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Generalized energy-conserving dissipative particle dynamics revisited: Insight from the
thermodynamics of the mesoparticle leading to an alternative heat flow model
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Recently we introduced the generalized energy-conserving dissipative particle dynamics method (GenDPDE)
[J. Bonet Avalos, M. Lísal, J. P. Larentzos, A. D. Mackie, and J. K. Brennan, Phys. Chem. Chem. Phys. 21, 24891
(2019)], which has been formulated for an emerging class of density- and temperature-dependent coarse-grain
models. In the original work, GenDPDE was formulated to ensure a fundamental link is maintained with the
underlying physical system at the higher resolution scale. In this paper, we revisit the formulation of the
GenDPDE method, and rederive the particle thermodynamics to ensure consistency at the opposing scale
extreme, i.e., between the local thermodynamics in the mesoscopic systems and the corresponding macroscopic
properties. We demonstrate this consistency by introducing unambiguous, physically meaningful definitions
of the heat and work, which lead to the formulation of an alternative heat flow model that is analogous to
Fourier’s law of heat conduction. We present further analysis of the internal, unresolved degrees-of-freedom of
the mesoparticles by considering the thermodynamics of an individual mesoparticle within the GenDPDE frame-
work. Several key outcomes of the analysis include: (i) demonstration that the choice of the independent variables
alters the particle thermodynamic description; (ii) demonstration that the mesoscopic thermodynamic transfor-
mations introduce additional terms of the order of the size of the local fluctuations, which prevent an unambigu-
ous definition of both the heat and work; (iii) an emphasis on the importance of the choice of the proper estimators
of the thermodynamic properties that are embedded in the chosen thermodynamic description; and (iv) a clearly
defined path for determining any thermodynamic quantity dressed by the fluctuations. The further insight
provided by this deeper analysis is useful for both readers interested in the GenDPDE theoretical framework, as
well as readers interested in the practical ramifications of the analysis, namely, the alternative heat flow model.

DOI: 10.1103/PhysRevE.103.062128

I. INTRODUCTION

The recently proposed generalized energy-conserving dis-
sipative particle dynamics (GenDPDE) method [1] allows for
isoenergetic simulations of many-body models, which are an
appealing class of density- and temperature-dependent coarse-
grain models that have recently emerged (e.g., Refs. [2–7]).
These models have several key attributes that allow them to
overcome common coarse-grain model deficiencies, includ-
ing scaling consistency and transferability. In the GenDPDE
method, the force between mesoparticles is a function of the
local particle density n [8,9]. GenDPDE allows simulations
of coarse-grain models for which the density-dependent force
is dependent on the thermodynamic state of the mesoparticle,
particularly, the fluctuating particle temperature θ . From that
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perspective, GenDPDE is unique because it allows a descrip-
tion of the particle temperature and the local particle density
such that they are entangled in the coarse-grain model through
a complete definition of what we refer to as the particle
thermodynamics. For comparison, it is worth noting that in
the energy-conserving dissipative particle dynamics (DPDE)
method [10,11], such particle thermodynamics is restricted to
a linear relation between the stored internal energy u and the
particle temperature θ . Moreover, the force between DPDE
particles is a function of the inter-particle distance only; thus,
the force is independent of the mesoparticle thermodynamic
state.

In the introductory work [1], GenDPDE was formulated
to ensure a fundamental link is maintained with the underly-
ing physical system at the higher resolution scale. However,
a direct link to the macroscale was not established, partly
due to the following. In the GenDPDE method, particles
are considered as mesoscopic objects, a priori containing
many degrees-of-freedom (DoF), which are defined through
the particle thermodynamics. However, by construction, the
variables defining the particle state are fluctuating due to the
mesoscopic size of the particles. As such, defining the local
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thermodynamics in mesoscopic systems poses several chal-
lenges related to the influence of system fluctuations on the
interpretation of the analogous macroscopic properties. In this
work, we consider the appropriate framework that consistently
describes the mesoparticle with internal (unresolved) DoF
in contact with the environment. Interestingly, we encounter
uncertainty in the distinction between heat and work at the
mesoparticle level, which does not exist at the thermodynamic
limit.

In this paper, we revisit the formulation of the
GenDPDE method, and rederive the mesoparticle ther-
modynamic transformations to ensure consistency at the
macroscale, i.e., between the local thermodynamics in the
mesoscopic systems and the corresponding macroscopic prop-
erties. We demonstrate that we can establish this link by
introducing unambiguous, physically meaningful definitions
of the heat and work. These lead to the formulation of an
alternative heat flow model that is a mesoscopic counterpart
of Fourier’s law of heat conduction, and that differs from the
heat flow model traditionally used in DPDE. This insight is
useful for both readers interested in the theoretical framework,
as well as readers interested in the practical ramifications of
the analysis, particularly the alternative heat flow model.

While the formulation emulates that of the original
work [1], a deeper analysis of the thermodynamics of the indi-
vidual mesoparticle provides new insight into the mesoscopic
thermodynamic transformations. In this work, we define par-
ticle thermodynamics as the formal relation describing the
energy exchange between the unresolved DoF within the par-
ticle and the resolved DoF, where we assume a separation
of timescales exists between these DoF [12]. The latter DoF
include the particle volume, internal energy, center-of-mass
position and total momentum for the simple case analyzed
here. Unlike their macroscopic counterparts, these resolved
variables can fluctuate according to the Laws of Statistical
Mechanics due to the reduced size of the particle as a system.
Macroscopic thermodynamics relies on the thermodynamic
potentials and the transformations between ensembles, which
are defined from the given reservoirs that maintain constant
intensive variables (e.g., the temperature or chemical poten-
tials) or maintain constraints that fix some extensive variables
(e.g., volume or energy content). These variables will be
referred to as control parameters. Legendre transformations
permit changing from one ensemble to the other without
loss of thermodynamic information. Contrastingly, for parti-
cle thermodynamics, the thermodynamic information is not
embedded in a function under the form of a given thermody-
namic potential, but instead in a distribution. Not only does
the thermodynamic ensemble need to be specified, but also
those variables that independently fluctuate and those that do
not. Therefore, when changing from one set of independent
variables to another within the same macroscopic ensemble,
transformation rules need to be considered that involve addi-
tional terms depending on the size of the fluctuations.1

1Interestingly, in agreement with our description, a similar depen-
dence on the set of independent variables has been experimentally
observed for DNA strands operated with optical traps [13,14]. These

The formulation of a particle thermodynamic description
also affects the dynamic properties of the system through
the relationship between the thermodynamic forces and the
dissipative fluxes. In the model presented here, the former are
differences in the velocities and in the particle temperatures,
which are fluctuating variables, while the latter correspond
to the frictional forces and the interparticle heat exchange,
respectively. In this formulation, the dynamics of the particle
variables are required to satisfy the principles of nonequi-
librium thermodynamics [15] when fluctuations are absent.
In other words, the fluctuations in these mesoscopic systems
are constructed such that the nonequilibrium thermodynamic
description instantaneously holds at the particle level with the
particle properties derived from s(u,V ) or u(s,V ) together
with the dynamics of the resolved DoF.

In this work, we introduce a set of ansatzes that allow us to
cast the dynamic formulation under Onsager’s nonequilibrium
thermodynamics framework [15] at the particle level, taking
into account the dressing effect of the fluctuations. In this
context, linear Langevin equations [16,17] can be introduced,
based on the appropriate thermodynamic forces, leading to an
ultimately complete and consistent framework for the simula-
tion of complex systems.

The paper is organized as the following. In Sec. II, we
revisit the theoretical framework of the GenDPDE method,
providing an analysis into both the particle thermodynamics
and dynamics in the context of the unresolved DoF of the
individual mesoparticle, after which the equations of motion
(EoM) are given in Sec. II C. In Sec. III A, we demonstrate
the consistency of the alternative heat flow model, followed
by a discussion of the implications of the analysis of the
particle thermodynamics within the GenDPDE framework.
We conclude by providing a summary of the work along with
a brief discussion of possible novel extensions arising from
the new insight of the mesoparticle thermodynamic transfor-
mations within the GenDPDE framework. A list of symbols
and notation used throughout the manuscript is provided in
the Supplemental Material [18].

II. THEORETICAL FRAMEWORK: FURTHER ANALYSIS
FROM THE PARTICLE THERMODYNAMICS

In this section, we provide a formulation of the GenDPDE
method that follows the formulation presented in the original
work [1]. However, a deeper analysis of the thermodynamics
of the unresolved DoF of an individual mesoparticle reveals
insight that allows us to link the particle thermodynamics with
the corresponding macroscopic properties. In Sec. II A, the
theoretical framework of the thermodynamics is formulated
by first considering the particle entropy as the dependent
variable, followed by a formulation using the particle internal
energy as the dependent variable. The analysis of the latter
highlights that the mesoscopic thermodynamic transforma-
tions introduce additional terms of the order of the size of

authors observed that the relationship between force F̄ and elonga-
tion x of an externally stretched DNA strand depends on whether
the force is fixed and the elongation measured, or inversely, whether
the elongation is fixed and the force measured. In other words, given
〈F̄ 〉 = f (x), it is found that 〈x〉 �= f −1(F̄ ).
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the local fluctuations, which prevent an unambiguous defi-
nition of both the mesoscopic heat and work. To overcome
this ambiguity within the GenDPDE framework, in Sec. II B,
we formulate the particle dynamics by assuming a heat flow
model that has a linear relation between the fluxes and the
forces, where this particular form is consistent with Fourier’s
law of heat conduction. Finally, to conclude Sec. II, a sum-
mary of the EoM is given at the end of Sec. II C, which
is intended for more application-oriented readers with less
interest in the formulation of the GenDPDE theoretical frame-
work. The numerical discretization of the EoM is presented in
Appendix B.

