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The eigenstate thermalization hypothesis provides to date the most successful description of thermalization
in isolated quantum systems by conjecturing statistical properties of matrix elements of typical operators in the
(quasi)energy eigenbasis. Here we study the distribution of matrix elements for a class of operators in dual-
unitary quantum circuits in dependence of the frequency associated with the corresponding eigenstates. We
provide an exact asymptotic expression for the spectral function, i.e., the second moment of this frequency
resolved distribution. The latter is obtained from the decay of dynamical correlations between local operators
which can be computed exactly from the elementary building blocks of the dual-unitary circuits. Comparing
the asymptotic expression with results obtained by exact diagonalization we find excellent agreement. Small
fluctuations at finite system size are explicitly related to dynamical correlations at intermediate times and the
deviations from their asymptotical dynamics. Moreover, we confirm the expected Gaussian distribution of the
matrix elements by computing higher moments numerically.
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I. INTRODUCTION

Statistical mechanics provides an accurate description of
large quantum systems in thermal equilibrium. How isolated
quantum systems approach thermal equilibrium, however, has
posed major challenges for our understanding of quantum dy-
namics and statistical physics. In particular, unitarity of time
evolution seems to contradict the notion of thermalization
from an out-of-equilibrium initial state. This issue was ad-
dressed early on by von Neumann [1], who proposed to study
typical or macroscopic physical observables only. Combining
this point of view with ideas from random matrix theory lead
to the celebrated eigenstate thermalization hypothesis (ETH)
which conjectures universal statistical properties of matrix
elements of large classes of observables in dependence on the
respective energies [2–4]. Since then both the validity of ETH
and its breakdown as well as the respective implications on
thermalization have been investigated in a multitude of studies
[5–8]. They are driven by recent experimental realizations of
nonequilibrium many-body quantum dynamics [9–19].

As we will focus on Floquet systems, which evolve in
discrete time, let us formulate ETH explicitly in this con-
text. There ETH conjectures properties of matrix elements
Amn = 〈m| A |n〉 of an observable A in the quasienergy eigen-
basis {|n〉 : U |n〉 = eiϕn |n〉}, where U is the time evolution
operator over one period—the so-called Floquet operator. For
many-body systems with a clear spatial locality structure, i.e.,
being defined on a regular lattice with local interactions, one
typically considers A from a class of local observables or
extensive sums thereof. The ETH ansatz in this setting reads

Amn = 〈A〉δmn + D−1/2 f (ωmn)Rmn. (1)

Here, 〈·〉 denotes the thermal average, which in the case of
quantum circuits or Floquet systems is taken with respect

to the only generally invariant state—the infinite temperature
state: 〈A〉 = 1

D trA, D = tr1. In particular, there is no explicit
dependence on the eigenphases, i.e., the quasienergies ϕn.
Without loss of generality the thermal average might be set to
zero by subtracting 〈A〉1 from the operator A. Consequently,
the nontrivial information is encoded in the second term in
which D represents the dimension of the underlying Hilbert
space, Rmn denote random variables with zero mean and unit
variance, and f (ω) is the spectral function, also called the
structure function, of the observable A. The latter is a smooth
function of the eigenphase differences ωmn = ϕn − ϕm. Thus
the central questions are, (i) what is the underlying distribu-
tion of the random variables Rmn or, equivalently, of matrix
elements Amn, and (ii) what is the functional form of the
spectral function f (ω)?

These questions are interrelated and have been investigated
in many studies with most of them focusing on the Hamilto-
nian (continuous-time) case rather than Floquet systems. For
instance, the distribution of both diagonal and off-diagonal
matrix elements has been confirmed to be generically well
described by a Gaussian distribution in the quantum ergodic
(or quantum chaotic) regime, whose variance decreases ex-
ponentially when increasing the system size [20–29]. For
these distributions the ratio of the variance of diagonal and
off-diagonal matrix elements agrees with random matrix pre-
dictions [22,23,29,30]. Deviations from the Gaussian nature
of the distribution have been found when the system under
consideration approaches the integrable or localized regime
[22,28,29,31,32] as well as for specific nonlocal operators
[33]. Moreover, the differences between diagonal matrix el-
ements of neighboring eigenstates as well as the difference
between diagonal matrix elements and the corresponding
microcanonical expectation value in general vanish with in-
creasing system size [34–43].
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More details on the distribution of matrix elements have
been obtained by studying the spectral function f (ω) as
it encodes the variance of the distribution of matrix ele-
ments [23,26–28,30,44] and as it sets the energy scale above
which nontrivial correlations become relevant [45]. Gener-
alizations of the spectral function additionally yield higher
order correlations of matrix elements [46–48]. While the
small frequency behavior ω → 0 of the spectral function
and the corresponding statistics of diagonal matrix elements
Ann encodes equilibrium properties at large times t → ∞,
finite frequencies |ω| > 0 and the statistics of off-diagonal
elements determine fluctuations in equilibrium as well as
the dynamics of relaxation to equilibrium. Consequently, the
spectral function governs the decay of dynamical correlations
via fluctuation-dissipation relations and linear response theory
[49–54] yielding, e.g., heating rates in driven systems [55] and
sensitive probes to quantum chaos [56,57].

The aforementioned findings impressively demonstrate the
validity of the ETH given by Eq. (1) in generic systems acces-
sible by numerical methods. Exact results, however, are rare
due to the complex and analytically intractable dynamics of
typical many-body systems. This has triggered the search for
exactly solvable chaotic models, from which unitary quantum
circuits emerged as a promising candidate. One may hope to
derive exact statements on the validity of the ETH as these
models allow for analytic results on various other fundamen-
tal properties of generic many-body quantum systems. The
latter include, e.g., the ballistic spreading of local operators
[46,58–64] and the growth of entanglement [64–74] as well as
random matrix predictions of spectral correlations [64,75–81]
and random state entanglement [82,83]. A particularly fruitful
approach assumes an additional duality symmetry between
space and time first observed [84] in a quantum chaotic Ising
chain in a pulsed magnetic field [85]. This lead to the notion of
dual-unitary quantum circuits [61] in which both propagation
in time as well as in space is unitary. Dual-unitarity allows for
analytical computations of dynamical correlation functions
and spectral correlations as well as the spreading of local
operators [61,66,70–72,79–81,86–88] and provides a mani-
festation of maximally entangling local evolutions [89,90].
Moreover, the dual space evolution provides deep insights
into nonequilibrium properties of general unitary as well as
nonunitary Floquet quantum circuits [91–95].

Here we aim for analytical answers to the questions on
the statistics of matrix elements and the form of the spectral
function within the setting of dual-unitary quantum circuits.
More precisely, we derive the exact asymptotic form of the
spectral function for large system sizes for a class of observ-
ables which comprise of sums of local operators. To this end,
we analytically compute their autocorrelation functions for
times proportional to system size which are fully determined
by a completely positive trace preserving (CPTP) map acting
on local operators [61]. The latter is constructed using only the
elementary building blocks, i.e., the local gates from which
the quantum circuit is built. Its spectral properties yield the
decay of correlations and asymptotically govern the spectral
function. In particular, we find a Lorentzian shape of the
spectral function in the presence of isolated slowly decaying
modes, while the spectral function becomes almost flat when
correlations decay fast.

