequence of the CLT, since X is the sum of N i.i.d.
random variables with finite variance. This is consistent with
the fact that, for any N , the variance of X is simply given by

〈X 2〉 = N
∫ ∞

−∞
dx x2 p(x) = 4N

d (α + 1)(α + 2)
. (48)

The result in Eq. (11) tells us that, for late times, the RTP has
typically a diffusive behavior, similar to the one of a passive
Brownian motion. In other words, at the scale X ∼ √

N the
position distribution of the RTP does not show any signs of
activity. In order to observe the signatures of the active nature
of the particle, it is necessary to investigate the large-deviation
regime, where X ∼ N . It is possible to show that the result in
Eq. (11) is valid on a larger region than the one predicted by
the CLT, for any |X | � N3/4 (see Appendix D).

B. Large-deviation regime

To proceed, we define the rescaled variable z = X/N . From
Eq. (43), we obtain

Z (X = Nz, N ) = 1

2π i

∫
	

dq eN[qz+Sd,α (q)], (49)

where Sd,α (q) is given in Eq. (44). We recall that the integral
in Eq. (49) is performed over the imaginary-axis Bromwich
contour 	 in the complex-q plane. For any d and α, the
complex function Sd,α (q) has two branch cuts running in the
real-q axis for q < −1 and q > 1 (see Fig. 7).

We first try to compute the integral in Eq. (49) by
saddle-point approximation. Assuming a saddle point exists, it
must satisfy d

dq [qz + Sd,α (q)] = 0. This gives the saddle-point
equation

z = gd,α (q) ≡ −S′
d,α (q). (50)

Using the expression of Sd,α (q) in Eq. (44), we find

gd,α (q) = − 4q

d (α + 1)(α + 2)

× 4F3
(

3
2 , 3

2 , 2, 2; 2+d
2 , 3+α

2 , 4+α
2 ; q2

)
4F3

(
1
2 , 1

2 , 1, 1; d
2 , 1+α

2 , 2+α
2 ; q2

) . (51)

•
−1

•
1

Γ

Re(q)

Im(q)

FIG. 7. Analytic structure of the function Sd,α (q), given in
Eq. (44). For any d and α, Sd,α (q) has two branch cuts (the gray
wiggly lines in figure) in the real-q axis, for q < −1 and for q > 1.
The continuous blue line represents the Bromwich contour 	, defined
in the text.

Note that, identifying μ = q, the saddle-point equation (50) is
the same condition as the one that fixes the chemical potential
μ in Eq. (27) in the grand canonical argument for condensa-
tion. One can check that, since z is real, the solution q∗(z) of
the saddle-point equation in (50) has to be real. Moreover, due
to the branch cuts of the function Sd,α (q) (see Fig. 7), q∗(z) has
to belong to the real interval (−1, 1). Therefore, it is instruc-
tive to analyze the behavior of gd,α (q) for q ∈ (−1, 1). First
of all, for any d and α, it is easy to show that gd,α (q) is a de-
creasing odd function of q along the real interval q ∈ [−1, 1],
such that gd,α (q) > 0 for q < 0 and gd,α (q) < 0 for q > 0
(see Fig. 8). To proceed, we need the following asymptotic
expansion for the generalized hypergeometric function, valid

FIG. 8. The function gd,α (q) versus q for different values of
ν = (d + 2α − 1)/2. For any ν, gd,α (q) is a decreasing odd function
of q. For ν < 2, gd,α (q) diverges when q → −1, while for ν > 2 it
goes to the finite value gd,α (−1).
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(a) (b)

FIG. 9. (a) Rate function ψd,α (z) versus z, for d = 2 and α = 0. The continuous blue line corresponds to the exact result in Eq. (56), valid
in the limit N → ∞. For this choice of the parameters d and α, no transition occurs. (b) Rate function ψd,α (z) versus z, for d = 6 and α = 0.
The continuous blue line corresponds to the exact result in Eq. (59). The vertical dashed line signals the critical point zc at which the phase
transition occurs, for z > zc the rate function becomes exactly linear. In both panels, the colored dashed lines are the results of numerical
simulations obtained at finite N , as described in Sec. VII.

for q → 1 from below [88]:

4F3(α1, α2, α3, α4; β1, β2, β3; q)

=
∞∑

n=0

an(1 − q)n + (1 − q)ϕ
∞∑

n=0

bn(1 − q)n, (52)

where an and bn are constants that depend on the parameters
of the function (for the precise expressions of an and bn see
[88]) and

ϕ =
3∑

j=1

β j −
4∑

j=1

α j . (53)

Note that the formula in Eq. (52) is valid only if ϕ is not an
integer. In the case of integer ϕ, logarithmic corrections are
present in the asymptotic expansion in Eq. (52) [88]. Using
Eq. (52), it is easy to show that, for ν < 2 (where we recall that
ν = (d + 2α − 1)/2), gd,α (q) diverges when q → −1. Thus,
for ν < 2 the saddle-point equation (50) admits a unique so-
lution for any z and we obtain

Z (X, N ) 
 1√
2π |S′′

d,α
[q∗(X/N )]|N

exp

[
− Nψd,α

(
X

N

)]
,

(54)
where

ψd,α (z) = −z q∗(z) − Sd,α (q∗(z)), (55)

q∗(z) is the unique solution of Eq. (50) and S′′
d,α (q) is the

second derivative of Sd,α (q) with respect to q. For special
values of d and α, it is possible to find an explicit expression
for ψd,α (z). For instance, in the special case d = 2 and α = 0,
we find

ψ2,0(z) = 1

2

[√
1 + 4z2 − 1 + log

(√
1 + 4z2 − 1

2z2

)]
. (56)

The rate function ψ2,0(z) is shown in Fig. 9, and it is in
good agreement with numerical simulations performed for
N = 104.

On the other hand, for ν > 2 one has

0 < gd,α (−1) < +∞. (57)

Thus, for small positive z the saddle-point equation (50)
admits a unique solution −1 < q∗(z) < 0 and the position dis-
tribution Z (X, N ) is still given by the expression in Eq. (54).
However, increasing z, the solution q∗(z) decreases until, at
the critical value zc = gd,α (−1), it encounters the branch cut
at q = −1 (see Fig. 7). For z > zc, q∗(z) freezes at the value
−1. Indeed, increasing z above zc, Eq. (50) has no solution
and the integral in Eq. (49) cannot be computed via the saddle-
point approximation. Nevertheless, this integral is dominated
by values of q close to q = −1 and therefore one can approx-
imate

Z (X = N z, N ) ∼ exp {−N[z − Sd,α (−1)]}. (58)

Hence, the rate function can be written for ν > 2, as

ψd,α (z) =
{−z q∗(z) − Sd,α (q∗(z)) for z < zc

z − Sd,α (−1) for z > zc
, (59)

where q∗(z) is the unique solution of Eq. (50) and

zc = 4

d (α + 1)(α + 2)
4F3

(
3
2 , 3

2 , 2, 2; 2+d
2 , 3+α

2 , 4+α
2 ; 1

)
4F3

(
1
2 , 1

2 , 1, 1; d
2 , 1+α

2 , 2+α
2 ; 1

) .

(60)
Note that, as expected, the critical value zc is the same as
the one predicted by the grand canonical argument in Sec. III
[see Eq. (34)].

For z > zc, to find the prefactor of the expression in
Eq. (58), one has to compute the contour integral in Eq. (49).
We perform this calculation in the case where ν = (d + 2α −
1)/2 is not an integer for simplicity. However, this calculation
can be extended easily to arbitrary ν. Since we expect the
integral to be dominated by values of q close to −1, it is
useful to perform the change of variable q → s = (q + 1)N
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in Eq. (49), which yields

Z (X = N z, N ) = 1

2π i
N
∫

	

ds eN[(s/N−1)z+Sd,α (−1+s/N )]. (61)

Using the asymptotic expression of the hypergeometric func-
tion close to unit argument in Eq. (52), we expand the
exponent for large N and we find

Z (X = N z N ) = BN e−Nz 1

2π i
N
∫

	

ds exp

[
(z − zc) s + ad,α

s2

N
· · · + bd,α

sν−1

Nν−2
+ · · ·

]
, (62)

where sν−1 is the leading singular term and

BN = eNSd,α (−1). (63)

The constants ad,α and bd,α can be exactly computed [88]. In particular, we find that ad,α = 0 for ν < 3 and

ad,α = 	
(

d
2

)
	
(

1+α
2

)
	
(

2+α
2

)
84F3

(
1
2 , 1

2 , 1, 1; d
2 , 1+α

2 , 2+α
2 ; 1

)2

[
2 4F3

(
1
2 , 1

2 , 1, 1; d
2 , 1+α

2 , 2+α
2 ; 1

)
	
(

d
2

)
	
(

1+α
2

)
	
(

2+α
2

) (
4F3

(
3
2 , 3

2 , 2, 2; 2+d
2 , 3+α

2 , 4+α
2 ; 1

)
	
(

2+d
2

)
	
(

3+α
2

)
	
(

4+α
2

)

+ 18
4F3

[
5
2 , 5

2 , 3, 3; 4+d
2 , 5+α

2 , 6+α
2 ; 1

]
	
(

4+d
2

)
	
(

5+α
2

)
	
(

6+α
2

) )
−
(

4F3
(

3
2 , 3

2 , 2, 2; 2+d
2 , 3+α

2 , 4+α
2 ; 1

)
	
(

2+d
2

)
	
(

3+α
2

)
	
(

4+α
2

) )2]

(64)

for ν > 3, while

bd,α = 	(1 − ν)Ad,α (65)

for any ν, where Ad,α is given in Eq. (33). For ν > 3, one can
check that ad,α is positive. Expanding Eq. (62) for large N we
find

Z (X = Nz, N ) = BN e−Nz 1

2π i
N
∫

	

ds ezexs

×
[

1 + ad,α

s2

N
· · · + bd,α

sν−1

Nν−2
+ · · ·

]
,

(66)

where zex = z − zc is assumed to be O(1). It is possible to
show that, for any a � 0, (see Appendix A.3 of Ref. [69])

1

2π i

∫
	

ds ezexssa−1 = sin(πa)

π
	(a). (67)

Thus, when a is integer, the integral above vanishes. There-
fore, since we are assuming that ν is not an integer, the leading
term in Eq. (66) is, using the expression for bd,α given in
Eq. (65),

Z (X = Nz, N ) 
 BN e−Nz 1

zν
ex

bd,α

Nν−1

sin(πν)

ν
	(ν)	(1− ν)Ad,α.

(68)
Finally, using the relation 	(ν)	(1 − ν) = π/ sin(νπ ), we
find

Z (X, N ) 
 BN Ad,α

N

(X − Xc)ν
e−X . (69)

When ν is an integer, a similar argument can be applied. Note
that the expression in Eq. (69) can be rewritten, using the
large-x expansion of p(x) in Eq. (32), as

Z (X, N ) 
 CN N p(X − Xc), (70)

where p(x) is the PDF of a single-run displacement and
CN = BN e−Xc . This expression can be interpreted as follows.
Above the critical value X = Xc, all the extra displacement

Xex = X − Xc is absorbed by a single run, the condensate.
The probability weight associated to the condensate is there-
fore p(X − Xc), and the factor N in Eq. (70) arises since the
condensate can be any one of the N runs. The factor CN in
Eq. (49) is the probability weight of the other N − 1 sites,
which becomes independent of X above the transition.