A. Thermodynamics of the mesoparticle unresolved
degrees-of-freedom

1. Entropic thermodynamic description

The GenDPDE method was based upon the original DPDE
method, which itself is based on Einstein’s formulation
of thermodynamic fluctuations that is an entropy-centered
perspective [10,19]. Following the formulation of the en-
tropic form presented in the original GenDPDE work [1],
we define the physical model by assuming that each par-
ticle i (i = 1, . . . , N ; N is the number of particles) is
an individual mesoscopic system composed of N physi-
cal entities. The mesoscopic system is characterized by a
Hamiltonian H(r̃N , p̃N ) with (r̃N , p̃N ) being a point in the
6N -dimensional internal phase space of mesoparticle i. (In
this section, the statements refer to the properties related to
an individual mesoparticle i; for notational simplicity, the
subscript i is not explicitly used unless necessary to avoid
confusion.) The vectors r̃α and p̃α with α = 1, . . . ,N are,
respectively, the positions and momenta (both refer to the
center-of-mass of the mesoparticle) of the underlying physical
entities embedded into mesoparticle i. For our purposes, let
us consider that the resolved mesoparticle variables are the
particle internal energy content ui, the material content Ni,
and the particle volume Vi, together with the position of its
center-of-mass ri and its total momentum pi.

ui is specifically defined as the particle internal energy, i.e.,
the energy stored in the unresolved DoF. Hence, ui is obtained
by subtracting from the total energy of the mesoparticle: (a)
the energy due to the mechanical DoF, i.e., the kinetic energy
Ki = p2

i /(2mi ); and (b) any potential energy field � related to
the particle positions {ri}N

i=1 (e.g., gravitational or electromag-
netic fields) or any interparticle interactions not associated
with changes in the particle volume and particle temperature.

The volume of a mesoparticle is defined as V = 1/n, where
n is the local particle density, estimated from the positions of
neighboring mesoparticles via a weighting function w as

ni =
N∑

j=1, j �=i

wi j, (1)

where wi j ≡ w(ri j ) is a smooth, monotonically decreasing,
nonnegative, spherically symmetric weighting function, van-
ishing for the particle separation distance ri j � Rcut, and
normalised such that 4π

∫ Rcut

0 w(r) r2 dr = 1; Rcut is the cutoff
range.

Owing to the relatively small size of the mesoparticle,
contributions due to the interfacial area, particle rotations,
or deformations may be considered when addressing partic-
ular physical systems. Here, for simplicity, we consider that
any contribution can be reduced to a function of the particle
volume. Although, for example, surface contributions may
eventually lead to the nonextensiveness of the particle ther-
modynamic functions. Also, for the sake of simplicity, we
consider only the case of constant N .

Let us consider mesoparticles at rest, i.e., {pi}N
i=1 = 0, and

all the positions {ri}N
i=1 fixed in space. In equilibrium, the

density-of-states of a thermally isolated mesoparticle at rest
is given by

g(u,V ) = 1

N ! h3N

∫
u−�u/2<u<u+�u/2;V

d r̃N dp̃N , (2)

where, from a thermodynamic perspective, Eq. (2) contains all
the relevant information. In particular, we can define the bare
entropy [20] as

s̃(u,V ) = kB ln g(u,V ), (3)

where kB is the Boltzmann constant. As such, s̃ is the true
entropy of the mesoparticle under isolated conditions, which
is defined by fixing the control parameters u and V . Due to
our assumption that there are no additional resolved variables
other than V and u, s̃ can be defined in a thermodynamic
sense only if the internal dynamic processes associated with
the N physical entities in the mesoparticle are relaxed to
their thermodynamic equilibrium. Therefore, for an isolated
mesoscopic system, no fluctuations are observed in the non-
mechanical resolved variables. Finally, because s̃ has the
classical meaning of entropy, we can assume that ∂ s̃/∂u|V =
1/θ̃ > 0, i.e., the positiveness of the bare temperature θ̃ of the
mesoscopic system is assumed.

Note that we have changed the nomenclature from our
original work [1] with respect to s̃, where s̃ here is denoted as
the bare entropy rather than the dressed entropy. The reader
is referred to both footnote2 for further discussion of this

2In our previous work [1], we introduced z as the dressed entropy
and s as the bare entropy. For the work presented in this manuscript,
we have inverted the nomenclature regarding all corresponding
dressed and bare quantities. Note that the physical expression for
these quantities do not change, rather only a nomenclature change
has been introduced. The switch in nomenclature is based on the
following. In our previous work [1], we began our formulation
by postulating s as a central quantity, from which we obtained
z. However, in the revision of the formulation presented here, we
first established a direct connection between z and the statistical
mechanics of the system. From this connection, physical intuition
suggests z as a bare quantity, while dressed quantities are those that
are ‘dressed’ by the fluctuations of the mesoscopic system. As such,
the natural variables of the mesoparticles are the dressed quantities,
where all variables denoted by the bare and dressed nomenclature
have been inverted from the original work [1]. Further, in an attempt
to simplify the notation, we have also changed the bare entropy
notation from z to s̃, and the bare particle temperature notation from
τ to θ̃ . In summary, in this manuscript and hereafter, we will denote
quantities with a tilde as a bare quantity, otherwise it will be taken as
a dressed quantity.
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nomenclature change and the list of symbols provided in the
Supplemental Material [18].

When the mesoscopic system is in contact with a heat
reservoir of temperature T , the thermodynamic behavior is
determined by the ensemble average yielding the Helmholtz
free energy, i.e.,

e−F/(kBT ) =
∫

du g(u,V ) e−u/(kBT ), (4)

where the control parameters of the ensemble are T and V .
Analogous to Eq. (3), Eq. (4) contains all the relevant informa-
tion, where given the state of the mesoparticle, the canonical
probability distribution becomes

Peq(u,V ) du dV ∼ g(u,V )e−u/(kBT ) du dV

= e[T s̃(u,V )−u]/(kBT )du dV . (5)

Equation (5) is the starting point in the classical treatment
of fluctuations [19]. Indeed, the formulation of the DPDE
method is based on Eq. (5). In this classical treatment, the
removal of the adiabatic condition for the mesoscopic particle
causes fluctuations in the resolved variables, weighted by the
function s̃, which is no longer a measure of the entropy of the
system. Because the independent variables of Eq. (5) are u and
V , then without loss of generality, we have

ds̃ = ∂ s̃

∂u

∣∣∣∣
V

du + ∂ s̃

∂V

∣∣∣∣
u

dV ≡ 1

θ̃
du + π̃

θ̃
dV . (6)

The variables 1/θ̃ and π̃/θ̃ (π̃ is the bare particle pressure) are
defined via Eq. (6). These are analogous to the intensive vari-
ables in macroscopic thermodynamics, which are the natural
variables for the entropic thermodynamic description [19].
However, in the fluctuating system, these variables play the
role of estimators of the macroscopic quantities of the ensem-
ble. For example, in the canonical ensemble, 1/θ̃ is the proper
estimator of 1/T , i.e.,〈

1

θ̃

〉
T

=
∫

du
1

θ̃
Peq(u,V ) = 1

T
. (7)

However, if the system is coupled to a barostat of pressure P,
then 〈 π̃

θ̃

〉
T P

=
∫

du dV π̃

θ̃
Peq(u,V ) e−PV/(kBT ) = P

T
. (8)

In this context, proper refers to the ensemble average, which
gives the corresponding macroscopic quantity. It is important
to realize that 〈θ̃〉T �= T and 〈π̃〉T P �= P, which we demon-
strate below. Last, because the estimators depend upon the
particle thermodynamics, they are defined for each mesopar-
ticle independently.

2. Energetic thermodynamic description

Analogous to the formulation of the energetic form pre-
sented in the original GenDPDE work [1], rather than working
with (u,V ), let us work with (s,V ) instead, and use u as the
dependent variable; s is the dressed entropy defined below.
The equilibrium behavior of the system is still contained in
Eq. (5), but now is cast under a different form,

Peq(s,V ) ds dV ∼ e[T s̃−u(s,V )]|J| ds dV, (9)

where J is the Jacobian of the transformation, J = ∂u/∂s|V >

0, and |J| is its determinant. Formally, J > 0 sets the
properties of s that are consistent with the macroscopic ther-
modynamic definition. The dressed entropy is then defined as

s = s̃ + kB ln
∂u

∂s

∣∣∣∣
V
. (10)

Equation (10) is a differential equation that links the dressed
entropy with the statistical mechanical information contained
in g(u,V ). Note that we assume ∂u/∂s|V > 0 without loss of
generality, as the formal solution of Eq. (10) indicates that

s(u,V ) = kB ln
1

kB

∫ u

0
du es̃(u,V )/kB (11)

is a monotonously increasing function of the particle internal
energy, in agreement with the behavior of the macroscopic
entropy [19].