FIG. 1. Diagrammatic representation of U = U2U1 with U1 and
U2 given by Eq. (2) for 2L = 10.

Using exact diagonalization of dual-unitary qubit circuits
we compare the asymptotical result with numerically com-
puted spectral functions and find excellent agreement for
generic cases. Nevertheless, we observe finite size deviations
which we relate to the dynamics of autocorrelations on inter-
mediate timescales and which are exponentially suppressed
when increasing the system size. Going beyond what we
can access analytically we additionally extend our numerical
studies to higher moments of the frequency resolved empirical
distribution of matrix elements. We confirm the latter to be
well described by a Gaussian distribution. However, disre-
garding the frequency dependence we find deviations from a
Gaussian distribution. More precisely, we observe exponential
tails when the corresponding circuit exhibits slowly decaying
modes.

The remainder of this paper is organized as follows. In
Sec. II we introduce the quantum circuits studied in our
work. Moreover, we review the concept of dual-unitarity and
its implications on dynamical correlations of local operators.
Subsequently, in Sec. III, we provide details on the computa-
tion of the spectral functions and its relation to the dynamics
of autocorrelation functions. We also introduce a class of
operators for which the latter can be computed exactly. As
our main result we derive the asymptotic form of the spectral
function for these operators. This is compared with numerical
simulations in Sec. IV. We additionally study the distribution
of matrix elements there. Eventually, we conclude and sum-
marize our results in Sec. V.

II. DUAL-UNITARY QUANTUM CIRCUITS

In the following we briefly review dual-unitary quantum
circuits and some or their fundamental dynamical properties.
In particular we focus on the dynamics of correlation func-
tions of local operators.

A. Circuit design

We consider a one-dimensional lattice of qudits subject
to a discrete time evolution obtained from a brick-wall cir-
cuit design as illustrated in Fig. 1. Each qudit is described
by a local Hilbert space Hx = Cq of dimension q indexed
by the sites x ∈ {0, . . . , 2L − 1}. The latter are arranged on
a one-dimensional chain of even length 2L with periodic
boundary conditions. The system’s total Hilbert space is H =⊗2L−1

x=0 Hx and has dimension dimH = D = q2L. The chain
undergoes discrete time evolution governed by the unitary
(Floquet) operator U . More precisely, each time step is com-
posed of two half-time steps such that U = U2U1, where the
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half steps are given by

U1 =
L−1⊗
x=0

U1 and U2 = T
(

L−1⊗
x=0

U2

)
T −1; (2)

see Fig. 1 for a diagrammatic representation of the result-
ing time evolution operator U . Here, U1,U2 ∈ U(q2) describe
the interaction of qudits on even sites with their right and
left nearest neighbors, respectively. In order to avoid unde-
sired symmetries we choose U1 �= U2. Moreover, T denotes
a periodic shift on the lattice defined in the canonical ba-
sis by T (|i0〉 ⊗ |i1〉 ⊗ · · · ⊗ |i2L−1〉) = |i2L−1〉 ⊗ |i0〉 ⊗ · · · ⊗
|i2L−2〉, where {|i〉 , i = 0, . . . , q − 1} is an orthonormal basis
of Hx. By construction, [T 2,U ] = 0 and consequently both U
and T 2 can be diagonalized simultaneously, yielding common
eigenstates |n〉 and their respective eigenphases, i.e.,

U |n〉 = eiϕn |n〉 and T 2 |n〉 = ei 2πkn
L |n〉 , (3)

with (quasi)momenta kn ∈ {0, . . . , L − 1} as T 2L = 1H.
Despite their simple structure quantum circuits similar to

those described above are tractable by exact analytical meth-
ods only in certain limiting cases. Here, we require that the
local gates U1 and U2 satisfy a property dubbed dual-unitarity
in order to allow for analytic calculations. To this end, for a
given local two-qudit gate U we assign the dual gate Ũ defined
by a reshuffling of matrix entries as [61]

〈i1| ⊗ 〈 j1| Ũ |i2〉 ⊗ | j2〉 := 〈 j2| ⊗ 〈 j1|U |i2〉 ⊗ |i1〉 . (4)

The original gate U is then called dual-unitary, if its dual Ũ
is unitary as well, i.e., Ũ ∈ U (q2). Note that for a generic
local gate its dual is in general not unitary. In what follows
we assume both local gates U1 and U2 to be dual unitary.
While the local gates Ui are the elementary building blocks
of the time evolution operator U their duals can be thought
of as the elementary building blocks of a spatial transfer
matrix describing propagation in space rather then time. Dual
unitarity implies that propagation in space is unitary as well
and thus gives rise to a structural symmetry between space
and time.

Whereas the complete characterization or classification of
the set of dual-unitary gates is an open problem for general
q, it has been solved for q = 2 in Ref. [61]. There it has been
shown that the dual-unitarity condition fixes only 2 out of 16
parameters specifying an arbitrary unitary two-qubit gate U ∈
U (4). Hence dual-unitarity is not as restricting as one might
think naively.

B. Dynamical correlations of local operators

The symmetry between space and time due to dual uni-
tarity imposes strong restrictions on the form of dynamical
correlations [see definition (6) below] of local operators. Intu-
itively, the brickwork pattern and the unitarity of propagation
in time restricts nonzero correlations between local operators
to a light cone in space while the unitarity of propagation in
space restricts nonzero correlations to a light cone in time.
Consequently, correlations can be nonvanishing only on the
intersection of both light cones, namely on light rays of the
form y = x ± 2t . This intuitive picture has been made rigor-
ous in Ref. [61] and has been found to be structurally stable

upon generic, non-dual-unitary perturbations [87], i.e., the
dual-unitary contribution dominates dynamical correlations
even under small perturbations. We briefly review the results
obtained in Ref. [61] in what follows.

Consider a Hermitian and traceless operator a ∈ End(Cq)
and its embedding into End(H) for a fixed lattice site x ∈
{0, . . . , 2L − 1} given by

ax =
(

x−1⊗
y=0

1Hy

)
⊗ a ⊗

(
2L−1⊗

y=x+1

1Hy

)
. (5)

That is, ax acts nontrivially only at lattice site x. Note that
being traceless ensures that a and ax are Hilbert-Schmidt
orthogonal to the respective identities 1Cq and 1H. We will
always assume a to be Hilbert-Schmidt normalized, i.e.,
tr(a2) = q and thus tr(a2

x ) = q2L for all x. We are interested
in dynamical correlation functions Cab(x, y, t ) = 〈ax(t )by〉 be-
tween such local operators ax and by, where ax(t ) = U−t axU t

is the time evolved operator in the Heisenberg picture.
The average is taken with respect to the infinite temper-
ature state, 〈 · 〉 = q−2Ltr( · ), which constitutes the natural
thermodynamic steady state for the quantum circuits under
consideration. Thus the dynamical correlations are given by

Cab(x, y, t ) = q−2Ltr(U−t axU t by). (6)

For times t � 	L/2
 the intuitive picture sketched above ap-
plies. More precisely a trivial extension of the results obtained
in Ref. [61] to the present case of different local gates U1 and
U2 in each half time step yields

