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Effects of interplay between disorder and anharmonicity on heat conduction
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Heat conduction through a disordered Fermi-Pasta-Ulam-β (DFPU-β) chain is studied. The presence of disor-
der makes the heat current behave significantly different from that of the ordered Fermi-Pasta-Ulam-β (FPU-β)
chain. Thanks to the interplay between disorder and anharmonicity, a nonmonotonic-monotonic transition occurs
when the disorder strength increases. That is, a peak for the heat current emerges for weak disorder; however,
monotonic increasing of the heat current shows up for strong disorder. This can be understood based on the
competition between two effects of anharmonicity on phonons, namely, delocalization and phonon-phonon
scattering, which is shown by the spectral decomposition of heat current.

DOI: 10.1103/PhysRevE.103.062121

I. INTRODUCTION

Since the pioneering study of Anderson [1], localization
has been a fundamental concept in condensed-matter physics
[2,3]. For electronic systems, it is well known that localization
has the strongest effect in one dimension; that is, under broad
conditions, all quantum states are localized in the thermody-
namic limit [4,5]. Since only the electrons near the Fermi level
contribute to transport, the electrical current decays exponen-
tially with the system size.

Similar but different conclusions exist in phononic sys-
tems. In fact, as early as in 1970, Matsuda and Ishii [6]
have already proven that for one-dimensional isotopically dis-
ordered harmonic chain of N atoms with the average mass
m = 〈ml〉, the variance σ 2

m = 〈(ml − m)2〉 and spring constant
k, the effective mobility edge is given by

ωd = 4

√
km

Nσ 2
m

. (1)

The normal modes of ω � ωd are extended, whereas the
normal modes of ω � ωd are localized. Contrary to elec-
tronic systems, since low-frequency extended phonons can
contribute to energy transport, the dependence of heat con-
ductivity κ on the system size shows a power-law behavior
κ ∼ Nα for phononic systems without onsite potential. In the
context of heat conduction in a disordered harmonic chain, a
longstanding puzzle is that there are two different exponents,
namely, α = 1/2 for free boundaries [7,8], and α = −1/2 for
fixed boundaries [9]. This puzzle clarified with the finding that
the spectral properties of heat baths and boundary conditions
of the system have a strong effect on phonon transmission in
disordered harmonic chains using the Langevin equations and
Green’s function (LEGF) method [10].

When anharmonicity is concerned, generally speaking,
chaos [11,12] plays a role in heat conduction through the
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interaction of phonon modes, and the coexistence of anhar-
monicity and disorder makes the issue more complicated. In
a study of disordered Fermi-Pasta-Ulam-β (DFPU-β) chains,
Li et al. [13] found that the heat conductivity diverges as κ ∼
N2/5 at high temperature like the ordered Fermi-Pasta-Ulam-β
(FPU-β) chain [14], whereas a nonvanishing convergent heat
conductivity, i.e., normal heat conduction, is observed at low
temperature. Nevertheless, Dhar and Saito [15] found that heat
conductivity still diverges in the same way as the ordered
FPU-β chain even at low temperature when a stochastic heat
bath is used. The results in Ref. [16] also support this conclu-
sion. Therefore, the disorder-induced change in the behavior
of heat conduction seems only quantitative but not qualitative.

