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Diffusive transport on networks with stochastic resetting to multiple nodes
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We study the diffusive transport of Markovian random walks on arbitrary networks with stochastic resetting
to multiple nodes. We deduce analytical expressions for the stationary occupation probability and for the mean
and global first passage times. This general approach allows us to characterize the effect of resetting on the
capacity of random walk strategies to reach a particular target or to explore the network. Our formalism holds
for ergodic random walks and can be implemented from the spectral properties of the random walk without
resetting, providing a tool to analyze the efficiency of search strategies with resetting to multiple nodes. We
apply the methods developed here to the dynamics with two reset nodes and derive analytical results for normal
random walks and Lévy flights on rings. We also explore the effect of resetting to multiple nodes on a comb
graph, Lévy flights that visit specific locations in a continuous space, and the Google random walk strategy on
regular networks.
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I. INTRODUCTION

Diffusive transport and random walk strategies have been
implemented in diverse fields as processes that are able to ef-
ficiently reach hidden targets or to simply explore a particular
region of space. Examples include animal foraging [1], the ac-
tivity of urban transportation systems [2,3], protein searching
for specific binding sites on the DNA [4], and searching and
ranking databases [5,6], among many others. In this context,
there has been in recent years an increasing interest in search
processes with resetting or restart. When a stochastic process
is occasionally reset, i.e., interrupted and restarted from the
initial state, its dynamics is strongly altered. Interestingly, the
average time needed to reach a given target state for the first
time can often be minimized with respect to the resetting
rate [7–10]. Different types of resetting protocols have been
considered [11–14] on a variety of underlying processes, such
as Brownian motion [7,8,15], processes with a drift [16,17],
and models of anomalous diffusion [18–21].

In addition, a huge variety of phenomena can be de-
scribed in terms of dynamical processes on networks [22,23].
The interplay between the topology of a network and the
dynamical processes taking place on it is the key to un-
derstanding many complex systems [22,24,25]. In particular,
random walk strategies that allow transitions between nearest
neighbor nodes on a network are relevant to many problems
and constitute the natural framework to study diffusive trans-
port [24,26–28]. Network exploration by random walks is
now better understood [29–31], including nonlocal strategies
with long-range hops between distant nodes [32–38] and the
collective activity of simultaneous random walkers [39–43].
Random walks on networks under the influence of resetting
have been relatively little explored [44–50]. A couple of recent
studies have established relationships between the random
walk dynamics with resetting to one node and the spectral

representation of the transition matrix that defines the random
walk without resetting [46,47]. These results highlight that
processes under resetting are promising strategies for explor-
ing different network topologies [47]. In this paper, we extend
the spectral methods developed in Ref. [47] to the analysis of
random walk strategies with resetting to multiple nodes in the
network. Figure 1 exemplifies this process with an agent that
visits different nodes (say, points of interest in a city) with
frequent returns to two specific sites of major importance.
Dynamical processes that consider a set of nodes to which
stochastic resetting can occur find applications in different
contexts, for example, the modeling of routines in human
mobility [51,52], problems of label propagation in machine

FIG. 1. A random walker under resetting is illustrated as an agent
visiting different points of interest in a network, with restart from
specific locations. From any node in the network, transitions to the
nodes r1 (home) and r2 (work) occur with probabilities a1 and a2,
respectively. Otherwise, the visits to other sites are described by a
transition probability matrix W.
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learning algorithms [53], and the Google strategy, which can
be interpreted as a random walker with uniform resetting
probability to all the nodes of the network [54,55]. Some
related problems were addressed in Ref. [8] in continuous
spaces, namely, a Brownian motion on the line with resetting
to a random position drawn from a given resetting distribution.
Recently, Besga et al. unveiled that the mean first passage
times of one-dimensional Brownian particles with resetting
to a random position with Gaussian distribution could ex-
hibit behaviors markedly different from single-point resetting,
depending on the width of the Gaussian distribution [56].
Despite these studies, resetting processes to multiple points
remain little understood, especially in the context of networks.

The paper is organized as follows. We begin with a sum-
mary of the main results relative to the analysis of ergodic
random walks with resetting to one node. The detailed exten-
sion of these results to two resetting nodes is further developed
for general random walks. We deduce analytical expressions
for the stationary distribution (or occupation probability) and
for the mean first passage times. We explore several exam-
ples, such as two cases on the ring topology: normal random
walks with transitions to nearest neighbor sites and Lévy
flights where transitions between distant nodes are possible.
The latter nonlocal dynamics are generated by considering
the fractional Laplacian of the network. Then, we extend our
analysis to M resetting nodes. We further apply our methods
to study the overall effect of resetting to multiple nodes on
a comb graph, a random walker that visits specific locations
in a continuous space, and on a Google random walker on
regular networks. The methods introduced here provide a
general framework to obtain analytically the eigenvalues and
eigenvectors of operators with reset to multiple nodes and can
be implemented to study different dynamical processes with
restart.

II. RANDOM WALKS WITH RESETTING TO ONE NODE

Let us consider an ergodic random walk on an arbitrary
connected network with N nodes i = 1, . . . , N . We study
the random walker in discrete time t = 0, 1, 2, . . . starting
at t = 0 from a node i. The walker performs two types of
steps: with probability 1 − γ , a random jump from the node
currently occupied to a different node of the network, or, with
probability γ , a resetting to a fixed node r. Without resetting
(γ = 0), the probability to hop to m from l is denoted as
wl→m, and we assume that the random walk is ergodic and
described by the transition matrix W with elements wl→m

for l, m = 1, . . . , N . The transition matrix is general in the
sense that it can be local, i.e., with transitions only between
connected nodes (that we will denote here as “nearest neigh-
bors”), or nonlocal, including jumps between distant nodes,
that are not directly connected to each other.

The occupation probability of the process under resetting
follows the master equation [47]

Pi j (t + 1; r, γ ) = (1 − γ )
N∑

l=1

Pil (t ; r, γ )wl→ j + γ δr j ; (1)

here Pi j (t ; r, γ ) denotes the probability to find the walker at
j at time t , given the initial position i, resetting node r, and

resetting probability γ (δr j denotes the Kronecker delta). The
first term on the right-hand side of Eq. (1) represents hops
associated to the transition probabilities W and the second
term describes resetting to r. With the introduction of the tran-
sition probability matrix �(r; γ ) with elements πl→m(r; γ ) ≡
(1 − γ )wl→m + γ δrm, Eq. (1) takes the simpler form [47]

Pi j (t + 1; r, γ ) =
N∑

l=1

Pil (t ; r, γ )πl→ j (r; γ ), (2)

where
∑N

m=1 πl→m(r; γ ) = 1. The matrix �(r; γ ) completely
entails the process with resetting, which is able to reach all
the nodes of the network if the resetting probability γ is <1.
The matrices W and �(r; γ ) are stochastic matrices: Knowing
their eigenvalues and eigenvectors allows the calculation of
the occupation probability at any time, including the station-
ary distribution at t = ∞, as well as the mean first passage
time to any node. The eigenvalues and eigenvectors of �(r; γ )
are related to those of W, which is recovered in the limit
γ = 0 [47].

In the following, we use Dirac’s notation for eigenvectors.
We denote the eigenvalues of the matrix W as λl (where
λ1 = 1), and its right and left eigenvectors as |φl〉 and 〈φ̄l |,
respectively, for l = 1, 2, . . . , N . These eigenvectors form an
orthonormal base and satisfy the relations

〈φ̄l |φm〉 = δlm,

N∑
l=1

|φl〉〈φ̄l | = I, (3)

with I being the N × N identity matrix. Similarly, the eigen-
values of �(r; γ ) are denoted as ζl (r; γ ) and its eigenvectors
as |ψl (r; γ )〉 and 〈ψ̄l (r; γ )|.

