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Finite-time fluctuation theorem for oscillatory lattices driven by a temperature gradient
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The finite-time fluctuation theorem (FT) for the master functional, total entropy production, and medium
entropy is studied in the one-dimensional Fermi-Pasta-Ulam-Tsingou-β (FPUT-β) chain coupled with two
heat reservoirs at different temperatures. Through numerical simulations and theoretical analysis, we find that
the nonequilibrium steady-state distribution of the one-dimensional FPUT-β chain violates the time-reversal
symmetry. Thus, unlike the master functional, the total entropy production fails to satisfy the fluctuation relation
for finite time. Meanwhile, we discuss the range of medium entropy production which obeys the conventional
steady-state fluctuation theorem (SSFT) in the infinite time limit. Furthermore, we find that the generalized SSFT
for medium entropy monotonically approaches the conventional SSFT as the time interval increases, irrespective
of temperature difference, anharmonicity, and system size. Interestingly, the medium entropy production rate
shows a nonmonotonic variation with anharomonicity, which comes from a competition mechanism of the
phonon transport. Correspondingly, the difference between the generalized SSFT and the conventional SSFT
shows similar nonmonotonic behaviors.
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I. INTRODUCTION

Nonequilibrium statistical mechanics, unlike its equilib-
rium counterpart, lacks a unified theoretical framework.
Therefore, it is not surprising that the fluctuation theorem has
received significant attention since it quantifies the charac-
teristics of the fluctuations of special physical quantity for a
large class of systems, even when these systems are far from
equilibrium. The fluctuation relation (FR) for entropy was first
discovered in the numerical simulation of two-dimensional
shear fluids [1,2], and proven by Gallavotti and Cohen based
on a chaotic hypothesis [3]. The deterministic dynamics can
be mapped onto a mixing Markov stochastic process when
the chaotic hypothesis holds [4]; this result advances the
derivation of the FR for stochastic dynamics. For a stochastic
version of the FR, Kurchan [5] discussed the case of Langevin
equation, which was later extended to general Markov pro-
cesses in, e.g., stochastic lattice gas and Hamilton systems
with random boundary conditions [6]. In early studies of FR
for stochastic dynamics, FR holds only asymptotically under
the long-time limit since the physical quantity considered is
the entropy production of the medium �sm

t , which is called
the conventional steady-state fluctuation theorem (SSFT) [7]
of the following form:

lim
t→+∞

1

〈�sm
t 〉 ln

Pt (sm
t = p)

Pt (sm
t = −p)

= p. (1)

Here sm
t = �sm

t
〈�sm

t 〉 is the dimensionless medium entropy produc-
tion. The Crooks fluctuation theorem [8] reflects the relation
between the probability density function (pdf) PF (s) of en-
tropy production s for the forward process and the pdf PR(s)
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for the time-reversal process. Similar to the Jarzynski relation
[9–12] it can be used to calculate the free energy difference
between two equilibrium states, and the steady-state FR for
total entropy production �stot

t , which is the summation of
the medium entropy production �sm

t and the system entropy
production �st [13], has been extensively studied [13–20].
Furthermore, a unification of FRs has been made, leading to
the generalized SSFT [21]. Note that the master functional Rt

(see Sec. II) is the same as �stot
t in specified systems, such

as the single-particle system. Thus, it can be seen that the
steady-state FR on total entropy production, valid for arbitrary
time interval, is given by

ft (s) ≡ 1

〈�stot
t 〉 ln

Pt (stot
t = s)

Pt (stot
t = −s)

= s. (2)

Here stot
t = �stot

t
〈�stot

t 〉 is the dimensionless total entropy
production.