C. Order of the transition

It is also interesting to compute the order of the phase
transition described above. We recall that the system under-
goes a transition of order n if the nth derivative of ψd,α (z) is
discontinuous, while all lower-order derivatives are continu-
ous. Thus, we need to investigate the asymptotic behavior of
ψd,α (z) close to the transition. In the limit z → zc from below,
we know that a solution q∗(z) of the saddle-point equation
always exists. Moreover, since we know that exactly at the
critical point z = zc the saddle point q∗(z) encounters the
branch cut at q = −1, we expect that q∗(z) is close to −1 near
the transition. Plugging q = −1 + s into the exponent of the
integrand in Eq. (49) and using Eq. (52) to expand for small s,
we obtain

z q + Sd,α (q) 
 Sd,α (−1) − z + zexs + cν sη, (71)

where cν = bd,α for 2 < ν < 3 and cν = ad,α for ν > 3
[where ad,α and bd,α are given in Eqs. (64) and (65)], and

η =
{
ν − 1 for 2 < ν < 3
2 for ν > 3 . (72)

We recall that Sd,α (q) is defined in Eq. (44). Setting to zero the
first derivative with respect to s of the expression in Eq. (71),
we obtain

s =
(

zc − z

cν η

)1/(η−1)

. (73)

Thus, the saddle point is located at, for z → zc,

q∗(z) 
 −1 +
(

zc − z

cν η

)1/(η−1)

. (74)
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Plugging this value into Eq. (59), we find that when z → zc

from below

ψd,α (z) 
 z − Sd,α (−1)

+
(

(cν η)−1/(η−1) − cν

(cν η)η/(η−1)

)
(zc − z)η/(η−1).

(75)

Recalling that for z > zc

ψd,α (z) = z − Sd,α (−1), (76)

we find that the order n of the transition is �η/(η − 1)�, where
�y� denotes the smallest integer larger than or equal to y.
Using the expression for η given in Eq. (72), we find

n =
{⌈

ν−1
ν−2

⌉
for 2 < ν < 3

2 for ν > 3
. (77)

In other words, we observe a second-order phase transition
for ν > 3, while, for 2 < ν < 3, the order of the transition de-
pends continuously on ν. For instance, when ν = 5/2 we find
n = 3. Notably, the order n diverges when ν → 2, in agree-
ment with the fact that for ν = 2 all derivatives of ψd,α (z) are
continuous.

D. Asymptotics of ψd,α(z)

Next, we are interested in the asymptotic behavior of
ψd,α (z) for small and large z. For small enough z, a solution of
the saddle-point equation (50) always exists, with q∗(z) small.
Expanding Eq. (50) for small q∗(z), we find

q∗(z) 
 −d (α + 1)(α + 2)

4
z. (78)

Plugging this solution into Eq. (55) and expanding for small
z, we obtain

ψd,α (z) 
 d (1 + α)(2 + α)

8
z2. (79)

Comparing this result with Eq. (11), we notice that the small-
argument behavior of the rate function smoothly connects
with the typical Gaussian behavior in Eq. (11). We next con-
sider the large-z behavior of ψd,α (z). It is useful to distinguish
different cases, depending on ν.

1. The case ν > 2

For ν > 2, we already know that for z > zc the rate func-
tion is exactly given by just a linear function

ψd,α (z) = z − Sd,α (−1), (80)

where Sd,α (q) is given in Eq. (44).

2. The case 1 < ν < 2

When ν < 2, for large z, we know that a unique solution
q∗(z) of the saddle-point equation (50) exists for any z. More-
over, in the limit of large z, we expect q∗(z) to be close to
−1. Therefore, we plug q = −1 + s into the exponent of the
integrand in Eq. (49), and we use Eq. (52) to expand for small
s. For 1 < ν < 2, we obtain

z (−1 + s)+ Sd,α (−1 + s) 
 z(−1 + s)+ Sd,α (−1)+ ãsν−1,

(81)

where ã < 0 is a constant that depends on d and α. Setting to
zero the first derivative of this expression with respect to s, we
obtain

z + ã(ν − 1)sν−2 = 0. (82)

Thus, we find that, for large z, the solution of the saddle-point
equation can be written as

q∗(z) 
 −1 + [ã(1 − ν)/z]1/(2−ν). (83)

Plugging this expression for q∗(z) into Eq. (55) and expanding
for large z, we finally obtain

ψd,α (z) = z − Sd,α (−1) + O(z(1−ν)/(2−ν) ). (84)

3. The case 0 < ν < 1

When 0 < ν < 1 the procedure above yields, to leading
order in s,

z (−1 + s) + Sd,α (−1 + s) 
 z(−1 + s) + (ν − 1) log (s).
(85)

Setting to zero the first derivative of this expression with
respect to s, we find that the saddle-point equation becomes,
for z � 1,

z + ν − 1

s
= 0. (86)

Thus, we find that, to leading order, q∗(z) 
 −1 + (1 − ν)/z.
Plugging this expression in Eq. (55) and expanding for large
z, we find that, for 0 < ν < 1,

ψd,α (z) = z − (1 − ν) log(z) + O(1). (87)

To summarize, we have shown that, for z � 1,

ψd,α (z)

=
⎧⎨
⎩

z − (1 − ν) log(z) + O(1) for 0 < ν < 1
z − Sd,α (−1) + O(z(1−ν)/(2−ν) ) for 1 < ν < 2
z − Sd,α (−1) for ν > 2

,

(88)

where we recall that Sd,α (q) is given in Eq. (44).

E. Vicinity of the critical point: Intermediate matching regime

We now focus on the case ν > 2 where a condensation is
guaranteed to occur as X exceeds a critical value Xc. We want
to investigate the behavior of Z (X, N ) in a small neighborhood
of the critical point X = Xc for large N (see Fig. 2). In the
following, we will assume that ν is not an integer number. The
discussion below can be easily generalized to the case where
ν is integer. We recall that Xc = zcN , where the critical value
zc, given in Eq. (60), is of order one. Close to the transition,
we write X as

X = Xc + yNλ, (89)

where y is an order-one variable and 0 < λ < 1 can be ad-
justed depending on ν. Close to the transition, i.e., for |Xex| =
|X − Xc| � N , we know that the contour integral in Eq. (49)
is dominated by values of q close to −1. Thus, performing the
change of variable q → s = −1 + q, we find

Z (X, N ) = 1

2π i

∫
	

ds e(−1+s)X+N Sd,α (−1+s), (90)
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FIG. 10. The function Vν (y) versus y, for ν = 5/2. For y → ∞,
Vν (y) decays exponentially fast as e−c2y(ν−1)/(ν−2)

. For y → −∞, it has
a power-law tail Vν (y) ∼ |y|−ν .

where Sd,α (q) is given in Eq. (44). Using Eq. (52), we expand
for small s and we obtain

Z (X, N ) 
 BN e−X 1

2π i

∫
	

ds exp[(X − Xc)s

+ N (ad,α s2 + · · · + bd,α sν−1 + · · · )], (91)

where sν−1 is the first nonanalytic term of the expansion and
BN is given in Eq. (63). The constants ad,α and bd,α are given
in Eqs. (64) and (65). Using Eq. (89), we obtain

Z (X, N ) 
 BN e−X 1

2π i

∫
	

ds exp[ysNλ

+ N (ad,α s2 + · · · + bd,α sν−1 + · · · )]. (92)

After the change of variable s → s̃ = sNλ, we get

Z (X, N ) 
 BN e−X N−λ

2π i

∫
	

ds̃ exp[ys̃ + ad,α s̃2N1−2λ

+ · · · + bd,α s̃ν−1N1−(ν−1)λ + · · · ]. (93)

Let us now consider the two cases 2 < ν < 3 and ν > 3 sep-
arately.

For 2 < ν < 3, we set λ = 1/(ν − 1) and, using the defi-
nition of y in Eq. (89), we obtain, to leading order,

Z (X, N ) 
 CN
1

N1/(ν−1)
Vν

(
Xc − X

N1/(ν−1)

)
, (94)

where CN = BN e−X and

Vν (y) = 1

2π i

∫
	

ds exp[−y s + bd,α sν−1]. (95)

This same function Vν (y) also appeared in the analysis of
the partition function in mass transport models [69,71] and
is shown in Fig. 10. It has the following asymptotic behaviors
[69]:

Vν (y) 

{

Ad,α|y|−ν for y → −∞
c1 y(3−ν)/[2(ν−2)]e−c2 y(ν−1)/(ν−2)

for y → ∞ ,

(96)

where Ad,α is given in Eq. (33),

c1 = 1

{2π (ν − 2)[bd,α (ν − 1)]1/(ν−2)}1/2 (97)

and

c2 = ν − 2

(ν − 1)[bd,α (ν − 1)]1/(ν−2)
. (98)

Performing the change of variable s = re±iπ/2 for the upper
and lower part of the imaginary-axis contour 	, it is possible
to rewrite the expression for Vν (y) in Eq. (95) as

Vν (y) = 1

π

∫ ∞

0
dr ebd,α sin(πν/2)rν−1

× cos[bd,α cos(πν/2)rν−1 + yr], (99)

which can be easily evaluated numerically. Moreover, it is
easy to check that Vν (y) is positive and normalized to one.
Using the asymptotic result for y → ∞, one can check that the
expression for Z (X, N ) in Eq. (94) matches smoothly to the
expression obtained by saddle-point approximation for z < zc

[see Eq. (75)]. Similarly, using the expansion for y → −∞,
we observe that for Xex = X − Xc � N1/(ν−1)

Z (X, N ) 
 BN e−X N Ad,α

(X − Xc)ν
, (100)

in agreement with the result in Eq. (69).
When ν > 3, we set λ = 1/2 in Eq. (93) and we obtain

Z (X, N ) 
 BN e−X N−1/2

2π i

∫
	

ds̃ exp(ys̃ + ad,α s̃2). (101)

Computing the integral over s̃ and using the definition of y, we
get

Z (X, N ) 
 CN
1√

4πad,αN
exp

[
− (X − Xc)2

4ad,αN

]
, (102)

where CN = BN e−Xc . Thus, for ν > 3 the PDF of X has, in
the critical region where |X − Xc| ∼ √

N , a Gaussian shape.
Actually, it is possible to check that this Gaussian form re-
mains valid, on the left tail, on a larger region, depending on
ν. For instance, for ν > 4, it is valid up to Xc − X ∼ N3/4.
Conversely, on the right tail, the expression in Eq. (102) re-
mains valid up to X − Xc ∼ √

N log(N ). Beyond this scale,
i.e., for X − Xc � √

N log(N ), it is possible to show that

Z (X, N ) 
 BN e−X N Ad,α

(X − Xc)ν
, (103)

in agreement with the expression in Eq. (69), obtained for X −
Xc ∼ O(N ).