The connection between the eigenvalues λl and ζl (r; γ ) is
obtained from the relation

�(r; γ ) = (1 − γ )W + γ�(r), (4)

where the elements of the matrix �(r) are 	lm(r) = δmr .
Namely, �(r) has entries 1 in the rth column and null entries
everywhere else; therefore (see Ref. [47] for details),

ζl (r; γ ) =
{

1 for l = 1,

(1 − γ )λl for l = 2, 3, . . . , N.
(5)

This result reveals that the eigenvalues are independent of the
choice of the resetting node r. On the other hand, the left
eigenvectors of �(r; γ ) are given by [47]

〈ψ̄1(r; γ )| = 〈φ̄1| +
N∑

m=2

γ

1 − (1 − γ )λm

〈r|φm〉
〈r|φ1〉 〈φ̄m|, (6)

whereas 〈ψ̄l (r; γ )| = 〈φ̄l | for l = 2, . . . , N . Similarly, the
right eigenvectors are given by |ψ1(r; γ )〉 = |φ1〉 and

|ψl (r; γ )〉 = |φl〉 − γ

1 − (1 − γ )λl

〈r|φl〉
〈r|φ1〉 |φ1〉, (7)

for l = 2, . . . , N , where |r〉 denotes the vector with all its
components equal to 0 except the rth one, which is equal to 1
[47].
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With the left and right eigenvectors at hand, one can use
the spectral representation

�(r; γ ) =
N∑

l=1

ζl (r; γ )|ψl (r; γ )〉〈ψ̄l (r; γ )|. (8)

In this notation, the occupation probability of the process
described by Eq. (2) is [47]

Pi j (t ; r, γ ) = P∞
j (r; γ ) +

N∑
l=2

(1 − γ )tλt
l

×
[
〈i|φl〉〈φ̄l | j〉 − γ

〈r|φl〉〈φ̄l | j〉
1 − (1 − γ )λl

]
, (9)

where |i〉 and | j〉 are defined similarly to |r〉. The first term
of the right-hand side in Eq. (9) defines the long time sta-
tionary distribution P∞

j (r; γ ) = 〈i|ψ1(r; γ )〉〈ψ̄1(r; γ )| j〉. By
using Eq. (6) and |ψ1(r; γ )〉 = |φ1〉, one obtains [47]

P∞
j (r; γ ) = P∞

i (0) + γ

N∑
l=2

〈r|φl〉〈φ̄l | j〉
1 − (1 − γ )λl

, (10)

where we have used the identity P∞
i (0) = 〈i|φ1〉〈φ̄1| j〉 for the

equilibrium distribution of the random walk without resetting
[29,31].

As for the asymptotic distribution in Eq. (10), the occu-
pation probability at finite time Pi j (t ; r, γ ) is expressed in
terms of the eigenvalues and eigenvectors of W. By using
the well-known convolution for Markov processes between
Pi j at time t and the first passage time distribution [26,29] (see
Appendix A 1 for details), we deduce the exact expression of
the mean first passage time (MFPT) at node j when starting
from i, 〈Ti j (r; γ )〉

〈Ti j (r; γ )〉 = R(0)
j j (r; γ ) − R(0)

i j (r; γ ) + δi j

P∞
j (r; γ )

, (11)

with the moments R(n)
i j (r; γ ) defined as

R(n)
i j (r; γ ) ≡

∞∑
t=0

t n
{
Pi j (t ; r, γ ) − P∞

j (r; γ )
}
. (12)

Hence, combining Eqs. (9)–(12), one obtains the MFPT for a
random walker that starts at i and reaches for the first time j,
subject to stochastic resetting to the node r [47]

〈Ti j (r; γ )〉 = δi j

P∞
j (r; γ )

+ 1

P∞
j (r; γ )

N∑

=2

〈 j|φ
〉〈φ̄
| j〉 − 〈i|φ
〉〈φ̄
| j〉
1 − (1 − γ )λ


.

(13)

III. RANDOM WALKS WITH RESETTING TO TWO NODES

The results of Sec. II describe the effect of random walk
resetting to one specific node in terms of the eigenvalues and
eigenvectors of the transition matrix W. In this section, we
generalize this formalism to consider resetting to two nodes.

We present the general results for ergodic random walks and
analyze local and nonlocal random walks on rings.

A. General approach

Let us explore the dynamics with reset to M = 2 nodes r1,
r2 with probabilities a1 and a2. The transition matrix of this
process is

�(r1, r2; a1, a2) = a0W + a1�(r1) + a2�(r2), (14)

with a0 = 1 − a1 − a2. Equation (14) can be reorganized as
follows:

�(r1, r2; a1, a2)

= (a0 + a1)

[
a0

a0 + a1
W + a1

a0 + a1
�(r1)

]
+ a2�(r2),

(15)

or, by defining

γ1 ≡ a1

a0 + a1
, (16)

we have

�(r1, r2; a1, a2)

= (a0 + a1)[(1 − γ1)W + γ1�(r1)] + a2�(r2)

= (a0 + a1)�(r1; γ1) + a2�(r2)

= (a0 + a1 + a2)

×
[

a0 + a1

a0 + a1 + a2
�(r1; γ1) + a2

a0 + a1 + a2
�(r2)

]
,

(17)

where we used the matrix �(r1; γ1) given by Eq. (4) for
the dynamics with reset to the node r1 with probability γ1.
Using the fact that a0 + a1 + a2 = 1 and defining γ2 ≡ a2,
�(r1, r2; a1, a2) can be expressed as

�(r1, r2; a1, a2) = (1 − γ2)�(r1; γ1) + γ2�(r2). (18)

Since we know all the eigenvalues and eigenvectors of
�(r1; γ1), we can apply the analysis of the case with one
reset node to write �(r1, r2; a1, a2) in terms of �(r1; γ1),
and then express the results in terms of the eigenvalues and
eigenvectors of the original W.

The analysis for the eigenvalues leads to
ζ1(r1, r2; γ1, γ2) = 1 and

ζl (r1, r2; γ1, γ2) = (1 − γ2)(1 − γ1)λl , (19)

for l = 2, . . . , N . In a similar way, we represent the first left
eigenvector of �(r1, r2; a1, a2) in terms of the eigenvectors of
�(r1; γ1)

〈ψ̄1(r1, r2; γ1, γ2)| = 〈ψ̄1(r1; γ1)|

+
N∑

m=2

γ2

1 − (1 − γ2)ζm(r1; γ1)

× 〈r2|ψm(r1; γ1)〉
〈r2|ψ1(r1; γ1)〉 〈ψ̄m(r1; γ1)|. (20)
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Therefore, considering the results for the reset to one node,
we get

〈ψ̄1(r1, r2; γ1, γ2)|

= 〈φ̄1| +
N∑

m=2

γ1

1 − (1 − γ1)λm

〈r1|φm〉
〈r1|φ1〉 〈φ̄m|

+
N∑

m=2

γ2

1 − (1 − γ2)(1 − γ1)λm

×
[ 〈r2|φm〉

〈r2|φ1〉 − γ1

1 − (1 − γ1)λm

〈r1|φm〉
〈r1|φ1〉

]
〈φ̄m| (21)

or, after rearranging the terms,

〈ψ̄1(r1, r2; γ1, γ2)|

= 〈φ̄1| +
N∑

m=2

γ1

1 − (1 − γ1)λm

〈r1|φm〉
〈r1|φ1〉

×
[

1 − γ2

1 − (1 − γ2)(1 − γ1)λm

]
〈φ̄m|

+
N∑

m=2

γ2

1 − (1 − γ2)(1 − γ1)λm

〈r2|φm〉
〈r2|φ1〉 〈φ̄m|. (22)

In order to have a more compact notation, we define the
coefficients

νm ≡ γ2

1 − (1 − γ2)(1 − γ1)λm
(23)

and

κm ≡ γ1

1 − (1 − γ1)λm

(
1 − γ2

1 − (1 − γ2)(1 − γ1)λm

)
,

which are also related through

κm = γ1

1 − (1 − γ1)λm
(1 − νm). (24)

It is important to bear in mind that νm and κm depend on γ1,
γ2 and the eigenvalues λm. Hence, the first left eigenvector in
Eq. (22) is given by