Even for the long-time limit, the conventional SSFT in the
form of Eq. (1) may break down for large fluctuations of cer-
tain physical quantities. For example, it has been shown that
the conventional SSFT is satisfied only within the small fluc-
tuation range of heat dissipation for a thermalized Brownian
particle bounded in a moving potential [7,10]. The fluctuation
of heat flow for a Brownian particle coupled to two ther-
mal reservoirs at different temperatures has a similar result
[22]. Furthermore, the distribution of large current fluctua-
tions in the one-dimensional partially asymmetric zero-range
process may violate the Gallavotti-Cohen symmetry [23]. For
deterministic systems, the conventional SSFT for entropy pro-
duction of a deterministic system connected with a isokinetic
Gaussian thermostat is satisfied only for small fluctuations due
to the singular boundary terms [24].
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As for the one-dimensional chain with two ends respec-
tively coupled to two stochastic heat baths at different tem-
peratures, the cumulant generating function (CGF) [25–27]
for heat flow from the left (right) bath into the harmonic chain
satisfies the symmetry relation [28], which is further validated
for anharmonic chains [29]. According to the large deviation
theorem [30], if the CGF is differentiable everywhere, the
large deviation function for the heat flow can be obtained by
the Legendre transformation of the CGF, which also proves
that the heat flow fluctuation satisfies the conventional SSFT
for infinite time. Meanwhile, temporal asymmetries in the
fluctuation-relaxation paths of a form of local heat flow have
been found in the nonequilibrium FPUT-β model [31,32].
For the FPUT-β model coupled with the Nosé-Hoover ther-
mostats, it has been numerically verified that the total heat
flow conforms to the conventional SSFT [33]. The studies
of the generalized exchange fluctuation theorem (GXFT) for
the isolated near-integrable model show that the GXFT gives
information on the ratio of probability of death to resurrection
of solitons in the FPUT-α-β chain [34,35].

There are still some issues that require clarification: (a)
the difference of total entropy production �stot

t and master
functional Rt , specifically, when one looks at a many-body
interacting system in the nonequilibrium steady state driven
by the temperature gradient, and (b) effects of the finite time
interval on the deviation of the generalized SSFT from the
conventional SSFT. In this article, we study the fluctuations
of several physical quantities for the FPUT-β system in the
nonequilibrium steady state. We show that, first, �stot

t is not
odd time-reversed symmetrical, which is different from Rt .
This leads to the violation of the FR for �stot

t in the finite time
interval. Second, we discuss the range of medium entropy
production which obeys the conventional SSFT in the infinite
time limit. Finally, we find that the generalized SSFT for �sm

t
monotonically approaches the conventional SSFT irrespective
of temperature difference, anharmonic strength, and system
size, and its approaching speed is positively relevant with the
rate of the medium entropy production. Interestingly, the rate
of the medium entropy production varies with the anharmonic
strength in a nonmonotonic way.

The rest of this paper is organized as follows. In Sec. II we
introduce the FPUT-β model and the definition of entropies.
In Sec. III we mathematically illustrate the time-reversal
asymmetry of the nonequilibrium steady-state pdf and show
that �stot

t , which violates the steady-state FR for finite time, is
different from Rt . Section IV discusses the range of �sm

t that
obeys the conventional SSFT by looking at the decay property
of the pdf. In Sec. V we study the time-dependent difference
between the generalized SSFT for �sm

t and the conventional
SSFT when temperature difference, anharmonic strength, and
system size vary. A summary is provided in Sec. VI.

II. MODEL AND DEFINITION OF PHYSICAL QUANTITIES

We consider the FPUT-β chain of N particles with posi-
tions x = (x1, x2, . . . , xN ) and velocities v = (v1, v2, . . . , vN ).
The particles are coupled to each other by nearest-neighbor
FPUT-β potentials of the spring constant k and anharmonic
strength β. The chain is connected to two Langevin heat baths
at temperature TL and TR. The equations of motion are given

by

ẋi = vi,

v̇i = −∂U (x)

∂xi
+ (δi1 + δiN )[−γivi + giξi(τ )]

(3)

with

U (x) =
N−1∑
i=1

[
k

2
(xi − xi−1)2 + β

4
(xi − xi−1)4

]

+ k′

2

(
x1

2 + xN
2
) + β ′

4

(
x1

4 + xN
4
)
,

(4)

where ξi(τ ) is a Gaussian process with 〈ξi(τ )〉 = 0 and
〈ξi(τ )ξi(τ ′)〉 = 2δ(τ − τ ′), γi is the viscosity of Gaus-
sian noise, and gi is the Gaussian strength with gi =√

δi1γiTL + δiNγiTR. Extra terms for the end particles with
spring constant k′ and anharmonic strength β ′ will allow us to
specify different boundary conditions. In this paper, we used
the fixed boundary condition by setting k′ = 1 and β ′ = 1.