We can now establish the central equation of our thermo-
dynamic formulation:

Peq(s,V ) ds dV ∼ e[T s−u(s,V )]/(kBT ) ds dV . (12)

Although the physics of the system remains the same, we
can introduce a different, but equivalent thermodynamic de-
scription of the mesoscopic system in the so-called energetic
form [19]:

du = ∂u

∂s

∣∣∣∣
V

ds + ∂u

∂V

∣∣∣∣
s

dV ≡ θds − πdV . (13)

For the energetic form, Eq. (13) defines a new set of proper
estimators of the macroscopic quantities of the ensemble. The
particle temperature θ is the proper estimator of the (macro-
scopic) temperature, i.e.,

〈θ〉T =
∫

ds θ Peq(s,V ) = T, (14)

and the particle pressure π is the proper estimator of the
(macroscopic) pressure, i.e.,

〈π〉T P =
∫

ds dV π Peq(s,V ) e−PV/(kBT ) = P. (15)

3. Identification of the heat and work: Comparison of the entropic
and energetic thermodynamic descriptions

We have arrived at a key juncture in the formulation,
which requires identifying the heat and work in the GenDPDE
framework. Comparing Eqs. (6) and (13), and using the First
Law of Thermodynamics, we have

du = θ̃ds̃ − π̃dV = θds − πdV = d̄q + d̄W, (16)

where q and W are the heat and work, respectively, and the
crossbar notation in the last equality indicates an inexact dif-
ferential.

In the original formulation of GenDPDE [1], we demon-
strated that the relationship between the estimators is

θ̃ = θ(
1 − kB

CV

) � θ

[
1 + kB

CV
+ O

(
kB

CV

)2]
(17)

π̃ = π + kBθ̃

CV

α

β
� π + kBθ

CV

α

β
+ O

(
kB

CV

)2

, (18)

where α is the thermal expansion coefficient, β is the isother-
mal compressibility, and CV is the constant-volume heat
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capacity. (The coefficients α, β, and CV are given by standard
thermodynamic relations, but replaced with mesoparticle ther-
modynamic variables.) However, comparing Eqs. (16), (17),
and (18), it is evident that both θ̃ds̃ �= θds and π̃dV �= πdV
due to the additional terms introduced by the mesoscopic
thermodynamic transformations. This is a key finding of this
work, which indicates that there is not an unambiguous defi-
nition of both the heat and work exerted on the mesoparticle.

It is important to note that this ambiguity is not related to
either the chosen scale of the thermodynamic description [21],
or to a change in the statistical mechanical ensemble. Rather
it is intrinsic to the particle thermodynamics being defined
through the probability distributions. Therefore, the thermo-
dynamic description of the mesoscopic system is completely
contained in a thermodynamic potential relating the resolved
DoF with the unresolved DoF. However, such a thermody-
namic potential depends not only on the reservoir properties
(e.g., the temperature T or the pressure P), but also on
the set of independently fluctuating variables. If there is a
change in the independent variables, then the mesoscopic
thermodynamic potential is transformed as a distribution.
The transformation from the original DPDE entropic descrip-
tion s̃(u,V ) into an energetic description does not involve
the inversion of the function s̃(u,V ) → u(s̃,V ), but instead
s̃(u,V ) → u(s,V ) with s given by Eq. (10). In fluctuating
systems, the mesoscopic thermodynamic parameters are then
dressed by the fluctuations permitted by the chosen ensemble.
In addition, this influences the formulation of the dynamic
properties since the thermodynamic forces will depend on
the chosen potentials and also crucially on the choice of the
independently fluctuating variables.

To further elucidate the ambiguous relation between the
definitions of the heat and work at the mesoscopic and macro-
scopic levels, consider the following. Consider the ensemble
average of the reversible mechanical work for a mesoscopic
system at constant temperature under a quasistatic volume
change. According to Eqs. (4), (5), and (9), the Helmholtz free
energy of the system F can be expressed by both

F = −kBT ln

[∫
ds e[T s−u(s,V )]/(kBT )

]

= −kBT ln

[∫
du e[T s̃(u,V )−u]/(kBT )

]
. (19)

Considering the first equality in Eq. (19), from Eq. (13) the
system pressure is related to the estimator π by

P = − ∂F

∂V

∣∣∣∣
T

= 〈π〉. (20)

Therefore, for a quasistatic reversibly varying volume,

〈dW C〉 = −PdV = −〈π〉dV, (21)

where W C is the mesoscopic reversible work. Note that in
Eq. (21), we used the fact that V is a control parameter of
the ensemble as well as of the state of the particle, i.e., it is
nonfluctuating. Based on this, it is reasonable to define the
instantaneous W C as

dW C = −πdV, (22)

which is defined in terms of system variables only and is
independent of the reservoir quantities such as T . In view
of Eq. (21), the ensemble average of Eq. (22) effectively is
the macroscopic work. Since Eq. (22) is independent of the
macroscopic ensemble used, the expression is taken as the
definition of the mesoscopic reversible work. Alternatively,
starting from the first law of thermodynamics and using the
definition of the instantaneous work Eq. (22), together with
Eq. (13), we can write the expression of the instantaneous
reversible heat

dq = du − dW C = θds. (23)

Equation (23) also serves as the definition of the instanta-
neous heat transferred into the system irrespective of the
macroscopic ensemble, since it does not depend on reservoir
variables.

Finally, for comparison, we determine an equivalent for-
mulation in terms of the entropic parameters. Considering
Eq. (8) and the second equality in Eq. (19), the instantaneous
W C can also be written as

dW C = −T
π̃

θ̃
dV, (24)

which satisfies 〈dW C〉 = −PdV . However, it is important to
realize that within this formulation, dW C is not defined in
terms of particle properties alone, but depends also on the
ensemble temperature T . Hence, this formulation cannot be
directly applied to microcanonical simulations. Then, consid-
ering the first law of thermodynamics again, we can write

dq = du + T
π̃

θ̃
dV = θ̃ds̃ +

(T

θ̃
− 1
)
π̃dV . (25)

Although 〈dq〉 = 〈θ̃ds̃〉V , we cannot identify the instanta-
neous mesoscopic heat as θ̃ds̃ in a general process due to
the existence of the additional term (T/θ̃ − 1)π̃dV , whose
average is nonzero.

In summary, we have demonstrated that if the instanta-
neous heat and work are defined in terms of the system
variables only, then this permits the use of the model for a
simulation in any ensemble. This demonstration has only been
possible by using the energetic formulation, which involves
the renormalization of the bare entropy s̃ into the dressed
entropy s, due to the fact that the particle thermodynamic
potentials transform as distributions rather than as functions.
Moreover, the identification of the mesoscopic heat and work
from the energetic formulation is crucial for the construction
of an algorithm in which the processes of particle volume
change and heat exchange are separated. Finally, as described
next, the energetic formulation permits us to define an effec-
tive mesoscopic Hamiltonian, from which all the reversible
dynamics can be derived.

B. Dynamics of mesoparticles

As a result of the ambiguities discussed above, the con-
struction of a consistent mesoscopic model with arbitrary
particle thermodynamics requires the introduction of addi-
tional assumptions. These assumptions and considerations are
itemized and discussed during the presentation of the formu-
lation. Note that in the previous subsection, we defined the
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single-particle properties, while in this section we analyze a
system of N mesoparticles, which requires explicit use of the
subscript i in the corresponding quantities.

(1) The interactions between N mesoparticles are defined
in terms of the mesoparticle variables only; namely, the inter-
actions are independent of the properties that characterize the
ensemble, and dependent only on the local properties.

(2) The equilibrium probability distribution of an ensem-
ble of N moving mesoparticles is given by

Peq({pi}, {ri}, {si})
 ∼ e−∑i

[
p2

i
2mi

+ui (si,ni )−T si

]/
(kBT )d
, (26)

where mi is the mass of a mesoparticle, and 
 ≡ (pN , rN , sN )
is a point in a 7N-dimensional phase space. For convenience,
we use ni({r j}), instead of the particle volume Vi = 1/ni

from this point onward in the formulation. The link between
Eq. (26) and the underlying physical properties is given by
Eqs. (3) and (4), together with the definition given in Eq. (10).
The function

H ({pi}, {ri}) =
∑

i

[
p2

i

2mi
+ ui(si, ni )

]
(27)

is the effective Hamiltonian, defining the system reversible
dynamics, with the internal energy u given as a function of
the mesoparticle coordinates through n({r j}), and depending
parametrically on the dressed entropy s. The mesoparticle
positions and momenta are referred to as the mechani-
cal (resolved) DoF since they are directly associated with
the reversible work and the kinetic energy of the particle,
respectively. Note that it is possible to add to the Hamil-
tonian [Eq. (27)] and the associated probability distribution
[Eq. (26)] a position-dependent potential energy �(r j ), which
describes, for example, electrostatic interactions, or to include
a contribution depending solely on the particle position such
as an external gravitational field. However, here for the sake of
simplicity, we do not consider such contributions. By switch-
ing dependent variables from s to u, the distribution in Eq. (26)
is equivalent to

Peq({pi}, {ri}, {ui})d
̃ ∼ e−∑i

[
p2

i
2mi

+ui−T s̃i (ui,ni )
]/

(kBT )d
̃,

(28)

which, therefore, can also be used to evaluate the ensemble
averages when needed; 
̃ ≡ (pN , rN , uN ).

(3) The reversible interactions are distinguished from
the irreversible interactions via their behavior under time-
reversibility. In other words, the reversible interactions are
even, while the irreversible interactions are odd.