Cab(x, y, t ) = δ(x+2νt−y) (mod 2L)
1

q
tr[Mt

ν (a)b]. (7)

The first factor is a Kronecker delta, which is 1 if y = x +
2νt (mod 2L) and 0 otherwise, where ν = −1 if x is even and
ν = 1 if x is odd. Thus it restricts nonzero correlations to light
rays y = x + 2νt (mod 2L) for initial times t � 	L/2
. Due
to our choice of periodic boundary conditions this statement
applies to all lattice sites x and we do not have to take scat-
tering effects at open boundaries into account, which would
spoil Eq. (7) for x close to the boundary. In the second factor
of the right-hand side of Eq. (7) the trace is taken in End(Cq)
and Mν is a CPTP map End(Cq) → End(Cq). Similar to the
structure of the whole circuit, Mν factors into two half time
steps as Mν = Mν,2Mν,1 with

M+,i(a) = 1

q
tr1

[
U −1

i (a ⊗ 1Cq )Ui
]
, (8)

M−,i(a) = 1

q
tr2

[
U −1

i (1Cq ⊗ a)Ui
]
, (9)

where the partial trace is taken over the first or second tensor
factor of Cq ⊗ Cq respectively.

As a consequence the dynamics of correlation functions
between local operators is determined by the properties of
the maps Mν in the thermodynamic limit L → ∞. More
precisely, the decay of such correlations is encoded in the
spectrum of Mν , which is contained within the complex unit
disk. The spectral properties thus allow for a classification
of dual-unitary circuits by their ergodic properties. In any
case Mν has the trivial eigenvalue 1 with eigenvector (eigen-
operator) 1Cq , meaning that the maps Mν are also unital.
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Moreover, the real subspace of traceless Hermitian operators
of End(Cq) is invariant under Mν . Here, we consider the
case where Mν is strictly contracting on this subspace, i.e., it
has no other eigenvalue of modulus one other than the trivial
one. This class of dual-unitary circuits is called ergodic and
mixing as in the thermodynamic limit all dynamical corre-
lations Cab(x, y, t ) tend to zero as λt

ν for t → ∞, where λν

is the largest (in modulus) nontrivial eigenvalue of Mν [61].
Additionally, ergodic and mixing dual-unitary circuits exhibit
quantum chaos in the spectral sense as their spectral form
factor exactly follows random matrix predictions [81]. They
moreover generate linear growth of operator entanglement
and hence of the complexity of local operators upon time
evolution [71].

III. SPECTRAL FUNCTION FOR SUMS OF LOCAL
OBSERVABLES

Having introduced the models under consideration, we
proceed by commenting on the spectral function f (ω) which
appears in the formulation of ETH in Eq. (1). To this end,
consider a Hermitian and traceless operator A ∈ End(H). We
briefly discuss how the spectral function corresponding to A
emerges from statistical properties of its matrix elements as
well as from its dynamical autocorrelation function. For the
latter we derive our main result in the form of an asymptotic
large L expression for the spectral function for a class of
operators, which consists of spatial sums of the local operators
discussed in the previous section.

A. Spectral function from the distribution of matrix elements

In the following we describe the spectral function as the
second moment of the frequency resolved distribution of ma-
trix elements of A in the basis of eigenstates of U . We study the
statistics of matrix elements Amn for which ωmn is sufficiently
close to a given frequency ω ∈ [−π, π ). More precisely, we
fix 0 < � � 1 and consider only matrix elements for which
ωmn ∈ I�(ω) := [ω − �/2, ω + �/2). The second moment,
i.e., the variance of their distribution is given by

varω(Amn) = 1

N (ω)

q2L−1∑
m,n=0

|Amn|21I�(ω)(ωmn), (10)

where 1I�(ω) denotes the characteristic function of I�(ω). The
normalization N (ω) is determined by the number of frequen-
cies ωmn in I�(ω), i.e.,

N (ω) =
q2L−1∑
m,n=0

1I�(ω)(ωmn). (11)

Asymptotically one has N (ω) = q4L�/(2π ) as in chaotic sys-
tems the eigenphases and consequently also the frequencies
are uniformly distributed in (−π, π ]. Note that at ω = 0 the
q2L real diagonal matrix elements contribute systematically to
N (0). We neglect this issue as, on the one hand, we restrict
most of our discussion to nonzero frequencies, and, on the
other hand, for � � 2πq−2L the statistics of matrix elements
is not significantly affected by the diagonal matrix elements.

For operators A compatible with the two-site shift in-
variance of U , i.e., [A, T 2] = 0, matrix elements between
eigenstates of different momentum vanish. Therefore, we may
consider the distribution of matrix elements of the operator
PkAPk in the basis of eigenvectors of PkUPk correspond-
ing to nonzero eigenvalues, where Pk denotes the orthogonal
projection onto the eigenspace of T 2 corresponding to mo-
mentum k. We denote the frequency resolved second moment
of this distribution by var(k)

ω (Amn), for which the normalization
asymptotically reads Nk (ω) = q4L�/(2πL2) [96], and obtain
the variance of the full distribution by

varω(Amn) = 1

L2

L−1∑
k=0

var(k)
ω (Amn); (12)

see Appendix A for a derivation.
Independent from the symmetries of A, the spectral func-

tion can be related to the variance of matrix elements Amn by
replacing the latter with the ETH ansatz (1) in Eq. (10). Using
the smoothness of f (ω) as well as the assumption that Rmn has
unit variance, this yields

| f (ω)|2 = q2Lvarω(Amn). (13)

Thus, the spectral function is determined by the variance of
the frequency resolved distribution of matrix elements.

B. Spectral function from autocorrelation functions

On the other hand, the spectral function may be extracted
from the autocorrelation function 〈A(t )A〉 of the operator A.
Representing U±t by its respective spectral decomposition
yields

g(t ) := 〈A(t )A〉 = q−2L
q2L−1∑
m,n=0

|Amn|2eiωmnt (14)

for the autocorrelation function. Note that due to the cyclic-
ity of the tracelike infinite temperature state one has g(t ) =
g(−t ). Fourier transforming g(t ) as ĝ(ω) = ∑

t g(t )eiωt gives

ĝ(ω) = 2πq−2L
q2L−1∑
m,n=0

|Amn|2δ(ω − ωmn). (15)

This singular expression is regularized by integrating over
I�(ω) giving the second moment (10), which in combination
with Eq. (13) leads to

| f (ω)|2 = q4L

2πN (ω)

∫
I�(ω)

ĝ(ω̃)dω̃. (16)

Often evaluating the integral is omitted by considering au-
tocorrelations only up to some finite cutoff time T . This
effectively broadens the δ distributions as they are replaced
by a strongly peaked smooth function of effective width
∼1/T . We denote the resulting finite time Fourier transform
by ĝT (ω) = ∑T

t=−T g(t )eiωt . Choosing � sufficiently small
compared to the scale on which ĝT (ω) varies, we may replace
the integral in Eq. (16) by �ĝT (ω) yielding

| f (ω)|2 = ĝT (ω). (17)
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Thus the spectral function is just a regularized Fourier trans-
form of an autocorrelation function of A.