For a trajectory X (τ ), the time-reversed dynamics, denoted
by X †(τ ), comes from the time-reversal mapping

xi
†(τ ) = xi(t − τ ), vi

†(τ ) = −vi(t − τ ) (5)

with no changes at the form of potential function U †(X †) =
U (X †), the viscosity of Gaussian noise γ

†
i = γi, and the Gaus-

sian strength g†
i = gi. The superscript symbol † represents the

time-reversal mapping operation. The master functional Rt is
given by the log-ratio of the path weights [13]

Rt = ln
P[X (τ )]t

P†[X †(τ )]t

= ln
P0(X0)

P†
0 (X0

†)
+ ln

P[X (τ ) | X0]t

P†[X †(τ ) | X0
†]t

= R0
t + R1

t ,

(6)

which consists of a “boundary” term R0
t , coming from the

two pdfs for the initial states of the trajectories X (τ ) and
the time-reversed trajectories X †(τ ), and a “bulk” term R1

t
[13,21]. The subscript symbol t represents the time interval
for the trajectories. In Eq. (6), P0 and P1 represent the pdf for
the initial state and final state of the system, respectively. One
can immediately find that P†

0 = P1. R1
t can easily be calculated

in the path integral representation of the Langevin equation
[6,8,13,36] as

R1
t = ln

P[X (τ ) | X0]t

P†[X †(τ ) | X0
†]t

= −
∫ t

0

[−γ v1(τ ) + g1ξ1(τ )]v1(τ )

TL
dτ

−
∫ t

0

[−γ vN (τ ) + gNξN (τ )]vN (τ )

TR
dτ

= − qL[X (τ )]t

TL
− qR[X (τ )]t

TR

=�sm
t ,

(7)

where qL and qR are the heat dissipation of the left bath
and right bath, respectively. Equation (7) shows that the path
weight of the forward trajectory is related to the backward
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one in terms of the medium entropy production [37–40]. For
any trajectory X (τ ) of the original dynamic, we can find
another particular realization of the noise ξi

′ produced by the
same heat reservoir to obtain the corresponding time-reversed
trajectory X †(τ ) [41]. It means that any corresponding time-
reversed trajectory X †(τ ) is also the solution of Eq. (3),
and then the original dynamic is microscopically reversible
[8,42,43] thus leading to Eq. (7). It is worth noting that
microscopic irreversibility would lead to the breakdown of
well-known derivations of the fluctuation theorem, such as
resetting stochastic dynamics [44,45]. The term “microscop-
ically reversible” is distinct from the principle of detailed
balance, which is equivalent to Rt ≡ 0 [8,36,46,47]. There-
fore, the process we considered is microscopically reversible
but violates detailed balance, and then we can get Rt = R0

t +
�sm

t when �sm
t is the entropy production of the medium for

one trajectory X (τ ). Moreover, the total entropy production
for one trajectory X (τ ) is

�stot
t = �sm

t + �st = R1
t + �st , (8)

and �st = ln P0(X0 )
P1(Xt ) is a trajectory-dependent entropy produc-

tion for the system [13].
It can be concluded from previous studies that the master

functional obeys the FR for arbitrary time. Therefore, if the
boundary term R0

t is equivalent to �st , �stot
t satisfies the FR

for arbitrary time. Yet it is not generally the case, and as
shown below, �stot

t may fail to satisfy the steady-state FR
for an interacting systems driven by the temperature gradient.
Moreover, the medium entropy production �sm

t dissatisfies
the steady-state FR in the finite time interval. In some special
cases, the conventional SSFT with respect to �sm

t is only valid
within a small fluctuation range.

III. DIFFERENCE BETWEEN Rt AND �st

One can assume the functional Sa
t [X (τ )] of the original

dynamics is odd symmetric after the time-reversal operation.
It means that Sa

t
†[X †(τ )] = −Sa

t [X (τ )] and Sa
t [X (τ )] satisfies

a generalized FT in the form by

P
({

Sa
t = sa

})
P†

({
Sa

t
† = −sa

}) = 〈exp (Rt )|
{
Sa

t
†} = {−sa}〉, (9)

which relates the pdf of the original process to the pdf of the
time-reversed one and a conditional average [21]. According
to the definition of the master functional Rt in Eq. (6), one
has Rt

†[X †(τ )] = −Rt [X (τ )]. For the dimensionless quantity
rt = Rt

〈Rt 〉 , Eq. (9) leads to a generalized FT given by

1

〈Rt 〉 ln
P(rt = r)