In order to describe the crossover between the Gaussian
shape in Eq. (102) and the power-law tail in Eq. (103), one
needs to keep the first singular term in the expansion in
Eq. (101). From Eq. (93), we obtain

Z (X, N ) 
 BN e−X N−1/2

2π i

∫
	

ds̃ exp(ys̃ + ad,α s̃2

+ bd,α s̃ν−1N−(ν−3)/2). (104)
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For large N , the integrand can be written as

Z (X, N ) 
 BN e−X 1√
N

gN

(
X − Xc√

N

)
, (105)

where

gN (y) = 1

2π i

∫
	

ds eys+ad,αs2
(1 + bd,αsν−1N−(ν−3)/2). (106)

This function gN (y) can be rewritten as the sum of a Gaussian
part and of power-law part

gN (y) = 1√
4πad,α

e−y2/(4ad,α )

+ bd,α

N (ν−3)/2

1

2π i

∫
	

ds eys+ad,αs2
sν−1. (107)

When y ∼ O(1), the Gaussian term is always leading and one
obtains the result in Eq. (102). On the other hand, when y ∼
O(

√
N ), the power-law part dominates, coherently with the

result in Eq. (103). We now want to describe the crossover
between these two regimes. When y � 1 the integral over s
can be approximated as

gN (y) 
 1√
4πad,α

e−y2/(4ad,α ) + Ad,α

N (ν−3)/2

1

yν
, (108)

where we have used the expression for bd,α , given in Eq. (33).
We want to find cN and dN , such that w = (y − cN )/dN is fixed
for large N . Plugging

y = cN + dNw (109)

in Eq. (108), we obtain

gN (y = cN + dNw)

= Ad,α

N (ν−3)/2

1

cν
N (1 + dNw/cN )ν

×
[

1 + N (ν−3)/2cν
N (1 + dNw/cN )ν√

4πad,α Ad,α

× e−(c2
N +2cN dN w+d2

N w2 )/(4ad,α )

]
. (110)

We now choose cN such that

N (ν−3)/2cν
N e−c2

N /(4ad,α ) = 1. (111)

Thus, to leading order

cN 
 √
2ad,α (ν − 3) log(N ). (112)

Moreover, we choose dN = 1/cN . Then, to leading order, we
obtain

gN (y = cN + dNw) = Ad,α

N (ν−3)/2

1

[2ad,α (ν − 3) log(N )]ν/2

×
[

1 + 1√
4πad,α Ad,α

e−w/(2ad,α )

]
.

(113)

Finally, using Eq. (105), we find that

Z (X, N ) 
 BN
Ad,α

cν
N N (ν−3)/2

e−X h

[
cN

(
X − Xc√

N
− cN

)]
,

(114)
where cN is given in Eq. (112) and

h(w) = 1 + 1√
4πad,α Ad,α

e−w/(2ad,α ). (115)

Overall, we have shown that the crossover occurs for X −
Xc ∼ √

N log(N ) and that it is described by the function h(w).
To summarize, we have shown that, for any ν > 2 and for

X ∼ Xc, the PDF Z (X, N ) can be always written as

Z (X, N ) 
 CN pcond(Xc − X, N ), (116)

where the function pcond(y, N ) assumes different expressions
depending on ν. The reason behind the choice of the subscript
cond will become clear in the next section. Using Eq. (94), we
find that for 2 < ν < 3

pcond(y, N ) 
 1

N1/(ν−1)
Vν

(
y

N1/(ν−1)

)
, (117)

where the function Vν (y) in Eq. (95). On the other hand, for
ν > 3, we find

pcond(y, N ) 


⎧⎪⎪⎪⎨
⎪⎪⎪⎩

NAd,α

|y|ν for y � −√
N log(N )

Ad,α

cν
N N (ν−3)/2 h

[ cN√
N

(|y| − √
NcN )

]
for y 
 −√

N log(N )

1√
4πad,αN

e−y2/(4ad,αN ) for y � −√
N log(N )

, (118)

where Ad,α and ad,α are given in Eqs. (33) and (64). The
function h(w) is given in Eq. (115) and cN ∼ √

log(N ) is
given in Eq. (112). In both cases, it is possible to check that
the function pcond(y, N ) is positive and normalized over y,
for large N . Using Eqs. (117) and (118), we find that for
y → ∞

pcond(y, N ) ∼
⎧⎨
⎩

exp
[−c2

y(ν−1)/(ν−2)

N1/(ν−2)

]
for 2<ν <3

exp
[− y2

4ad,αN

]
for ν >3

, (119)

where c2 is given in Eq. (98). On the other hand, for y → −∞,
we obtain

pcond(y, N ) 
 NAd,α

|y|ν , (120)

for any ν > 2.

V. MARGINAL DISTRIBUTION OF A SINGLE JUMP

In this section we investigate the marginal PDF p(x|X )
of a single-run displacement x, conditioned on the final x-
component displacement X . This means that if we pick at
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random one of the N runs with the total displacement X
fixed, what is the distribution of the size of this run? Note
that the displacements x1, . . . , xN are i.i.d. random variables,

since we are considering the fixed-N ensemble. Thus, x can
be identified with any of these variables, say, for simplicity
x = x1. Then the conditional PDF of x is given by

p(x|X ) = p(x)
∫∞
−∞ dx2 · · · ∫∞

−∞ dxN
[∏N

i=2 p(xi )
]
δ
(
X − x −∑∞

i=2 xi
)

∫∞
−∞ dx1 · · · ∫∞

−∞ dxN
[∏N

i=1 p(xi )
]
δ
(
X −∑∞

i=1 xi
) , (121)

which can be rewritten as

p(x|X ) = p(x)
Z (X − x, N − 1)

Z (X, N )
, (122)

where we have used the definition of Z (X, N ) in Eq. (3). We
are interested in the large-deviation regime where X = zN and
z is of order one. As explained in the previous section, for
ν > 2, the system undergoes a phase transition at a critical
value zc of the parameter z. In this section we show that this
transition shows up very clearly in the marginal distribution
p(x|X ), which has very different behavior in the subcritical
(X < zcN) and the supercritical (X > zcN) phases. In the sub-
critical “fluid” phase, p(x|X ) is a monotonically decreasing
function of x with an exponential tail. For X = zcN we have
a critical fluid where p(x|X ) still decays monotonically with
increasing x, but now as a power law ∼x−ν for large x. Finally,
in the supercritical phase (X > zcN), p(x|X ) becomes non-
monotonic as a function of x, developing in particular a bump
centered at x = Xex = X − zcN (see Fig. 3). Let us discuss
these three cases separately.

A. Subcritical phase (X < Xc)

Plugging the expression for Z (X, N ) given in Eq. (49), into
Eq. (122), we obtain

p(x|X ) 
 p(x)

∫
	

dq e−qxeN[qz+Sd,0(q)]∫
	

dq eN[qz+Sd,0 (q)]
, (123)

where the integrals are performed over the imaginary-axis
Bromwich contour 	 (see Fig. 7). In Sec. IV we have shown
that the integrals above are dominated by the solution q∗(z) of
the saddle-point equation (50). In the subcritical phase z < zc

such solution q∗(z) > −1 always exists. Thus, from Eq. (123)
we obtain

p(x|X ) 
 p(x)e−q∗(z) x. (124)

Using the large-x behavior of p(x), given in Eq. (32), we find
that, for x � 1

p(x|X ) 
 Ad,αx−ν e−x/ξ , (125)

where

ξ = 1

1 + q∗(z)
. (126)

Thus for X < Xc, the PDF p(x|X ) decays as a function of x on
a typical length ξ > 0. Recalling that q∗(z) → −1 for z → zc,
we find that ξ diverges when the system approaches the phase
transition. In particular, it is possible to show that ξ diverges,

for z → zc from below, as

ξ ∼
{

(zc − z)−1/(ν−2) for 2 < ν < 3
(zc − z)−1/2 for ν > 3

. (127)

B. Critical phase (X = Xc)

Exactly at the transition point, the typical length ξ diverges
and therefore the single-jump distribution develops a power-
law tail for large x

p(x|X ) 
 Ad,αx−ν . (128)

Note that the result in Eq. (128) is valid only for x � O(N ).
This is because when computing the integral in Eq. (123)
we have assumed that the factor e−qx does not contribute to
the saddle-point equation, which is true only if x � O(N ).
As we will show below, configurations with x ∼ O(N ) are
exponentially rare when X = Xc.

We note that the behavior of our system in the subcritical
phase and at the critical point is somewhat reminiscent of
a standard phase transition such as in the Ising model in
d � 2. The subcritical phase “corresponds” to the param-
agnetic phase of the Ising model. The marginal distribution
p(x|X ) plays an “analogous” role as the spin-spin correlation
function in the Ising model. In the case of the Ising model,
the correlation function decays exponentially with distance
with a characteristic correlation length that diverges as one
approaches the critical point. Similarly, here there is a char-
acteristic run length ξ characterizing the exponential decay of
p(x|X ) with x on the subcritical side, with ξ diverging as one
approaches the critical point.

C. Supercritical phase (X = Xc)

Above the transition, q∗(z) freezes to the value −1, and
therefore the typical length ξ remains infinite. Indeed, for
X > Xc, we expect that the condensate develops as a bump
in the tail of the PDF p(x|X ). The location of this bump is
related to the fraction of X that is contained in the condensate.
Moreover, the area under the bump is the probability that a
particular single-run displacement becomes the condensate. In
the presence of a single condensate, this area should therefore
be 1/N . Finally, as we will show, the shape of the bump is
related to the order of the phase transition. Since we expect
the condensate to contain a finite fraction of X , we need to
investigate configurations where x ∼ O(N ). Thus, it is useful
to define the scaled variable y = x/N , which is of order one
when x ∼ O(N ), and to rewrite p(x|X ) as

p(x = yN |X = zN ) = p(yN )
Z (N (z − y), N − 1)

Z (Nz, N )
. (129)

Let us first investigate the exponential part of p(x|X ).
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FIG. 11. Rate function χ (y, z) versus y, for different values of
z. The curves are obtained from the exact result in Eq. (131), for
d = 6 and α = 0. For z < zc, we observe that χ (y, z) > 0 for any
y > 0. Conversely, for z > zc, the rate function χ (y, z) vanishes for
y < zex = z − zc (in this case zex = 1).

Plugging the large-deviation form of Z (X, N ), given in
Eq. (54) and the large-x behavior of p(x), given in Eq. (32),
into Eq. (129), we find

p(x|X ) ∼ exp

[
− Nχ

(
x

N
,

X

N

)]
, (130)

where

χ (y, z) = ψd,α (z − y) + y − ψd,α (z), (131)

and ψd,α (z) is given in Eq. (59). Thus, in the regime where
x ∼ O(N ), the PDF p(x|X ) assumes a large-deviation form
with rate function χ (y, z). The rate function χ (y, z) is shown
in Fig. 11 as a function of y, for different values of z.

