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Thermal noise of a cryocooled silicon cantilever locally heated up to its melting point
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The Fluctuation-Dissipation Theorem (FDT) is a powerful tool to estimate the thermal noise of physical
systems in equilibrium. In general, however, thermal equilibrium is an approximation or cannot be assumed
at all. A more general formulation of the FDT is then needed to describe the behavior of the fluctuations. In
our experiment we study a microcantilever brought out of equilibrium by a strong heat flux generated by the
absorption of the light of a laser. While the base is kept at cryogenic temperatures, the tip is heated up to
the melting point, thus creating the highest temperature difference the system can sustain. We independently
estimate the temperature profile of the cantilever and its mechanical fluctuations as well as its dissipation. We
then demonstrate how the thermal fluctuations of all the observed degrees of freedom, though increasing with
the heat flux, are much lower than what is expected from the average temperature of the system. We interpret
these results using a minimal extension of the FDT: this dearth of thermal noise arises from a dissipation shared
between clamping losses and distributed damping.

DOI: 10.1103/PhysRevE.103.062125

I. INTRODUCTION

Thermal noise is a phenomenon shared by all systems
with a nonzero temperature. It is generated by the energy
exchanges between the system and the surrounding envi-
ronment. In equilibrium, it results in fluctuations of the
observables of the system, with an amplitude proportional
to the equilibrium temperature. While these fluctuations usu-
ally go unnoticed due to their intrinsically small amplitude,
they become salient in an increasing number of applications:
in biology they are paramount for bioelectro-magnetism [1]
and survival of cells in vitro [2], in microelectromechanical
systems (MEMS) they often limit the sensitivity [3], and in
ground-based gravitational wave detectors (GWDs) they pre-
scribe the ultimate resolution [4]. Their understanding is thus
fundamental.

The Fluctuation-Dissipation Theorem (FDT) stands as the
fundamental tool for thermal noise estimations in equilibrium.
This hypothesis cannot be assumed in many cases: examples
range from living systems [5] to aging materials [6] and
systems subject to a heat flux [7,8]. The research of possi-
ble nonequilibrium effects on the thermal noise of the test
masses employed in GWDs recently became a prolific subject
[8,9]. Often higher fluctuations with respect to equilibrium are
expected [8,10], in concordance with theoretical predictions
such as the Harada-Sasa relation [11]. On the other hand,
we have shown in previous studies that a lack of fluctua-
tions is also possible. A silicon microcantilever is brought
in a nonequilibrium steady state (NESS) by heating its tip at
hundreds of degrees higher than its base thermalized at room
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temperature. The system, subject to a strong heat flux along
its length, is unaffected by this phenomenon, fluctuating as
if it was in thermal equilibrium at room temperature [12,13].
These results are then interpreted using a minimal extension
of the FDT for a system with a nonuniform temperature,
demonstrating how the fluctuations are linked to the spatial
distribution of the dissipation.

In this work we push the aforementioned experiments to
the physical limits, imposing almost the highest temperature
difference the cantilever can sustain, and thus bringing it as
far from stationary equilibrium as possible. To do so, we
place the sample in a cryostat at 10 K and heat its tip close
to the melting point with a focused laser, thus prompting a
temperature difference of around 1700 K. The interest of this
experiment is twofold: from a theoretical point of view, the
simple extension of the FDT [9] is put to a test at its limits.
From an experimental point of view, this system can be con-
sidered an important test bench for cryogenic high-precision
measurements, metrology [14], and the GW community. In-
deed, a part of the experimental efforts are heading towards
cryogenics (e.g., KAGRA [15]) in order to reduce the thermal
noise of the test masses and suspensions [16]. The deposited
heat may generate a NESS which is then paramount to charac-
terize. Furthermore, future detectors might use silicon for the
test masses (e.g., the Einstein Telescope [17]), thus the same
material as the sample of our experiment.