P†(rt
† = −r)

= r. (10)

If the system is driven by the steady temperature dif-
ference rather than a time-dependent force, it will lead
to P†[X †(τ ) | X0

†]t = P[X †(τ ) | X0
†]t . There is an equality

P0(X ) = P1(X ) = P†
0 (X ) = Ps(X ) when the system is in the

nonequilibrium steady state. Thus one finds

P†(Sa
t = −sa

) = P
(
Sa

t = −sa
)
. (11)

Moreover, due to rt
†[X (τ )] = rt [X (τ )] the equality (11) can

be rewritten for Sa
t = rt as

P†(rt
† = −r) = P(rt = −r). (12)

Substituting Eq. (12) into Eq. (10) leads to the finite-time FR
for Rt in the form as

ft (r) ≡ 1

〈Rt 〉 ln
P(rt = r)

P(rt = −r)
= r, (13)

where ft (r) is defined as the scaled logarithmic ratio. The
system entropy production �st is different from the bound-
ary term R0

t when P0
†(X0

†) = P1(X0
†) 	= P1(Xt ) [48], and it

means that the total entropy production �stot
t , unlike Rt , may

not satisfy the odd time-reversed symmetry (�st
†[X †(τ )] =

−�st [X (τ )]) and the finite-time FR in the form of Eq. (13).
It should be noted that in previous studies [9,13–15,18,21],
e.g., for the overdamped motion of a colloidal particle or
the nonequilibrium process of a system from one equilibrium
state to another, the distribution function of the final state
P1(X ) satisfies P1(X ) = P†

0 (X †). It means that Rt is equivalent
to �stot

t for arbitrary time and �stot
t [X (τ )] is odd symmetric

after the time-reversed operation in those cases. However, it is
not generally valid.

Here we show that the nonequilibrium steady-state distri-
bution of the many-body system violates the time-reversed
symmetry, namely, Ps(X ) 	= Ps(X †). The Fokker-Planck equa-
tion [36,49] corresponding to the forward process is given by

∂P(X, τ )

∂τ
= −

N∑
i=1

{
∂

∂xi
vi + ∂

∂vi

[
−∂U (x)

∂xi

−γ vi + Di
∂

∂vi

]}
P(X, τ ),

(14)

where Di = gi
2 = δi1γiTL + δiNγiTR, and the time-reversal

Fokker-Planck equation is written by

∂P†(X †, τ ′)
∂τ ′ = − ∂P(X †, τ )

∂τ

= −
N∑

i=1

{
∂

∂xi
vi + ∂

∂vi

[
−∂U (x)

∂xi

+γ vi − Di
∂

∂vi

]}
P(X †, τ )

(15)

with τ ′ = t − τ . Similar to P0
† = P1, we can get P†(X †, τ ′) =

P(X †, τ ). When the system is in the nonequilibrium steady
state, one has

∂P(X, τ )

∂τ
= ∂P†(X †, τ ′)

∂τ ′ = 0, (16)

and P(X, τ ) = Ps(X ). Here one can use a simple proof
by contradiction. If Ps(X ) = Ps(X †), one can find from
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FIG. 1. Comparing the nonequilibrium steady-state pdf Ps(X )
with the time-reversed pdf Ps(X †). Here we plot the dimensionality-
reduction distribution with respect to the velocity v1,2 for the FPUT-β

model of N = 2. Inset: Relative difference δP ≡ Ps (X )−Ps (X † )
Ps (X ) . The

dashed and solid lines represent Ps(v1) and Ps(v2), respectively. The
triangle and circle symbols represent Ps(v

†
1 ) and Ps(v

†
2 ), respectively.

In the simulations, we set k = 1 and β = 1. The temperatures of heat
baths are set by TL = 1.5 and TR = 0.5 and the viscosity γ = 1.