Using the expression of ψd,α (z) in Eq. (59), it is easy to
show that, for y > zex, one has χ (y, z) > 0, where we recall
that zex = z − zc (see Fig. 11). Thus, configurations where
x > Xex become exponentially rare for large x. On the other
hand, for y < zex, we find that χ (y, z) = 0. This means that
configurations with y < zex are not forbidden and that a bump
can arise in the tail of p(x|X ). Note, however, that where
χ (y, z) = 0 the large-deviation description fails and that we
need to carefully consider the full distribution, and not just
the exponential part.

Therefore, we focus on the region 0 < y < zex, where we
have just shown that the exponential part of the distribution of
p(x|X ) vanishes. We use the expression in Eq. (69) to approx-
imate both the numerator and the denominator of Eq. (129).
Using also the asymptotic expression of p(x) for large x, given
in Eq. (32), we obtain

p(x|X ) 
 Ad,α

Nνyν

1

(1 − y/zex)ν
, (132)

where Ad,α is given in Eq. (33) and we recall that zex = z − zc.
Going back to the original variables x = y/N and X = z/N ,
we find that in the regime where both x and X scale linearly
with N , with 0 < x < Xex,

p(x|X ) 
 Ad,α

xν

1

(1 − x/Xex)ν
. (133)

Note that this approximate expression breaks down when x →
Xex. As we will see, at x ∼ Xex the condensate bump appears
in the tail of the distribution of p(x|X ).

Let us now focus on the region where x ∼ Xex, where
we expect the bump to appear. In this region, the numerator
of Eq. (129) can be approximated using the expression in
Eq. (116). On the other hand, the denominator can be approx-
imated with the expression in Eq. (69). Using also the large-x
expansion of p(x), given in Eq. (32), we obtain, to leading
order

p(x|X ) 
 1

N
pcond(x − Xex, N ), (134)

where pcond(y, N ) is given in Eq. (16) for 2 < ν < 3 and
in Eq. (17) for ν > 3. Thus, for z > zc, a condensate bump
appears at x ∼ Xex. For 2 < ν < 3, the condensate bump
has an anomalous shape described by the function Vν (y) in
Eq. (95), with fluctuations of order O(N1/(ν−1)). For ν > 3,
the condensate has a Gaussian shape in the vicinity of its peak,
with fluctuations of order O(

√
N ). In both cases, we observe

that the bump width vanishes relative to its location, since
Xex ∼ O(N ). Moreover, the area under the bump corresponds
to the probability that the condensate appears in a particular
running phase. Since pcond(y, N ) is normalized to one, we
find that this area is 1/N , signaling the presence of a single
condensate. The results above are summarized in Fig. 4 and
are in agreement with the numerical simulations, presented in
Fig. 3. The asymptotic behaviors of pcond(y, N ) are given in
Eqs. (119) and (120).

Finally, it is also instructive to investigate the condensate
fraction mc, defined as the fraction of the total displace-
ment that is carried by the condensate. In this section we
have shown that, for ν > 2, the condensate is located at x =
Xex, with sublinear fluctuations around this value. Thus, for
N → ∞, the condensate fraction converges to

mc = X − Xc

X
(135)

or, in terms of the scaled variable z,

mc = z − zc

z
. (136)

This quantity mc is the natural order parameter of the system,
with z being the corresponding control parameter. Indeed, for
z < zc no condensate can form and thus mc = 0. On the other
hand, above the transition, the condensate fraction becomes
positive.

VI. FIXED-T ENSEMBLE

In this section, we consider a single RTP in the fixed-T
ensemble. As explained in Sec. II, according to this alternative
model, the total duration T of the RTP trajectory is fixed
and the number N of running phases is a random variable.
While the fixed-N ensemble can be easily mapped into a
discrete-time random walk, the fixed-T ensemble is a truly
continuous-time process and is often taken as the standard
model for RTPs. The goal of this section is to show that
the results of this paper can be extended also to the fixed-T
ensemble. The technique that we apply in the following is
based on a mapping of the continuous-time trajectory of the
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RTP to a discrete-time random walk in Laplace space. This
method has been used to compute several observables, e.g.,
the survival probability, of a fixed-T RTP [46,47,52,55]. For
the sake of simplicity, we will henceforth focus on the model
where the speed v0 of the particle is kept fixed. We recall that
this corresponds to taking the limit α → 0. It is easy to extend
the computations of this section to generic α > 0.

By definition, we consider the starting point to be a tum-
bling event, thus N � 1 indicates also the total number of
tumblings. Let us denote by τi the duration of the ith running
phase, i.e., the running phase after the ith tumbling. We also
recall that xi denotes the x-component displacement of the
particle during the ith running phase. Since we are assuming
that the tumblings happen with a constant rate γ , for the first
N − 1 running phases the PDF of τi is given by

P(τi ) = γ e−γ τi . (137)

However, since we are fixing the total time T , the last running
phase τN is yet to be completed and thus its probability weight
is given by

P(τN ) =
∫ ∞

τN

dt γ e−γ t = e−γ τN . (138)

Thus, the joint probability of the running times {τi} =
τ1, . . . , τN and of the number N of tumblings, fixing the total
time T , is given by

P({τi}, N, T ) =
[

N−1∏
i=1

γ e−γ τi

]
e−γ τN δ

(
N∑

i=1

τi − T

)
, (139)

where the δ function constrains the total time to be T . Note
that in the expression in Eq. (139), while {τi} and N are
random variables, the total time T is a fixed parameter of
the problem. We will use this convention for the rest of this
section. We now want to write the joint PDF of the x-direction
displacements {xi} = x1, . . . , xN , of the running times {τi} and
of the number N of tumblings, given the total fixed time T .
This probability can be written as

P({xi}, {τi}, N, T ) = P({xi}|{τi})P({τi}, N, T ), (140)

where P({xi}|{τi}) denotes the probability density of the dis-
placements {xi}, conditioned on the running times {τi}. This
joint probability factorizes as

P({xi}|{τi}) =
N∏

i=1

P(xi|τi ). (141)

This PDF P(xi|τi ) can then be computed as follows. During
the ith running phase the particle moves with constant velocity
v0. Thus, denoting by �li the displacement in the d-dimensional
space during the ith running phase, we know that the norm
li = |�li| is simply given by li = v0τi. We also know that the
direction of �li is uniformly distributed. One can show (see
Appendix B) that the distribution of the x-component x of a
d-dimensional vector �� with random direction and norm � is
given by

p(x|l ) = 1

l
fd

(
x

l

)
, (142)

where fd (z) is given in Eq. (6). Plugging this result into
Eq. (141), we obtain

P({xi}|{τi}) =
N∏

i=1

1

v0τi
fd

(
xi

v0τi

)
. (143)

Plugging the expressions for P({τi}, N, T ) and P({xi}|{τi}),
given in Eqs. (139) and (143), respectively, into Eq. (140),
we find that

P({xi}, {τi}, N, T ) = 1

γ

[
N∏

i=1

γ e−γ τi
1

v0τi
fd

(
xi

v0τi

)]

× δ

(
N∑

i=1

τi − T

)
. (144)

Integrating over the variables {τi} we finally obtain the joint
PDF of the displacements {xi} and of the number N of tum-
blings, given the total time T ,

P({xi}, N, T ) = 1

γ

∫ ∞

0
dτ1 · · ·

∫ ∞

0
dτN

×
[

N∏
i=1

γ e−γ τi
1

v0τi
fd

(
xi

v0τi

)]
δ

(
N∑

i=1

τi− T

)
.

(145)

The PDF Z (X, T ) of the final position X at fixed time T
can then be written as

Z (X, T ) =
∞∑

N=1

∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxN P({xi}, N, T )

× δ

(
N∑

i=1

xi − X

)
, (146)

where the δ function constraints the final position to be X .
Note that in Eq. (146) we integrate out the displacement
variables {xi}, and we sum over the total number N of tum-
blings in order to obtain the marginal PDF of X . Finally,
plugging the expression for P({xi}, N, T ), given in Eq. (145),
into Eq. (146), we obtain

Z (X, T ) = 1

γ

∞∑
N=1

N∏
i=1

∫ ∞

−∞
dxi

∫ ∞

0
dτi γ e−γ τi

1

v0τi
fd

(
xi

v0τi

)

× δ

(
N∑

i=1

τi − T

)
δ

(
N∑

i=1

xi − X

)
. (147)

It is useful to rewrite the δ functions in Eq. (147) using

δ(X ) = 1

2π i

∫
	

dq e−qX (148)

and

δ(T ) = 1

2π i

∫
	′

ds e−sT , (149)
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where 	 and 	′ are imaginary-axis Bromwich contours in the
complex q and s plane, respectively. This yields

Z (X, T ) = 1

γ

∞∑
N=1

N∏
i=1

∫ ∞

−∞
dxi

∫ ∞

0
dτi γ e−γ τi

1

v0τi
fd

(
xi

v0τi

)

× 1

2π i

∫
	

dq e−q
∑N

i=1 xi+qX 1

2π i

∫
	′

ds e−s
∑N

i=1 τi+sT .

(150)

The variables {xi} and {τi} are now fully decoupled, and the
expression above can be rewritten as

Z (X, T ) = 1

γ

1

2π i

∫
	

dq eqX 1

2π i

∫
	′

ds esT
∞∑

N=1

[ p̂(q, s)]N

= 1

γ

1

2π i

∫
	

dq eqX 1

2π i

∫
	′

ds esT p̂(q, s)

1 − p̂(q, s)
,

(151)

where

p̂(q, s) =
∫ ∞

−∞
dx e−qx

∫ ∞

0
dτ e−sτ γ e−γ τ 1

v0τ
fd

(
x

v0τ

)
.

(152)

Plugging the expression of fd (z), given in Eq. (6), into
Eq. (152), we obtain, after a few steps of algebra,

p̂(q, s) = γ

γ + s
2F1

(
1

2
, 1,

d

2
,

[
v0 q

γ + s

]2)
, (153)

where 2F1(a, b, c, z) is the ordinary hypergeometric function.
This Fourier-Laplace transform of the effective jump distribu-
tion was also computed in Ref. [36], but explicit expressions
were given only for d = 1, 2, and 3. It is easy to check (using
explicit expressions for the hypergeometric function) that our
exact expression in Eq. (153), valid for all d , coincides with
those of Ref. [36] for d = 1, 2, and 3. Plugging this result for
p̂(q, s) into Eq. (151), we obtain

Z (X, T ) = 1

2π i

∫
	

dq eqX

×
∫

	′
ds esT 2F1

(
1
2 , 1, d

2 ,
[

v0 q
γ+s

]2)
γ + s − γ 2F1

(
1
2 , 1, d

2 ,
[

v0 q
γ+s

]2) .
(154)

It is useful to perform the change of variable q → q̃ =
−v0q/(γ + s), which yields

Z (X, T ) = 1

v0

1

2π i

∫
	′

dq̃ e−γ Xq̃/v0
2F1

(
1

2
, 1,

d

2
, q̃2

)
1

2π i

×
∫

	

ds es(T −Xq̃/v0 ) (γ + s)

γ + s − γ 2F1
(

1
2 , 1, d

2 , q̃2
) .