In addition, it has been shown that, in the disordered pinned
anharmonic chain, heat conduction is normal [17], which is
the same as its ordered counterpart. It is worth noting that the
spreading of localized energy wave packets in isolated disor-
dered pinned anharmonic chain shows subdiffusion [18–23]
or partial localization [21–24]. However, the diffusion at fi-
nite temperature is significantly different from that at zero
temperature. As pointed out in Ref. [25], the spatiotemporal
correlation of energy density fluctuation is necessary to under-
stand the equilibrium energy diffusion at finite temperature.
The study in Ref. [26] shows that the equilibrium energy
diffusion in disordered φ4 chains is still normal diffusion, con-
sistent with the results of heat conduction [17]. Once again,
disorder is irrelevant to the behavior of heat conduction in
anharmonic chains. However, if looking closely at the result
corresponding to N = 1024 shown in Fig. 1 of Ref. [17], one
can find that, as anharmonicity increases, the heat current in
the disordered φ4 chain first increases and then decreases,
different from that for the ordered φ4 chain where the heat
current decreases monotonically with increasing anharmonic-
ity. A similar observation can also be found in Ref. [27]. As a
matter of fact, in a pioneering numerical study of heat conduc-
tion in disordered systems, Payton et al. [28] discovered that
a small amount of anharmonicity enhances heat conductivity,
which, as they argued, comes from energy transfer of localized
phonons to extended phonons. However, as we see below, it
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lies in the contribution of localized phonons themselves to
heat conduction increases due to the delocalization effect.

In the present paper, effects of the interplay between dis-
order and anharmonicity on heat conduction is revisited by
studying the heat current as a function of the strength of
anharmonicity in the DFPU-β chain. It is found that, with the
increase of disorder, the heat current undergoes a transition
from nonmonotonic variation to monotonic variation. A phys-
ical interpretation for this transition is given and verified by
the spectral heat current. The paper is organized as follows.
The model studied and numerical methods are introduced
in Sec. II. The simulation results are discussed in Sec. III.
Finally, a brief summary is given in Sec. IV.

II. MODEL AND NUMERICAL METHODS

The Hamiltonian of the model considered in this paper is
given by

H =
N∑

l=1

p2
l

2ml
+

N∑
l=0

[
k

(xl − xl+1)2

2
+ β

(xl − xl+1)4

4

]
, (2)

where pl and xl denote the momentum and the displacement
from its equilibrium position of the lth particle with mass ml ,
respectively. k is the coefficient of the harmonic spring. β rep-
resents the strength of anharmonicity. We consider the mass
disordered chain only, in which {ml} are chosen independently
from a uniform distribution in the interval (1 − �m, 1 + �m),
where �m denotes the strength of disorder. The chain is con-
nected, at its ends, to two Langevin heat baths at temperature
TL and TR. The equations of motion of the chain are then given
by

ml ẍl = k(xl−1 − 2xl + xl+1)

+β[(xl−1 − xl )
3 + (xl+1 − xl )

3] − λl ẋl + ξl , (3)

where λl = λ(δl,1 + δl,N ) and ξl = ξLδl,1 + ξRδl,N . The noise
term is related to the dissipation coefficient λ by the
fluctuation-dissipation relation 〈ξL(t )ξL(t ′)〉 = 2λkBTLδ(t −
t ′) where kB is the Boltzmann constant, and a similar relation
for the heat bath at the right end of the chain also exists.
Throughout the paper, we use fixed boundary conditions only,
i.e., x0 = xN+1 = 0, and the parameters for two heat baths are
set to TL = 1.2, TR = 0.8, λ = 0.8. Unless otherwise noted,
the system size and the coefficient of the harmonic spring are
set to N = 1024 and k = 1, respectively.

In our simulation, the velocity-Verlet algorithm with a time
step of 0.005 is used to integrate the equations of motion.
To study heat conduction in the nonequilibrium steady state,
we compute the heat current by averaging over 2 × 109 steps
after a relaxation process of 2 × 108 steps. The heat cur-
rent is given according to the usual definition [29,30] j =∑N

l=2〈vl fl,l−1〉/(N − 1), where fl,l−1 is the force acting on
the lth particle from the (l − 1)st particle and 〈· · ·〉 denotes a
steady-state average. Due to the nature of disordered systems,
we also take disorder averaging over 100 different realiza-
tions, and the resulting heat current is denoted by J .