C. Asymptotical spectral functions

Our objective in the following is to identify a class of
operators for which ĝT (ω) can be calculated exactly for suf-
ficiently large cutoff times T . The local Hermitian traceless
operators ax discussed in Sec. II seem to be a natural candidate
but dual unitarity causes their autocorrelation functions to
vanish exactly for t < L. This may be overcome by consid-
ering sums of such operators acting on different lattice sites
instead. The simplest and most convenient examples of such
operators are sums

A = 1√
L

L−1∑
x=0

a2x+μ, (18)

which act nontrivially on the even (μ = 0) or on the odd (μ =
1) sublattice only. Moreover, A is normalized as 〈A2〉 = 1.
This normalization ensures that the following results do not
depend on the system size L.

The autocorrelation function for A can be decomposed into
correlation functions of the local operators a2x+μ as

〈A(t )A〉 = 1

L

L−1∑
x,y=0

Caa(2x + μ, 2y + μ, t ). (19)

For times t � 	L/2
 the individual contributions Caa(2x +
μ, 2y + μ, t ) are given by Eq. (7) and thus are nonzero only
if y = x + νt (mod L), where ν = 2μ − 1. More precisely, we
find

〈A(t )A〉 = 1

L

L−1∑
x=0

Caa(2x + μ, (2x + μ + 2νt ) (mod 2L), t )

= 1

q
tr[Mt

ν (a)a] (20)

independent of the system size L. Therefore we choose T =
	L/2
 as the cutoff time and obtain

ĝ	L/2
(ω; a) = 1 + 2

q

	L/2
∑
t=1

cos(ωt ) tr[Mt
ν (a)a], (21)

where we explicitly include the dependence on a in the no-
tation. As the expression (20) decays exponentially at least
as λt

ν for t → ∞, with λν the largest modulus eigenvalue of
Mν , its Fourier transform is well behaved for L → ∞ and
thus Eq. (21) gives rise to a smooth function. This determines
the large L asymptotics of the spectral function

| f∞(ω; a)|2 = 1 + 2

q

∞∑
t=1

cos(ωt ) tr[Mt
ν (a)a] (22)

and constitutes our first main result. As it is obtained for
times up to T = 	L/2
, one can expect this to yield the spec-
tral function for frequencies |ω| � π/L in finite systems and
thus for all nonzero frequencies in the thermodynamic limit
L → ∞. Deviations of f (ω; a) around f∞(ω; a) are due to
the correlations deviating from Eq. (20) for times t > 	L/2
.
More precisely, for thermalizing systems the autocorrelation

function equilibrates to a value exponentially small in system
size, determined by the diagonal matrix elements correspond-
ing to ω = 0, and exhibits residual fluctuations only. These
times, however, do not contribute to the spectral function due
to the smoothing within the finite frequency window I�(ω)
of width � present in Eqs. (10) and (16), respectively. In
contrast, deviations from the asymptotic spectral function at
finite system size may be due to the the dynamics of auto-
correlation functions at intermediate timescales. We postpone
the discussion thereof to the next section when considering a
concrete example.

A detailed analysis of | f∞(ω; a)|2 is possible for a suitable
choice of the operator a. To this end let a = aλ be a Hermitian
eigenvector of Mν corresponding to a real eigenvalue λ. We
may write |λν | = e−γ with γ > 0. The latter is the rate with
which the autocorrelation Eq. (20) decays, i.e., 〈A(t )A〉 =
λt ∝ e−γ t . This allows for evaluating its Fourier transform
exactly, see Appendix B, yielding

| f∞(ω; aλ)|2 = sinh(γ )

cosh(γ ) − sgn(λ) cos(ω)
. (23)

For fast decaying modes, i.e., large γ , the spectral func-
tion (23) is essentially flat, | f∞(ω; aλ)|2 ≈ 1. In contrast, for
slowly decaying modes, i.e., γ � 1, the spectral function is
strongly peaked around ω = 0 (λ > 0) or ω = π (λ < 0).
Indeed, by expanding both numerator and denominator up to
second order in γ around 0 and ω around the peak yields
a Lorentzian spectral function with full width at half max-
imum given by 2γ and peak height 2/γ ; see Fig. 2(a) for
some examples of the shape of | f∞(ω; aλ)|2. Note that the
(leading) eigenvalues of Mν are not necessarily real, but may
come in complex conjugate pairs λ, λ̄ ∈ C, for which the
corresponding eigenvectors are not Hermitian but come in
Hermitian conjugate pairs. Moreover, the linear map Mν is
in general not diagonalizable, leading to possibly nontrivial
Jordan blocks (in case of degenerate eigenvalues) and thus
to polynomial corrections to the pure exponential decay of
correlations when considering generalized eigenvectors.

IV. NUMERICAL TESTS

In this section we compare the asymptotic expressions,
Eqs. (22) and (23), with spectral functions obtained from exact
diagonalization of representative example systems, for which
we find excellent agreement in generic cases. Additionally, we
study the frequency resolved distribution of matrix elements
numerically in more detail. In particular, we confirm that
the latter coincides with a complex Gaussian distribution for
frequencies |ω| > π/L by computing higher moments of the
distribution.

For our numerical simulation we consider chains of qubits,
i.e., q = 2, for which an exhaustive parametrization of dual-
unitary gates U ∈ U(4) is given by (see the Supplemental
Material (SM) of Ref. [61])

U = (u+ ⊗ u−)V (J )(v− ⊗ v+). (24)

Here, u±, v± ∈ U(2) and

V (J ) = exp
(
−i

[π

4
σ x ⊗ σ x + π

4
σ y ⊗ σ y + Jσ z ⊗ σ z

])
(25)
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FIG. 2. Spectral function of the operator A, Eq. (18), for five
representative realizations of the dual-unitary circuit U with 2L = 16
labeled by A–E. The corresponding asymptotic expressions (26) are
depicted as dashed black lines. The lower panel (b) is a magnification
of panel (a).

with J ∈ (−π/4, π/4] and Pauli matrices σ x, σ y, and σ z. In
the following we set J = 0 in both U1 and U2 rendering the
resulting circuits ergodic and mixing [61] (SM). Moreover, for
the corresponding local U(2) matrices, denoted by u±,i, v±,i

for both half time steps, we choose generic examples reported
in Appendix C. We consider the operator a = σ z ∈ End(C2)
in order to construct A via Eq. (18) on the odd sublattice (μ =
ν = +1). We fix the lattice size as 2L = 16 in what follows.

A. Spectral function

For the quantum circuits introduced above we compute
the spectral function of A as described in Sec. III A utilizing
the two-site shift invariance of A, i.e., [T 2, A] = 0. We first
construct the projectors Pk onto the subspaces of momentum k
and subsequently diagonalize U in each subspace. This allows
for computing the variance var(k)

ω (Amn) for each momentum
k. To this end we subdivide the interval [−π, π ) into N� =
201 subintervals I�(ωi) of width � = 2π/N� with centers
ωi = 2π (i + 1/2)/N� − π for i ∈ {0, . . . , N� − 1}. Having
determined var(k)

ω (Amn) we obtain varω(Amn) from Eq. (12).
Eventually this yields the spectral function via Eq. (13). We
obtain the spectral function by this procedure for five differ-
ent realizations of the circuit labeled by A–E as depicted in

TABLE I. Nontrivial eigenvalues of the CPTP maps Mν and
coefficients α for systems A–F.