〈ψ̄1(r1, r2; γ1, γ2)|

= 〈φ̄1| +
N∑

m=2

(
κm

〈r1|φm〉
〈r1|φ1〉 + νm

〈r2|φm〉
〈r2|φ1〉

)
〈φ̄m|. (25)

On the other hand, for l = 2, 3, . . . , N , the left eigenvectors
of �(r1, r2; a1, a2) are given directly by the left eigenvectors
of W, and therefore

〈ψ̄l (r1, r2; γ1, γ2)| = 〈φ̄l (r1; γ1)| = 〈φ̄l |. (26)

Following a similar procedure for the first right eigenvector of
�(r1, r2; a1, a2), we obtain

|ψ1(r1, r2; γ1, γ2)〉 = |ψ1(r1; γ1)〉 = |φ1〉. (27)

If l = 2, . . . , N , we apply Eq. (7) to get

|ψl (r1, r2; γ1, γ2)〉 = |ψl (r1; γ1)〉

− γ2

1 − (1 − γ2)(1 − γ1)λl

〈r2|ψl (r1; γ1)〉
〈r2|ψ1(r1; γ1)〉 |ψ1(r1; γ1)〉,

and, by substituting the corresponding eigenvectors of
�(r1; γ1),

|ψl (r1, r2; γ1, γ2)〉

= |φl〉 −
[

γ1

1 − (1 − γ1)λl

〈r1|φl〉
〈r1|φ1〉

×
(

1 − γ2

1 − (1 − γ2)(1 − γ1)λl

)
+ γ2

1 − (1 − γ2)(1 − γ1)λl

〈r2|φl〉
〈r2|φ1〉

]
|φ1〉. (28)

In this manner, |ψl (r1, r2; γ1, γ2)〉 can be expressed in terms
of κm and νm, for l = 2, . . . , N ,

|ψl (r1, r2; γ1, γ2)〉 = |φl〉 −
(

κl
〈r1|φl〉
〈r1|φ1〉 + νl

〈r2|φl〉
〈r2|φ1〉

)
|φ1〉.

(29)

Given these eigenvectors, we deduce the stationary distribu-
tion

P∞
j (r1, r2; γ1, γ2)

= 〈i|ψ1(r1, r2; γ1, γ2)〉〈ψ̄1(r1, r2; γ1, γ2)| j〉

= P∞
i (0) +

N∑
m=2

γ1

1 − (1 − γ1)λm

〈r1|φm〉
〈r1|φ1〉

×
[

1 − γ2

1 − (1 − γ2)(1 − γ1)λm

]
〈i|φ1〉〈φ̄m| j〉

+
N∑

m=2

γ2

1 − (1 − γ2)(1 − γ1)λm

〈r2|φm〉
〈r2|φ1〉 〈i|φ1〉〈φ̄m| j〉.

From this result, it is clear that if either γ1 or γ2 are zero,
we recover the stationary distribution for one resetting node
given by Eq. (10). P∞

j (r1, r2; γ1, γ2) can be further simplified
by noting that |φ1〉, associated to λ1 = 1, has constant entries
due to the normalization condition

∑
j wi→ j = 1. There-

fore 〈l|φ1〉 = constant for all l and using the coefficients in
Eqs. (23) and (24), we get

P∞
j (r1, r2; γ1, γ2)

= P∞
i (0) +

N∑
m=2

(κm〈r1|φm〉 + νm〈r2|φm〉)〈φ̄m| j〉. (30)

The general relation for the occupation probability at finite
time t ,

Pi j (t, r1, r2; γ1, γ2)

= P∞
j (r1, r2; γ1, γ2) +

N∑
l=2

ζl (r1, r2; γ1, γ2)t

× 〈i|ψl (r1, r2; γ1, γ2)〉〈ψ̄l (r1, r2; γ1, γ2)| j〉 (31)
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can be inserted into the moments R(0)
i j (r1, r2; γ1, γ2):

R(0)
i j (r1, r2; γ1, γ2) =

∞∑
t=0

(Pi j (t, r1, r2; γ1, γ2) − P∞
j (r1, r2; γ1, γ2))

=
N∑

l=2

〈i|ψl (r1, r2; γ1, γ2)〉〈ψ̄l (r1, r2; γ1, γ2)| j〉
1 − (1 − γ2)(1 − γ1)λl

. (32)

In this way, we can calculate the MFPT for the dynamics with two resetting nodes, by using the general Eq. (11) valid for Markov
processes:

〈Ti j (r1, r2; γ1, γ2)〉 = δi j

P∞
j (r1, r2; γ1, γ2)

+ R(0)
j j (r1, r2; γ1, γ2) − R(0)

i j (r1, r2; γ1, γ2)

P∞
j (r1, r2; γ1, γ2)

. (33)

The two factors that appear in the sum of Eq. (32) can be written as

〈i|ψl (r1, r2; γ1, γ2)〉 = 〈i|φl〉 − κl〈r1|φl〉 − νl〈r2|φl〉 (34)

and

〈ψ̄l (r1, r2; γ1, γ2)| j〉 = 〈φ̄l | j〉. (35)

By substituting Eqs. (34) and (35) into (32), we obtain from Eq. (33) the mean first passage time

〈Ti j (r1, r2; γ1, γ2)〉 = 1

P∞
j (r1, r2; γ1, γ2)

[
δi j +

N∑
l=2

〈 j|φl〉〈φ̄l | j〉 − 〈i|φl〉〈φ̄l | j〉
1 − (1 − γ2)(1 − γ1)λl

]
. (36)

This relation is valid for any ergodic random walk and only depends on the eigenvalues and eigenvectors of the transition matrix
without resetting, W. In the following subsections, we apply these results to the analysis of local and nonlocal random walks on
rings.

B. Random walks with resetting on rings

Let us consider an unbiased nearest neighbor random walker with transition probabilities given by wi→ j = Ai j/ki, where
Ai j = Aji = 1 if the two nodes are connected and 0 otherwise, and where ki = ∑N

l=1 Ail is the degree of i. With this transition
matrix, transitions between nodes that are not directly connected to each other are not possible. We analyze the effects of resetting
to two particular nodes on a ring with N nodes. On this network, ki = 2 and the transition matrix W is a circulant matrix with
well-known eigenvalues and eigenvectors [25,57].

These eigenvalues are given by λl = cos ϕl , with ϕl ≡ 2π
N (l − 1), whereas the projections of the eigenvectors in the canonical

base are 〈 j|φl〉 = 1√
N

e−iϕl ( j−1) and 〈φ̄l | j〉 = 1√
N

eiϕl ( j−1), where i = √−1. For the problem of resetting to the nodes r1 and r2

with probabilities a1 and a2, respectively, we recall that γ1 = a1/(1 − a2) and γ2 = a2. By using Eq. (30), the exact expression
for the stationary distribution reads

P∞
j (r1, r2; γ1, γ2) = 1

N
+ 1

N

N∑
m=2

γ1 cos(ϕmdjr1 )

1 − (1 − γ1) cos ϕm

(
1 − γ2

1 − (1 − γ2)(1 − γ1) cos ϕm

)

+ 1

N

N∑
m=2

γ2 cos(ϕmdjr2 )

1 − (1 − γ2)(1 − γ1) cos ϕm
, (37)

where di j is the topological length of the shortest path connecting the nodes i and j, and therefore cos[ 2π
N di j] = cos[ 2π

N (i − j)]
for any pair {i, j}. Similarly, we obtain the MFPT from Eq. (36) with the corresponding eigenvalues and eigenvectors:

〈Ti j (r1, r2; γ1, γ2)〉 = 1

P∞
j (r1, r2; γ1, γ2)

[
δi j +

N∑
l=2

1 − cos(ϕl di j )

1 − (1 − γ2)(1 − γ1) cos ϕl

]
. (38)