1. Reversible, conservative interactions

Let us begin by formulating the reversible (conservative)
interactions. Implicit in the choice of the independent vari-
ables, 
̃ ≡ (pN , rN , uN ), and the form of the Hamiltonian in
Eq. (27) is the identification of both the reversible work and
the adiabatic condition. As such, the reversible interactions

follow straightforwardly from the Hamilton EoM:

ṙi =∂H

∂pi
= pi

mi
(29)

ṗi = − ∂H

∂ri
=
∑
j �=i

(
∂ui

∂r j

∣∣∣∣
si

− ∂u j

∂ri

∣∣∣∣
s j

)
(30)

In Eq. (30), we have used the translational invariance
of ui, which imposes

∑
j ∂ui/∂r j = 0. This allows us to

write ∂ui/∂ri = −∑ j �=i ∂ui/∂r j when the contribution due
to mesoparticle i is separated from the Hamiltonian. Equa-
tions (29) and (30) need to be supplemented by the adiabatic
condition

ṡi = 0. (31)

The conservative force is derived using Eqs. (1) and (13),
dsi = 0, and the requirement that the thermodynamic function
of the mesoparticle u(s, n) is both Galilean and solid-body
rotation invariant. These criteria lead to the conservation of the
linear and angular momenta [22,23], whereby we can express
W C due to the conservative interactions as

dW C =
∑

i

∑
j �=i

∂ui

∂r j

∣∣∣∣
si

dr j

=
∑

i

∑
j<i

(
∂ui

∂r j

∣∣∣∣
si

− ∂u j

∂ri

∣∣∣∣
s j

)
dri j

= 1

2

∑
i

∑
j �=i

fC
i jdri j ≡

∑
i

dW C
i , (32)

with ri j = ri − r j . From the last equation, we obtain an
expression for the reversible, conservative work exerted on
mesoparticle i, i.e.,

dW C
i = 1

2

∑
j �=i

fC
i jdri j, (33)

where the conservative force is then given as

fC
i j =

(
∂ui

∂r j

∣∣∣∣
si

− ∂u j

∂ri

∣∣∣∣
s j

)
= −

(
πi

n2
i

+ π j

n2
j

)
dwi j

dri j
ei j, (34)

where ei j = ri j/ri j is the separation-distance unit vector with
ri j ≡ |ri j |.

Note that defining the force as an adiabatic transformation
is convenient for devising a numerical integration splitting
algorithm [1], where the mechanical motions are separated
from the heat transfer. Moreover, it is important to realize we
implicitly consider that the internal DoF of the mesoparticle
relax much faster than the resolved DoF u and V . As such, we
implicitly assume that there is a clear separation of timescales
between the resolved and unresolved DoF [12].

2. Irreversible, dissipative interactions

Next, we formulate the irreversible (dissipative) interac-
tions. Analogous with macroscopic thermodynamics, for the
dissipative interactions, we require an extremum principle to
hold, i.e.,
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(4) In the absence of fluctuations, the spontaneous dynam-
ics of the system is such that

Ḟ < 0 (35)

where F is the exponent of Eq. (26),

F ({pi}, {ri}, {si}) =
∑

i

[
p2

i

2mi
+ ui(si, ni ) − T si

]
. (36)

By adding the dissipative force on the right-hand side of
Eq. (30), and by using Eq. (16), we obtain

ṗi = fC
i + fD

i , (37)

θi ṡi = q̇i + Ẇ irrev
i = q̇i + Ẇi − 1

2

∑
j �=i

fC
i j

(
pi

mi
− p j

m j

)
. (38)

In Eq. (38), we define the irreversible work, Ẇ irrev
i , as the irre-

versible effect of the motion of the mechanical DoF converted
into the heat. The overall dissipated work needs to be sepa-
rated between the mesoscopic system and the environment. It
is important to realize that in a general mesoscopic model, this
splitting follows from knowledge of the underlying physical
processes, which are outside of the thermodynamic frame-
work. In our model, due to the fact that the particles are
identical, it is reasonable to assume that the irreversible work
done by the dissipative forces is shared in equal proportions
by both interacting particles, i.e.,

Ẇ irrev
i = −1

2

∑
j �=i

fD
i j

(
pi

mi
− p j

m j

)
. (39)

Once we have defined the reversible work [Eq. (33)] and
the irreversible work, Ẇ irrev

i dt , we can define the heat as the
energy transferred by means other than those involving the
mechanical DoF. As such, we next define the irreversible heat
exchange between mesoparticles.

The heat flow on mesoparticle i, q̇i, can be separated into
the heat exchanged with neighboring mesoparticles j, q̇i j , and
the heat exchanged with the reservoir, Q̇i. Additionally, to
enforce energy conservation, we require that q̇i j = −q̇ ji. We
can then express the irreversible heat flow on particle i as

q̇i =
∑
j �=i

q̇i j + Q̇i. (40)

By inserting Eqs. (39) and (40) into Eq. (35), and by using
Eqs. (37) and (38), we arrive at

∑
i

ṡi >
∑

i

Q̇i

T
, (41)

where we have used the fact that the heat exchanged between
mesoparticles satisfies

∑
i

∑
j �=i q̇i j = 0. Further, by decom-

posing the left-hand side of the inequality in Eq. (41) into the
internally produced entropy ṡ(i j)

i , and the entropy due to the
interaction with the reservoir ṡ(res)

i , the entropy production of
the mesoparticle becomes

ṡi =
∑
j �=i

ṡ(i j)
i + ṡ(res)

i . (42)

As this property should be satisfied for an arbitrary number
of particles, the more stringent condition on each interaction
follows

ṡ(res)
i >

Q̇i

T
, (43)

ṡ(i j)
i + ṡ(i j)

j > 0. (44)

Interestingly, a statement equivalent to Eq. (44) can be found
in the theory of nonequilibrium thermodynamics [15,24].

At this point in the formulation, we could proceed by con-
sidering either Eq. (43) or Eq. (44). However, the equations
are analogous; therefore, for clarity and ease of presenta-
tion, let us proceed with Eq. (44). Substituting Eq. (38) into
Eq. (44) for each particle, we have

ṡ(i j)
i + ṡ(i j)

j = q̇i j

(
1

θi
− 1

θ j

)
+ fD

i j

(
pi

mi
− p j

m j

)(
1

θi
+ 1

θ j

)
> 0.

(45)

In the absence of fluctuations, the positiveness of Eq. (45)
allows us to identify the thermodynamic forces responsible for
the dissipative processes, where specifically these forces are
proportional to the factors multiplying fD

i j and q̇i j , respectively,
Eqs. (46) and (47) below.

A key ramification of identifying these forces is that
(5) The dynamic symmetries, namely Galilean invariance

and invariance under solid-body rotations, can be applied to
Eq. (45) to enforce the appropriate conservation laws for
the dissipative interactions in a manner equivalent to those
enforced for the conservative interactions [22].

We require that Eq. (45) is Galilean and solid-body rotation
invariant, which ensures that the interactions conserve both
linear and angular momenta.

3. Fluxes and thermodynamic forces

Next, we define the relationships between the fluxes and
thermodynamic forces. We assume that these relationships
are linear for both the dissipative interactions and the heat
flow [15,24]:

fD
i j = − γi j ei j

(
pi

mi
− p j

m j

)
ei j, (46)

q̇i j = − κi j (θi − θ j ), (47)

where γi j = γωi j , κi j = κω̄i j , γ is the friction coefficient,
κ is the heat conductivity parameter, and ωi j and ω̄i j are
weighting functions depending on the distance between the
mesoparticles, which become zero for ri j larger than the cut-
off ranges RD

cut and R̄cut, respectively. Note that Eqs. (46)
and (47) comply with the requirements of dynamic symmetry
mentioned above. The linearity between dissipative fluxes and
thermodynamic forces implies that neither γ nor κ depend on
p or θ (or u).

The dissipative forces of Eq. (46) have been defined in the
standard form [15,24]. However, Eq. (47) is notably different
from the form of q̇i j in both the original GenDPDE [1] method
and the DPDE [10] method itself. This alternative heat flow
model is a key result of this work, where the characteristics
are the following. The model: (i) satisfies Eq. (45); (ii) is
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expressed in terms of the proper estimators of the macroscopic
temperature, i.e., in terms of the particle temperatures; and
(iii) allows the GenDPDE method to be formulated in closed
form using the perspective of the dressed entropy s in terms of
the 
 variables only.

Key consequences of the formulation of both Eqs. (46)
and (47), particularly Eq. (47) given in terms of the proper
estimators of T , are that in equilibrium〈

fD
i j

〉 = 0, (48)

〈q̇i j〉 = 0. (49)

Satisfying the conditions in Eqs. (48) and (49) allow some
inconsistency issues to be avoided. For example, the use of
the naive definition of q̇i j = −κi j (1/θ j − 1/θi ), rather than
Eq. (47), would lead to 〈q̇i j〉 � κi j kB(1/CV,i − 1/CV, j ) �= 0,
where 〈q̇i j〉 �= 0 is the so-called spurious drift [16] that would
unwittingly be compensated for by the addition of ad hoc
terms in the EoM. Moreover, at equilibrium, to satisfy the
conditions in Eqs. (48) and (49), the system would move to
a (steady-state) distribution different than those postulated in
either Eq. (26) or Eq. (5). Note that the heat flow model
q̇i j = −κi j (1/θ̃ j − 1/θ̃i ), given in Eq. (70) of Ref. [1], uses
the proper estimator of T , 1/θ̃ , and avoids such issues. How-
ever, using the heat flow model of [1] requires a blending of
the bare and dressed entropies. While this blending does not
affect the GenDPDE framework, it causes the computation of
the dissipative interactions in the original GenDPDE method
to be rather complicated and cumbersome.