System A B C D E F

λ+ 0.616 −0.455 0.046 0.590 0.055 −0.225
λ− 0.277 −0.091 −0.018 0.162 0.018 0.875
α 0.450 −0.082 −0.035 −0.056 −3.357 −0.268

Fig. 2 by thin (colored) lines. The spectral functions vary be-
tween being almost flat (System C) and being sharply peaked
(System A) therefore covering the typical behavior predicted
by Eq. (23). Figure 2(b) depicts a magnification around
| f (ω)| = 1.

As a = σ z is not an eigenvector of Mν , in general the
description presented in Sec. III C does not apply directly.
Nevertheless, that description can be adapted to the qubit
circuits at hand, which we illustrate in the following. We start
by noting that in the present case Mν can generically be
diagonalized and for J = 0 exhibits two eigenvalues equal to
0 and only one nontrivial and nonzero eigenvalue λ, which is
necessarily real. We report these eigenvalues for both M+ and
M− in Table I for the systems under consideration. We denote
the corresponding Hermitian eigenvector by aλ. As Mν can
be diagonalized we can expand a in the basis consisting of
its nonorthogonal eigenvectors. To this end let āλ denote the
Hermitian and traceless left eigenvector corresponding to λ.
That is, āλ is an eigenvector with eigenvalue λ of the adjoint
of Mν with respect to the Hilbert-Schmidt scalar product
on End(C2). We define α := tr(āλa)tr(aλa)/[q tr(āλaλ)], for
which one has |α| � 1/|λ|; see Table I for the numerical
values in the systems considered here. The above definition
allows for writing the autocorrelation functions 〈A(t )A〉 =
tr[Mt

ν (a)a]/q = αλt
ν for 1 � t � 	L/2
. This is illustrated in

Fig. 3 for the systems A–E where the numerically obtained
initial dynamics of autocorrelation functions is depicted for
2L = 16 by colored symbols. For times up to t = 	L/2
 = 4
they follow the exponential decay described above and de-
picted by dashed black lines. For slowly decaying modes as in
the systems A, B, and D the exponential decay proportional to
λt

ν approximately continues also for times larger than 	L/2
.
At large times autocorrelation functions are expected to equi-
librate, i.e., they oscillate around their long-time average with
both the oscillations and the equilibrium value of order q−2L.
For the systems A–E this behavior is approached already on
the timescale shown here. More precisely, the relaxation time
T ∗ until the equilibrium behavior is reached can be roughly
estimated by the time T ∗

ν for which λ
T ∗

ν
ν is of the order of

q−2L, i.e., T ∗
ν = −2L ln(q)/ ln(|λν |). For fast decaying modes,

however, this may give T ∗
ν < 	L/2
 whereas the exponential

decay continues up to t = 	L/2
. Note further that for times
larger than t = 	L/2
 the dynamics of correlation functions in
the two directions ν = +1 and ν = −1 are no longer indepen-
dent of each other. Thus an estimate for the equilibration time
is given by T ∗ = max{	L/2
, T ∗

+ , T ∗
−}, taking into account the

slowest possible decay of correlations in both directions as
well as the initial dynamics for times t � 	L/2
. In general
on has T ∗ = 	L/2
 if all eigenvalues λ of M+ and M− are
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(a)

(d)

(b)

(e)

(c)

FIG. 3. Autocorrelation functions of the operator A versus time
for systems A–E with 2L = 16 on a semilogarithmic scale (colored
symbols connected by lines). The asymptotic autocorrelation func-
tions αλt

ν (t � 1) are depicted as black dashed lines.

bounded as |λ| � q−4. This is the case for the systems C and
E, while we find T ∗ = T ∗

+ for the systems A, B, and D.
In any case, in order to obtain the asymptotic form of the

spectral function, the Fourier transform (21) can be evaluated
exactly in the limit L → ∞ yielding

| f∞(ω; a)|2 = (1 − α) + α| f∞(ω; aλ)|2, (26)

where we used tr[Mt
ν (a)a]/q = αλt

ν for t � 1 as derived
above. Thus, the asymptotic spectral functions are composed
of a flat background given by (1 − α) due to the operators in
the kernel of M+, i.e., those operators for which dynamical
correlations decay to 0 within a single time step, as well as
the second term α| f∞(ω; aλ)|2 due to the slowest decaying
mode. The resulting asymptotic spectral functions (26) for the
systems A–E are depicted in Fig. 2(a) as black dashed lines.
On the shown scale we find excellent agreement between the

numerically obtained spectral functions and their asymptotic
counterpart. Surprisingly, the asymptotic result agrees well
with the numerically obtained spectral functions even for
small frequencies 0 < |ω| � π/L.

For slowly decaying autocorrelations, for which
| f∞(ω, a)|2 is sharply peaked, one has | f∞(ω, a)|2 <

2eγ /γ + O(1), minding that |λ| = e−γ . Consequently,
the observed agreement of the spectral functions at finite
system size with the asymptotic expressions implies the
variance of matrix elements to be bounded by q−2L2eγ /γ for
nonzero frequencies in the present case. In particular, they
are exponentially small in system size up to a factor which is
determined by the local gates U1 and U2 only and which does
not depend on the operator a. Note that by fine tuning the
system the above bound might still become arbitrarily large.

B. Finite size deviations

Despite the good agreement between the numerically ob-
tained spectral function and the asymptotic expression, we
find deviations at finite system size. These deviations become
visible in Fig. 2(b), which shows a magnification of panel (a),
and are particularly evident for system D. We analyze such
finite size deviations in the following in more detail by relating
them to the dynamics of autocorrelation functions at inter-
mediate timescales 	L/2
 < t < T ∗, i.e., when T ∗ > L/2. At
these times Eq. (20) is not valid and deviations from the
exponential decay of autocorrelation functions proportional to
λt

ν are possible. That is, there might be a time t∗ at which
〈A(t∗)A〉 � λt∗

ν . Upon Fourier transform this contributes to
the spectral function as 2〈A(t∗)A〉 cos(ωt∗) leading to oscil-
lations of the spectral function around the asymptotic result
proportional to cos(ωt∗). Indeed for system D one finds such
a behavior at time t∗ = 5 as indicated by the inset for system
D in Fig. 3. This explains small oscillations of the numerically
obtained spectral function around its asymptotic counterpart.
However, this behavior will vanish as soon as L > 2t∗ or is
at least shifted to later times and thus would be exponentially
suppressed. When studying the spectral function for system D
at smaller system sizes (not shown) we find that the behavior
described above is not as pronounced as at 2L = 16 and thus
may appear for individual values of the system size only. One
therefore may ask if the deviations described above can occur
systematically.