In the first part, we show how to estimate the temperature
of the system in such conditions, through a calibration and
a numerical simulation. We then demonstrate how, for a can-
tilever similar to the one in [12,13], we retrieve a strong dearth
of fluctuations, and we interpret it through an estimation of
the dissipation in the system. A discussion concludes this
work.
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FIG. 1. Experiment setup: the flexion and torsion of a cantilever
inside a cryostat are captured with a differential interferometer
[19–21]. A green laser beam (λ = 532 nm) is divided in two by a
beam displacer BD and focused on the cantilever. The interferometer
senses the vertical distance d1 − d2 between the beam B1 close to
the cantilever tip and B2 close to the center. The probing points are
separated by �x = x1 − x2 = 417 μm, �y = 0. The cantilever, in
vacuum at 10−7 mbar, is monolithically clamped to its macroscopic
chip, which is thermalized at temperature T min. When the laser power
is low (P < 1 mW), we consider the system in thermal equilibrium.
When the power is raised (10 to 40 mW), a temperature gradient T (x)
along the cantilever arises.

II. METHODS

The experimental setup is depicted in Fig. 1. The phys-
ical systems consists of a silicon cantilever (OCTOSENSIS
microcantilever array [18]), L = 1000 μm long, B = 90 μm
wide, and H = 1.1 μm thick. It is monolithically clamped
to a macroscopic chip which is kept at T min � 20 K by a
cryostat. The cantilever is placed in a vacuum chamber at
10−7 mbar. The measuring instrument is the CryoQPDI [19],
a quadrature-phase differential interferometer (QPDI) [20,21]
combined with a cryostat. A laser beam at 532 nm is used to
measure the thermal fluctuations of the cantilever. At the same
time it acts as a heater when its power P is increased, due to
its optical absorption. It is split into two parallel beams by an
aberration corrected beam displacer inside the cryostat. The
beams are both focused on the cantilever surface with a spot
radius R0 = 3 μm. By design, the distance between the two
spots is fixed at x1 − x2 = 417 μm. Since we focus one spot
close to the cantilever’s free end, the second one is roughly in

FIG. 2. Experimental thermal noise spectra. (a) The power spec-
trum density (PSD) of d displays various resonance peaks, which
we can distinguish between the flexural ones and torsional ones,
respectively, indicated by black solid arrows and red dashed arrows.
The first resonance n = 1 is plagued by low-frequency noise and is
thus discarded in the analysis. (b) Increasing the laser power causes
a redshift in the resonance frequencies of the modes (in this case
n = 3) as the Young’s modulus of silicon decreases with tempera-
ture. (c) We measure at equilibrium (P < 1 mW) the frequency shift
with respect to the lowest temperature, when the temperature of the
cryostat slowly increases up to room temperature. This calibrates the
Young’s modulus dependency of temperature δY (T ) through Eq. (1)
with T uniform.

the center along its length. Across its width, both beams are
placed off axis at y1 = y2 = 37 μm.

The QPDI senses the optical phase difference between
these two beams, which can be swiftly expressed as a vertical
difference d = d1 − d2. Up to a geometrical factor dependent
on the resonant mode’s shape, d is sensitive to the flexural
deformations (denoted hereafter by their amplitude δn, with n
the mode number) and the torsional ones (denoted by θm, with
m the mode number). The power spectrum density (PSD) of
d , plotted in Fig. 2, shows the lowest frequency resonances of
the cantilever. Up to nine flexural and seven torsional modes
are measurable in the experiment. Due to experimental con-
straints, some are excluded from the analysis: mode n = 1 is
affected by low-frequency external noise (see Fig. 2), and the
amplitudes of modes n, m = 5 are too low due to their vicinity
to a node in sensitivity (d1 and d2 are affected likewise by
these modes).

During the measurement, the pulse tube of the cryostat
must be turned off: the vibrations it creates during operation
are too high for the sensitive thermal noise measurement we
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perform. We rely on the thermal inertia of the sample holder
(lead loaded) to maintain a quasi-steady state: the temperature
drift is only 0.18 K/min. Each time T min reaches 20 K, we
turn off the thermal noise measurement and cool down to
below 10 K before starting a new acquisition. Equilibrium
(EQ, with P < 1 mW) and nonequilibrium (NESS, with P =
10–40 mW) measurements are alternated to get rid of any
drift issue. In addition, we randomize the order of the laser
powers and often change the probing point thus shielding the
results from particular modifications of the material. Several
measurements performed on the same sample also ensure
reproducibility [22].

A. Temperature

When heating the cantilever with the laser beams, we cre-
ate a temperature profile T (x) along the cantilever length,
which is nonlinear: not only there are two heating points, but
the thermal conductivity of silicon span three orders of mag-
nitude between 10 K and the melting point T melt = 1687 K. It
is thus not simple to describe the temperature with a single ob-
servable. However, for each power P of the laser, T (x) spans
from T (0) = T min to T (L) = T max, and its average value
T avg = ∫ L

0 T (x) dx/L is used to grasp the out-of-equilibrium
character of the system. In this section we describe how to
evaluate T avg from the measurement.