Last, consider the hypothetical heat flow model,

q̇i j = − κi j (θ̃i − θ̃ j ), (50)

instead of the alternative heat flow model of Eq. (47). The
difference between the models is a subtle change in the
temperature estimators, which for the hypothetical heat flow
model leads to

〈q̇i j〉 = −κi j (〈θ̃i〉 − 〈θ̃ j〉)

� −κi j kBT

(
1

CV,i
− 1

CV, j

)
�= 0. (51)

For a system of mesoparticles with different heat capacities,
here again the system would produce a spurious drift. There-
fore, if a heat flow model analogous to Fourier’s law of heat
conduction is desired within a linear Langevin equation, only
the alternative heat flow model of Eq. (47) given in terms
of the particle temperature is thermodynamically consistent
with the postulated probability distribution functions given by
Eqs. (26) and (28).

4. Random contributions

The final assumptions in the formulation concern the ran-
dom contributions in the EoM.

(6) In equilibrium, the spontaneous transitions between
states satisfy the detailed balance (DB) condition [16]:

Peq(
)W̄ (
 → 
′) = Peq(
∗)W̄ (
∗ → 
∗′), (52)

with 
∗ = ε
′ and 
∗′ = ε
, where ε assigns 1 to the even
variables under time-reversibility, and −1 to the odd variables.

The resulting dynamics leaves the measure in Eq. (26) invari-
ant.

(7) The effect of the unresolved DoF in terms of the ran-
dom contributions is additive, i.e., the dynamic equations are
Langevin-like. The dynamics of the probability distribution
can then be cast under a Fokker-Planck equation, where only
the first and second moments of the distribution become rel-
evant; see Ref. [16]. Furthermore, we consider Markovian
processes only.

C. GenDPDE equations-of-motion

In this section, we present the complete set of EoM. For
convenience, we use a discrete form of Eqs. (29) and (30),
where primed variables refer to the final state at time t + δt
and nonprimed variables to the initial state at time t ; δt is the
time step. Note that in the discrete form, the interpretation of
the random term is evident; thus, no Ito-Stratonovich dilemma
exists. Considering terms up to the first order in δt :

r′
i = ri + pi

mi
δt, (53)

p′
i = pi + (fC

i + fD
i

)
δt +

∑
j �=i

δpR
i j, (54)

where fC
i =∑ j �=i fC

i j , fD
i =∑ j �=i fD

i j , and δpR
i j is the random

contribution to the momentum. In Ref. [1], we demonstrated
that δpR

i j , consistent with the DB condition, is

δpR
i j = √kBγi j (θi + θ j ) ξi j ei j δt1/2, (55)

where δpR
i j = −δpR

ji. The normalized Gaussian random num-
bers ξi j satisfy

〈ξi j〉 = 0, (56)

〈ξi jξkl〉 = (δikδ jl − δilδ jk )δtt ′ , (57)

where the average is taken over the probability distribution of
ξi j . Moreover, the random numbers are correlated only if they
belong to the same time interval.

The EoM for the particle internal energy results from the
energy balance (see Eq. (78) of Ref. [1]):

u′
i = ui − 1

2

∑
j �=i

(
pi

mi
− p j

m j

)
f C
i j δt

− 1

2

∑
j �=i

(
pi

mi
− p j

m j

)
f D
i j δt − 1

2

∑
j �=i

(
pi

mi
− p j

m j

)
δpR

i j

− 1

2mi

∑
j �=i

∑
l �=i

δpR
i jδpR

il + q̇iδt +
∑
j �=i

δuR
i j, (58)

where q̇i =∑ j �=i q̇i j , and δuR
i j is the random contribution to

the heat associated with the alternative heat flow model q̇i j of
Eq. (47). The system dynamics, Eqs. (53), (54), and (58), is
completed by specifying the properties of δuR

i j .
However, before proceeding, let us finalize the complete

forms of both the irreversible work done on the mesoparticle,
and the heat exchanged between mesoparticles. By adding the
random contributions to Eq. (39), the complete irreversible
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work becomes

δW irrev
i = −1

2

∑
j �=i

(
pi

mi
− p j

m j

)
f D
i j δt

− 1

2

∑
j �=i

(
pi

mi
− p j

m j

)
δpR

i j − 1

2mi

∑
j �=i

∑
l �=i

δpR
i jδpR

il ,

(59)

which by definition is identified from the (irreversible) action
of the mechanical DoF of the system on the energy balance,
Eq. (58). Note that the random contributions to the irreversible
work in Eq. (59) also include a nonlinear quadratic term [the
third term in Eq. (59)], which is of order O(δt ), and there-
fore cannot be neglected within the level of accuracy of our
algorithm. Interestingly, when all the terms on the right-hand
side of Eq. (59) are averaged with respect to both the equilib-
rium distribution and the random momenta, then 〈Ẇ irrev

i 〉 = 0,
which is the expected behavior for thermal equilibrium.

The remaining terms in the energy balance are associated
with the heat, such that rewriting Eq. (58) as u′

i = ui + δW C
i +

δW irrev
i + δqi, gives

δqi = q̇iδt +
∑
j �=i

δuR
i j, (60)

where δuR
i j can be interpreted as the random heat exchanged

between neighboring mesoparticles. With the form of the heat
flow established in Eq. (47), the random energy contribution
δuR

i j is required to ensure that the particle internal energy
properly samples the equilibrium probability distribution as
the particle internal energy varies in time. This random energy
transfer satisfies the core concept underlying the fluctuation-
dissipation theorem (FDT).

Last, to finalize the complete set of EoM, we specify the
properties of δuR

i j . In Appendix A, by following Ref. [1], we
derive δuR

i j consistent with q̇i j of Eq. (47) as

δuR
i j = √2kBκi jθiθ j ξ̄i jδt1/2, (61)

where ξ̄i j is the normalized Gaussian number with properties

〈ξ̄i j〉 = 0, 〈ξ̄i j ξ̄kl〉 = (δikδ jl − δilδ jk )δtt ′ .

As before, ξ̄i j (t ) and ξ̄i j (t ′) are uncorrelated if these do not
belong to the same time interval.

Analogous to the heat flow between mesoparticles,
Eqs. (47) and (61), the heat flow between mesoparticle i and
the heat reservoir is Q̇i = −κi(θi − T ) + Q̇R

i , where the prop-
erties of the random heat flux Q̇R

i are analogous to Eq. (61),
and the reservoir temperature is set to T . For simplicity, if
we ignore the interaction with the reservoir, then the heat
exchange becomes analogous to Eq. (59), i.e.,

δqi = −
∑
j �=i

κi j (θi − θ j )δt +
∑
j �=i

δuR
i j . (62)

Equations (47) and (61) are the key results of this work since
they cast the GenDPDE method [1] under a consistent frame-
work, depending only on the particle variables connected with
the dressed entropy. In comparison, the heat flow model pre-

sented in the original GenDPDE work [1] is

δqi = −
∑
j �=i

κi j

(
1

θ̃ j
− 1

θ̃i

)
δt +

∑
j �=i

δuR
i j, (63)

with

δuR
i j = √2kB κi j ξ̄i jδt1/2, (64)

where the temperature is defined via the entropic formulation
instead, i.e., 1/θ̃ = ∂ s̃/∂u. While Eq. (63) can be expressed
in terms of θ via Eq. (17), we prefer to employ the direct
link to the proper estimator of T , which is θ . Although
Eqs. (62) and (63) are physically consistent and equivalent,
as we will demonstrate below, they produce different forms
of the macroscopic heat conductivity coefficient, particularly
with respect to its temperature-dependence. An advantage of
using Eq. (62) within the GenDPDE method is that the func-
tional form is analogous to Fourier’s law of heat conduction.

Last, in Appendix B, we present the numerical discretiza-
tion of the EoM [Eqs. (53), (54), and (58)] with the alternative
heat flow model, Eqs. (62) and (61), which was determined us-
ing the extended Shardlow splitting algorithm (eSSA) [1,25].

III. RESULTS

In this section, we provide further discussion and insight
into the formulation presented. We begin by demonstrating
the thermodynamic consistency of the alternative heat flow
model, followed by a brief comparison to the heat flow model
in the original GenDPDE work [1]. We finish with a discus-
sion of other implications that arose from the analysis of the
mesoparticle thermodynamic transformations.

A. Alternative heat flow model

1. Consistency of alternative heat flow model

The thermodynamic consistency of the alternative heat
flow model introduced in this work was verified by analyzing
the particle probability distributions for the van der Waals
equation-of-state (EoS) at an initial system temperature T =
1.5 and system particle density ρ = 0.5 with ρ = N/V , where
V is the system volume. The calculation of the probability dis-
tributions for the particle internal energy, particle temperature,
particle momenta, and particle local density is detailed in the
original GenDPDE work, see Secs. 4.3 and 5.1 in Ref. [1].
Figure 1 shows a comparison of the distributions determined
from the GenDPDE simulation with the alternative heat flow
model against the theoretical distributions obtained from the
general probabilities. Consistent with the original GenDPDE
work [1], excellent agreement between the simulated and the-
oretical distributions was found, indicating consistency of the
alternative heat model and correct sampling of the equilibrium
distributions by the integration algorithm. In addition, we also
analyzed the energy conservation in the GenDPDE simula-
tions with the alternative heat flow model using the eSSA. We
observed excellent energy conservation with the magnitude
of the energy drift consistent with the drift observed in the
original GenDPDE work, see Sec. 5.2.2 in Ref. [1].