For the purpose of understanding the effect of disorder and
anharmonicity on heat conduction in depth, we also compute,
using the method proposed by Sääskilahti et al. [31,32], the

FIG. 1. Heat current J as a function of the strength of anhar-
monicity β for different values of the strength of disorder �m. The
error bars coming from both numerical errors and disorder averaging
are smaller than the symbols. The dashed line is drawn as a reference
for the power-law behavior β1/4. The solid lines are drawn to guide
the eyes.

spectral heat current defined by

ql→l+1(ω) ≈ 1

tc
Re〈 f̃l+1,l (ω)[̃vl (ω) + ṽl+1(ω)]∗〉, (4)

where f̃l+1,l (ω) and ṽl (ω) are the discrete Fourier transforms
of force fl+1,l (t ) and velocity vl (t ) trajectories obtained from
molecular-dynamics simulations, and tc is the cutoff time used
in the discrete Fourier transforms. Because of the identity
jl→l+1 = ∫ +∞

0 (dω/2π )ql→l+1(ω) where jl→l+1 denotes the
heat current from the lth particle to the (l + 1)st particle,
ql→l+1(ω) can be interpreted as the contribution of phonons
at frequency ω to heat current. In the whole paper, only the
spectral heat current of two middlemost particles (l = N/2)
is considered, and hereafter the subscript of ql→l+1(ω) is
omitted for brevity. It is worth mentioning that, using the
Wiener-Khinchin theorem, one can find that, in harmonic
systems, the spectral heat current can be reduced to the trans-
mission defined in the LEGF method with only a constant
multiplier difference at most (see Appendix for details).

III. RESULTS AND DISCUSSIONS

To show the interplay between anharmonicity and disorder
clearly, we compare simulation results of the β dependence
of heat current J for different �m, as depicted in Fig. 1. For
�m = 0, i.e., the ordered FPU-β chain, the heat current first
falls significantly to a minimum and then increases slowly
with increasing β. However, when �m increases to 0.2, the
behavior of heat current changes qualitatively; that is, with
increasing β, the heat current first climbs towards the peak
at β ≈ 0.05, and then drops very gently to the bottom at
β ≈ 2 before the final slight increasing. When disorder is
strong enough, e.g., �m = 0.6, the heat current becomes a
monotonically increasing function of β. Therefore, as �m
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increases from 0 to 0.8, the behavior of the heat current
as a function of β has a transition from nonmonotonic to
monotonic, during which a more complicated situation,
namely, �m = 0.2, exists.

To understand this transition, let us first consider the
ordered FPU-β chain. Based on kinetic theory, the nonmono-
tonic dependence of the heat current on β has been understood
[33]. In the regime of weak anharmonicity, phonon-phonon
scattering shown by the mean-free path that decreases with
increasing β dominates the behavior of heat conduction. But
when anharmonicity is strong, the main contribution to heat
conduction comes from the phonon velocity which increases
with increasing β due to phonon renormalization. This physi-
cal picture can be manifested more clearly in the spectral heat
current.

Because anharmonicity makes not only phonon renormal-
ization resulting in β dependent phonon velocity but also
frequency broadening indicating phonon-phonon scattering,
the renormalized phonon frequency depends on the strength
of anharmonicity β. Hence, in order to compare the results
of the spectral heat current between different β, we use a
rough method of linearly rescaling the spectral heat current
q(ω) by the upper frequency bound of the corresponding
ordered system ωc. Hereafter, ωc is numerically extracted
from the spectral heat current corresponding to the ordered
FPU-β chain with N = 32, and we have numerically verified
that ωc is basically independent of N when N � 32. The
scaled spectral heat current q(ω)ωc as a function of the scaled
frequency ω/ωc is shown in Fig. 2. In the regime of weak an-
harmonicity, the contribution of the high-frequency phonons
of ω/ωc � 0.3 to heat current gradually decreases with the
increase of β due to phonon-phonon scattering, as shown in
Fig. 2(a). In the regime of strong anharmonicity, the phonon
velocity which increases with increasing β plays a critical role
in heat conduction. Because low-frequency phonons are less
affected by phonon-phonon scattering, the effect of phonon
velocity on heat conduction is first reflected in the low-
frequency region. However, when anharmonicity is so strong
that the mean-free path is saturated at a lattice spacing, in
terms of the kinetic theory, the contribution of high-frequency
phonons to heat conduction will also be enhanced by the
β-dependent phonon velocity. This can be seen when one
looks at Fig. 2(b) in detail. Comparing the two curves cor-
responding to β = 2 and β = 10, one can find that, when
ω/ωc � 0.1, the two curves are almost the same. But, when β