The resonance frequencies fn are sensitive to the tempera-
ture T , mainly through the variation of the Young’s modulus
Y of silicon. In Refs. [23,24], we show that in a first approxi-
mation,

� fn

f 0
n

= 1

2

∫ L
0 dx �Y (T (x))φ′′

n (x)2

Y 0
∫ L

0 dx φ′′
n (x)2

, (1)

where the superscript “0” stands for the reference value of
the quantity at T 0 = 10 K, � stands for the variation of the
quantity with respect to the reference one, and φ′′

n (x) is the
curvature of the normal mode.

When temperature is uniform, the relative frequency shift
is independent of the mode number and can be used to cal-
ibrate δY (T ) ≡ �Y (T )/Y 0. We perform this calibration of
δY (T ) experimentally: the resonance frequencies of the can-
tilever are tracked with a very low injected laser power so
that the system can be considered in equilibrium, while we
let the temperature of the cryostat increase slowly from 10 K
to room temperature [25]. Following Ref. [26], we perform
a fit of the calibration data with δY (T ) = c1Tec2T , leading
to c1 = (3.68 ± 0.04) × 10−5K−1 and c2 = 196.7 ± 2.7 K.
δ−1

Y can then be used as a thermometer: from a measured
frequency shift, one can then deduce the apparent tempera-
ture of the cantilever with T app

n ≡ δ−1
Y (2� fn/ f 0

n ). In thermal
equilibrium, T app

n corresponds to the actual temperature of
the cantilever for all n. If there is a temperature profile
T (x), T app

n represents the apparent temperature one would
read from such a thermometer. Interestingly, when the mode
number is large (n > 5), the curvature is mostly distributed
all along the cantilever and T app

n approximates the average
temperature of the system T avg [24]. Therefore, we can exper-
imentally estimate T avg in an out-of-equilibrium situation by

T̄ app = δ−1
Y (2〈� fn/ f 0

n 〉n=6−9), the average of the apparent
temperatures of modes 6 to 9.

To further secure our measurement of T avg and have an
estimation of the full temperature profile, in the Appendix
we numerically compute T (x) solving the stationary heat
equation, taking into account the temperature dependency
of the thermal conductivity, thermal radiation, and the two
heat sources corresponding to laser absorption. For a given
absorbed power, we therefore get T (x), from which we infer
T avg, T max, and the relative frequency shift [from Eq. (1) using
the calibrated δY (T )]. We end up again with a calibration
function, giving T avg

sim (〈� fn/ f 0
n 〉n=6−9). Both calibrations are

very consistent, T̄ app overestimating T avg
sim by 40 K at most. The

temperature profile is however very nonlinear with a steep rise
close to the end, so that T max on the other hand presents large
uncertainties due to the unknown parameters of the problem
(mainly the precise knowledge of light absorption).

B. Thermal fluctuations

All the resonances have a high-quality factor (Qn,m � 103;
see Fig. 4 below) and are sufficiently apart from each other to
be considered as independent oscillators. Up to a geometrical
multiplicative factor, the PSD Sd around each peak can be
seen as the one of the specific mode Sδn or Sθm only. The mean
square amplitude of the thermal noise 〈δ2

n〉 or 〈θ2
n 〉 can be eval-

uated by integrating the PSD in a tiny frequency range around
the corresponding peak, subtracting the flat background noise
contribution. In equilibrium at temperature T , the equiparti-
tion principle states that

kn
〈
δ2

n

〉 = κm
〈
θ2

m

〉 = kBT, (2)

with kn, κm the stiffnesses in flexion and torsion, and kB the
Boltzmann constant.