In Fig. 2, we present several examples obtained from the exact
expressions (37) and (38) on a ring with N = 100 nodes. Fig-
ure 2(a) displays the stationary distribution P∞

j (r1, r2; γ1, γ2)
as a function of the position j for resetting to the nodes
r1 = 20 and r2 = 80, with resetting probabilities a1 = ε and

a2 = 0.01 − ε, respectively. Hence, the total resetting proba-
bility a1 + a2 = 0.01 remains constant. The cases ε = 0 and
ε = 0.01 reduce to a single-node resetting problem. Other
values of ε produce two local maxima, at the resetting points
r1 and r2, revealing a greater probability for the walker to
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FIG. 2. Stationary distributions and mean first passage times for normal random walks with resetting to two nodes on a ring with N = 100.
Stochastic restart to the nodes r1 = 20 and r2 = 80 occurs with probabilities a1 = ε and a2 = 0.01 − ε, respectively. We show the effect of
varying ε maintaining the total resetting probability a1 + a2 = 0.01 constant. (a) Stationary distribution P∞

j (r1, r2; γ1, γ2) as a function of
j obtained from Eq. (37); the dashed line represents the exponential decay e−0.142 d jr1 . (b) MFPT 〈Ti j (r1, r2; γ1, γ2)〉 given by Eq. (38) as a
function of the target node j, for a walker initially at i = 1.

be in these two points at large times. In Fig. 2(b), we depict
the mean first passage times as a function of the position of
the target node j, given the initial condition at i = 1. It is
interesting to notice that the shortest MFPT is attained when
resetting occurs exclusively to the resetting node (say, r1)
that is closer to j. However, by introducing some amount of
resetting to the other node (say, r2), the MFPT to j increases
mildly, whereas the MFPTs at the nodes that are closer to r2

decrease significantly, by more than one order of magnitude.
To identify some basic properties of diffusive transport

with resetting on rings, it is instructive to express Eqs. (37) and
(38) in the limit of infinite rings. For readability, let us define
b1 = 1 − γ1 and b12 = (1 − γ1)(1 − γ2). Therefore, by taking
the limit N → ∞ and considering dϕ = 2π

N , the stationary
distribution becomes

P∞
j (r1, r2; γ1, γ2)

= γ1

2π

∫ 2π

0

cos(ϕd jr1 )

1 − b1 cos ϕ
dϕ + γ2

2π

∫ 2π

0

cos(ϕd jr2 )

1 − b12 cos ϕ
dϕ

− γ1γ2

2π

∫ 2π

0

cos(ϕd jr1 )

(1 − b1 cos ϕ)(1 − b12 cos ϕ)
dϕ. (39)

By using the identity [47]

1

2π

∫ 2π

0

cos(xθ )

1 − b cos(θ )
dθ =

(
1+√

1−b2

b

)−x

√
1 − b2

, (40)

we deduce (see Appendix A 2 for details)

1

2π

∫ 2π

0

cos(ϕx)

[1 − y cos(ϕ)][1 − z cos(ϕ)]
dϕ

= y

y − z

( 1+
√

1−y2

y

)−x√
1 − y2

− z

y − z

(
1+√

1−z2

z

)−x

√
1 − z2

, (41)

and, after simplifications,

P∞
j (r1, r2; γ1, γ2) = γ1(1 − γ2)√

1 − b2
12

(
1 +

√
1 − b2

12

b12

)−d jr1

+ γ2√
1 − b2

12

(1 +
√

1 − b2
12

b12

)−d jr2

.

(42)

By defining χ ≡ ln[
1+

√
1−b2

12

b12
], or equivalently,

χ ≡ ln

[
1 +

√
1 − (1 − a1 − a2)2

1 − a1 − a2

]
, (43)

we obtain the rather simple expression

P∞
j (r1, r2; γ1, γ2) = γ1(1 − γ2)e−χd jr1 + γ2e−χd jr2√

1 − (1 − γ1)2(1 − γ2)2
. (44)

If either γ1 or γ2 are set to zero in Eq. (44), we recover
the nonequilibrium steady state for resetting to a single node
derived in Ref. [47].

By applying the same procedure to Eq. (36), the MFPT for
an infinite ring takes the form

〈Ti j (r1, r2; γ1, γ2)〉 = δi j

P∞
j (r1, r2; γ1, γ2)

+ 1

P∞
j (r1, r2; γ1, γ2)

×
∫ 2π

0

1 − cos(ϕdi j )

1 − b12 cos(ϕ)
dϕ. (45)
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In particular, the mean first return time to the starting site
(setting j = i) reads

〈Tii(r1, r2; γ1, γ2)〉 = 1

P∞
j (r1, r2; γ1, γ2)

, (46)

in agreement with Kac’s lemma [58]. For i �= j, we get

〈Ti j (r1, r2; γ1, γ2)〉 = 1

P∞
j (r1, r2; γ1, γ2)

1√
1 − b2

12

×

⎡⎢⎣1 −
⎛⎝1 +

√
1 − b2

12

b12

⎞⎠−di j
⎤⎥⎦ (47)

or

〈Ti j〉 = 1 − e−χdi j

γ1(1 − γ2)e−χd jr1 + γ2e−χd jr2
. (48)

Clearly, the behaviors of the stationary state and of the MFTP
〈Ti j (r1, r2; γ1, γ2)〉 with respect to d jr1 , d jr2 , or di j are con-
trolled by the characteristic length scale χ−1, which depends
only on the nonresetting probability b12 = 1 − a1 − a2.

The exact results in Eqs. (44) and (48) for the infinite ring
help us to understand the exponential behavior observed in
Fig. 2(a) around the nodes r1 and r2. Since a1 + a2 is fixed to
0.01 in all these examples, we have b12 = 0.99 or χ ≈ 0.142.
Therefore, close to the nodes r1 and r2 the stationary distri-
butions decay exponentially with respect to the distances djr1

or d jr2 , with the same slope χ represented by a dashed line in
Fig. 2(a).

C. Lévy flights with resetting on rings

Let us now explore the effects of resetting on a random
walker with long-range steps. Lévy flights on an arbitrary
graph can be generated by taking a power of the Laplacian
matrix L, with elements Li j = δi jki − Ai j . Let us introduce the
transition probabilities [33]

wi→ j (α) = δi j − (Lα )i j

(Lα )ii
0 < α < 1. (49)

In particular, for α → 1 one recovers the simple random
walk with transitions to nearest neighbor nodes. The transition
probabilities in Eq. (49) with α < 1 define a Lévy flight with
wi→ j (α) ∼ d−(1+2α)

i j , where the distance di j is the length of the
shortest path on the graph between i and j, and where di j � 1
(see Refs. [32,57,59] for a detailed discussion on Lévy flights
and fractional transport on networks).

In the case of finite rings with N nodes, the Laplacian L
as well as the fractional Laplacian Lα and the matrix with
the elements given by Eq. (49) are circulant matrices [57,59].
Therefore, the left and right eigenvectors are the same as
the ones exposed in Sec. III B. However, the eigenvalues
{λl (α)}N

l=1 of the transition matrix defined in Eq. (49) are
given by [59,60]

λl (α) = 1 − 1

k(α)
(2 − 2 cos ϕl )

α, (50)

where ϕl = 2π
N (l − 1) and the fractional degree k(α) is defined

as [59,60]

k(α) = 1

N

N∑
l=1

(2 − 2 cos ϕl )
α. (51)

In the case of Lévy flights on rings with resetting to a single
node, we can use Eq. (10) with the eigenvalues (50) and obtain
the stationary distribution

P∞
j (i; γ ) = 1

N
+ γ

N∑
l=2

〈i|φl〉〈φ̄l | j〉
1 − (1 − γ )λl (α)

= 1

N
+ γ

N

N∑
l=2

e−i 2π (l−1)(i− j)
N

1 − (1 − γ )λl (α)

= 1

N
+ γ

N

N∑
l=2

cos (ϕl di j )

1 − (1 − γ )λl (α)
, (52)

which is valid for 0 < α � 1. Similarly, from Eq. (13) with
r = i we obtain the MFPT for Lévy flights with reset to the
initial node

〈Ti j (i; γ )〉 =
δi j + ∑N

l=2
〈 j|φl 〉〈φ̄l | j〉−〈i|φl 〉〈φ̄l | j〉

1−(1−γ )λl (α)

P∞
j (i; γ )

=
δi j + 1

N

∑N
l=2

1−e−i 2π (l−1)(i− j)
N

1−(1−γ )λl (α)

P∞
j (i; γ )

= 1

P∞
j (i; γ )

[
δi j + 1

N

N∑
l=2

1 − cos (ϕl di j )

1 − (1 − γ )λl (α)

]
.