(155)

We remark that up to now no approximation has been made
and that the expression for Z (X, T ) in Eq. (155) is exact for
any X and T . For simplicity, we now set γ = v0 = 1, and we

obtain

Z (X, T ) = 1

2π i

∫
	′

dq̃ e−Xq̃
2F1

(
1

2
, 1,

d

2
, q̃2

)
1

2π i

×
∫

	

ds es(T −Xq̃) (1 + s)

1 + s − 2F1
(

1
2 , 1, d

2 , q̃2
) .
(156)

A. Typical regime

We now focus on the late-time limit T → ∞. To investi-
gate this limit, we expand for small s on the right-hand side of
Eq. (156), and we obtain

Z (X, T ) 
 1

2π i

∫
	′

dq e−Xq
2F1

(
1

2
, 1,

d

2
, q2

)
1

2π i

×
∫

	

ds es(T −Xq) 1

s − [
2F1

(
1
2 , 1, d

2 , q2
)− 1

] .
(157)

Now the integral over s can be easily computed, and one
obtains

Z (X, T ) 
 1

2π i

∫
	′

dq 2F1

(
1

2
, 1,

d

2
, q2

)

× exp

{
−Xq 2F1

(
1

2
, 1,

d

2
, q2

)

− T

[
1 − 2F1

(
1

2
, 1,

d

2
, q2

)]}
. (158)

In the typical regime the variable X scales for large T as
√

T .
It is useful to define the scaled variable y = X/

√
T and to

perform the change of variable q → q/
√

T , yielding

Z (X = y
√

T , T ) 
 1

2π i

1√
T

∫
	′

dq 2F1

(
1

2
, 1,

d

2
,

q2

T

)

× exp

{
−yq 2F1

(
1

2
, 1,

d

2
,

q2

T

)

−T

[
1 − 2F1

(
1

2
, 1,

d

2
,

q2

T

)]}
. (159)

Expanding to leading order for large T , we find

Z (X = y
√

T , T ) 
 1

2π i

1√
T

∫
	′

dq e−qy+q2/d .

Performing the integral over q, we finally find that in the
typical regime where X ∼ √

T and T � 1,

Z (X, T ) 
 1√
2πDT

e−X 2/(4DT ), (160)

where

D = 1

d
. (161)

Thus, in the large-T limit, the typical shape of the PDF
Z (X, T ) of X is Gaussian. The typical regime is therefore
indistinguishable from a passive Brownian motion with dif-
fusion constant D and no sign of the activity of the RTP is
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present at this scale. Note that this effective diffusion coef-
ficient D is equal to the one that we have computed for the
fixed-N ensemble [see Eq. (12)]. To observe any signs of the
active nature of the process one needs to study the shape of
the position distribution Z (X, T ) in the large-deviation regime
where X scales linearly with T .

B. Large-deviation regime

We now focus on the large-deviation regime, where X ∼
T . Some of the results of this section have already been
derived in [53], where the authors compute the rate function
of the position of a discrete-time persistent random walk and
then take the continuous-time limit to study the RTP. Here we
first present a different and more general technique to compute
the rate function for an RTP in d dimensions. Note that our
technique can be easily generalized to more complicated RTP
models, e.g., with random velocities. Then we interpret these
results in light of our findings, presented in the previous sec-
tions, and we characterize the nature of the phase transition.

It is useful to introduce the scaled variable z = X/T . Note
that, since |X | cannot exceed the value T , corresponding to

a straight x-direction run with no tumbling, we have |z| � 1.
From Eq. (158), we obtain

Z (X = zT, T ) 
 1

2π i

∫
	

dq 2F1

(
1

2
, 1,

d

2
, q2

)

× exp [−T Sd (q, z)], (162)

where

Sd (q, z) = 1 − (1 + qz) 2F1

(
1

2
, 1,

d

2
, q2

)
. (163)

First, we try to compute the integral in Eq. (162) by saddle-
point approximation. Note that the function 2F1( 1

2 , 1, d
2 , q2)

has two branch cuts in the complex-q plane, for real q and
|q| > 1. Thus, we need to solve the following saddle-point
equation:

z = gd (q) (164)

for |q| < 1, where

gd (q) = − (2q/d ) 2F1(3/2, 2, 1 + d/2, q2)

(2q2/d ) 2F1(3/2, 2, 1 + d/2, q2) + 2F1(1/2, 1, d/2, q2)
. (165)

For any d , gd (q) is a decreasing odd function of q. We also notice that its maximum value is reached at q = −1. To compute this
value gd (−1), we use the following asymptotic expansion for the ordinary hypergeometric function [87]:

2F1(α, β, γ , q) 


⎧⎪⎪⎨
⎪⎪⎩

	(γ )	(γ−α−β )
	(γ−α)	(γ−β ) for γ > α + β

	(α+β )
	(α)	(β ) log

(
1

1−q

)
for γ = α + β

	(γ )	(α+β−γ )
	(α)	(β ) (1 − q)γ−α−β for γ < α + β

, (166)

and we obtain

gd (−1) =
{

1 for d � 5
2/(d − 3) < 1 for d > 5 . (167)

Thus, recalling that |z| � 1 and focusing on the case z > 0,
for d � 5 the condition in Eq. (164) is always satisfied for
some value q∗(z) > −1. Thus, for d < 5 we find that

Z (X, T ) ∼ exp

[
− T φd

(
z = X

T

)]
, (168)

where

φd (z) = Sd (q∗(z), z); (169)

Sd (q, z) is given in Eq. (163) and q∗(z) is the unique solution
of Eq. (164). On the other hand, for d > 5, the saddle-point
equation (164) admits a solution only up to some critical
value z = zc = 2/(d − 3), where the condensation transition
occurs. For z > zc, Eq. (164) has no real solution, and the
maximum of Sd (q, z) is reached at q = −1, independently
of z and φd (z) = Sd (−1, z). Thus, for d > 5 we find that the
large-deviation form in Eq. (168) is still valid, with

φd (z) =
{

Sd (q∗(z), z) for z < zc

− 1
d−3 + d−2

d−3 z for z > zc
, (170)

where Sd (q, z) is given in Eq. (163) and q∗(z) is the unique
solution of Eq. (164). Notably, for d > 5, the rate function
φd (z) is nonanalytic at z = zc. This indicates the presence of
the condensation phase transition. Comparing this result with
the one obtained for the fixed-N ensemble, we find that the
criterion for condensation is the same for the two models.
Indeed, recalling that we are considering α = 0, here we ob-
serve condensation for ν = (d − 1)/2 > 2, exactly as for the
fixed-N case.

In the special cases d = 1, 2, 4, 6, the expression of φd (z)
becomes simple and is given by

φ1(z) = 1 − √
1 − z2

2
, (171)

φ2(z) = 1 −
√

1 − z2 , (172)

φ4(z) = z2, (173)

φ6(z) =
{ 3

2 z2 − 9
16 z4 for |z| < zc

4
3 z − 1

3 for |z| > zc
. (174)

These results for φd (z) match with the ones derived in
Ref. [53]. The result in Eq. (172), valid for d = 2, had al-
ready been obtained in [25] solving the Fokker-Plank equation
associated to the system. The rate function of the position
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distribution of a fixed-T RTP has also been derived in dimen-
sion d = 1 in the presence of a constant drift [89].

Note that here we have provided explicit results for the
rate function for a specific velocity distribution, namely, when
the direction is chosen isotropically and the speed v = v0 is
a constant. In fact, this rate function, when it exists, can be
derived for generic velocity distribution P(�v), as shown in
Appendix E.

C. Order of the transition

We now investigate, for d > 5, the order of the phase tran-
sition. Just below the transition, i.e., in the limit z → zc, we
expect the solution q∗(z) of the saddle-point equation (164)
to be close to −1. Thus, we expand Sd (q, z) in Eq. (163)
with q = −1 + s for small s. In the case 5 < d < 7, using the
asymptotic behavior of the hypergeometric function close to
unit value [88], we find

Sd (q = −1 + s, z)


 1 + d − 2

d − 3
(1 − z) + d − 2

d − 5

(
2

d − 3
− z

)
s

− 1√
π

2(d−3)/2	

(
d

2

)
	

(
−d − 3

2

)
(1 − z)s(d−3)/2.

(175)

Minimizing this expression with respect to s and then expand-
ing for z → zc = 2/(d − 3), we obtain

φd (z) 
 − 1

d − 3
+ d − 2

d − 3
z + cd (zc − z)(d−3)/(d−5), (176)

where cd is a d-dependent constant. Comparing this result
with the expression for φd (z) in the case z > zc in Eq. (170),
we conclude that, in this case, the phase transition is of order

n =
⌈

d − 3

d − 5

⌉
. (177)

On the other hand, in the case d > 7, the function Sd (q, z)
can be expanded as

Sd (q = −1 + s, z) 
 1 + d − 2

d − 3
(1 − z)

+ d − 2

d − 5

(
2

d − 3
− z

)
s

+ (d − 2)[3z(d − 3) − d − 5]

(d − 7)(d − 5)(d − 3)
s2.

(178)

Minimizing this expression with respect to s and then expand-
ing for z → zc, we obtain

φd (z) 
 − 1

d − 3
+ d − 2

d − 3
z

+ (d − 7)(d − 3)(d − 2)

4(d − 5)(d − 1)
(z − zc)2. (179)

Thus, in this case the order of the transition is n = 2. Com-
paring these results with those of Sec. IV, we notice that the
order of the phase transition at given d is the same for the
fixed-N and fixed-T ensembles. In Sec. V we have shown that

the order of the phase transition in the fixed-T ensemble is
related to the nature of the condensate itself. In particular, for
5 < d < 7, we expect the condensate to have an anomalous
shape, with anomalous fluctuations of order T 2/(d−3). On the
other hand, for d > 7 the transition becomes of order two and,
in analogy with what we observe for the fixed-N ensemble,
we expect the condensate to have a Gaussian shape, with
fluctuations of order

√
T .

D. Asymptotics of φd (z)

Here we investigate the asymptotic behavior of φd (z). Let
us first consider, for generic d , the limit z → 0. In a small
region around z = 0 the rate function φd (z) is always given
by

φd (z) = Sd (q∗(z), z), (180)

where Sd (q, z) is given in Eq. (163) and q∗(z) is the unique
solution of Eq. (164). It is easy to check that for small z, q∗(z)
is also small. Thus, expanding the right-hand side of Eq. (164)
for small q, we obtain

z 
 − 2

d
q. (181)

Therefore, we find that, at leading order, q∗(z) = −(d/2)z.
Plugging this value into the expression of S(q, z), given in
Eq. (163), and expanding for small z, we find that

φd (z) 
 d

4
z2. (182)

Plugging this expansion into the expression for Z (X, T ) in
Eq. (168), we find that, for small z = X/T ,

Z (X, T ) ∼ exp

(
− d

4T
X 2

)
. (183)

Thus, the small-z behavior of the rate function φd (z) matches
smoothly to the typical Gaussian behavior [see Eq. (160)].