increases to 50, the part of 0.1 � ω/ωc � 0.2 starts to rise. It
is worth mentioning that the reason why q(ω) → 0 as ω → 0
is that the low-frequency phonons are very sensitive to the
onsite potentials, which appear at two ends of the chain due
to fixed boundary conditions used in the present paper. This
phenomenon also exists in the transmission of the harmonic
chain [34].

In the DFPU-β chain, when anharmonicity is not very
strong, the existence of anharmonicity leads to two ef-
fects, namely, delocalization and phonon-phonon scattering.
Delocalization enhances heat conduction, while the phonon-
phonon scattering effect hinders heat conduction.

When disorder is weak, e.g., �m = 0.2, the existence
of a peak for heat current comes from the competition
between delocalization and phonon-phonon scattering. The

FIG. 2. Scaled spectral heat current q(ω)ωc as a function of the
scaled frequency ω/ωc for the FPU-β chain. (a) The weak anhar-
monicity regime. The curves, from top to bottom on the right part
of the plot, correspond to different values of the strength of anhar-
monicity β = 0.001, 0.01, 0.05, 0.1 and 0.2, respectively. (b) The
strong anharmonicity regime. The curves, from top to bottom on the
left part of the plot, correspond to different values of the strength of
anharmonicity β = 50, 10, 2, and 0.3, respectively.

delocalization effect makes the dominant contribution when
anharmonicity is extremely weak. This can be seen from
Fig. 3(a). For comparison, the scaled spectral heat current
corresponding to the harmonic system (β = 0) is also given by
the LEGF method [30]. Since the scattering effect of disorder
on low-frequency phonons is so weak that the characteristic
peaks of low-frequency phonons remain, the curve corre-
sponding to β = 0 fluctuates violently in the low-frequency
region of ω/ωc � 0.3. The near coincidence between the
curves corresponding to β = 0 and β = 0.001 implies that
the anharmonicity is too weak to delocalize high-frequency
phonons. This is consistent with the results in Ref. [35]. When
β increases to 0.01, it can be seen that the contribution of the
localized phonons of ω/ωc � 0.7 to heat current is enhanced
by delocalization effect. However, as anharmonicity increases
further, phonon-phonon scattering increases and comes to
overwhelm the effect of delocalization. It is shown in Fig. 3(b)
that the scaled spectral heat current for the high-frequency
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FIG. 3. Scaled spectral heat current q(ω)ωc as a function of the
scaled frequency ω/ωc in the DFPU-β chain of �m = 0.2. (a) The
extremely weak anharmonicity regime. The curve that fluctuates
violently on the left part corresponds to β = 0 and is computed by
the LEGF method [30]. The other two curves, from top to bottom,
correspond to different values of the strength of anharmonicity β =
0.01 and 0.001, respectively. (b) The moderately weak anharmonicity
regime. The curves, from top to bottom on the middle part of the
plot, correspond to different values of the strength of anharmonicity
β = 0.05, 0.1, and 0.5, respectively. The inset shows the strong
anharmonicity regime. The curves, from top to bottom on the left
part of the plot, correspond to different values of the strength of
anharmonicity β = 50, 10, and 2, respectively.