(53)
The expressions corresponding to Lévy flights with resetting
to two nodes are deduced in a similar way, by replacing the
terms cos(ϕl ) by the generalized eigenvalues λl (α) in the
relations (37) and (38).

In Figs. 3(a) and 3(b), we analyze the dynamics with
resetting probability γ solely to the initial node (i = r), on
a ring with N = 2000. Figure 3(a) displays the numerical
values of P∞

j (i; γ ) obtained from Eq. (52) as a function of the
distance di j for α = 0.5, 0.6, . . . , 0.9. The stationary steady
state exhibits a power-law behavior P∞

j (i; γ ) ∝ d−(1+2α)
i j for

1 
 di j 
 N/2 and 1/2 < α < 1 [see the dashed lines in
Fig. 3(a)]. This asymptotic behavior is explored analytically
for Lévy flights on infinite rings in the Appendix A 3 and
is consistent with the findings of Ref. [19] on continuous
Lévy flights under resetting on the infinite line. The scaling
law contrasts with the exponential decay of the occupation
probability of a simple random walk, P∞

j (i; γ ) ≈
√

2γ

2 e−√
2γ di j

when the resetting probability γ is small [47]. In Fig. 3(b), we
present the MFPT given by Eq. (53).

Likewise, Figs. 3(c) and 3(d) show the results for resetting
to two nodes. The results show the same qualitative features
as in our previous analysis of the local dynamics in Fig. 2.
We considered Lévy flights with α = 0.75 and resetting to the
nodes r1 = 400 and r2 = 1600, with probabilities a1 = ε and
a2 = 0.01 − ε, thus maintaining the total resetting probability
a1 + a2 constant.
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FIG. 3. Stationary distributions and MFPTs for Lévy flights with resetting to one and two nodes, on a ring with N = 2000. For resetting
to one node, we show (a) P∞

j (i; γ ) and (b) 〈Ti j (i; γ )〉 as a function of the distance di j between the initial node i, where resetting occurs, and

the node j for different values of α. The resetting probability is γ = 0.2. The dashed lines in panel (a) represent power laws ∝ d−(1+2α)
i j .

For resetting to two nodes, (c) P∞
j (r1, r2; γ1, γ2) and (d) MFPT 〈Ti j (r1, r2; γ1, γ2)〉 as a function of j, considering the initial node i = 1.

In these cases, α = 0.75 is constant and the resetting probabilities to the nodes r1 = 400 and r2 = 1600 are a1 = ε and a2 = 0.01 − ε,
respectively.

IV. RANDOM WALKS WITH RESETTING
TO MULTIPLE NODES

In this section, we extend the methods introduced above
to consider the resetting to M different nodes. We apply this
approach to analyze simple random walks on a comb graph,
Lévy flights that visit points on a two-dimensional region, and
Google’s random walks on regular networks.

A. General results

We consider M nodes r1, r2, . . . , rM to which reset-
ting is performed stochastically with probabilities 0 � as � 1
(where s = 1, . . . ,M). The transition matrix of the random
walk with resetting to these nodes reads

�(r1, r2, . . . , rM; a1, a2, . . . , aM)

= a0W +
M∑
s=1

as�(rs), (54)

with the same notation as before, where a0 ≡ 1 − ∑M
s=1 as.

We assume that the total resetting probability β ≡ ∑M
s=1 as is

such that 0 � β < 1.

Let us introduce the simplified notation for the transition
matrix in Eq. (54),

�(r1, r2, . . . , rM; a1, a2, . . . , aM) = �M. (55)

The matrix �M can be obtained iteratively through the
relation

�s =
∑s−1

l=0 al∑s
l=0 al

�s−1 + as∑s
l=0 al

�(rs), (56)

for s = 1, 2, . . . ,M with �0 ≡ W. We also define

γs ≡ as∑s
l=0 al

, s = 1, 2, . . . ,M. (57)

Therefore,
∑s−1

l=0 al∑s
l=0 al

= 1 − γs and

�s = (1 − γs)�s−1 + γs�(rs). (58)

In the following, we use the compact notation |ψ (s)
l 〉 and 〈ψ̄ (s)

l |
for the right and left eigenvectors of �s corresponding to the
eigenvalue ζ

(s)
l . According to Eq. (5), the eigenvalues satisfy
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ζ
(s)
1 = 1 and

ζ
(s)
l = (1 − γs)ζ (s−1)

l = (1 − γs)(1 − γs−1)ζ (s−2)
l

= · · · = λl

s∏
m=1

(1 − γm), l = 2, 3, . . . , N. (59)

By construction, ζ
(0)
l = λl , which are the eigenvalues of W.

For the eigenvectors, we have∣∣ψ (s)
1

〉 = ∣∣ψ (s−1)
1

〉 = ∣∣ψ (s−2)
1

〉 = · · · = ∣∣ψ (0)
1

〉 = |φ1〉, (60)

and, for m = 2, . . . , N〈
ψ̄ (s)

m

∣∣ = 〈
ψ̄ (s−1)

m

∣∣ = · · · = 〈
ψ̄ (0)

m

∣∣ = 〈φ̄m|. (61)

These two classes of eigenstates remain unaltered with the
introduction of resetting. Conversely, combining Eq. (7) for
l = 2, . . . , N and (60), yields

∣∣ψ (s)
l

〉 = ∣∣ψ (s−1)
l

〉 − γs

1 − ζ
(s)
l

〈
rs

∣∣ψ (s−1)
l

〉
〈rs|φ1〉 |φ1〉. (62)

For the remaining 〈ψ̄ (s)
1 |, one combines Eq. (6) with (60) and

(61) to obtain

〈
ψ̄

(s)
1

∣∣ = 〈
ψ̄

(s−1)
1

∣∣ +
N∑

m=2

γs

1 − ζ
(s)
l

〈
rs|ψ (s−1)

m

〉
〈rs|φ1〉 〈φ̄m|. (63)

In terms of these eigenvectors, the stationary distribution is
given by

P∞
j (�r; �γ ) ≡ P∞

j (r1, r2, . . . , rM; γ1, γ2, . . . , γM)

= 〈
j
∣∣ψ (M)

1

〉〈
ψ̄

(M)
1

∣∣ j
〉 = 〈 j|φ1〉

〈
ψ̄

(M)
1

∣∣ j
〉
. (64)

The stationary distribution P∞
j (�r; �γ ) is thus obtained from the

eigenvalues and eigenvectors of the transition matrix with-
out resetting W through iterations of Eqs. (59)–(63) until
〈ψ̄ (M)

1 | j〉 is retrieved. As this approach allows us to calculate
all the eigenvalues and eigenvectors of �M, these can be used
to compute the MFPT of the resetting process to the M nodes.
The moments of the occupation probability Pi j (t ; �r, �γ ) that
appear in the general relation (11) are given by

R(0)(i, j; �r, �γ ) =
∞∑

t=0

[Pi j (t ; �r, �γ ) − P∞
j (�r; �γ )]

=
∞∑

t=0

N∑
l=2

(
ζ

(M)
l

)t 〈
i
∣∣ψ (M)

l

〉〈
ψ̄

(M)
l

∣∣ j
〉

=
N∑

l=2

1

1 − ζ
(M)
l

〈
i
∣∣ψ (M)

l

〉〈
ψ̄

(M)
l

∣∣ j
〉
. (65)

Hence,

R(0)( j, j; �r, �γ ) − R(0)(i, j; �r, �γ )

=
N∑

l=2

〈
j
∣∣ψ (M)

l

〉〈
ψ̄

(M)
l

∣∣ j
〉 − 〈

i
∣∣ψ (M)

l

〉〈
ψ̄

(M)
l

∣∣ j
〉

1 − ζ
(M)
l

. (66)