Next, we consider the limit z → 1. For d > 5, we already
know from Eq. (170) that, in the limit z → 1, one has

φd (z) = 1 + d − 2

d − 3
(z − 1). (184)

On the other hand, for d < 5, the rate function φd (z) is given
in Eq. (169). Thus, we have to solve Eq. (164) for z → 1.
From Eq. (167) we know that gd (q = −1) = 1, for d < 5.
Thus, we expect the solution q∗(z) of Eq. (164) to be of the
type q∗(z) = −1 + s with s small. It is useful to consider the
cases 1 < d < 3 and 3 < d < 5 separately.

In the case 1 < d < 3, we plug q∗(z) = −1 + s in the con-
dition in Eq. (164). Expanding for small s [using Eq. (166)],
we obtain

z 
 1 − d − 1

3 − d
s, (185)

which yields

q∗(z) 
 −1 + 3 − d

d − 1
(1 − z). (186)
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Plugging this expression for q∗(z) in Eq. (169) and expanding for z → 1 from below, we obtain

φd (z) 
 1 − 1√
π

	

(
d

2

)
	

(
3 − d

2

)
2

d − 1

(
2

3 − d

d − 1

)(d−3)/2

(1 − z)(d−1)/2. (187)

We now consider the case 3 < d < 5. Plugging q∗(z) = −1 + s into Eq. (164) and expanding for small s, we find

z 
 1 − √
π

d (d − 2)

4(d − 3)

1

	
(
1 + d

2

)
	
(

5−d
2

)2(5−d )/2s(5−d )/2,

(188)

which implies

1 + q∗(z) ∼ (1 − z)2/(5−d ). (189)

Plugging this value in Eq. (169) and expanding for z → 1, we obtain

φd (z) 
 1 − d − 2

d − 3
(1 − z). (190)

To summarize, we have shown that, in the limit z → 1,

φd (z) =

⎧⎪⎪⎨
⎪⎪⎩

1 − c̃d (1 − z)(d−1)/2 + o[(1 − z)(d−1)/2] for 1 < d < 3

1 − d−2
d−3 (1 − z) + o[(1 − z)] for 3 < d < 5

1 − d−2
d−3 (1 − z) for d > 5

, (191)

where c̃d is a d-dependent constant. Thus, for d < 3, φd (z)
approaches the limit value 1, for z → 1, with an exponent
(d − 1)/2 which depends continuously on d . For 3 < d < 5,
the rate function φd (z) becomes locally linear for z → 1 and
for d > 5 one has a full region zc < z < 1 where φd (z) is
exactly linear.

VII. NUMERICAL SIMULATIONS

In this section we describe the numerical techniques that
we have used to verify our theoretical results for the rate
function ψd,α (z), which is defined as

ψd,α (z) = − lim
N→∞

log [Z (X = zN, N )]

N
, (192)

where Z (X, N ) is the distribution of the total x-component
displacement X after N runs. Let us first recall that, in order
to probe the typical Gaussian regime X ∼ √

N , one can use
direct sampling. Indeed, a single x-direction displacement x
can be written as

x = v τ u , (193)

where v > 0 is the speed of the RTP, with distribution W (v),
τ > 0 is the running time, exponentially distributed with fixed
rate γ = 1 and −1 < u < 1 is the x-component of the d-
dimensional unit vector that represents the direction of the
RTP. Since this direction is uniformly distributed in space,
one can show that u is distributed according to fd (u), given
in Eq. (6) [46,47]. Thus, for each of the N running phases,
one can generate, by standard sampling techniques, three
random numbers vi, τi, and ui, and then one can obtain the
x-component displacement xi by multiplying these variables.
Finally, one can obtain X using the definition

X =
N∑

i=1

xi. (194)

This simple and direct procedure is useful to probe the typical
regime X ∼ √

N . However, it is unfeasible to adopt such a
strategy to compute numerically the large-deviation tails of
Z (X, N ). For instance, extracting 106 samples, one is only
able to access events with probabilities of the order 10−6 or
higher. How can one simulate events that happen with very
small probability, say, of order 10−100?

In order to compute numerically the large-deviation tails
of the PDF Z (X, N ) we adopt a technique based on a con-
strained Markov Chain Monte Carlo (MCMC) algorithm,
similar to the one proposed in [42,90,91]. The configuration
C of our system is specified by the set of numbers C =
{(v1, τ1, u1), . . . , (vN , τN , uN )}, and we are interested in the
rate function of

X (C) =
N∑

i=1

viτiui (195)

in the large-deviation regime where X (C) ∼ O(N ). With this
goal in mind, we implement a MCMC dynamics in the space
of RTP configurations. Let us remark that the MCMC dy-
namics is defined in configuration space and has nothing to
do with the real RTP dynamics. Since we are interested in
configurations that correspond to a very large X (C), we im-
pose the constraint X (C) > X ∗, where X ∗ is some fixed O(N )
parameter. We choose an initial condition C0 that satisfies the
constraint, and then we evolve the system using the Metropo-
lis rule. In other words, assuming that at a given step the
current configuration is C = {(v1, τ1, u1), . . . , (vN , τN , uN )},
we choose one of the running phases i at random and we
propose the move (vi, τi, ui ) → (vi

new, τi
new, unew

i ), where

vi
new = vi + δv, (196)

τi
new = τi + δτ, ui

new = ui + δu, (197)
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(a) (b)

FIG. 12. (a) First derivative of the rate function ψd,α (z) versus z, for d = 2 and α = 0. The continuous blue line corresponds to the exact
result in Eq. (56), valid in the limit N → ∞. For this choice of the parameters d and α, no transition occurs. (b) First derivative of the rate
function ψd,α (z) versus z, for d = 6 and α = 0. The continuous blue line corresponds to the exact result in Eq. (59). The vertical dashed line
signals the critical point zc at which the phase transition occurs. In both panels, the symbols are the results of numerical simulations obtained
at finite N , as described in Sec. VII.

where δv, δτ , and δu are drawn from a uniform distribution.
The new configuration is then simply

Cnew = {
(v1, τ1, u1), . . . , (vi−1, τi−1, ui−1),(
vi

new, τi
new, unew

i

)
, (vi+1, τi+1, ui+1), . . . ,

(vN , τN , uN )
}
. (198)

If Cnew does not satisfy the constraint X (Cnew) > X ∗, then the
move is immediately rejected. If instead X (Cnew) > X ∗, the
move is accepted with probability

pacc = min

[
1,

e−τ new
i W

(
vnew

i

)
fd
(
unew

i

)
e−τi W (vi ) fd (ui )

]
(199)

and rejected otherwise. This particular choice of pacc, which
corresponds to the Metropolis-Hastings algorithm, guarantees
that the RTP configurations are sampled with the right statis-
tical weight. If the move is accepted, we update the current
position C → Cnew. Initially, we let the system evolve for 107

sweeps (by sweep we denote N move proposals), in order
to forget the initial condition. We measure X (C) every 102

sweeps, to avoid sample correlations.
With this procedure, we can build an histogram which

approximates the PDF P(X, N |X > X ∗) of X , conditioned on
X > X ∗. This quantity can be written as, for X > X ∗,

P(X, N |X > X ∗) = P(X, N )

P(X > X ∗)
. (200)

Taking the natural logarithm of both sides and using the nota-
tion Z (X, N ) = P(X, N ), we find

log [P(X, N |X > X ∗)] = log [Z (X, N )] − log [P(X > X ∗)].

(201)

Note that the last term is independent of X . Using the defini-
tion of ψd,α (z), given in Eq. (192), we find, for large N ,

log [P(X, N |X > X ∗)] = −Nψd,α

(
X

N

)
− log [P(X > X ∗)].

(202)

Finally, taking a derivative with respect to X on both sides, we
get

ψ ′
d,α

(
X

N

)
= − d

dX
log [P(X, N |X > X ∗)], (203)

where ψ ′
d,α (z) = d

dz ψd,α (z). Thus, we are able to compute
numerically the first derivative of the rate function. Then one
can obtain ψd,α (z) via numerical integration. Note, however,
that, with the method described above, one can probe only a
small region (X ∗, X ∗ + �), where � > 0 is a small number
compared to X ∗. Therefore, one has to use several values of
X ∗ in order to sample the large-deviation regime. In our case,
we used 20 different values of X ∗. Our numerical estimate
of d

dz ψd,α (z) is shown in Fig. 12 for α = 0, d = 2, 6 and
for different values of N . In the case N = 104, the numerical
curves are in excellent agreement with the theory, both in the
fluid and in the condensed phases. Integrating d

dz ψd,α (z) nu-
merically, we also compute ψd,α (z), which is shown in Fig. 9
and is in excellent agreement with the theory. Similarly, one
can also compute the PDF Z (X, N ), which is shown, for d = 2
and α = 0, in Fig. 13 with precision smaller than 10−100.

FIG. 13. Numerical curve of the PDF Z (X, N ) as a function of
X , for d = 2, α = 0, and N = 1000, obtained with the constrained
Markov Chain Monte Carlo algorithm described in the text.
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FIG. 14. (a) First derivative of the rate function φd (z) versus z, for d = 2. The continuous blue line corresponds to the exact result in
Eq. (172), valid in the limit T → ∞. In this case, no transition occurs. (b) First derivative of the rate function φd (z) versus z, for d = 6.
The continuous blue line corresponds to the exact result in Eq. (174). The vertical dashed line signals the critical point zc at which the phase
transition occurs. For z > zc, the rate function φd (z) becomes exactly linear in z. In both panels, the symbols are the results of numerical
simulations obtained at finite T , as described in Sec. VII.

In the case of the fixed-T ensemble, a similar algorithm
can be applied. The only complication is that the number of
running phases is not fixed anymore. Therefore, it might hap-
pen that, proposing a move, the total simulation time becomes
shorter than T . In such a case, we simply add a new running
phase at the end of the trajectory. In this way, one obtains the
first derivative of φd (z), which is shown in Fig. 14 for d = 2, 6
and for different values of T . Note that for the fixed-T ensem-
ble one has z < 1, since the maximal distance that one can
travel in a time T is v0T . For this reason, sampling the region
close to z = 1 becomes increasingly complicated. Neverthe-
less, in Fig. 14, we observe a good agreement between the
numerics and the theoretical curve.

With the technique described above, one can also sample
the marginal probability distribution p(x|X ) of a single-run
displacement. This can be achieved by using the MCMC al-
gorithm described above, keeping X ∗ fixed. During the Monte
Carlo dynamics, one has access to the full configuration C of
the RTP. Thus, one can sample the single-run displacement x,
for instance, choosing x = x1. To be precise, since X has to
satisfy the constraint X > X ∗ (and not X = X ∗), in this way
one would compute the marginal probability p(x|X > X ∗),
conditioned on the event X > X ∗. However, since in practice
the system is always in a small region (X ∗, X ∗ + �), one
has that p(x|X > X ∗) is a good approximation of p(x|X ∗)
(see Fig. 3).