phonons of ω/ωc � 0.3 decreases with increasing β, similar
to the situation in the FPU-β chain, see Fig. 2(a). When
anharmonicity is strong enough, disorder is irrelevant due to
sufficient delocalization effect. In this case, heat conduction
behaves like a ordered system; this is why on the right portion
of Fig. 1, those different curves have similar behavior. In the
FPU-β chain, when anharmonicity is strong, the heat conduc-
tion is dominated by the phonon velocity proportional to β1/4

[33]; in consequence, J ∼ β1/4. This scaling relation should
also apply to the DFPU-β chain according to the statement
above. It can be seen from Fig. 1 that the growth of heat
current is slightly slower than β1/4, which may be due to the
phonon-phonon scattering. We expect that, if anharmonicity

FIG. 4. Scaled spectral heat current q(ω)ωc as a function of the
scaled frequency ω/ωc in the DFPU-β chain of �m = 0.6 in the
weak anharmonicity regime. The curves, from top to bottom, cor-
respond to different values of the strength of anharmonicity β = 0.1,
0.05, 0.01, and 0, respectively. The curve corresponding to β = 0
is computed by the LEGF method [30]. The inset shows the strong
anharmonicity regime. The curves, from top to bottom in the left
part of the plot, correspond to different values of the strength of
anharmonicity: β = 50, 10, and 2, respectively.

increases further, the heat current will obey the scaling rela-
tion J ∼ β1/4. In addition, as depicted in the inset of Fig. 3(b),
the scaled spectral heat current for β � 2 shows almost the
same behavior as Fig. 2(b), which again suggests that the ef-
fect of disorder becomes irrelevant for strong anharmonicity.

To some extent, delocalization means that the phonon
packet broadens and hence the localization length becomes
longer, or in other words, the localization length increases
with increasing β. However, on the other hand, the mean-free
path suggesting phonon-phonon scattering decreases with in-
creasing β. For weak disorder, the presence of anharmonicity
first leads to delocalization of the high-frequency phonons;
when the localization length increases to near the mean-
free path, phonon-phonon scattering comes to play. This
leads to the occurrence of a peak of the heat current in the
weak-anharmonicity regime. However, for the case of strong
disorder, which suggests strong localization, the strength of
anharmonicity required to make the localization length exceed
the mean-free path is so large that the β-dependent phonon
velocity becomes relevant. Consequently, as long as disorder
is strong enough, the scaled spectral heat current at any given
scaled frequency will be a monotonically increasing function
of β. In the case of �m = 0.6, it can be seen from Fig. 4
that, in the weak anharmonicity regime, the scaled spectral
heat current for the high-frequency phonons of ω/ωc � 0.3
is always enhanced by the delocalization effect. It is worth
noting that ω/ωc � 0.3 is exactly the region where phonon-
phonon scattering acts in the FPU-β chain, see Fig. 2(a). In
the inset of Fig. 4, again, the results for strong anharmonicity
(β � 2), give almost the same behavior as Fig. 2(b). There-
fore, the reason why heat current increases monotonically
with the strength of anharmonicity is that the delocalization
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FIG. 5. Heat current J as a function of the strength of an-
harmonicity β for the system size N = 64, 256, 1024, and 4096,
respectively. Here �m = 0.2. The current is obtained by averaging
over 20 disorder realizations for N = 4096 and 100 disorder realiza-
tions for others. The error bars coming from both numerical errors
and disorder averaging are smaller than the symbols. The solid lines
are drawn to guide the eyes.

effect dominates heat conduction in the regime of weak an-
harmonicity.

Finally, the size effect of the heat current as a function of
β is also studied. According to the size-dependent mobility
edge, see Eq. (1), the larger the system size, the larger the
proportion of localized phonons, and then the more significant
the delocalization effect. Therefore, as illustrated in Fig. 5, the
peak for heat current becomes more and more pronounced as
the system size increases.