In fact, we expect systematic deviations when autocorre-
lations in the opposite direction −ν decay much slower than
in the initial direction ν as both directions are no longer inde-
pendent at times t > L/2. This corresponds to |λ−ν | > |λν |,
where for the operators investigated here ν = +1. For such a
situation, denoted as system F, we report these eigenvalues as
well as the coefficient α in Table I. Both the spectral function
and the autocorrelation function are depicted in Figs. 4(a) and
4(b), respectively. Most prominently, one finds 〈A(t∗)A〉 �
λt∗

ν at time t∗ = 8 which leads to significant oscillations of the
numerically obtained spectral function around the correspond-
ing asymptotic result. A heuristic argument for the occurrence
of such phenomena can be given as follows. In the previous
section we saw that for slowly decaying autocorrelations the
exponential decay proportional to λt

ν approximately continues
for times t > L/2. Thus in the situation at hand there might be
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FIG. 4. System F at system size 2L = 16. Panel (a) depicts the
numerically obtained (thin brown line) and the asymptotic (black
dashed line) spectral function. Panel (b) shows the corresponding au-
tocorrelation function (brown triangles connected by a thin line) and
the asymptotic autocorrelation function αλt

+ (t � 1) (black dashed
line). The dotted black line indicates the asymptotically slowest
possible decay proportional to λt

−.

contributions to the autocorrelation function decaying as λt
−ν

and thus much slower than λt
ν . Ultimately this contribution

might dominate the autocorrelation function at some time t∗ as
observed in system F. Nevertheless, these contributions should
be of the order of |λ−ν |t∗ � |λ−ν |L/2 and therefore vanish
exponentially with increasing system size as well.

For the numerically accessible system sizes we quantify
the deviations of numerically obtained and asymptotic spec-
tral function as well as their scaling with system size. We
choose their L2 distance �| f |2 := ‖| f |2 − | f∞|2‖2 as a mea-
sure for the deviations. This is shown in Fig. 5 for system
sizes L ∈ {3, . . . , 8}. For the systems A–E we find these dif-
ferences to exponentially decrease with increasing system size

FIG. 5. Difference �| f |2 of the spectral function and its asymp-
totic value versus system size L. The lines connecting the symbols
serve as a guide to the eye.

FIG. 6. Distribution of real parts of matrix elements for 2L = 16.
In panel (a) the distribution for system A at various frequencies (see
legend) is shown while (b) depicts the distribution at all frequencies
in system A, C, and D. The black dashed lines show a Gaussian
distributions corresponding to the variance determined by (a) | f (ω)|2
at ω ∈ {0, 0.15π, 0.31π, 0.95π} and (b) | f (ω)|2 = 1.

at an approximately equal rate for the system sizes accessible
by exact diagonalization. As discussed above, deviations are
accidentally larger at 2L = 16 for system D and thus �| f |2
does not follow the overall exponential decay at this system
size. System A shows a slightly slower decay as well as
slightly larger deviations. The latter are dominated by small
frequencies |ω| � π/L. For system F, as expected, �| f |2 is
much larger than for the other systems. Although there is an
overall decrease of the deviations with increasing system size,
the numerically accessible system sizes are not sufficient to
extract the exact scaling and to ultimately confirm the conjec-
tured exponential decay.

C. Distribution of matrix elements and higher moments

Additionally, we investigate the distribution of matrix
elements in systems A–F numerically beyond the second
moment. To this end we depict the distribution of real parts
of matrix elements of A for various frequencies for system
A in Fig. 6(a). Here, we explicitly choose system A as the
sharply peaked spectral function indicates that the differ-
ences in the distributions are most prominent compared to the
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systems B–F. Indeed one finds a clearly broader distribution at
small frequencies compared to larger frequencies. However,
the shape of the distribution for nonzero frequencies is well
described by a Gaussian distribution with zero mean repre-
sented by dashed lines. At ω = 0 the tails of the empirical
distribution are slightly underestimated by the corresponding
Gaussian distribution. Note that we depict the distribution of
matrix elements of PkAPk combined for all k ∈ {0, . . . , L −
1} rather than showing the distribution for a fixed k as it
increases the number of matrix elements entering the statis-
tics. For this kind of sampling the variance of the Gaussian
distribution is given by q−2L| f (ω)|2/(2L) as it is the marginal
distribution of the complex Gaussian distribution of complex
matrix elements with twice that variance. For nonzero fre-
quencies the distribution of the imaginary parts of matrix
elements (not shown) coincides with that of the real parts. For
ω = 0, however, one finds an additional peak at Im Amn = 0
originating from the real diagonal matrix elements.

Moreover, we depict the distribution of real parts of ma-
trix elements not resolved by frequency in Fig. 6(b) for the
systems A, C, and D. We do not include systems B, E, and
F as they cannot be distinguished from system C on the
shown scale. For the almost flat spectral function of system
C, | f (ω)|2 = 1, the resulting distribution is well described by
the Gaussian distribution with variance as discussed above
(black dashed line). In contrast, for the sharply peaked spectral
function of system A the distribution exhibits exponential
tails from combining Gaussian distributions with different
variances. This deviation from a Gaussian is less pronounced
but still visible for system D due to the corresponding spectral
function being not flat. Thus, as a nonflat spectral function is
due to the presence of slowly decaying modes, these modes
provide an explanation for heavy tails of the distribution
of matrix elements, which was observed, for instance, in
Ref. [32] as well.

While the spectral function, i.e., the second moment of the
frequency resolved distributions, can be computed from the
dynamics up to times proportional to the system size, higher
moments cannot easily be obtained from dynamics up to this
timescale. We therefore study higher moments of even order,

m2p(ω) = 1

N (ω)

q2L−1∑
m,n=0

|Amn|2p1I�(ω)(ωmn) (27)

numerically. Note that Eq. (27) coincides with the variance,
Eq. (10), for p = 1. For a complex Gaussian distribution one
has m2p(ω) = p! m2(ω)p. Using again the two-site shift in-
variance of A we compute higher moments of the distribution
similarly to the variance. We depict the rescaled moments
m2p(ω)/[p! m2(ω)p] obtained by this procedure for system
A–F in Fig. 7 for p = 2 (thick colored lines) and p = 3 (thin
gray lines) respectively. Up to small fluctuations they repro-
duce the Gaussian value of one well for frequencies |ω| �
π/L, further confirming the Gaussian shape of the distribu-
tion of matrix elements. Slight deviations appear for small
frequencies and partially around ω = ±π . Interestingly the
deviations are largest for system F, which we cannot readily
explain by the dynamics of autocorrelation functions. Note
that an accurate estimation of higher moments requires larger
and larger system sizes and is not attempted here.

(a) (b)

(c) (d)

(e) (f)

FIG. 7. Rescaled fourth (thick colored line) and sixth (thin gray
line) moment of the distribution of matrix elements for systems A–
F with 2L = 16. The dashed black line corresponds to a Gaussian
distribution.

V. CONCLUSIONS

We study statistics of matrix elements for a class of opera-
tors in dual-unitary quantum circuits. For these operators we
derive the asymptotic, large L form of the spectral function,
i.e., the second moment of the frequency resolved distribution
of their matrix elements. This is achieved by utilizing the
space-time dual unitarity of the considered quantum circuits
in order to compute the exact short time dynamics of auto-
correlation functions. The latter is determined by the local
gates in terms of the CPTP maps Mν . Consequently, their
spectrum allows for characterizing the asymptotic properties
of spectral functions. More precisely, the presence of slowly
decaying modes corresponding to large eigenvalues of Mν

may lead to sharply peaked spectral functions, whose peak
height is inversely proportional to the decay rate of these
modes independent of system size. In contrast, the absence
of slowly decaying modes will render the spectral function
essentially flat and structureless. In any case, this confirms
that the distribution of matrix elements has a variance which
is exponentially small in system size as implied by the ETH
ansatz (1).