Finally, let us mention that a similar method, based on
an exponentially biased MCMC algorithm, has been proven
useful to simulate large deviations of the RTP model [49,54].
However, to the best of our knowledge, such techniques can-
not be used to simulate the RTP model in the condensed phase.

VIII. CONCLUSIONS

In this paper, we have investigated the late-time position of
a single RTP in d dimensions, with velocity distribution W (v)
and tumbling rate γ . First, we have focused on the fixed-N
ensemble, i.e., we have considered the number N of running
phases to be fixed. We have shown that due to the isotropy of
the process, it is sufficient to study the distribution Z (X, N )
of the displacement of the particle in the x-component after N

running phases. We have observed that, even if in the typical
regime where X ∼ √

N the PDF Z (X, N ) has a Gaussian
shape, its large-deviation tails still carry the signatures of the
active nature of the process. Moreover, we have shown that
for several choices of d and W (v), the system undergoes a dy-
namical condensation transition in the large-deviation regime.
This transition is signaled by a singularity of the rate function
of Z (X, N ). Below the transition, all running phases contribute
to the total displacement X by roughly the same amount. On
the other hand, above some critical value X = Xc, a conden-
sate emerges in the form of a single run which dominates the
RTP trajectory. Using a grand-canonical argument, we have
identified a precise criterion for condensation.

In the special case W (v) = α(1 − v)α−1, we have exactly
computed the rate function ψd,α (z), where z = X/N . We
have shown that condensation happens only if ν = (d + 2α −
1)/2 > 2. In particular, for ν > 3, we have observed that
ψd,α (z) has a second-order singularity at some critical value
zc, which we have computed exactly, while for 2 < ν < 3 the
order of the transition depends continuously on ν. Moreover,
we have investigated the precise nature of the condensate,
studying the marginal probability of a single-run displace-
ment. For ν > 3, we have observed that the condensate size
has Gaussian fluctuations of order

√
N . On the other hand,

for 2 < ν < 3, we have shown that the condensate has an
anomalous shape, with large fluctuations of order N1/(ν−1).
We have also extended our results to the fixed-T ensemble,
where the total duration T of the trajectory is fixed. In the
case of fixed velocity (α = 0), we have computed the rate
function of the total displacement X of the particle for ar-
bitrary d . We have observed that an analogous condensation
transition occurs also for this model above some critical value
Xc of X . Moreover, we have employed a constrained Markov
chain Monte Carlo technique to verify our large-deviation
result, probing events with probability smaller than 10−100.
Our numerical simulations are in excellent agreement with our
theoretical results.

In this paper, we have shown that condensation transitions
are a general feature of the RTP model. In future works, it
would be interesting to investigate other RTP models that
satisfy the condensation criterion. We have shown that a
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second-order transition is linked to a normal condensate,
while a higher-order transition corresponds to an anomalous
condensate. Therefore, it would be relevant to investigate what
happens in models that display a first-order condensation tran-
sition; see, e.g., [42].

Another interesting open problem is related to the criterion
for condensation. The argument we have presented is based
on a grand canonical description of the system, which fails if
the single-run distribution p(x) decays slower than any expo-
nential. In this case, we have conjectured that a condensation
transition will occur if p(x) decays faster than 1/|x|3 for large
|x|. It would be interesting to prove this conjecture.

Finally, it would be also interesting to study what is the typ-
ical shape of the RTP trajectory in the large-deviation regime.
Indeed, even if the PDF P(�r, N ) depends only on r = |�r|, one
expects a single realization of the RTP trajectory to be highly
nonisotropic [92]. It would be relevant to investigate how the
shape of the trajectory changes above and below the phase
transition. For instance, this could be done by investigating the
properties of the convex hull of the RTP trajectories, which
has been studied in the case d = 2 and W (v) = δ(v − v0)
[49], where, however, no transition occurs. One would naively
expect that the anisotropy increases in the condensed phase,
where a single straight run dominates the trajectory.
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APPENDIX A: RELATION BETWEEN P(�R, N) AND Z(X, N)

In this Appendix, we derive the relation in Eq. (1) be-
tween the PDF P( �R, N ) of the position �R of the RTP after
N steps and the distribution Z (X, N ) of the x-component X
of �R. Moreover, we show that Z (X, N ) and P( �R, N ) share the
same rate function ψ (z) in the large-deviation regime where
X and R = | �R| scale linearly with N . As a consequence of the
isotropy of the process, the PDF P( �R, N ) depends only on the
magnitude R of �R and not on its orientation. In other words,
the orientation of �R is distributed uniformly at random. Given
a vector �R with fixed norm R and random orientation, it is
possible to show that the PDF of the x-component X of �R is
(see Appendix A of [47])

P(X |R) = 1

R
fd

(
X

R

)
, (A1)

where the function fd (z) can be computed for any d and is
given in Eq. (6). Thus, the PDF of X can be written as

Z (X, N ) =
∫
Rd

d �R 1

R
fd

(
X

R

)
P(R, N ), (A2)

where we integrate over all possible values of �R, weighted
by the PDF P( �R, N ) = P(R, N ). This is precisely the relation
given in Eq. (1).

We now want to show that in the large-deviation regime
where |X | ∼ O(N ) and R ∼ O(N ), Z (X, N ) and P( �R, N )
share the same rate function ψ (z). We can perform the integral

in Eq. (A2) in the radial coordinate, and we obtain

Z (X, N ) = 2πd/2

	(d/2)

∫ ∞

0
dR Rd−2 fd

(
X

R

)
P(R, N ). (A3)

Using the expression of fd (z), given in Eq. (6), we obtain

Z (X, N ) = 2π (d−1)/2

	[(d − 1)/2]

∫ ∞

|X |
dR Rd−2

×
(

1 − X 2

R2

)(d−3)/2

P(R, N ), (A4)

and making the change of variable R → u = R/X , we obtain

Z (X, N ) = 2π (d−1)/2

	[(d − 1)/2]
|X |d−1

×
∫ ∞

1
du ud−2(1 − u−2)(d−3)/2P(R = u|X |, N ).

(A5)

Let us now focus on the regime where X ∼ O(N ). Plugging
the scaled variable z = X/N in Eq. (A5), we find

Z (X = zN, N )

= 2π (d−1)/2

	[(d − 1)/2]
|zN |d−1

×
∫ ∞

1
du ud−2(1 − u−2)(d−3)/2P(R = u|z|N, N ).

(A6)

In the large-deviation regime where R ∼ O(N ), we expect
P(R, N ) ∼ exp[−Nψ (R/N )], where ψ (z) is the rate function
associated to P(R, N ). Plugging this expression in Eq. (A6),
we find

Z (X = zN, N ) ∼
∫ ∞

1
du ud−2(1 − u−2)(d−3)/2e−Nψ (u|z|).

(A7)

In the limit of large N , this integral is dominated by values
close to the lower limit u = 1. Thus, we obtain

Z (X = zN, N ) ∼ e−Nψ (|z|), (A8)

which can be written as

Z (X, N ) ∼ e−Nψ (|X |/N ). (A9)

Therefore, Z (X, N ) and P( �R, N ) have the same rate function
ψ (z).

APPENDIX B: DISTRIBUTION OF THE x-DIRECTION
DISPLACEMENTS

In this Appendix, we want to compute the distribution
of the x-direction displacements x1, . . . , xN of the RTP as-
sociated to the N running phases. For 1 � i � N , xi is the
x-component of the d-dimensional vector ��i. These vectors ��i

are i.i.d. random variables, their direction is drawn uniformly
at random, and their magnitude is given by �i = vi τi, where
vi > 0 is drawn from the speed distribution W (v) and τi is an
exponential random variable with rate γ . Thus, the distribu-
tion of the magnitude � of one of these displacement vectors
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is

P(�) =
∫ ∞

0
dτ

∫ ∞

0
dv W (v) γ e−γ τ δ(� − vτ ). (B1)

Performing the integral over τ , we get

P(�) =
∫ ∞

0
dv

1

v
W (v) γ e−γ (�/v). (B2)

One can then show that the distribution of the x-component
of a d-dimensional vector �l with fixed norm and uniformly
distributed direction is given by

p(x|l ) = 1

l
fd

(
x

l

)
, (B3)

where

fd (z) = 	(d/2)√
π	[(d − 1)/2]

(1 − z2)(d−3)/2θ (1 − |z|); (B4)

	(y) is the Gamma function and θ (y) is the Heaviside theta
function. For a derivation of this result in Eq. (B4) see
Appendix A of [47]. Thus, the distribution p(x) of the dis-
placement x of the particle during a single running phase is
given by, using Eqs. (B2) and (B3),

p(x) =
∫ ∞

0
dv

1

v
W (v)

∫ ∞

0
d�

1

�
fd

(
x

�

)
γ e−γ (�/v). (B5)

Note that, since fd (z) is symmetric around z = 0, the PDF
p(x) is also symmetric around x = 0.

APPENDIX C: LARGE-|x| BEHAVIOR OF p(x)

The result in Eq. (B5) is valid for any distribution W (v).
We now consider the special case where

W (v) = α

v0

(
1 − v

v0

)α−1

θ (v) θ (v0 − v). (C1)

In particular, we are interested in computing the large-x
behavior of p(x). Using the expression for W (v) given in
Eq. (C1), we find

p(x) = 	(d/2)√
π	[(d − 1)/2]

α

v0
γ

∫ ∞

x
d�

1

�

(
1 − x2

�2

)(d−3)/2

×
∫ v0

0
dv

1

v

(
1 − v

v0

)α−1

e−γ �/v. (C2)

Performing the changes of variable � → u = x/� and v →
w = v/v0, we find

p(x) = 	(d/2)√
π	[(d − 1)/2]

α

v0
γ

∫ 1

0
du

1

u
(1 − u2)(d−3)/2

×
∫ 1

0
dw

1

w
(1 − w)α−1 e−γ x/(v0wu). (C3)

It is useful to perform the changes of variable u → t = 1 − u2

and w → s = 1 − w, and we obtain

p(x) = 1

2

	(d/2)√
π	[(d − 1)/2]

α

v0
γ

∫ 1

0
dt

1

1 − t
t (d−3)/2

×
∫ 1

0
ds

1

1 − s
sα−1 exp

[
− γ

v0

x

(1 − s)
√

1 − t

]
.

(C4)

For x � 1, the integral is dominated by small values of s and
t , thus, expanding for small s and t , we find

p(x) 
 1

2

	(d/2)√
π	[(d − 1)/2]

α

v0
γ e−γ x/v0

×
∫ 1

0
dt e−γ xt/(2v0 )t (d−3)/2

∫ 1

0
ds e−γ xs/v0 sα−1.