When the cantilever is out of equilibrium (under a steady
heat flux), we define a fluctuation temperature T fluc as

T fluc
n ≡ kn

〈
δ2

n

〉
kB

=
(

fn

f 0
n

)2
〈
δ2

n

〉
NESS〈

δ2
n

〉
EQ

T min,

T fluc
m ≡ κm

〈
θ2

m

〉
kB

=
(

fm

f 0
m

)2
〈
θ2

m

〉
NESS〈

θ2
m

〉
EQ

T min. (3)

T fluc represents the temperature we would associate to the
system through the measurement of its fluctuations, be it in
equilibrium or not. Indeed, in this latter regime no thermo-
dynamic temperature of the cantilever can be defined, and
T fluc

n,m embodies the meaningful value of the fluctuation am-
plitudes. It is noteworthy that this quantity is in principle
mode-dependent, contrarily to the equilibrium case [Eq. (2)]:
indeed, every mode, and thus oscillator, can in principle fluc-
tuate at a different temperature. From an experimental point
of view, T fluc is calculated as the ratio of the amplitude of
the fluctuations in a NESS and in an equilibrium state (EQ,
low laser power P < 1 mW), times the temperature of the
thermal bath, corrected by the frequency shift (since kn =
meff (2π fn)2, with meff the effective mass of the oscillator
being independent of temperature, kn ∝ f 2

n ). As mentioned
earlier, each NESS measurement is preceded and followed
by an EQ measurement, thus canceling most drift issues
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when computing T fluc. Moreover, using the ratio of amplitudes
avoids any tricky calibration step to measure δn or θm.

Using an extended equipartition approach for a NESS
[9,12,13], T fluc is expected to be the average of the tem-
perature profile T (x) weighed by the normalized energy
dissipation profile wdiss(x):

T fluc
n,m =

∫ L

0
dx T (x)wdiss

n,m (x). (4)

In this framework, the fluctuations of the cantilever depend on
where the dissipation is preponderant, allowing a wide variety
of possible results depending on the shape of wdiss

n,m (x) [12,13].
We discuss this quantity in the next section.

C. Dissipation

While it oscillates, the cantilever dissipates energy in the
surrounding environment. In high vacuum, hydrodynamical
damping is efficiently suppressed, and dissipation may arise
only from the clamping losses and the internal damping,
sometimes referred to as viscoelasticity [27], arising from
local defects or thermoelastic damping, for example. Dissi-
pation will thus be a function of the position x, frequency f ,
and temperature T , which may itself depend on x. A generic
way to describe it is to introduce the loss angle ϕY (x, f , T )
[respectively, ϕS (x, f , T )], which corresponds to the phase
of the Young’s modulus Y (respectively S, the shear modulus
implied for torsion). Since we are dealing with low dissipation
(ϕY,S � 1), the real part of the elastic moduli can be consid-
ered independent of x and f , and for a given mode n only the
value of dissipation at the resonance frequency matters:

Y (x, f , T ) ≈ Y 0[1 + δY (T ) + iϕY (x, fn, T )],

S(x, f , T ) ≈ S0[1 + δS (T ) + iϕS (x, fm, T )]. (5)

Experimentally, we can probe the global dissipation
only by measuring the quality factor Qn,m = 1/ϕn,m of the
resonances through a Lorenzian fit of the thermal noise PSD
(see Fig. 4 below). This global dissipation is a function of the
mode number n and temperature field T (x) [12,13]:

ϕn{T (x)} =
∫ L

0
dx ϕY (x, fn, T (x))φ′′

n (x)2,

ϕm{T (x)} =
∫ L

0
dx ϕS (x, fm, T (x))φ′

m(x)2. (6)

Hence, the experimental estimation of ϕn,m does not allow us
to retrieve the spatial dependency of the normalized dissipa-
tion wdiss

n,m (x), which writes [12,13]

wdiss
n (x) = 1

ϕn{T (x)}ϕY (x, fn, T (x))φ′′
n (x)2,

wdiss
m (x) = 1

ϕm{T (x)}ϕS (x, fm, T (x))φ′
m(x)2. (7)

Therefore, we cannot directly calculate the right-hand side
of Eq. (4) in order to estimate a theoretical value of the
fluctuation temperature, dissipation-wise. This is possible just
if some hypotheses are satisfied, such as the linearity of the
temperature profile, which is not the case of this experiment.

FIG. 3. Fluctuation temperature vs average temperature, for flex-
ion in (a) and torsion in (b). T avg

sim (black solid line) and T max (black
dashed line) are evaluated from the measured frequency shift and
the calibration function coming from the numerical simulation. The
apparent temperature T̄ app (black dotted line) is evaluated from the
measured frequency shift and the experimental calibration of the
Young’s modulus temperature dependency. Albeit dependent of T avg,
the amplitude of fluctuations is well below those characteristics tem-
peratures of the cantilever, showing a dearth of thermal noise. The
red shaded area on the right covers measurements where at least a
partial melting of the cantilever occurred. It is remarkable that in
this area T fluc

n,m greatly increases for most modes of both families. The
uncertainties on T avg

sim are discussed in Appendix, and the ones on T fluc

are discussed in the text and in more detail in Ref. [13].