Comparing the asymptotic results with spectral func-
tions obtained from exact diagonalization of one dimensional
chains of qubits, we find excellent agreement for generic
dual unitary systems. Additionally, by studying the initial
dynamics of autocorrelation functions we confirm the cor-
respondence between the structure of spectral functions and
the rate of relaxation of correlations towards their equilib-
rium value. This reveals the origin of the deviations between
numerically obtained spectral functions and their asymptotic
forms due to the autocorrelation functions at intermediate
times. Exact diagonalization also allows for studying the
frequency resolved distribution of matrix elements in more
detail. In particular, by computing higher moments of the
distribution we confirm that the latter is well described by a
Gaussian. When disregarding the frequency dependence we
find the combined distribution to deviate from a Gaussian
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distribution. That is, the distribution exhibits exponential tails
if the spectral function of the corresponding operator is not
flat due to slowly decaying modes.

We emphasize that the computation of the asymptotic
spectral function from exact dynamical correlations for ini-
tial times via the CPTP maps Mν can be straightforwardly
extended to a larger class of operators built from extensive
sums of local operators. For example, this includes operators
supported on both the even and the odd sublattice as well
as operators that violate translational invariance by choos-
ing different nontrivial local operators at different sites. In
principle also inhomogeneous dual-unitary quantum circuits
in which the local gates depend on the lattice site can be
treated similarly. In such cases, however, the characterization
of spectral functions by the spectrum of a single CPTP map
Mν can no longer be applied directly.

Although the construction of the asymptotic spectral func-
tion presented here agrees well with numerical results in many
cases, there may be deviations as discussed above. These devi-
ations are due to autocorrelation functions fluctuating around
the exponential decay at intermediate times. Controlling those
fluctuations, i.e., rigorously proving that the spectral functions
converge towards the asymptotic result, requires knowledge
of the dynamics of autocorrelation functions for much larger
times, i.e., up to Heisenberg time. This would allow for ex-
actly computing also higher moments of the distribution of
matrix elements in order to confirm their Gaussian shape.
Computing dynamical correlations at large times exactly is
currently out of the scope of the methods based on dual-
unitarity presented here and is an important challenge for
future work. In contrast, the question whether the asymptotic
form of the spectral function gives an accurate description
also for generic, i.e., nondual-unitary Floquet circuits may be
checked within the perturbative framework of Ref. [87].
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APPENDIX A: MOMENTS FOR TWO-SITE SHIFT
INVARIANT OPERATORS

Here we derive Eq. (12) and its generalization to higher
moments for operators obeying two-site shift invariance, i.e.,
[A, T 2] = 0. That is, we are aiming to express m2p(ω) by the
corresponding moments m(k)

2p (ω) of the distribution of matrix
elements of PkAPk within the momentum k subspace. The ba-
sis of this subspace, in which the matrix elements (PkAPk )mn

are computed, is given by the eigenvectors |n〉 ∈ H of U with
Pk |n〉 = |n〉, i.e., kn = k. More precisely, one has

m(k)
2p (ω) = 1

Nk (ω)

q2L−1∑
m,n=0

|(PkAPk )mn|2p1I�(ω)(ωmn). (A1)

The normalization is given by

Nk (ω) = �q4L

2πL2
= N (ω)

L2
(A2)

as the momentum k subspace asymptotically has dimen-
sion q2L/L [96]. Note that the sum (A1) can be taken over
all m, n ∈ {0, . . . q2L−1} as the matrix element (PkAPk )mn

is nonzero only if km = kn = k. Fixing arbitrary m, n ∈
{0, . . . , q2L−1} this yields

|Amn|2p =
∣∣∣∣∣

L−1∑
k=0

〈m|PkAPk |n〉
∣∣∣∣∣
2p

(A3)

=
L−1∑
k=0

|(PkAPk )mn|2p, (A4)

where we used A = ∑L−1
k=0 PkAPk . Inserting Eq. (A4) into

Eq. (27) finally gives

m2p(ω) = 1

N (ω)

q2L−1∑
m,n=0

L−1∑
k=0

|(PkAPk )mn|21I�(ω)(ωmn) (A5)

= 1

L2

L−1∑
k=0

L2

N (ω)

q2L−1∑
m,n=0

|(PkAPk )mn|21I�(ω)(ωmn) (A6)

= 1

L2

L−1∑
k=0

m(k)
2p (ω), (A7)

which corresponds to Eq. (10) for p = 1 and allows for effi-
ciently computing also higher moments of the distribution of
matrix elements.

APPENDIX B: ASYMPTOTICAL SPECTRAL FUNCTION
FOR EIGENVECTORS OF Mν,

In this section we briefly sketch the derivation of the
asymptotical spectral function, Eq. (23), when a in Eq. (18) is
a Hermitian eigenvector of the CPTP map Mν with real eigen-
value λ. We write λ = exp(iθ − γ ) with θ ∈ {0, π} and γ >

0, which yields tr[Mt
ν (a)a]/q = exp([iθ − γ ]t ). The Fourier

transform, Eq. (22), can then be evaluated as a geometric
series (omitting the dependence on a)

| f∞(ω)|2 = 1 +
∞∑

t=1

e[i(θ+ω)−γ ]t + e[i(θ−ω)−γ ]t (B1)

= 1

1 − ei(θ+ω)−γ
+ 1

1 − ei(θ−ω)−γ
− 1 (B2)

= 1 − e2(iθ−γ )

1 + e2(iθ−γ ) − ei(θ+ω)−γ − ei(θ−ω)−γ
(B3)

= e−iθ+γ − eiθ−γ

e−iθ+γ + eiθ−γ − eiω − e−iω
(B4)

= sinh(iθ − γ )

cos(ω) − cosh(iθ − γ )
, (B5)

from which Eq. (23) follows by distinguishing the cases θ =
0, corresponding to sgn(λ) = 1, and θ = π , corresponding to
sgn(λ) = −1, respectively.
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TABLE II. Parameters of the local gates for systems A–F.

u±,i and v±,i

A u+,1=
(−0.03440376 + i0.95921874 0.10038637 + i0.26198924

0.21897117 + i0.17540641 −0.92413009 − i0.25936037

)

u−,1=
(

0.79008463 + i0.42675293 −0.3923305 − i0.19931128
0.43912594 − i0.02857657 0.89432201 − i0.08086989

)

v+,1=
(−0.48395602 − i0.26977298 −0.38316526 + i0.73904905

0.83244561 − i0.00658885 0.02112852 + i0.55366459

)

v−,1=
(

0.93026558 − i0.19510379 −0.06303577 + i0.30424817
0.25892305 − i0.17175364 −0.16517923 − i0.93604239

)

u+,2=
(

0.59082918 + i0.75484878 −0.25218615 − i0.13238709
0.07482491 − i0.27481891 −0.15030173 − i0.9467234

)

u−,2=
(−0.09222418 + i0.39020893 0.68968198 − i0.60296804

−0.17004669 + i0.90017543 −0.28957816 + i0.27733157

)

v+,2=
(−0.04850466 + i0.19938165 0.71066198 + i0.67294413

0.67865799 − i0.70520748 0.05770763 + i0.19691514

)

v−,2=
(

0.79745641 + i0.20004401 −0.09160851 − i0.56183054
0.54323348 + i0.1701266 0.08528023 + i0.81772955