(C5)

Computing the integrals, we find

p(x) 
 	(d/2)√
π	[(d − 1)/2]

α

v0
γ e−γ x/v0 2(d−3)/2

×
(

v0

γ x

)(d+2α−1)/2

	

(
d − 1

2

)
	(α) . (C6)

Finally, using the symmetry of p(x), we find that for |x| � 1,

p(x) 
 Ad,α

γ

v0
e−γ |x|/v0

(
v0

γ |x|
)(d+2α−1)/2

, (C7)

where

Ad,α = 	(d/2)α	(α)√
π

2(d−3)/2. (C8)

APPENDIX D: RANGE OF VALIDITY OF
THE CENTRAL LIMIT THEOREM

Consider N i.i.d. random variables {x1, x2, . . . , xN } each
drawn from a normalised distribution p(x). The distribution
of their sum X can be expressed as

Z (X, N ) =
∫ ∞

−∞
dx1 · · ·

∫ ∞

−∞
dxN

[
N∏

i=1

p(xi )

]
δ

(
X −

N∑
i=1

xi

)
.

(D1)

Taking a Fourier transform factorizes the N-fold integrals∫ ∞

−∞
Z (X, N ) ei k X dX = [p̂(k)]N , (D2)

where

p̂(k) =
∫ ∞

−∞
p(x) ei k x dx (D3)

is the Fourier transform of p(x). Finally, inverting the Fourier
transform in Eq. (D2) one gets the integral representation

Z (X, N ) =
∫ ∞

−∞

dk

2π
e−i k X [ p̂(k)]N . (D4)

Note that this expression is valid for all X and all N and
arbitrary p(x). Motivated by the RTP problem, we focus on
p(x)′s that are symmetric with a finite second moment σ 2. In
this case, the Central Limit Theorem (CLT) is valid for large N
which predicts that in the region up to |X |√N , the distribution
Z (X, N ) converges to a Gaussian shape for large N :

Z (X, N ) 
 1√
2π σ 2 N

e−X 2/(2 σ 2 N ). (D5)

One may ask whether this Gaussian shape remains valid over
a larger range, outside the region X ∼ √

N of the validity of
the CLT.
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To answer this question, we start from the integral repre-
sentation of Z (X, N ) in Eq. (D4), which can be rewritten as

Z (X, N ) =
∫ ∞

−∞

dk

2π
e−i k X+N log[p̂(k)]. (D6)

In order to probe the Gaussian regime where X ∼ √
N , we

first set y = X/
√

N . Performing the change of variable k →
k/

√
N in Eq. (D6) gives

Z (X, N ) = 1√
N

∫ ∞

−∞

dk

2π
e−i k y+N log[p̂(k/

√
N )]. (D7)

Thus large N limit probes the small k behavior of p̂(k) de-
fined in Eq. (D3). We next assume that p̂(k) has the small k
expansion

p̂(k) 
 1 − σ 2 k2

2
+ c |k|β + · · · , (D8)

where 2 < β � 4. Since we assumed p(x) to be normalized to
unity, the first term is unity. Moreover, since p(x) is symmet-
ric, there is no linear term in p̂(k) in the small k expansion.
The second term is automatic since the variance σ 2 is finite,
and the third correction term must appear with exponent β >

2. We also assume that β � 4. The prefactor c of |k|β is just
an unimportant nonzero constant.

Substituting the small k expansion (D8) in (D7) in the large
N limit we get, keeping only leading order terms up to O(|k|β )
(note that 2 < β � 4),

Z (X, N ) 
 1√
N

∫ ∞

−∞

dk

2π
e−i k y−σ 2k2/2+c N1−β/2 |k|β . (D9)

If β < 4, then the prefactor of the third term inside the expo-
nent is c. However, if β = 4, then this prefactor will be slightly
modified from c since the expansion of the logarithm will give
rise to a term of O(k4) also. But in any case, we just need that
c is some nonzero constant in Eq. (D9). It is possible to check
that in the case of the RTP model considered in Sec. IV, one
has β = 4. Since β > 2, the term cN1−β/2 |k|β is small for
large N , and we can expand the exponential as

Z (X, N ) 
 1

2π

1√
N

∫ ∞

−∞
dk e−i k y−σ 2k2/2(1 + c N1−β/2 |k|β ).

(D10)

Performing the first integral gives the leading Gaussian term
and rearranging the second term slightly gives

Z (X, N ) 
 1√
2πNσ 2

e−y2/(2σ 2 )

[
1 +

√
2πσ 2cN1−β/2

×
∫ ∞

−∞
dk e−(σ 2/2)(k−iy/σ 2 )2 |k|β

]
. (D11)

Performing the change of variable k → k + iy/σ 2, we obtain

Z (X, N ) 
 1√
2πNσ 2

e−y2/(2σ 2 )

[
1 +

√
2πσ 2cN1−β/2

×
∫ ∞

−∞
dk e−(σ 2/2)k2 |k + iy/σ 2|β

]
. (D12)

When y is of order one, i.e. when X ∼ O(
√

N ), the cor-
rection term vanishes as N1−β/2, and we obtain the leading

Gaussian term, as predicted by the CLT. On the other hand,
for y � 1, the second integral over k can be approximated to
leading order for large y as

Z (X, N ) 
 1√
2πNσ 2

e−y2/(2σ 2 )[1 + c̃N1−β/2yβ ], (D13)

where c̃ is just a constant. The correction term can be ne-
glected when N1−β/2yβ � 1 and therefore the CLT is valid
for any y such that y � N (β−2)/(2β ). Recalling that y = X/

√
N ,

we obtain that the CLT is valid up to a wider range than
√

N ,
namely, up to

|X | � N (β−1)/β . (D14)

For instance, for the RTP model considered in Sec. IV, we
have β = 4 and thus the CLT is valid for |X | � N3/4.

APPENDIX E: LARGE DEVIATION FOR THE POSITION
DISTRIBUTION IN THE x DIRECTION

In this Appendix we give a formula for the large deviation
of the x coordinate in the fixed T ensemble of the RTP, valid
for a model with an arbitrary distribution of velocity, using
an equivalent but slightly different method as in the text. Let
us recall that the displacements xi along the x axis, and the
durations τi associated to the ith running phase are i.i.d. vari-
ables, except for the last run which is incomplete and hence
has a different distribution. Their distribution is P(x, τ ) =
p(x|τ )γ e−γ τ , with p(x|τ ) = ∫

dd �vP(�v)δ(x − v1τ ) = 〈δ(x −
v1τ )〉, where v1 = �v · ex denotes the first component of the
velocity, and here and below 〈· · · 〉 denotes an average with
respect to the distribution of the velocity �v (here assumed to
be quite general). Thus one can write

p̂(q, s) =
∫ +∞

−∞
dx

∫ +∞

0
dτ e−qx−sτ 〈δ(x − v1τ )〉γ e−γ τ

=
〈

γ

γ + s + qv1

〉
. (E1)

For an isotropic distribution with |�v| = v0 in dimension d , the
explicit form is given in (153).

Let us start from Eq. (151) and set γ = 1 for simplicity.
Equation (151) can be written as∫ +∞

0
dT

∫ +∞

−∞
dXe−sT −qX Z (X, T ) = p̂(q, s)

1 − p̂(q, s)
. (E2)

Let us first assume that Z (X, T ) admits a large-deviation form
Z (X, T ) ∼ e−T φd (z=X/T ). Inserting this form on the left-hand
side of Eq. (E2), we get∫ +∞

0
dT T

∫ +∞

−∞
dz e−sT −qT z−T φd (z)

∼
∫ +∞

0
dT Te−sT −T minz∈R[qz+φd (z)], (E3)

where we used a saddle-point estimate in the integral over
z = X/T . This integral becomes divergent when s decreases
and reaches

s = s(q) := − min
z

[qz + φd (z)]. (E4)
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Now looking at the right-hand side of Eq. (E2) we see that we
expect a singularity when p̂(q, s) = 1. We will surmise that
these singularities are the same

p̂(q, s) = 1 ⇔ s = s(q). (E5)

More explicitly the function s(q) is the root s = s(q) of the
equation〈

1

1 + s + qv1

〉
= 1 ⇔

〈
s + qv1

1 + s + qv1

〉
= 0. (E6)

Once s(q) is known, the inversion of (E4) determines the
large-deviation function

φd (z) = max
q

(−qz − s(q)). (E7)

These formulas allow us to easily determine the small-z
behavior of the large-deviation function as a function of the
moments of the random variable v1, assuming that they exist.
Expanding (E6) in powers of q to second order one obtains
φd (z) to quadratic order

s(q) = −〈v1〉q + 〈(v1 − 〈v1〉)2〉q2 + O(q3)

⇒ φd (z) = max
q

(−qz − s(q)) = (z + 〈v1〉)2

4
〈
v2

1

〉 + O(z3),

(E8)

where we have not assumed any symmetry of the distri-
bution of �v. When the distribution of v1 is symmetric in
v1 → −v1, it is convenient to symmetrize (E6) and rewrite

it as 〈 s(1+s)−q2v2
1

(1+s)2−q2v2
1
〉 = 0. One obtains using Mathematica s(q) =

c2q2 + (c4 − 2c2
2 )q4 + (c6 − 6c2c4 + 7c3

2)q6 + O(q8) and

φd (z)

= z2

4c2
−
(
c4 − 2c2

2

)
z4

16c4
2

+
(
9c4

2− 10c4c2
2− c6c2+ 4c2

4

)
z6

64c7
2

+ O(z8), cn := 〈
vn

1

〉
.

(E9)

Note that for an isotropic distribution of �v, with 〈�v2〉 = 1,
c2 = 1/d , and φd (z) = d

4 z2 + O(z4), as in Eq. (182).

The saddle-point equation (E6) can be conveniently rewrit-
ten by performing the change of variable w = q/(1 + s) and
introducing the function

F (w) :=
〈

1

1 + v1w

〉
. (E10)

Simple manipulations then lead to φd (z) = maxq(−qz −
s(q)) = maxw(1 − (1 + zw)F (w)). The function φd (z) can
then be obtained in a parametric form (by eliminating w)

z = − F ′(w)

F (w) + wF ′(w)
,

φd (z) = 1 − (1 + zw)F (w)

= 1 − F (w)2

F (w) + wF ′(w)
, (E11)

where one can alternatively use the simpler formula φ′
d (z) =

−wF (w).
For an isotropic distribution of velocities with |�v| = 1 in

dimension d , one has F (w) = 2F1( 1
2 , 1; d

2 ; w2) and one recov-
ers formulas (163), (164), and (165) (where the variable w

is q there). They are valid as long as |w| < 1, beyond which
the saddle-point value freezes at w = ±1, as discussed in the
main text.

We have assumed so far that the function F (w), defined
in Eq. (E10), exists. Of course there are some distributions
P(�v) for which the average in Eq. (E10) may not exist. In fact,
for any distribution P(�v) which is nonzero at v1 = −1/w, the
average in Eq. (E10) is divergent. An example of this is simply
the Gaussian distribution P(�v) = e−�v2/2/(2π )d/2. Recall that
in the main text we have chosen the direction isotropically
and taken the speed distribution W (v) = α(1 − v)α−1, which
has a finite support v ∈ (0, 1). In this example the average in
Eq. (E10) is well defined. In cases where F (w) in Eq. (E10)
does not exist, it indicates that the distribution does not admit
a large-deviation form on a scale X ∼ O(T ), as assumed. In
this case, a condensation may still occur, but at a smaller scale
X ∼ T γ with 1/2 < γ < 1.
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