Eqs. (14)–(16) that

−
N∑

i=1

∂

∂vi

(
−γ vi + Di

∂

∂vi

)
Ps(X )

=
N∑

i=1

∂

∂vi

(
−γ vi + Di

∂

∂vi

)
Ps(X

†) = 0

(17)

and

−
N∑

i=1

[
∂

∂xi
vi + ∂

∂vi

(
−∂U (x)

∂xi

)]
Ps(X ) = 0. (18)

Ps(X ) satisfies both Eq. (17) and Eq. (18). Since D1 	= DN ,
Eq. (17) does not have permutation symmetry with respect to
v1 and vN , indicating that in addition to the trivial solution
Ps(X ) = 0, the solution Ps(X ) of Eq. (17) also does not have
permutation symmetry with respect to v1 and vN . However,
the solution Ps(X ) of Eq. (18) have permutation symmetry
with respect to v1 and vN . The contradiction indicates that
the nonequilibrium steady-state distribution of the system
does not satisfy the time-reversal symmetry, i.e., the above
assumption Ps(X ) = Ps(X †) is invalid. Note that for the case
of one particle coupled to two thermal reservoirs at different
temperatures, the system is effectively in the equilibrium state,
and the steady-state distribution of the system Ps(X ) satisfies
the time-reversal symmetry [Ps(X ) = Ps(X †)].

Since the time complexity to calculate Ps(X ) numerically
for the FPUT-β system increases exponentially with N , we
perform numerical simulations for the FPUT-β system with
N = 2 in order to verify Ps(X ) 	= Ps(X †). In Fig. 1, for the
sake of visualization, the dimensionality-reduction distribu-
tions with respect to the velocity v1 or v2 are plotted. For

FIG. 2. Comparing the scaled logarithmic ratio ft (r) and ft (s)
with the FR when the time interval t = 1. The FR is represented by
the solid line with a slope of 1. The parameters are the same as those
for Fig. 1.

example, a reduced pdf Ps(v1) is plotted for an intersecting
surface of the phase space, for which x1 = x2 = 0, v2 = 0.
One can find Ps(X ) 	= Ps(X †) from Fig. 1. When the time
interval is nonzero (t 	= 0), any combination of the initial state
and the final state will appear with a nonzero probability.
We consider the subset of initial state X̃0 ∈ {X0 | x1 = x2 =
0, v1 = 0} and the subset of final state X̃t ∈ {Xt | x1=x2=0,

v2 = 0}. According to Fig. 1, it is obvious that P0(X̃0) =
Ps(X̃0) = Ps(X̃

†
t )=Pt

†(X̃ †
t ) and Pt (X̃t )=Ps(X̃t ) 	= Ps(X̃

†
0 )=P0

†

(X̃ †
0 ), which means �st

†[X †(τ )] 	= −�st [X (τ )]. Then the
pdf P(�stot

t ) for the total entropy production may not
satisfy Eq. (9) with Sa

t = �stot
t and thus dissatisfy the

finite-time FR in the form of Eq. (13). For verification,
we numerically calculate the scaled logarithmic ratio ft (r)
and ft (s) ≡ 1

〈�stot
t 〉 ln P(stot

t =s)
P(stot

t =−s) with the dimensionless quantity

stot
t = �stot

t
〈�stot

t 〉 .
Indeed, it can be found from Fig. 2 that ft (s) 	= s fails to

obey the FR in the finite time interval t = 1, which is different
from ft (r) = r.

IV. RANGE OF �sm
t OBEYING THE CONVENTIONAL SSFT

According to the definition of �sm
t [Eq. (7)], one can

find that �sm
t satisfies the odd time-reversed symmetry

(�sm
t

†[X †(τ )] = −�sm
t [X (τ )]). The generalized SSFT [21]

about �sm
t for arbitrary time interval t is obtained from

Eq. (9) as

ft (p) ≡ 1〈
�sm

t

〉 ln
P
(
sm

t = p
)

P
(
sm

t = −p
)

= p + 1〈
�sm

t

〉 ln
〈
eR0

t
∣∣sm

t = p
〉
,

(19)

where we replace the functional Sa
t by the dimensionless quan-

tity sm
t . It can be seen from Eq. (19) that, due to the existence
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of the boundary term R0
t , the form of the generalized SSFT

for �sm
t is affected by the second term in the second line of

Eq. (19), which is determined by p and the time interval t .
The CGF g(λ) is given in the form

g(λ) = lim
t→+∞

1

t
ln

〈
eλ�sm

t
〉
. (20)

Whether the system is a simple harmonic chain or a nonhar-
monic chain, the CGF has the following symmetry [28,29]:

g(λ) = g(1 − λ). (21)