However, from Eqs. (61) and (62), we obtain〈
j
∣∣ψ (M)

l

〉〈
ψ̄

(M)
l

∣∣ j
〉 − 〈

i
∣∣ψ (M)

l

〉〈
ψ̄

(M)
l

∣∣ j
〉

= 〈
j
∣∣ψ (M−1)

l

〉〈
ψ̄

(M−1)
l

∣∣ j
〉 − 〈

i
∣∣ψ (M−1)

l

〉〈
ψ̄

(M−1)
l

∣∣ j
〉

= 〈
j
∣∣ψ (M−2)

l

〉〈
ψ̄

(M−2)
l

∣∣ j
〉 − 〈

i
∣∣ψ (M−2)

l

〉〈
ψ̄

(M−2)
l

∣∣ j
〉

= · · ·
= 〈

j
∣∣ψ (0)

l

〉〈
ψ̄

(0)
l

∣∣ j
〉 − 〈

i|ψ (0)
l

〉〈
ψ̄

(0)
l

∣∣ j
〉

= 〈 j|φl〉〈φ̄l | j〉 − 〈i|φl〉〈φ̄l | j〉.
Therefore,

R(0)( j, j; �r, �γ ) − R(0)(i, j; �r, �γ )

=
N∑

l=2

1

1 − ζ
(M)
l

[〈 j|φl〉〈φ̄l | j〉 − 〈i|φl〉〈φ̄l | j〉]. (67)

This relation shows that the net effect of having multiple reset-
ting points in the expression R(0)( j, j; �r, �γ ) − R(0)(i, j; �r, �γ )
lies in the modification of the eigenvalues. Therefore, apply-
ing Eq. (11), which is valid for ergodic random walks and an
arbitrary number of resetting nodes, leads to the MFPT

〈Ti j (�r; �γ )〉 = δi j

P∞
j (�r; �γ )

+ 1

P∞
j (�r; �γ )

×
N∑

l=2

〈 j|φl〉〈φ̄l | j〉 − 〈i|φl〉〈φ̄l | j〉
1 − z(�γ )λl

(68)

with z(�γ ) ≡ ∏M
s=1(1 − γs).

Having at hand the analytical expressions for the MFPT of
a random walk with resetting to M nodes, it is also convenient
to define a global first passage time obtained from averaging
that quantity over all the starting and target nodes

T = 1

N2

N∑
i=1

N∑
j=1

〈Ti j〉. (69)

This global time quantifies the capacity of a random walk
strategy to quickly reach any node of the network from any
other node.

B. Random walks on a comb graph

In Fig. 4, we explore the effects of different types of
resetting on normal random walks on a comb graph with
N = 99. Comb graphs are branched structures obtained from
a linear graph with Lx nodes by attaching to each node two
side chains of length Ly/2 [41,42]. The resulting structure is
a tree with N = Lx(Ly + 1) nodes. In Fig. 4(a), we present
a network with Lx = 9 and Ly = 10, and the Lx nodes in the
central linear graph are represented with triangles and denoted
as η1, . . . , η9.

In Fig. 4(b), we show the global time T corresponding to
this network as a function of the total resetting probability β.
We apply the general approach of Sec. IV A to calculate the
mean first passage times (68) in the case of a nearest neighbor
random walk with resetting to different nodes in the central
line of the comb graph. We analyze four cases: resetting to
the central node η5 only, with probability β; resetting to the
nodes η4 and η6 with probabilities β/2 each; resetting to the
four nodes η2, η4, η6, η8 with probabilities β/4 each; and re-
setting to all the nodes of the central line η1, . . . , η9, each with
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FIG. 4. Random walks with multiple resetting on a comb graph with N = 99 nodes. (a) Comb graph: The nodes in the central line are
represented with triangles and denoted as η1, η2, . . . , η9. (b) Global time T as a function of the total resetting probability β; four cases are
explored: resetting with probability β to the central node η5 only, resetting with probability β/2 to the nodes η4, η6, resetting with probability
β/4 to the nodes η2, η4, η6, η8, and resetting with probability β/9 to all the nodes of the central line. The inset shows the results for 0 � β �
0.15 and the minimum global time T � for each curve is represented with a circle.

probability β/9. Our findings show that adding more resetting
nodes from the central line accelerates the exploration of the
network. The behavior of T with β is nonmonotonic in each
case, and the value β� that minimizes the global time increases
with the number of resetting nodes. The minimal values of T
are obtained when we consider the resetting to all the nodes in
the central line.

C. Long-range dynamics on continuous spaces

In this part, we explore the ability of a random walk under
single or multiple resetting to reach specific locations in space.
This problem is inspired by the modeling of human mobility
in urban areas with agents visiting points of interest [2,3,61].
The type of motion considered here is an example of random
walks taking place in a continuous space but modeled with the
formalism of random walks on networks.

Let us consider N points (locations) in a 2D plane labeled
as i = 1, 2, . . . , N . The coordinates of each point are arbitrary
and li j is the Euclidean distance between i and j (the distance
li j = l ji � 0 can also be calculated using other metrics [61]).
We define a discrete time random walker (without resetting)
that visits at each step one of these locations according to the
transition probability w

(α)
i→ j (R) [61]

w
(α)
i→ j (R) = �

(α)
i j (R)∑N

m=1 �
(α)
im (R)

, (70)

where the weights �
(α)
i j (R) are defined by [61]

�
(α)
i j (R) =

{
0 if i = j,
1 for 0 < li j � R,
(R/li j )

α for R < li j .
(71)

Here, α and R are positive real parameters. The radius R
determines a neighborhood around the current position i of
the walker, such that any other point part of this neighborhood
can be visited with equal probability. Hence, these transitions
are independent of the distance between the two sites. That
is, if there are S other sites inside the circle of radius R, the
probability of jumping to any of these sites is constant. For the
locations that are beyond the neighborhood of i, at distances
greater than R, the transition probability decays as an inverse
power law with the distance and is proportional to l−α

i j [61].
The parameter R thus defines a neighborhood radius and α

controls the probability that the walker performs long-range
displacements. In particular, in the limit α → ∞ the dynamics
becomes local, whereas in the case α → 0 the movement to
any other point occurs with the same probability, namely,
w

(0)
i→ j (R) = (N − 1)−1.
Having defined the random walker with long-range dis-

placements between points, we consider N = 100 locations
distributed in the region [0, 1] × [0, 1] of R2 and represented
in Fig. 5(a). The points are generated forming clusters with
10, 20, 30, and 40 points. Each cluster contains a possible
resetting point (represented with a triangle) denoted by η1, η2,

η3, η4. We use the value R� ≡
√

ln N
πN as a reference length

that, in the case of uniformly random distributed points, is
the connectivity threshold of a random geometric graph [62].
In our example, a random walker with transitions to near-
est neighbors cannot reach all the points and is trapped in
one of the clusters; however, the random walk strategy with
long-range displacements and spatial information, given by
Eq. (70), is ergodic for 0 � α < ∞ and R > 0.

Figure 5(b) displays the variations of the global mean first
passage time T for the process generated by Eqs. (70) and
(71), without resetting. We vary α for three values of R in
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FIG. 5. Random walks visiting N = 100 points. (a) Distribution of points in the domain [0, 1] × [0, 1], the points ηm with m = 1, 2, 3, 4
represent possible resetting locations. (b) Global time T for the Lévy flight model without resetting given by the transition matrix (70) and (71)

and for different values of α and R; R� ≡
√

ln N
πN is a reference length. (c) T for the same model under resetting to the single node η4, located

in the largest cluster, as a function of the resetting probability β. (d) T as a function of the total resetting probability β for the model under
resetting to the four points η1, . . . , η4, with probability β/4 each. In panels (c) and (d), we take R = R� and α = 1, 5, 10, 15, 20, 25 (codified
in the color bars).

the transition matrix w
(α)
i→ j (R). For R = 1.5R�, T depends

moderately on α, as far-away points are easily reached even
through short-range steps or large values of the exponent. In
contrast, for the smaller value R = 0.5R�, T depends sharply
on α, indicating that the network formed by connecting points
distant by less than R is practically disconnected, although
the walker with α finite is capable of reaching any point.
For α � 1, the time T increases very rapidly, and a similar
behavior is obtained for R = R�.