IV. SUMMARY

In summary, we studied heat conduction through the
DFPU-β chain. We found that variation of heat current with
anharmonicity undergoes a change of monotonicity when
disorder increases. For weak disorder, a peak for heat cur-
rent emerges due to the competition between delocalization
and phonon-phonon scattering. When disorder is strong,
the delocalization effect dominates heat conduction in weak
anharmonicity regime, and then heat current increases mono-
tonically with the strength of anharmonicity. This physical
interpretation is corroborated further by the results of spectral
heat current.

In addition, we expect that the nonmonotonic-monotonic
transition observed in this paper may be generalized to
higher-dimensional disordered systems, especially the effect
of delocalization on heat transport. In fact, it has been found
in an earlier study [28] that a small amount of anharmonicity
enhances heat conductivity in a two-dimensional disordered
system. Furthermore, in a recent study of disordered one-
dimensional FPU-α-β chains [36], it was found that the
increase of nonlinearity strength did not lead to a monotonic
route to thermalization. And it has been shown that the in-

teraction symmetry does have effects on delocalization and
energy transport [35]. Overall, it is worth paying attention to
further clarify the effects of interaction symmetry on localiza-
tion.

As noted in Ref. [17], the heat current in the DFPU-β chain
satisfies the scaling relation J (sTL, sTR, β ) = sJ (TL, TR, sβ ), s
being an arbitrary positive real number. Therefore, at a fixed
value of β, the thermal conductance G = J/(TL − TR) as a
function of average temperature T = (TL + TR)/2 which is
easier to measure in experiments, will also exhibit the same
behavior as in Fig. 1. We expect that similar behavior can
also be observed numerically [37,38] or even experimentally
[39–43] in realistic materials, e.g., superlattices, considering
the current techniques for material manufacturing and experi-
mental measurement.
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APPENDIX: THE SPECTRAL HEAT CURRENT IN
ONE-DIMENSIONAL CLASSIC HARMONIC CHAINS

In this Appendix, using LEGF method [30,44], we calcu-
late the spectral heat current in 1D classic nearest-neighbor
interacting harmonic chains with the Hamiltonian

H = 1
2 Ẋ T MẊ + 1

2 X T ΦX, (A1)

where Ml,n = mlδl,n, Φl,n = (2k + ko)δl,n − k(δl,n−1 +
δl,n+1) + (k′ − k)δl,n(δl,1 + δl,N ), and X = {x1, x2, . . . , xN }T .

The Green’s function is as follows:

G±(ω) = 1

−ω2M + Φ − �±
L (ω) − �±

R (ω)
, (A2)

where �±
L,R is the self-energy of the heat baths. For the

Langevin heat baths considered in this paper, the only nonzero
elements of �±

L,R are respectively [�±
L ]1,1 = � = iλω and

[�±
R ]N,N = � = iλω, where λ is the coupling strength be-

tween the end particles and the heat baths.
In terms of the Green’s function G±, the Fourier transfor-

mation of the cross-correlation function between xl and vn is
as follows:

C̃xl ,vn = 2ikB�(ω)(TLG+
l,1G−

n,1 + TRG+
l,N G−

n,N ), (A3)

with �(ω) = Im[�(ω)].
In the one-dimensional (1D) harmonic chain, Eq. (4) can

be expressed as

ql→l+1(ω) = k

2π
Re

[
C̃xl ,vl + C̃xl ,vl+1 − C̃xl+1,vl − C̃xl+1,vl+1

]
.

(A4)
Substituting Eq. (A3) into Eq. (A4), after some algebraic

calculation, one gets

ql→l+1(ω) = 2kB(TL − TR)

π

�2(ω)

k2|DetZ|2 , (A5)

with G+ = Z−1/k.
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It is easy to see from Eq. (A5) that in 1D classical nearest-
neighbor interacting harmonic chains, the spectral heat current

between particles is the same as that between heat bath and
system and is independent of the position l .
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