We discuss in the next section how ϕn,m is nevertheless a good
indicator for the evolution of the dissipation.

III. RESULTS

In Fig. 3 we show the apparent temperature T̄ app and the
fluctuation temperatures T fluc

n,m for all modes as a function of
the average temperature of the system T avg

sim . At the highest
laser power the cantilever begins to melt, which is assessed
from camera observations and a reflectivity drop. This indi-
cates that we can reach the highest temperature difference
the cantilever can sustain, with T max − T min ≈ 1700 K. For
all modes, the fluctuation temperatures are much below the
average temperature, except for the highest heating power.
The effect is even more striking if we compare T fluc

n,m with T max.
This indicates a strong lack of fluctuations, as in our earlier ex-
periments on similar cantilevers at room temperature [12,13].
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It is noteworthy that the T fluc
n,m show a modest mode dispersion,

more pronounced for flexion and almost negligible for torsion.
The uncertainties on T fluc have two contributions: statistical
and systematic. The first is evaluated from the repeated mea-
surement of the thermal noise of the cantilever at the given
power. The second takes into account the possibility of the
probing point shifting during the measurement, the maximum
magnitude of which is estimated to be dx1 ≡ dx2 = 3 μm.
We discuss this in detail in Ref. [13]. Both contributions are
equally important in yielding the error bars of Fig. 3.

In Ref. [13] the lack of fluctuations is such that T fluc is
unchanged when T avg increases, leading to the conclusion
[through Eq. (4)] that the cantilever is dominated by clamping
losses. Indeed, if the dissipation is localized at T min, it is
straightforward to conclude that T fluc ≈ T min. In the present
experiment, however, the fluctuations depend on the average
temperature. Indeed, we note how they tend to gently increase
with T avg (except the odd point around 150 K), reaching up to
10 times the value of T min for the highest heating power. The
cantilever cannot therefore be dominated by clamping losses
only. The dissipation along the cantilever length should thus
have a noticeable contribution.

A reasonable assumption is that the local dissipation is
dependent on the temperature and will thus introduce a de-
pendence on space in the weighting of T (x) in Eq. (4). We
then expect to measure also a dependence on temperature of
the global dissipation of each mode. The measured loss angles
ϕn,m are plotted versus T avg

sim in Fig. 4, confirming this picture.
As mentioned, they cannot in general lead to wdiss(x); never-
theless, they give the qualitative evolution of the dissipation
with respect to the average temperature of the cantilever. For
all modes, ϕn,m depend on T avg, and increase up to 10 times
at the highest heating point. It is important to note here that
the estimation of ϕ is not trivial in the experiment: due to the
slow change of the temperature of the cryostat T min and the
fluctuating laser power P, the resonance peaks shift during
the measurement and artificially enlarge the PSD. Further-
more, the cantilever can sometimes enter in a self-oscillation
state, which can inject energy into the resonances altering
the results. For these reasons, a careful analysis based on the
statistical properties of the PSD is performed [22], and a large
number of spectra are discarded. We choose to show in Fig. 4
the results of the fits with a goodness-of-fit χ2 < 3 (with 1 be-
ing a perfect fit), discarding the others. At each heating power
P, we fit with a Lorentzian each spectra passing the selection.
Each fit provides a measurement of the loss angle ϕ and its
uncertainty. Those measurements are then averaged together
to compute the final estimation of ϕ, and the total uncertainty
is calculated as the quadratic sum of the dispersion of the ϕ

and of the single uncertainties. In the present experiment, due
to the small number of spectra satisfying the applied criteria,
the dispersion of the data represents the most important source
of error.