)

B u+,1=
(

0.62703598 + i0.33406795 0.07672879 − i0.69952639
−0.20388687 + i0.67353888 −0.70782966 + i0.06125921

)

u−,1=
(

0.16747675 − i0.16925005 0.08962712 − i0.9670951
0.76752061 + i0.59516222 −0.23801086 + i0.00669881 j

)

v+,1=
(

0.7677496 − i0.2283061 −0.30161091 + i0.51717281
−0.10473253 − i0.58946412 −0.6418985 − i0.47909233

)

v−,1=
(−0.12026078 − i0.76763149 −0.0356572 + i0.62849646

0.02944216 + i0.62881825 −0.12784369 + i0.76640509

)

u+,2=
(−0.14548208 − i0.62605359 −0.33929403 − i0.68685619

−0.74570464 + i0.17554615 0.57544002 − i0.28631612

)

u−,2=
(−0.8076974 + i0.0317134 0.09645005 − i0.58078959

0.42100956 + i0.411546 0.6703337 − i0.45170074

)

v+,2=
(−0.20957887 − i0.87909618 0.42114439 − i0.07683755

−0.39442252 − i0.16642561 −0.39541195 + i0.81263939

)

v−,2=
(−0.01618801 − i0.74304507 0.17034723 − i0.64699597

−0.63284003 + i0.21710705 0.7422453 − i0.03807824

)

C u+,1=
(

0.90604057 − i0.422824846 0.00309542 + i0.01732210
0.01759003 − i0.000477204 0.23054939 − i0.97290150

)

u−,1=
(

0.77125325 + i0.38295162 0.09729126 − i0.49904999
−0.47399433 − i0.18397243 0.08759601 − i0.85662737

)

v+,1=
(−0.03365264 + i0.77810214 −0.61909468 − i0.10072905

−0.30046665 − i0.55058546 −0.72284161 + i0.28995766

)

v−,1=
(

0.30726796 + i0.91457831 0.07859757 + i0.250909
0.15206588 − i0.2144968 −0.57405409 + i0.77545406

)

u+,2=
(

0.02626481 − i0.66133538 0.25064262 + i0.70648705
−0.56068151 + i0.49757604 −0.29640378 + i0.59177625

)

u−,2=
(

0.42871255 − i0.60589777 0.17130354 − i0.64788004
−0.63831457 − i0.20407829 0.74138121 − i0.03550296

)

v+,2=
(−0.72864047 + i0.07157325 −0.13536488 − i0.66756025

0.23703899 + i0.63857095 0.65682528 − i0.32345048

)

v−,2=
(

0.53434982 + i0.83729925 −0.04025722 + i0.10853384
−0.04081908 − i0.10832378 −0.530004 + i0.84005686

)

D u+,1=
(−0.26603916 + i0.20065589 0.25447586 − i0.90785594

−0.13280177 − i0.93344741 −0.23732232 − i0.23391823

)

u−,1=
(−0.31678703 + i0.71576576 −0.2903863 + i0.55045541

−0.20823062 − i0.58648561 0.21059044 + i0.7538742

)

v+,1=
(

0.13185177 + i0.56539638 −0.53320444 + i0.6153333
−0.44095663 − i0.68447008 −0.21038103 + i0.54110792

)

TABLE II. (Continued.)

u±,i and v±,i

v−,1=
(−0.22733824 − i0.12247527 0.77384188 − i0.57834755

0.95104606 + i0.16978966 0.14824766 − i0.21143675

)

u+,2=
(

0.0780634 − i0.75379364 −0.48091017 − i0.44093839
−0.36269368 − i0.5423601 0.75689899 + i0.03745222

)

u−,2=
(−0.55448735 − i0.59148658 0.07652242 − i0.58037206

−0.5333239 − i0.24135663 0.20968476 + i0.78316339

)

v+,2=
(

0.44833607 + i0.08778421 −0.87730783 − i0.14703629
0.1319658 − i0.87970093 0.05541789 − i0.4534756

)

v−,2=
(−0.23188006 − i0.18849329 −0.78944085 − i0.53617634

−0.92453077 + i0.23652648 0.28207876 − i0.09863901

)

E u+,1=
(−0.69009297 − i0.51913828 0.25897705 + i0.43266387

−0.27973694 + i0.4195406 −0.71455207 + i0.48492082

)

u−,1=
(−0.69760973 − i0.58813487 −0.12169375 + i0.39067719

0.04608958 + i0.40658798 −0.79572569 + i0.44652278

)

v+,1=
(−0.25224681 + i0.19387489 0.41058323 − i0.85452062

−0.92062667 − i0.2263418 −0.31001755 + i0.07144959

)

v−,1=
(−0.5888309 + i0.80721348 −0.0176661 − i0.03704691

0.0128777 + i0.03897088 0.98364188 + i0.17539693

)

u+,2=
(

0.62249645 − i0.54363084 0.37530331 − i0.41965594
−0.47107465 − i0.30830563 0.74192191 + i0.36412662

)

u−,2=
(−0.52416883 − i0.60807282 0.5702951 − i0.17394819

−0.22456187 − i0.5523282 −0.80246836 − i0.02345336

)

v+,2=
(

0.06282152 − i0.88049157 0.28027461 − i0.37713949
−0.19875302 − i0.4257761 −0.1154322 + i0.87514991

)

v−,2=
(−0.27681465 − i0.34651419 0.79328171 − i0.4171399

−0.8537797 + i0.27269357 0.05274891 + i0.44035893

)

F u+,1=
(

0.16746295 + i0.04160119 −0.20111797 + i0.96424948
0.922572 − i0.34508898 −0.06652765 − i0.15921235

)

u−,1=
(

0.0898646 − i0.17188414 −0.51690372 + i0.83378099
−0.57135113 − i0.79745726 −0.1011261 − i0.16550926

)

v+,1=
(

0.78159121 + i0.00257971 0.59336816 − i0.19241296
0.04639178 + i0.62205814 −0.29810347 − i0.72251353

)

v−,1=
(

0.49866995 − i0.4247034 0.56551407 − i0.50114782
−0.65449515 − i0.37761277 0.57368381 + i0.31611957

)

u+,2=
(−0.11310322 − i0.90210917 −0.15532151 − i0.3863702

0.07901707 + i0.40885573 −0.39416074 − i0.81928664

)

u−,2=
(

0.52536851 − i0.10764508 −0.46311121 + i0.70564047
0.84328645 + i0.03561493 0.39396061 − i0.36386065

)

v+,2=
(

0.44050915 − i0.09668913 −0.71513996 + i0.53402035
0.83571067 − i0.31335375 0.31932476 − i0.31847888

)

v−,2=
(

0.04940901 + i0.23028099 −0.04022617 + i0.97103618
0.41163049 − i0.88039182 −0.14993899 + i0.18162843

)

APPENDIX C: PARAMETERS OF LOCAL GATES

In Table II we report the matrices u±, v± ∈ U(2) entering
Eq. (24) for both half steps i ∈ {1, 2} for the systems A–F.
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