As a final verification of the alternative heat flow model, we
determined the particle probability distributions from a simu-
lation of mesoparticles fixed in space. Under these conditions,
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FIG. 1. Equilibrium probability distributions for the van der Waals equation-of-state at initial system temperature T = 1.5 and system
particle density ρ = 0.5: (top left) particle internal energy; (bottom left) particle temperature; (top right) particle momentum; (bottom right)
local particle density. Dashed lines are the probability distributions given by Eqs. (90), (91), (89), and (92) in Ref. [1], respectively, while solid
lines are determined from a GenDPDE simulation with the alternative heat flow model. Due to each of the particle momenta being nearly
identical, the plots for each component are indistinguishable.

the mesoparticles are subject only to heat exchange modeled
by Eq. (62) supplemented with Eq. (61). A small constant-
volume heat capacity value was used for the mesoparticle,
CV = 5kB, which provides stringent heat exchange conditions
due to the non-Gaussian energy probability distribution (see
Fig. 2). In this case, the probability distribution for the particle

FIG. 2. Equilibrium particle internal energy probability distribu-
tion from a GenDPDE simulation of mesoparticles fixed in space
using a small constant-volume heat capacity CV = 5kB, with initial
system temperature T = 1.5, system particle density ρ = 0.5, and
heat conductivity parameter κ = 1. The theoretical distribution was
determined from Eq. (65).

internal energy fluctuations becomes

P(u) ∝ e−u/(kBT )uCV /kB−1. (65)

Note that the exponent of u is CV /kB − 1 and not C̃V /kB as in
Ref. [10], which is due to C̃V = ∂u/∂θ̃ |V = CV − kB, where
CV = ∂u/∂θ |V ; see also Eq. (17). A comparison between the
simulation and theoretical distributions is shown in Fig. 2,
where again excellent agreement was observed, including for
the skewness of the distribution.

2. A brief discussion comparing the original and alternative heat
flow models

As mentioned previously, the alternative and original heat
flow models are physically consistent and thermodynami-
cally equivalent. However, some underlying differences exist
between the models, some of which have already been men-
tioned as we proceeded with the formulation. For a particular
application or future implementation of the GenDPDE frame-
work, while these differences may appear subtle, one of the
heat flow models may be better suited for a particular case.
As such, the optimal choice of the model should be carefully
assessed to determine its suitability in an application or im-
plementation.

A key difference between the heat flow models worth
highlighting is the choice of the proper estimators of the
thermodynamic properties. While both models can be ex-
pressed in terms of the proper estimator of the macroscopic
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temperature, their respective forms differ. The alternative heat
flow model of Eq. (47) allows the GenDPDE framework
to be formulated in a closed form using the dressed en-
tropy s in terms of the 
 variables only, while the original
heat flow model requires a blending of the bare and dressed
entropies [1]. While this blending does not alter the ther-
modynamics, the calculation of the dissipative interactions
is more complex, and subsequently more computationally
demanding.

Last, a possible consequence of proposing an alternative
form for the mesoscopic heat exchange is a change in the func-
tional form of the macroscopic heat conductivity coefficient,
λ, with respect to the state variables of the ensemble, which
are T and ρ in our case. Therefore, we compare the functional
form of λ that results from both heat flow models. When
deriving the expression for λ, we only consider the dissipative
contribution, λD, and ignore the kinetic contribution, λK . This
is a reasonable assumption because λK is independent of the
heat flow model, and is primarily related to the interparticle
friction model employed. Further, we consider the ideal DPD
fluid, where conservative interactions are absent. Notably, if
κρ3 ∼ 1, then both mechanical contributions leading to ki-
netic and potential energy transport scale as kBT � CV T , and
are negligible when compared to the transport due to direct
heat exchange between particles.

To begin, we consider the form of λD for the original heat
flow model Eq. (63), and recall that this model is the same in
both the original GenDPDE and DPDE frameworks. As such,
the form of λD will be equivalent, which has been derived
previously for the DPDE framework [26] as

λD = 2π R̄5
cutρ

2κ

3T 2
. (66)

The derivation of λD for the alternative heat flow model is
analogous to the derivation given in Ref. [26], where the
resulting expression is

λD = 2π R̄5
cutρ

2κ

315
. (67)

Comparing Eqs. (66) and (67), the units of κ differ, i.e.,
“energy×temperature” units versus “energy/temperature”
units, respectively. Moreover, it is evident that the original
and alternative heat flow models result in different functional
forms for λD with respect to the state variables. The alternative
heat flow model leads to a λD that is independent of the
system temperature T , while λD ∝ 1/T 2 for the original heat
flow model. The strong temperature dependence exhibited by
the original heat flow model may become a disadvantage in
mesoscopic simulations of systems with a weak temperature
dependence on λ, or for mesoscopic systems with large tem-
perature gradients. A detailed study comparing the numerical
behavior of the original and alternative heat flow models,
including the general dependence of the heat conductivity
coefficients on T will be addressed elsewhere.

B. Implications from the analysis of the mesoparticle
thermodynamic transformations

In addition to the development of the alternative heat flow
model, several consequences and ramifications from revisiting

the formulation of the GenDPDE framework have emerged.
Next, we summarize those already mentioned either here or
in the previous work [1], along with some that were not
previously mentioned.

(1) The choice of the dependent variable used to formulate
the GenDPDE method alters the mesoparticle thermodynamic
description. Thermodynamic relations, rather than being func-
tions, are transformed into distributions when the choice of the
independent variables is changed within the same ensemble.
This fact also has an impact on the transport properties be-
cause the thermodynamic forces are defined using Onsager’s
perspective.

(2) A definitive path for deriving any dressed thermody-
namic quantity from the corresponding bare thermodynamic
quantity exists. Transformations to different ensembles and to
different sets of independent particle variables can be con-
sistently introduced, along with the transformations of the
thermodynamic forces acting on the system.

(3) The mesoscopic thermodynamic transformations in-
troduce additional terms of the order of the size of the local
fluctuations, which prevent an unambiguous definition of both
the heat and work. While there is a preferred choice of the
physically meaningful definition of the heat and work for the
mesoparticles, the choice becomes irrelevant in the thermody-
namic limit.

(4) The thermodynamic framework presented here resem-
bles stochastic thermodynamics (ST) [21,27], which was
developed for small systems with significant fluctuations. As
such, it is interesting to analyze the definitions of the meso-
scopic work and heat, Eqs. (22) and (23), within the ST
framework. A significant aspect of ST (as well as of Jarzin-
sky’s and Crooks’ theories of irreversible processes [28,29]) is
that the control parameters drive a fluctuating system from one
state to another, which involves heat and work transfer with
the environment. In our framework, as well as in the canonical
ensemble, the control parameters are T and V . Hence, from
Eq. (22), one can isothermally and reversibly vary the volume
of the system, and measure the average work done. This result
is given in Eq. (21), which can be related to an ensemble
average over the property estimator π . The quasistatic nature
of the volume variation guarantees that ensemble averages
over π are the equilibrium averages. However, from Eq. (23),
the analogy to the work is not obvious since s is neither an es-
timator of the entropy of the system, nor a control parameter.
From the first law of thermodynamics, one can write

〈dq〉 = d〈u〉 − 〈dW C〉 = d〈u〉 + 〈π〉dV . (68)

The differential symbol d can be taken outside of the ensem-
ble average for u because u is a state function, unlike q and
W . Next, one can relate the heat in terms of averages over the
estimators, i.e.,

d〈u〉 = ∂〈u〉
∂T

∣∣∣∣
V

dT + ∂〈u〉
∂V

∣∣∣∣
T

dV, (69)

where

∂〈u〉
∂T

∣∣∣∣
V

= 1

kBT 2

[〈u2〉 − 〈u〉2
]
,

∂〈u〉
∂V

∣∣∣∣
T

= −〈π〉 + 1

kBT
[〈u π〉 − 〈u〉〈π〉],
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and hence,

〈dq〉 = 1

kBT 2
[〈u2〉 − 〈u〉2]dT + 1

kBT
[〈u π〉 − 〈u〉〈π〉]dV,

(70)

which coincides with T dS. Moreover, for small fluctuations,
kB/CV � 1, so the first term on the right-hand side of Eq. (70)
gives the classical result 〈dq〉V � CV (T,V )dT , where CV =
∂u/∂θ |V is the constant-volume heat capacity calculated at
the saddle point. In general, corrections of the order of kB/CV

should be expected. Finally, it is important to realize that S �=
〈s〉, since s is not an estimator of the entropy of the system.

Note that Eq. (70) is specific for the canonical ensemble.
For example, for the Gibbs ensemble, one has

〈dW C〉 = −Pd〈V〉 = −〈π〉
(

∂〈V〉
∂T

∣∣∣∣
P

dT + ∂〈V〉
∂P

∣∣∣∣
T

dP

)
,

(71)

from which an expression analogous to Eq. (21) can be de-
rived. However, 〈dq〉 = T dS. By expanding S in terms of dT
and dP, one would determine an equation analogous, but not
equal to Eq. (70), due to the change in the control parameters
from T , V to T , P. Therefore, since there is no estimator of
the entropy of the system, this leads to an expression for the
average heat written in terms of other system estimators, and
such a relationship becomes ensemble dependent.

(5) Furthermore, in the ST framework, u(s,V ) plays the
role of a Hamiltonian of the potential of mean force [12],
which can be defined if the dynamics of the unresolved
DoF relax much faster than the dynamics of the resolved
DoF. A system having both bare and dressed entropies re-
quires that the internal variables, u and V , are always in
thermal equilibrium within the mesoparticle. However, such
an assumption parallels the local equilibrium hypothesis, the
basis of the classical theory of nonequilibrium thermodynam-
ics [15]. Therefore, we implicitly consider the validity of
internal thermal equilibrium within a GenDPDE application.