The nontrivial profile of T (x) and the unknown wdiss(x)
hinder an estimation of T fluc through the extended FDT
[Eq. (4)]. Nevertheless, it is possible to explain the exper-
imental results through some hypothesis on ϕ(x, f , T ). We
believe this system to be dominated by two main sources of
dissipation: clamping and distributed losses. The former is

FIG. 4. Loss angles ϕn of flexural modes (a) and ϕm of torsional
modes (b) with respect to the average temperature of the cantilever.
Due to experimental constraints and low sample size, the fits of
the experimental spectra are often hard to compute; thus we show
only the results of fits with a χ 2 < 3. For most modes, the general
trend is an increase of dissipation with increasing temperatures. In
order to visually assess this, in the insets we show the peak of the
PSD of the second modes in flexion and torsion, widening from
low to high temperature, depicted respectively in cyan (light gray)
at T avg

sim = 14 K and red (dark gray) at T avg
sim = 474 K for flexion and

T avg
sim = 145 K for torsion. The uncertainties on the loss angles are

discussed in the text.

the main source of damping for similar cantilevers at room
temperature [13], and it causes the strong lack of fluctuations
we observe. The latter is the responsible of the increase of
fluctuations. The loss angle could thus be written as

ϕY,S (x, f , T ) ≈ ϕ0
Y,S ( f , T min)δD(x) + ϕ1

Y,S (x, f , T ) (8)

with δD Dirac’s delta function, ϕ0
Y,S ≈ 10−5 the loss angle at

T min, and ϕ1
Y,S an unknown function embedding the evolution

of the damping with the temperature and position. With this
simple description, we can see that T fluc is brought close to
T min by the first term, while the second one acts as a correc-
tion, becoming important as T avg increases.

IV. DISCUSSION

A mechanical system in thermal equilibrium shows no
surprises from the fluctuation point of view: all the measur-
able resonances have an energy content proportional to the
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temperature of the surrounding thermal bath. When the system
is brought to a NESS through a heat flux along its length, on
the other side, the thermal noise of the system is not trivial
anymore: it depends both on the temperature profile and on
where the dissipation is localized [Eq. (4)]. Furthermore, it is
in principle possible that different resonances show different
results, meaning that the frequency is also a relevant actor.
Our system, a silicon microcantilever, is thus a suitable test
bench in order to characterize the dependency of fluctuations
from these parameters, as it is possible to alter their dissipation
adding a coating [12], study a large range of frequencies due
to the high number of measurable modes, and greatly vary
the temperature. In this experiment, we focus on this last
point, exploring the thermal noise of the cantilever between
cryogenic temperatures and the melting point of the mate-
rial. We show how all the measurable resonances show an
important dearth of fluctuations, in line with previous experi-
ments on similar samples [13]. Nevertheless, the fluctuations
increase with the temperature difference imposed on the sys-
tem, as does the measured dissipation. Interpreting this with
the extended FDT, we conclude that the dissipation profile is
nontrivial with clamping losses and distributed damping.

From a theoretical point of view, this work represents
an interesting test bench for the minimal extension of the
FDT for systems in a NESS [9]. Indeed, the cantilever is
brought as far from equilibrium as possible, with a ratio
larger than 100 between the lowest and highest tempera-
tures, where higher-order corrections of the FDT might in
principle be more salient. Not only our results can be per-
fectly embedded in this framework, but the simultaneous
measurement of the damping add support to its validity.
Moreover, we see how this is true for the whole frequency
range explored (10–500 kHz), in which all the modes show
a similar behavior. This suggests that the lack of fluctu-
ations is a global property of this cantilever. Experiments
such as the one presented in this work represent then a suit-
able testing bench for out-of-equilibrium thermodynamics:
fluctuation theorems and the relative corrections [11] and
inequalities [28] can be swiftly put to a test in a simple
framework.

From an experimental point of view, this experiment can
be relevant in other fields. For example, the characterization
of the effects of a temperature inhomogeneity can become
salient in the noise estimation of micro- and nanoresonators
[29]. Indeed, the readout laser power needs to be very small
in order not to modify the temperature field of the system
and thus the amplitude of the fluctuations. Our results show
that this condition may be relaxed if the dissipation is local-
ized at the lowest temperature point. Furthermore, as Eq. (4)
entangles the temperature field with the dissipation field to
give the amplitude of the noise, a measurement of two of
these quantities yields important information on the third, in
cases where its measurement is not possible (e.g., frequency
resolution comparable with the width of the resonance). It is
similarly possible to perform measurements where we change
the probing point along a system and thus test the presence
of defects looking at the amplitude of fluctuations: this paves
the way for the localization of single dissipative points. The
interest in exploring cryogenic regimes lies in showing how
this can be considered possible no matter the temperature.