In Figs. 5(c) and 5(d), R is set to R� and we study the
global time T as a function of the total resetting probability
β, for different values of α and M. In Fig. 5(c), we consider
resetting to the single point η4 (that belongs to the largest
cluster). Resetting does not impact substantially T for β <

10−3, independently of α. For larger β, single-point resetting
renders the exploration of the locations by the random walker

rather inefficient, mostly for large α, as much more time is
needed to reach a site on average than without resetting. In
Fig. 5(d), we consider four resetting points η1, . . . , η4 located
in the four clusters, the resetting probability to each point
being β/4. For α = 1 (bottom curve), the variations of T
are small in the interval 0 < β � 0.1, like in the previous
case with M = 1, which shows that these Lévy flights con-
stitute a very good exploration strategy, even in the absence
of resetting. For α = 5, 10, 15, 20, interestingly, the behavior
becomes nonmonotonic: multiple-point resetting reduces sig-
nificantly the global time and a minimum is reached at a finite
β. At this optimal point, resetting helps the walker to visit the
four clusters, something that would require many more steps
with one resetting point or in the absence of resetting. The
results presented in Fig. 5(d) show that a broad distribution
of resetting points can make exploration by a random walker
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FIG. 6. Google random walks on different types of circulant networks. (a) Circulant networks with N = 10 nodes, arrows represent the
direction of each edge, and connections including both directions are represented with a line. (b) Global times T (β ) in Eq. (73) as a function
of the total probability β for circulant networks with N = 104 nodes with the same topologies described in panel (a).

with short steps nearly as efficient as a long-ranged Lévy
flight.

D. Case M = N, or the Google strategy

The formalism introduced above with M resetting nodes
can be applied to analyze the Google random walk strategy
that combines a local search to nearest neighbor nodes with
stochastic relocations to any of the N nodes of the network
with constant probability [54,55]. This case can be expressed
in terms of resetting to multiple nodes by considering M =
N and a1 = a2 = . . . = aN . If the total resetting probabil-
ity is β = ∑N

s=1 as then al = β/N for l = 1, 2, . . . , N . From
Eq. (59) and the definition (57), the eigenvalues of the matrix
that defines the Google strategy are

ζ
Google
l =

{
1 for l = 1,

(1 − β )λl for l = 2, 3, . . . , N.
(72)

Hence, the relation between the eigenvalues of the Google
transition matrix and those of W is rather simple.

Here we explore the Google random walk strategy on
circulant networks. These networks are such that both the
adjacency matrix A and W (with elements wi→ j = Ai j/ki) are
circulant matrices [25]. For these structures, A is not necessar-
ily symmetric (the network can be directed) but ki = ∑N

l=1 Ail

is constant or independent of i. On directed networks, ki

represents the out degree of i. Due to this regularity and the
uniformity of resetting, the stationary distribution is constant
and given by 1/N . Therefore, for regular networks, the global
MFPT defined by Eq. (69) takes the form

T = 1

N2

N∑
i=1

N∑
j=1

〈Ti j〉

= 1

N

N∑
i=1

N∑
j=1

[
δi j +

N∑
l=2

〈 j|φl〉〈φ̄l | j〉 − 〈i|φl〉〈φ̄l | j〉
1 − (1 − β )λl

]
.

By using
∑N

j=1 | j〉〈 j| = I and from the orthonormalization

between 〈φ̄l | and |φ1〉 in Eq. (3),
∑N

j=1〈φ̄l | j〉 = 0 for l =
2, 3, . . . , N , we obtain

T (β ) = 1 +
N∑

l=2

1

1 − (1 − β )λl
. (73)

The remaining task is to calculate the eigenvalues of W. In
a N × N circulant matrix C with elements Ci j , each column
has real elements c0, c1, . . . , cn−1 ordered in such a way that
c0 describes the diagonal elements and Ci j = c(i− j)mod N . The
eigenvalues λl of C are given by [25]

λl =
N−1∑
m=0

cmei 2π
N (l−1) m. (74)

With this general relation, we can obtain analytically the
eigenvalues λl of W for a local random walker on a circulant
network, directly from the coefficients cm that define W (see
Ref. [63] for a detailed discussion).

In Fig. 6, we show T (β ) on different circulant networks
with N nodes. The analyzed topologies are represented in
Fig. 6(a): C1 represents a directed ring, with transition ma-
trix defined by a single non-null element c1 = 1; C2 defines
a directed random walk with c1 = c2 = 1/2; C3 has c1 =
cN−2 = 1/2. In all these cases, the random walker moves on
a directed network. Conversely, C4 (with non-null elements
c1 = c2 = c3 = cN−1 = cN−2 = cN−3 = 1/6), C5 (c1 = c2 =
cN−1 = cN−2 = 1/4), and the simple ring C6 (c1 = cN−1 =
1/2) are undirected networks. In all these cases, the dynamics
generated by W is ergodic and the respective eigenvalues are
obtained from Eq. (74).

In Fig. 6(b), we represent the global time T (β ) obtained
from combining Eqs. (73) and (74) for networks with the
topologies described in Fig. 6(a) and N = 104. We observe
that relocating with probability β/N the random walk to any
node produces rather diverse and unexpected effects. For the
directed cycles C1 and C2, the choice β = 0 is optimal and
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T (β ) slightly increases with β. For C3, the time T (β ) varies
little with β, too, but exhibits a local maximum and reaches its
absolute minimum for β → 1. In all the undirected networks
C4, C5, C6, increasing β greatly improves the capacity of the
walker to explore the network and the optimum is reached for
β → 1.

V. CONCLUSIONS

We have studied the diffusion and first passage properties
of discrete-time random walks on networks subject to reset-
ting to more than one node. Multiple resetting is constructed
by choosing a subset of M nodes in the network of size N
and by assigning a finite resetting probability to each node
of this subset. At every single time step, the walker either
jumps to a node according to a given transition probability
matrix (for instance, to a nearest neighbor as in a standard
random walk) or relocates to one of the resetting nodes with
the corresponding resetting probability. In the limit where
all the nodes act as resetting nodes (M = N) and have the
same resetting probability, the process is the so-called Google
strategy. In this case, the global mean first passage time on
circulant networks is given by the rather compact expression
(73), which is new to the best of our knowledge. The formal-
ism developed here is quite general, though, and applicable
to any kind of connected directed networks, or to any er-
godic underlying process defined by transition probabilities
between pairs of nodes, such as random walks on spatial
networks, where the probabilities depend on the separation
distance between the nodes. The basic quantities of interest
can be calculated iteratively for M from the case M − 1 and
computed ultimately in terms of the eigenvectors and eigen-
values of the random walk transition matrix in the absence of
resetting.

Adding a resetting node to a single-node resetting process
(M = 2) significantly decreases the mean first passage time
at a target node located near the new resetting node, without
strongly hindering the search for targets that are close to the
original resetting node. This effect is illustrated by Fig. 2
for the ring geometry. Therefore, the global MFPT, which
quantifies the ability of the walker to explore a whole network,
typically decreases with the number of resetting nodes; see,
e.g., Fig. 4 for a comb graph. On directed graphs, however, the
effects of resetting on the mean search time can be diverse and
somehow unexpected, as shown for instance by the presence
of a local maximum for the global MFPT with respect to the
total resetting probability (Fig. 6).