(6) The choice of the proper estimators of the thermody-
namic properties that are embedded in the thermodynamic
description must be considered to rigorously connect the
particle thermodynamics to the corresponding macroscopic
properties. This criteria is connected with the requirement that
equilibrium averages of the linear thermodynamic forces are
zero if expressed in terms of the proper estimators. These are
necessary conditions to formulate Langevin-like equations for
the dynamics with an additive random contribution with zero
mean. Generally, nonlinear thermodynamic forces and spu-
rious drifts can be compensated by additional contributions
in the Langevin equations, resulting in random terms with a
nonzero average. Although conceptually this can be done, we
proceeded in such a way to completely avoid this complexity.

(7) The particle thermodynamics may be nonextensive
with respect to the particle material content. For example,
the interfacial contributions of the mesoscopic objects could
represent a significant fraction of the internal energy content
based on the particle size [30–32].

(8) The entanglement of the thermal and mechanical
properties of the system into a state-dependent Hamiltonian
introduces no-go theorems that restrict the suitable functional

forms of the equations describing the reversible particle inter-
actions. Effectively, the existence of the Hamiltonian Eq. (27)
embeds the following necessary relation

∂θ

∂n

∣∣∣∣
s

= 1

n2

∂π

∂s

∣∣∣∣
n

, (72)

which is analogous to the macroscopic Maxwell relation [19].
In the context of GenDPDE, Eq. (72) indicates that if the
forces depend on the temperature θ (or more properly on
s), then the EoS of the particle should have the appropriate
volume-dependence through n. Hence, the thermal and me-
chanical components cannot be independently proposed, but
instead must satisfy Eq. (72). Moreover, the existence of the
Hamiltonian Eq. (27) also implies that the relation

∂fC
i

∂r j
= ∂fC

j

∂ri
, (73)

known as Warren’s no-go theorem for density-dependent
forces [33], is inherently satisfied.

IV. CONCLUSIONS

We revisited the formulation of the GenDPDE method,
and rederived the particle thermodynamics to ensure consis-
tency between the local thermodynamics in the mesoscopic
systems and the corresponding macroscopic properties. We
demonstrated this by introducing unambiguous, physically
meaningful definitions of the heat and work, which lead to the
formulation of an alternative heat flow model that is analogous
to Fourier’s law of heat conduction. We presented further
analysis of the internal, unresolved DoF of the mesopar-
ticles by considering the thermodynamics of an individual
mesoparticle within the GenDPDE framework. Several key
implications from the analysis were discovered and discussed,
which are summarized as the following. The mesoscopic ther-
modynamic transformations: (1) are altered by the choice of
the dependent variables; (2) introduce additional terms of
the order of the size of the local fluctuations, where these
fluctuations differentiate the mesoscopic and macroscopic de-
scriptions; (3) require that the particle thermodynamics be
considered as a distribution, rather than a thermodynamic po-
tential; (4) allow for a definitive path to determine any dressed
thermodynamic quantity from the corresponding bare thermo-
dynamic quantity; and (5) require proper estimators of the
macroscopic thermodynamic properties. These implications
are critical when considering future extensions or implemen-
tations of the GenDPDE framework.

We also considered fundamental questions regarding the
thermodynamic description of mesoparticles subject to signif-
icant system fluctuations in the context of ST [21,27]. Here
the novelty with respect to ST is that the mesoscopic system
of the GenDPDE approach is described via local thermody-
namic functions related to its internal states, in addition to
the mechanical DoF. Compared to the typical structureless
systems addressed within the ST framework [21], our meso-
scopic system can also store internal energy. The scenario is
more varied because energy dissipated through irreversible
work in GenDPDE can be shared between the system and
the environment, while in structureless colloids it is com-
pletely absorbed by the environment. Another difference is
that in GenDPDE, we allow direct heat exchange between

062128-12



GENERALIZED ENERGY-CONSERVING DISSIPATIVE … PHYSICAL REVIEW E 103, 062128 (2021)

the system and the environment, while there is no equiv-
alent for the case of a structureless colloid embedded in
a fluctuating fluid. This analogy will be further explored
elsewhere.

For the alternative heat flow model introduced here, the
analysis allowed us to distinguish between the bare and
dressed entropies s̃ and s, respectively, from which two es-
timators of the macroscopic temperature T were derived. We
found that compared to the original heat flow model [1], the
alternative heat flow model leads to a change in the functional
form of the macroscopic heat conductivity coefficient with
respect to the state variables. Furthermore, it allowed us to
demonstrate that it is essential to use these proper estimators
of the system temperature to build the linear Langevin equa-
tions [16]. We have also shown that, with the alternative form
of the heat flow model, the macroscopic heat conductivity co-
efficient is independent of the temperature. (Note that general
Langevin equations with nonlinear heat flow models require a
separate treatment, which is beyond the scope of this work.)

In summary, the GenDPDE framework developed here is
capable of tackling the dynamics of complex systems subject
to fluctuations within a consistent framework, which provides
a direct connection with the underlying physics of the system.
As such, other scenarios such as chemical reactions in multi-
phase systems can be addressed [34,35].
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APPENDIX A: FLUCTUATION-DISSIPATION THEOREM
FOR THE ALTERNATIVE HEAT FLOW MODEL

The derivation of the FDT follows the derivation in Ap-
pendix B of Ref. [1], which uses the discrete form of the
algorithm rather than the stochastic differential equations.
Schematically, the numerical discretization algorithm pro-
vides a transition from a state point 
̃ ≡ ({pi}, {ri}, {ui}) at t
into a new state point 
̃′ ≡ ({p′

i}, {r′
i}, {u′

i}) at t + δt , where
the transition is considered as a discrete stochastic process
rather than a continuous process. The new state point is a
function of the initial state point, system dynamic properties,

and the value taken by the collection of random numbers �i j .
The algorithm can be written as


̃′ = 
̂[
̃, �], (A1)

where 
̂ is the generic function that specifies the dynamics,
and its arguments represent the 
̃-dependent variables. The
transition also parametrically depends on δt . The transition
probability thus becomes

W̄ (
̃ → 
̃′)δt = 〈δ(
̃′ − 
̂[
̃, �])〉�, (A2)

where the subscript � indicates that the average is taken over
all realizations of the random force pairs �i j . From Eq. (A2)
and the causal nature of the algorithm, it follows that∫

d
̃′W̄ (
̃ → 
̃′)δt =
∫

d
̃′ 〈δ(
̃′ − 
̂[
̃, �])〉� = 1.

(A3)

The reverse trajectory is defined as 
̃∗ → 
̃∗′, where 
̃∗ ≡
({−p′

i}, {r′
i}, {u′

i}) and 
̃∗′ ≡ ({−pi}, {ri}, {ui}). The sign
change depends on the parity under time reversal of the
variable [16]. Note that the discrete nature of the algorithm
requires that the initial and final state points also need to be
exchanged in the time-reversibility operation.

The stochastic process described by the algorithm satis-
fies a master equation with the transition probabilities given
by Eq. (A2). Under the condition of sufficiently small fluc-
tuations, the master equation can be transformed into a
Fokker-Plank equation, characterized only by the first and
second moment of the transition probability W̄ (
̃ → 
̃′) [16].
Therefore, to fix the form of the FDT at the level of the
Fokker-Plank equation, we need to determine only the first
and second moments of the variable in Eq. (52).

We start the evaluation of the first moment of the par-
ticle internal energy distribution by using Eq. (52). While
for convenience we consider the dressed entropy s as the
independent variable here, equivalently we may also use the
particle internal energy u as the independent variable, since
the distributions given in Eqs. (5) and (9) are themselves
equivalent. Using the DB condition Eq. (52), we have∫

d
̃d
̃′Peq(
̃) u′
i W̄ (
̃ → 
̃′)

=
∫

d
̃d
̃′ Peq(
̃∗) u′
i W̄ (
̃∗ → 
̃∗′)

=
∫

d
̃∗ Peq(
̃∗) u∗
i = 〈ui〉, (A4)

where Eq. (A3) was used for the last equality. The transition
probability Eq. (A2) and the use of Eq. (58) in Eq. (A4) give∫

d
̃ Peq(
̃)

[
1

2

∑
j �=i

(
pi

mi
− p j

m j

)
ei j γi jei j

(
pi

mi
− p j

m j

)
δt

− 1

2mi

∑
j �=i

∑
l �=i

〈
δpR

i jδpR
il

〉
ξ
+ q̇iδt +

∑
j �=i

〈
δuR

i j

〉
ξ̄

]
= 0.

(A5)

The contribution due to the conservative force is not in-
cluded because it identically vanishes due to the positions and
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velocities being uncorrelated in equilibrium. Similarly, the
[1/2

∑
j �=i (pi/mi − p j/mj )δpR

i j] term vanishes since causal-
ity indicates that the random momenta is not correlated with
the actual value of the velocity. Moreover, the first and second
terms identically cancel; see the derivation of the FDT in
Ref. [23]. Therefore, Eq. (A5) simplifies to∫

d
̃ Peq(
̃)

(
q̇iδt +

∑
j �=i

〈
δuR

i j

〉
ξ̄

)
= 0. (A6)

We can now introduce the explicit expression for the alterna-
tive heat flow model, and changing the integration variables
from 
̃ ≡ (pN , rN , uN ) to 
 ≡ (pN , rN , sN ), we arrive at∫

d
 Peq(
)

[
−
∑
j �=i

κi j (θi − θ j )δt +
∑
j �=i

〈
δuR

i j

〉
ξ̄

]
= 0.

Since 〈θi〉 = 〈θ j〉 = T , it follows that 〈δuR
i j〉ξ̄ = 0. Therefore,

the alternative heat flow model introduces no spurious energy
drift in the EOM that would need to be compensated by the
numerical integration algorithm.