As previously mentioned, these results can be useful to
the GW community in characterizing the behavior of silicon
under a heat flux at low temperatures. The experimental setup
of the present work is conceived explicitly to study the tem-
perature dependency of the dissipation of the coatings for the
test masses in VIRGO [19]. We show here how we can at the
same time study possible nonequilibrium effects on the noise,
the reduction of which is paramount to increasing sensitivity.
Doing so with a pure silicon cantilever, we verify how the
thermal fluctuations of our sample are weakly dependent on
the deposited heat, as they sensibly increase only when the
temperature is hundreds of times the one of the cryostat. For
this reason, we might expect the deposited heat on the test
masses to be less harmful than the equilibrium prediction
[16], fluctuation-wise. It is also important to note that our
conclusion for a microscopic system might not hold when
we increase in size [8], or when second-order effects in the
temperature arise [30].

To conclude, this work shows how the thermal fluctuations
of a microcantilever, which base is thermalized at around
10 K, show a weak dependency on the strong heat flux im-
posed on the system. This behavior is interpreted using a
minimal extension of the FDT, which allows us to link the
thermal fluctuations of the cantilever with its dissipation pro-
file. We finally show how the measurement of the global
damping is coherent with our theoretical framework. While
extended FDT is a valid description for various samples stud-
ied in our group [12,13], further studies may comprehend a
thorough investigation of exotic dissipation profiles through
different geometries, coatings, and materials.

The data that support the findings of this study are openly
available at Ref. [31].
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APPENDIX: TEMPERATURE SIMULATION

In this Appendix, we describe the numerical resolution of
the heat equation governing the cantilever temperature field
and how to use the experimental frequency shifts to evaluate
the average and maximum temperature with the help of these
simulations.

The heat equation relating the temperature field to the
heat fluxes in the problem is strictly speaking a 3D equation.
However, since we are interested in length scales larger than
∼L/10 = 100 μm (nine modes in flexion, six in torsion), no
relevant phenomenon is expected along the thickness H =
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1.1 μm. Along the width B = 90 μm, some 2D effects could
start being noticeable. In Ref. [22] we show however that if
the goal is to estimate T avg, reducing the problem to 1D yields
a difference from the 2D of 5% at most, which we consider
small with respect to other sources of uncertainty.

We thus write a stationary 1D heat equation for the can-
tilever:

∂

∂x

[
κs(T )

∂T

∂x

]
+ 2εsσSB

H
(T 4 − T min4

)

+ A1P1√
πHBR0

e
−2 (x−x1 )2

R2
0 + A2P2√

πHBR0
e
−2 (x−x2 )2

R2
0 = 0, (A1)

where κs is the thermal conductivity of silicon, εs its emis-
sivity and σSB the Stefan-Boltzmann constant, and AiPi the
absorbed light power at position xi (i = 1, 2). The boundary
conditions are

T (0) = T min,
∂T

∂x
(L) = 0. (A2)

The first term of Eq. (A1) represents the conduction, the
second the radiation, and the last ones the two heat sources
due to the partial absorption of the laser light. While κs(T ) is
tabulated [32], the other parameters have large uncertainties
in the experiment:

(1) The nominal thickness H of the cantilever is given
by the manufacturer with an important uncertainty (H = 1 ±
0.3 μm). Nevertheless, we can deduce its value looking at the
flexural resonance frequencies and confronting these values
with the Euler-Bernoulli prediction. This gives H = 1.1 ±
0.1 μm, which is confirmed by scanning electron microscopy
images.

(2) The emissivity is unknown, and it varies greatly at high
temperatures [33], where the radiation term is more relevant.
A first approximation is to consider εs as free parameter (be-
tween 0 and 1), independent of the coordinates, to be adjusted.

(3) T min slowly drifts between 10 K and 20 K during our
protocol.

(4) Finally, the absorbed power is also unknown, since
during the experiment we measure the total injected power
P = P1 + P2, with no control over the absorption A1 and A2

(which can be different for each heat source and temperature
dependency [34]). It is similarly not possible to know the
repartition of the laser power into the two sensing beams,
as it could be not equal for B1 and B2. We refer to this
balance with a = A1P1/AP, with AP = A1P1 + A2P2 the total
absorbed power. We estimate that a can vary for 0.3 to 0.7 in
our experiment.