If g(λ) exists and is differentiable for all λ ∈ R, the Gartner-
Ellis Theorem states that sm

t satisfies a large deviation
principle [30],

lim
t→+∞ P

(
sm

t = p
) ∼ e−t I (p), (22)

with the large deviation function I (p) given by the Legendre
transform of e(λ)

I (p) = λ∗ p − g(λ∗), (23)

where λ∗ is given by dg(λ)
dλ

|λ=λ∗= p. Equation (21) and
Eq. (23) mean that I (p) also has the following symmetry:

I (p) − I (−p) = p, (24)

which is also equivalent to the infinite-time conventional
SSFT for �sm

t in the form

lim
t→+∞ ft (p) = p. (25)

Equation (19) and Eq. (25) are not contradictory since Eq. (25)
requires that

lim
t→+∞

1〈
�sm

t

〉 ln
〈
eR0

t
∣∣sm

t = p
〉 → 0. (26)

However, this is a conclusion based on Eq. (23), which re-
quires e(λ) to exist and be differentiable everywhere. For the
example in Ref. [7], Eq. (24) is satisfied only when p < 1,
which means that the infinite-time conventional SSFT for �sm

t
(25) also holds only when p < 1, because the singularity of
e(λ) destroys the derivability of e(λ). This is called the exten-
sion of FT, and similar results can be also found in Refs. [22]
and [24]. For our system, the property of e(λ) is difficult to
obtain, which will prevent us from strictly determining the
range of p that satisfies the conventional SSFT for infinite
time. To investigate this, we numerically calculate ft (p) as t
increases.

It can be found from Fig. 3 that when t is small, ft (p) 	= p,
which is consistent with the prediction of Eq. (19). However,
as t increases, ft (p) → p, which is consistent with Eq. (25).
Since it is extremely difficult to calculate ft (p) when p is very
large, the behavior of ft (p) that changes with the increasing
t can be studied only for a limited p. The infinite-time con-
ventional SSFT may not be valid for the larger p, but the
results in Fig. 3 show that the conventional SSFT is valid
for large t when p ∈ [0, p∗]. It is difficult to determine the
effective boundary p∗ for the infinite-time conventional SSFT
regardless of the use of numerical simulation calculation or
analytical methods. However, similar to the analysis in [7]
and [4], from the analysis of the pdf for boundary term R0

t

FIG. 3. Comparing the scaled logarithmic ratio ft (p) for dif-
ferent time intervals t with FR for (a) �T = 0.5, (b) �T = 0.6,
(c) �T = 0.7, and (d) �T = 0.8. The dashed curve is a straight
line with a slope of 1 that represents FR for the medium entropy
production �sm

t . The temperature difference �T = 1
2T (TL − TR ) and

average temperature T = 1
2 (TL + TR ) = 1. The other parameters are

the same as those for Fig. 1.

and bulk term �sm
t , we can make some qualitative discussion

about whether the boundary p∗ is a finite value.
It is shown in Fig. 4 that the pdf for �sm

t = Rt − R0
t is

dominated by the contribution from the boundary term R0
t

when t is small. As t increases, the probability distribution
for R0

t tends to be a stable distribution because R0
t is not a

cumulative amount of time and related to only the initial and
final states of the system. We also found that even though
for the large values the pdf for �sm

t and Rt tend to coincide,
this means that p∗ may be infinite. It should be noted that
the value range of �sm

t and Rt in Fig. 4 is limited, yet so
far it is inconclusive whether the distributions still coincide
when �sm

t and Rt tend to infinity. However, in terms of our
numerical results, one may make a reasonable assumption that
the stable distribution of R0

t still has exponential tails for the
large values. If so, these exponential tails will dominate the
pdf for �sm

t at very large values since the pdf for Rt is concave.

FIG. 4. The nonequilibrium steady-state pdf P as a function of
the boundary term R0

t , master functional Rt , and medium entropy
production �sm

t for (a) t = 1, (b) t = 10, and (c) t = 100. The solid,
dashed, and dotted lines correspond to the steady-state pdf P(R0

t ),
P(Rt ), and P(�sm

t ), respectively. The parameters are the same as
those for Fig. 1.
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FIG. 5. Dt as a function of time interval t for temperature differ-
ence �T . The parameters are the same as those for Fig. 3.

It implies that limt,p→+∞ ft (p) = const and p∗ may be a finite
value, as has been indicated in previous studies [7].