Next, we consider the second moment of the u distribu-
tion. Again, using the DB condition Eq. (52) together with
Eq. (A3), we have∫

d
̃d
̃′Peq(
̃) u′
i u′

j W̄ (
̃ → 
̃′)

=
∫

d
̃d
̃′ Peq(
̃∗) u′
i u′

j W̄ (
̃∗ → 
̃∗′)

=
∫

d
̃∗ Peq(
̃∗) u∗
i u∗

j = 〈ui u j〉. (A7)

Then using the transition probability Eq. (A2), we obtain

∫
d
̃ Peq(
̃)

⎛
⎝
⎧⎨
⎩ui

⎡
⎣1

2

∑
k �= j

(
p j

m j
− pk

mk

)
γ jk

(
p j

m j
− pk

mk

)
δt − 1

2mi

∑
k �= j

∑
l �= j

〈
δpR

jkδpR
jl

〉
ξ

⎤
⎦
⎫⎬
⎭

+ (i ↔ j) + (ui q̇ j + u j q̇i )δt + 〈δuR
i δuR

j

〉
ξ̄
+ 1

4

∑
k �=i

∑
l �= j

( pi

mi
− pk

mk

)〈
δpR

ikδpR
jl

〉
ξ

(
p j

m j
− pl

ml

)
δt

⎞
⎠ = 0. (A8)

In Ref. [23], we have already shown that the sum of the terms involving momenta identically cancel; therefore, we are left with∫
d
̃ Peq(
̃)

[
(ui q̇ j + u j q̇i )δt + 〈δuR

i δuR
j

〉
ξ̄

] = 0. (A9)

Analogous to the simplification of Eq. (A6) when evaluating the first moment, we can substitute the explicit expression for the
alternative heat flow model, and change the integration variables from 
̃ ≡ (pN , rN , uN ) to 
 ≡ (pN , rN , sN ). After which, we
arrive at ∫

d
 Peq(
)

(
−u j

∑
k

κikθk δt − ui

∑
l

κ jlθl δt + 〈δuR
i δuR

j

〉
ξ̄

)
= 0, (A10)

where we introduced κii ≡ −∑ j �=i κi j and extended the summation to all the particles, for compactness of the notation.
According to Eq. (61), the random energy correlation is

〈
δuR

i δuR
j

〉
ξ̄

=
∑
k �=i

∑
l �= j

αikα jl〈ξ̄ik ξ̄ jl〉δt =
[∑

k �=i

α2
ikδi j − α2

i j (1 − δi j )

]
δt . (A11)

Next, to determine the FDT expression for αi j , we start with Eq. (A10), and first consider only the case of j �= i. Since the
integration with respect to momenta and positions can be straightforwardly performed at the end, we focus on the integration
with respect to u, while keeping the mesoparticle positions fixed. Furthermore, because the system is in contact with a heat
reservoir of temperature T , ui of each mesoparticle can vary independently because the total energy is not fixed. Therefore, we
can switch to s as the independent variable, and by using

∂

∂sk
e
∑

r [sr/kB−ur/(kBT )] =
(

1

kB
− θk

kBT

)
e
∑

r [sr/kB−ur/(kBT )],

the first term on the left-hand side of Eq. (A9) becomes∫
ds1 . . . dsN e

∑
r [sr/kB−ur/(kBT )]

(
ui

∑
k

κ jk θk

)

=
∫

ds1 . . . dsN e
∑

r [sr/kB−ur/(kBT )]

[∑
k

κ jk T

(
1 + kB

∂

∂sk

)
ui

]

=
∫

ds1 . . . dsN e
∑

r [sr/kB−ur/(kBT )] kBT θi κ ji

=
∫

ds1 . . . dsN e
∑

r [sr/kB−ur/(kBT )] kBθ jθi κ ji. (A12)
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In Eq. (A12), we considered j �= i only, where the last equality
follows from the independence of the integrations on each
mesoparticle.

The case when i = j is obtained using κii ≡ −∑ j �=i κi j :

∫
ds1 . . . dsN e

∑
r [sr/kB−ur/(kBT )] kBT θi κii

= −
∫

ds1 . . . dsN e
∑

r [sr/kB−ur/(kBT )] kBT θi

∑
j �=i

κ ji

=
∫

ds1 . . . dsN e
∑

r [sr/kB−ur/(kBT )]

(
−kB

∑
j �=i

θ jθi κ ji

)
.

(A13)

By combining Eqs. (A11), (A12), and (A13) along with κi j =
κ ji, the FDT becomes

α2
i j = 2kB κi j θiθ j . (A14)

Note that the replacement of T by θ in Eqs. (A11) and (A12)
was possible because it did not change the values of the
integrals. This replacement allows us to define the system
dynamics in terms of the particle properties only; however,

note that this would not be possible if κi j was a function of θ

or u.

APPENDIX B: NUMERICAL DISCRETIZATION
ALGORITHM

The integration of the EoM [Eqs. (53), (54), and (58)] with
the alternative heat flow model, Eq. (62) supplemented with
Eq. (61), was performed using the extended Shardlow splitting
algorithm (eSSA) [1,25]. The eSSA separates the integration
into reversible and irreversible terms with the overall solution
operator [36], �δt , given as

�δt � �irrev
δt ;1,2 ◦ �irrev

δt ;1,3 ◦ ... ◦ �irrev
δt ;i, j ◦ ... ◦ �irrev

δt ;N−2,N

× ◦�irrev
δt ;N−1,N ◦ �rev

δt . (B1)

The reversible term �rev
δt corresponds to

dri = pi

mi
δt (i = 1, ..., N ),

dpi = f C
i δt,

dui = −1

2

∑
j �=i

vi jf C
i j δt, (B2)

where f C
i =∑ j �=i fC

i j and vi j = pi/mi − p j/mj .

The reversible term �rev
δt is discretized using the velocity-Verlet algorithm [37] as

pi

(
t + δt

2

)
= pi(t ) + δt

2
f C
i (t ) (i = 1, ..., N ),

ri(t + δt ) = ri(t ) + δt
pi
(
t + δt

2

)
mi

,

ui

(
t + δt

2

)
= ui(t ) − δt

4

∑
j �=i

vi j (t )f C
i j (t ),

evaluate :
{
f C
i (t + δt)

}N

i=1,

pi(t + δt ) = pi

(
t + δt

2

)
+ δt

2
f C
i (t + δt ) (i = 1, ..., N ),

evaluate :

{∑
j�=i

vij(t + δt)f C
ij (t + δt)

}N

i=1

,

ui(t + δt ) = ui

(
t + δt

2

)
− δt

4

∑
j �=i

vi j (t + δt )f C
i j (t + δt ) (i = 1, ..., N ). (B3)

Each irreversible term �irrev
δt ;i, j then corresponds to

dpi− j
i = f D,i− j

i j δt + δpR,i− j
i j ,

dpi− j
j = −dpi− j

i , (B4)

dui− j
i = −1

2
d

(
pi− j

i pi− j
i

2mi
+ pi− j

j pi− j
j

2mj

)
+ q̇i− j

i j δt + δuR,i− j
i j ,

dui− j
j = −1

2
d

(
pi− j

i pi− j
i

2mi
+ pi− j

j pi− j
j

2mj

)
− q̇i− j

i j δt − δuR,i− j
i j , (B5)
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where the superscript i − j indicates that the variation of momenta and particle internal energy is considered for a pair of
interacting particles i and j only.

Each irreversible term �irrev
δt ;i, j can also be discretized using the velocity-Verlet algorithm [1,25] as

pi

(
t + δt

2

)
= pi(t ) − δt

2
γi jvi j (t )ei jei j + δt1/2

2

√
kBγi j (θi + θ j ) ξi jei j,

p j

(
t + δt

2

)
= p j (t ) + δt

2
γi jvi j (t )ei jei j − δt1/2

2

√
kBγi j (θi + θ j ) ξi jei j,

pi(t + δt ) = pi

(
t + δt

2

)
− δt

2

γi j

1 + Mi j

2 γi jδt

{
vi j

(
t + δt

2

)
ei jei j + δt1/2

2
Mi j

√
kBγi j (θi + θ j ) ξi jei j

}

+ δt1/2

2

√
kBγi j (θi + θ j ) ξi jei j,

p j (t + δt ) = p j

(
t + δt

2

)
+ δt

2

γi j

1 + Mi j

2 γi jδt

{
vi j

(
t + δt

2

)
ei jei j + δt1/2

2
Mi j

√
kBγi j (θi + θ j ) ξi jei j

}

− δt1/2

2

√
kBγi j (θi + θ j ) ξi jei j,

ui(t + δt ) = ui(t ) − 1

2

[
pi(t + δt )pi(t + δt )

2mi
+ p j (t + δt )p j (t + δt )

2mj
− pi(t )pi(t )

2mi
− p j (t )p j (t )

2mj

]

− δt κi j (θi − θ j ) + δt1/2
√

2kBκi jθiθ j ξ̄i j,

u j (t + δt ) = u j (t ) − 1

2

[
pi(t + δt )pi(t + δt )

2mi
+ p j (t + δt )p j (t + δt )

2mj
− pi(t )pi(t )

2mi
− p j (t )p j (t )

2mj

]

+ δt κi j (θi − θ j ) − δt1/2
√

2kBκi jθiθ j ξ̄i j, (B6)

where Mi j = 1/mi + 1/mj , and the superscript i − j has been omitted for notation simplicity. Before these equations are applied
to a subsequent pair of particles, the particle temperatures θi and θ j are updated through the mesoscopic EoS using the updated
particle internal energies.
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