Since those parameters are unknown, we then perform a
parametric sweep of the aforementioned meaningful quanti-
ties, in order to retrieve the family of temperature gradients
{T (x)} by numerically solving Eq. (A1). We report the ex-
plored range of the parameters in Table I. For any given set of
parameters, we solve the boundary value problem [Eqs. (A1)
and (A2)] to extract a numerical solution T (x). One example
is shown in the inset of Fig. 5, demonstrating the high nonlin-
earity of the profile. As it turns out, a is the most important
parameter in prescribing the shape of T (x), and thus T avg. On
the other hand, a smaller H or εs or a higher total power AP
yields a higher T max.

TABLE I. Parameter range for the temperature profile simulations.

εs H [μm] T min [K] a AP [mW] n

Parameter 0–1 1–1.2 10–20 0.3–0.7 1–35 6–9
range
Central 0.5 1.1 15 0.5 1–35 7
value

For each numerical solution T (x), we then compute
the average temperature T avg = ∫ L

0 T (x) dx/L, the maximum
temperature T max = max(T (x)), and the relative frequency
shift 〈� fn/ f 0

n 〉n=6−9 through Eq. (1) [using the experimental
calibration for �Y (T )/Y 0]. All results are finally shown in
Fig. 5. The solid curve represents the calculated temperature
for the central value of the parameters in Table I and the
shaded area all its simulated values.

In order to estimate T avg and T max in the experiment, we
first average the measured � fn/ f 0

n for n = 6–9. Then, to each
of these values we associate a range of simulated temperatures
{T avg, T max}. As we can see, the maximum temperature varies
greatly in the simulation. We set an upper bound to its values
at the melting temperature T melt, since we aim to retrieve T max

for the measurements where we did not melt the cantilever.
In fact, from camera observations and reflectivity estimations
we can discern when we damaged the cantilever, hence for
the measurements where this is not the case it is reasonable

FIG. 5. Estimation of T avg and T max: from the parametric sweep
reported in Table I, we estimate the possible values of the average
and maximum temperature of the cantilever and at the same time
the frequency shift for the mode numbers 6 to 9. The relations
between these quantities are shown as yellow (light gray) and red
(dark gray) curves. The dispersion of T avg, depicted as a yellow (light
gray) shaded area, is small. As a result, the error associated to the
experimental value of T avg at a given frequency shift, shown as cyan
squares is also small. Conversely, the estimation of T max yields a
wide parameter range displayed as a red (dark gray) shaded area. No
bijective relation is possible, thus we estimate T max as the average
of a uniformly distributed variable between the possible values at a
given frequency shift. The purple (dark gray) dashed curve represents
the retained value of T max for each frequency shift and the blue (dark
gray) diamonds are the experimental values. In the inset we show a
typical temperature profile T (x), with each of the two laser beams (at
x1 and x2) injecting an absorbed power of 15 mW. We can see how
T (x) is highly nonlinear and peaked at the heating points.
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to assume T max < T melt. The central value of the constrained
interval is then the retained value of T max, which is depicted
as a purple (light gray) dashed curve. The uncertainty associ-
ated to T max is then calculated as the standard deviation of
the parametric range, taken as if represented by a uniform
distribution. Indeed, each value of the parametric range is in
principle equiprobable. We perform the same procedure in
order to calculate T avg

sim and the respective (small) uncertainty,
considering the interval of parameters limited by the upper
bound for T max. These uncertainties are shown in Fig. 5 for the
experimental data as cyan (light gray) squares and blue (dark
gray) diamonds. We can see that the numerical simulation
gives us a reliable way to estimate the average temperature
of the cantilever, and as we see in Fig. 3 this is very close to
T̄ app. Conversely, the uncertainty on the unknown parameters

hinders the knowledge of T max, and the results of the simula-
tion must be taken as an order of magnitude guess.

Finally, the simulations allow us to test the hypothesis that
when we shine the cantilever with a low power (P < 1 mW),
the system can be considered close to thermal equilibrium.
Since P is measured before the beam is directed towards the
vacuum chamber, losses on the optical elements and win-
dows diminish the total intensity that reaches the cantilever.
Furthermore, the cantilever absorbs just a part of the shined
beam. A conservative guess is to suppose that AP = 0.5 mW.
In this case the simulations give T avg = 15.5 ± 0.2 K and
T max = 16.8 ± 0.5 K for T min = 14 K. Therefore, we see how
the temperature increase at P < 1 mW are very low with re-
spect to the nonequilibrium measurements, and the system can
safely be considered in thermal equilibrium.
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