Numerous studies since Refs. [7,8] have shown that re-
setting typically makes a search process more efficient and
that there often exists an optimal resetting rate for which
the mean search time is minimal. In other cases, resetting is
detrimental to search. A similar paradigm seems to emerge
here for multiple-node resetting (varying the total resetting
probability), with some important amendments, though. For
instance, in Fig. 5, the MFPT is an increasing function of the
resetting probability for a random walk under single-node re-
setting, whereas the same quantity becomes nonmonotonous
and exhibits a minimum if other resetting nodes are intro-
duced. It would be interesting to seek a general principle able
to predict when multiple-node resetting is beneficial to search

that would generalize the criterion exposed in Refs. [9,64,65]
for standard resetting.
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APPENDIX

1. MFPTs for ergodic random walks

In this Appendix, we present the deduction of the mean first
passage times for random walks on networks with stationary
distribution P∞

j , j = 1, 2, . . . , N . The results are general and
can be implemented for the analysis of ergodic Markovian
random walks. We apply an approach similar to the formalism
presented in Refs. [26,29]. We start representing the occupa-
tion probability Pi j (t ) as [26]

Pi j (t ) = δt0δi j +
t∑

t ′=0

Pj j (t − t ′)Fi j (t
′), (A1)

where Fi j (t ′) is the probability to reach the node j for the first
time after t ′ steps given the initial position i. By definition
Fi j (0) = 0, and Pj j (t − t ′) is the probability to be located at
the position j again after t − t ′ steps. The first term in the
right-hand side of Eq. (A1) enforces the initial condition.

By using the discrete Laplace transform f̃ (s) ≡∑∞
t=0 e−st f (t ) in Eq. (A1), we have

F̃i j (s) = (P̃i j (s) − δi j )/P̃j j (s). (A2)

In terms of Fi j (t ), the mean first passage time 〈Ti j〉 is given by
[26]

〈Ti j〉 ≡
∞∑

t=0

tFi j (t ) = −F̃ ′
i j (0). (A3)

Using the moments R(n)
i j of the probability Pi j (t ) defined as

R(n)
i j ≡

∞∑
t=0

t n
{
Pi j (t ) − P∞

j

}
, (A4)

the expansion in series of P̃i j (s) is

P̃i j (s) = P∞
j

1

(1 − e−s)
+

∞∑
n=0

(−1)nR(n)
i j

sn

n!
. (A5)

Introducing this result into Eq. (A2), the MFPT is obtained:

〈Ti j〉 = 1

P∞
j

[
R(0)

j j − R(0)
i j + δi j

]
. (A6)

2. Deduction of Eq. (41)

We calculate the integral

I2 = 1

2π

∫ 2π

0

cos(ϕx)

(1 − y cos ϕ)(1 − z cos ϕ)
dϕ, (A7)
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that appears in Eq. (39) for the stationary distribution of sim-
ple random walks on an infinite ring. Considering the partial
fraction decomposition

1

(1 − y cos ϕ)(1 − z cos ϕ)

= 1

y − z

[
y

1 − y cos ϕ
− z

1 − z cos ϕ

]
, (A8)

one obtains

I2 = y I1(y, x) − z I1(z, x)

y − z
, (A9)

where we have used the identity [47]

I1(b, x) = 1

2π

∫ 2π

0

cos(xϕ)

1 − b cos(ϕ)
dϕ

=
(

1+√
1−b2

b

)−x

√
1 − b2

. (A10)

Therefore, Eq. (A9) gives

I2 = y

y − z

( 1+
√

1−y2

y

)−x√
1 − y2

− z

y − z

(
1+√

1−z2

z

)−x

√
1 − z2

. (A11)

3. Lévy flights with reset on an infinite ring

In this part, we specify the stationary distribution of Lévy
flights on an infinite ring with resetting probability γ to the
single node r. Considering the limit N → ∞ for the stationary
distribution in Eq. (52), we obtain (0 < α < 1)

P∞
j (r; γ ) = γ

2π

∫ 2π

0

cos(d jrϕ)dϕ

1 − (1 − γ )
[
1 − (2−2 cos ϕ)α

k(α)

] .

(A12)

The limit α → 1 recovers the result discussed in Ref. [47]
for nearest neighbor random walks on an infinite ring. Lévy
flights in Eq. (A12) correspond to α < 1, where k(α) is the
fractional degree defined by Eq. (51). For an infinite ring, it
takes the form [59]

k(α) = −�(−α)�(1 + 2α)

π�(1 + α)
sin(πα). (A13)

We have

P∞
j (r; γ ) = γ

2π

∫ 2π

0

cos(d jrϕ)dϕ

1 − (1 − γ )
[
1 − 22α

k(α) sin(ϕ/2)2α
]

= γ

π

∫ π

0

cos(2d jrθ )

1 − (1 − γ )
[
1 − 22α

k(α) (sin θ )2α
]dθ

= 1

π

∫ π

0

cos(2d jrθ )

1 + (1−γ )
γ

22α

k(α) (sin θ )2α
dθ

= 1

π

∫ π

0

cos(2d jrθ )

1 + Dα (sin θ )2α
dθ, (A14)

where Dα = (1−γ )
γ

22α

k(α) . However, using the series expansion of
the denominator in Eq. (A14),

P∞
j (r; γ ) = 1

π

∞∑
n=0

(−Dα )n
∫ π

0
(sin θ )2αn cos(2d jrθ )dθ.

(A15)

Let us now consider the asymptotic limit djr � 1. We use the
identities∫ π

0
(sin θ )2αn cos(2xθ )dθ

= 2−2αnπ cos(πx)�(1 + 2αn)

�(1 + αn − x)�(1 + αn + x)

= −2−2αn sin(παn)�(1 + 2αn)
�(x − αn)

�(x + 1 + αn)
. (A16)

For x � 1, �(x + m) ∼ �(x)xm; therefore,

�(x − αn)

�(x + 1 + αn)
∼ 1

x1+2αn
. (A17)

By combining Eqs. (A15)–(A17), we obtain for d jr � 1

P∞
j (r; γ ) ∼

∞∑
n=1

(−1)n+1Dn
α sin(παn)�(1 + 2αn)

π 22αn d1+2αn
jr

, (A18)

whose leading term is given by

P∞
j (r; γ ) ∼ Dα sin(πα)�(1 + 2α)

π22α

1

d1+2α
jr

+ · · ·

∼ (1 − γ ) sin(πα)�(1 + 2α)

πγ k(α)

1

d1+2α
jr

+ · · ·

∼ −
(

1 − γ

γ

)
�(1 + α)

�(−α)

1

d1+2α
jr

+ · · · . (A19)

This result serves as a guide for understanding the asymptotic
dependence of the stationary distribution P∞

j (r; γ ) with the
distance d jr . The result in integral form in Eq. (A14) is ex-
act; however, the relation obtained from the series expansion
in Eq. (A15) is conditioned to its convergence. A different
approach for the analysis of the effect of resetting on Lévy
flights using fractional dynamics on an infinite continuous line
establishes the same asymptotic relation P∞

j (r; γ ) ∼ 1
d1+2α

jr
as

above, but for 1/2 � α < 1 (see Ref. [19] for a detailed dis-
cussion).

In addition, applying the same approach to the analysis of
the MFPT in Eq. (53) for Lévy flights in the limit N → ∞,
we have

〈Ti j (i; γ )〉

= 1

γ
+ 1

P∞
j (i; γ )

×
[
δi j + 1

2π

∫ 2π

0

dϕ

1 − (1 − γ )
[
1 − 22α

k(α) sin(ϕ/2)2α
]]

.

(A20)
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However,

1

2π

∫ 2π

0

dϕ

1 − (1 − γ )
[
1 − 22α

k(α) sin(ϕ/2)2α
]

= 1

π

∫ π

0

dθ

1 − (1 − γ )
[
1 − 22α

k(α) sin(θ )2α
]

= 1

γπ

∫ π

0

dθ

1 + (1−γ )
γ

22α

k(α) sin(θ )2α

= 1

γπ

∫ π

0

dθ

1 + Dα sin(θ )2α
= 1

γ
G(γ , α),

where we defined G(γ , α) that depends on γ , α but is inde-
pendent of the distance between i and j. Therefore,

〈Ti j (i; γ )〉 = 1

γ
+ 1

P∞
j (i; γ )

[
δi j + G(γ , α)

γ

]
. (A21)

In this way, for 0 < γ < 1, 1/2 � α < 1

〈Ti j (i; γ )〉 ∼ d1+2α
i j , di j � 1. (A22)

A relation that agrees with the result is reported in Ref. [19].
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