V. GENERALIZED SSFT FOR �sm
t

In order to describe the process that the generalized SSFT
for p ∈ [0, p∗] approaches the conventional SSFT as t in-
creases, we define a quantity Dt in order to quantify the
time-dependent difference between the finite-time generalized
SSFT and the conventional SSFT

Dt = 1

p∗

∫ p∗

0
|1 − ft (p)

p
| d p, (27)

and one can find lim
t→+∞ Dt = 0 from Eq. (25).

Figure 5 shows Dt as a function of time when temperature
difference �T varies. One can find that Dt decreases mono-
tonically as t increases, which shows that the generalized
SSFT for p ∈ [0, p∗] monotonically approaches the conven-
tional SSFT. Note that the greater the temperature difference,
the faster the monotonic decrease of Dt . This can be under-
stood that if the system deviates from the equilibrium state
further, the medium entropy production rate, which is propor-
tional to heat flux (see below for details), increases further.
This implies stronger path irreversibility and thus the faster
the generalized SSFT approaches the conventional SSFT.

Next, we investigate the anharmonic effect on the pro-
cess of the generalized SSFT approaching the conventional
SSFT as t increases. It can be found from Fig. 6(a) that the
generalized SSFT monotonically approaches the conventional
SSFT for a given anharmonic strength β. Yet Dt shows a
nonmonotonic variation at a given time interval t when β

increases. As shown in Fig. 6(b), one can find that the medium
entropy production rate σ = 〈�sm

t 〉
t = ( 1

TR
− 1

TL
) 〈qL[X (τ )]t 〉

t with

qL[X (τ )]t = − ∫ t
0 [−γ v1(τ ) + g1ξ1(τ )]v1(τ ) dτ gives similar

nonmonotonic variation. This can be understood from the
following competition mechanism of phonon transport [50].
On one hand, the increase of β enhances the scattering effect

FIG. 6. (a) Dt as a function of time interval t for different an-
harmonic strength β. (b) Rate of the medium entropy production
σ = 〈�sm

t 〉
t as a function of β. The enlarged symbols in (b) represent

σ at given anharmonic strengths β for which Dt is plotted in (a) cor-
respondingly. Here N = 64 and the other parameters are the same as
those for Fig. 1.

of phonons, which inhibits the heat transport. On the other
hand, the increase of β also leads to the increase of the
effective phonon speed, which enhances heat transport. In
terms of the fact that the effective phonon theory holds even
in the regime of large anharmonic strength [50], the phonon-
phonon interaction of the FPUT-β is seemingly weak from
this perspective, implying quasiballistic transport is involved
even in this regime [51]. When β is small, σ decreases since
the phonon scattering effect dominates heat transport. When
β is large, the enhancement effect play a leading role and
σ increases. As mentioned above, since σ , as well as ft (p),
is positively relevant with the strength of the irreversibility,
the difference between the generalized SSFT and the con-
ventional SSFT shows nonmonotonic behaviors similar to σ

correspondingly.

FIG. 7. Dt as a function of time interval t when the system size
N varies. The other parameters are the same as those for Fig. 1.
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Finally, the size effect on the time dependence of Dt is in-
vestigated. It can be found from Fig. 7 that for a given system
size N , Dt tends to decrease, indicating that the generalized
SSFT monotonically approaches the infinite-time conven-
tional SSFT as t increases. Like the anharmonic strength β,
since heat transport reduces when N increases, σ decreases
monotonically with N , which implies the decrease of Dt .

VI. SUMMARY

In summary, we study the fluctuation of the master func-
tional, total entropy production, and medium entropy produc-
tion of one-dimensional FPUT-β chains in the nonequilibrium
steady state. First, we show that for the finite-time interval
t , the total entropy �stot

t fails to satisfy the FR while the
main functional Rt does, which comes from the violation
of the time-reversed symmetry of the steady-state distribu-
tion for this system. Second, it is found that the medium

entropy production �sm
t conforms to the generalized SSFT

for the finite-time interval t , which generally approaches the
conventional SSFT in a monotonic way regardless of the
change of temperature difference, anharomonic strength, and
system size. Yet the medium entropy production rate shows
a nonmonotonic variation with anharomonicity, coming from
the competition mechanism of phonon transport. Correspond-
ingly, the difference between the generalized SSFT and the
conventional SSFT Dt shows nonmonotonic behaviors similar
to σ .
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