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Universality classes of the domain-wall creep motion driven by spin-transfer torques
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With the stochastic Landau-Lifshitz-Gilbert equation, we numerically simulate the creep motion of a magnetic
domain wall driven by the adiabatic and nonadiabatic spin-transfer torques induced by the electric current. The
creep exponent μ and the roughness exponent ζ are accurately determined from the scaling behaviors. The creep
motions driven by the adiabatic and nonadiabatic spin-transfer torques belong to different universality classes.
The scaling relation between μ and ζ based on certain simplified assumptions is valid for the nonadiabatic
spin-transfer torque, while invalid for the adiabatic one. Our results are compatible with the experimental ones,
but go beyond the existing theoretical prediction. Our investigation reveals that the disorder-induced pinning
effect on the domain-wall rotation alters the universality class of the creep motion.
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I. INTRODUCTION

Magnetic domain walls have attracted considerable atten-
tion because of the academic interest in a nonlinear dynamic
system and the potential applications in data storage, spin
logic devices, neuromorphic computing, etc. [1–5]. The key
in these applications is to effectively control the displacement
and the velocity of the domain wall. In addition to the domain-
wall motion driven by the magnetic field, various theoretical
and experimental efforts in recent years have been devoted to
manipulating the domain walls with the spin-transfer torque
(STT) induced by the electric current [6–9]. The STT-driven
domain-wall motion is quite distinct from the field-driven one.
For example, the domain wall in certain parameter regimes is
intrinsically pinned at zero temperature, even in the absence
of disorder [8–10]. From the view of applications, the STTs
drive the domain walls more efficiently, with a lower energy
consumption [11–14]. The domain-wall motion is sensitive to
impurities, notches, and defects in magnetic materials. The
disorder may greatly reduce the domain-wall mobility and in-
duce the domain-wall roughening. Therefore, it is particularly
important to understand the mechanism of the current-driven
domain-wall motion in the disordered medium.

At zero temperature, the domain-wall motion driven by an
external driving force f exhibits a pinning-depinning phase
transition induced by the disorder. The depinning threshold
fc separates a zero-velocity regime for f < fc and a finite-
velocity regime for f > fc. At the nonzero temperatures,
however, the creep motion of the domain wall is activated,
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even when the driving force f is far below the depinning
threshold fc. In the creep regime f � fc, the domain-wall ve-
locity v obeys an Arrhenius scaling law log(v) ∼ f −μ, where
μ is the so-called creep exponent. It is well known that the
creep motion of the domain wall driven by the magnetic field
is categorized into a universality class with the random bond
or the random field, which is characterized by μ = 0.25 or
1, respectively [15–21]. Since the interaction of the domain
wall with the STT is essentially different from that with the
magnetic field, the universality class for the creep motion of
the STT-driven domain wall remains controversial. The the-
oretical analyses and the experimental measurements report
different values of the creep exponents [22–25].

The pinning-depinning phase transition and the creep mo-
tion of the magnetic topological defects, such as domain
walls, vortices, and skyrmions, have been intensively inves-
tigated [26–36]. It has been found that the STT, especially
an adiabatic one, plays a novel role in the pinning-depinning
phase transition and changes the universality classes [28,30].
Nonetheless, how the STT affects the creep motion and the
creep exponent of the domain wall is still ambiguous [24,25].
In most experimental works on the creep motion of the
current-driven domain wall, the adiabatic and nonadiabatic
effects of the driving currents are not strictly distinguished
[37–39]. Usually, the theoretical value μ = 0.25 or 1 of the
creep exponent is taken as an input to verify the Arrhenius
scaling law in the experiments as well as the numerical simu-
lations, and independent measurements of the creep exponent
are scarce [40–44].

Compared to the simplified statistical models, the stochas-
tic Landau-Lifshitz-Gilbert (sLLG) equation is more funda-
mental to the description of the spin dynamics of magnetic
systems at finite temperatures. The adiabatic and nonadiabatic
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STTs derived from the spin-diffusion model can be explicitly
introduced in this equation to investigate the current-driven
domain-wall motion [6,8]. The numerical and theoretical re-
sults based on the sLLG equation are in good agreement with
the experimental ones and even provide reasonable predic-
tions [8,26–28]. Various properties of the magnetic systems
have been studied recently with the sLLG equation, such as
the thermal magnetization switching process, the magnonic
spin Seebeck effect, and spin-wave excitation [45–54].
However, due to the time-consuming computation and the
complexity of the sLLG equation, the universal dynamic be-
haviors at nonzero temperatures are rarely investigated.

In this paper we perform a large-scale numerical simulation
of the sLLG equation to investigate the creep motion of the
domain wall driven by the STTs in a disordered film. The
creep exponent μ and the roughness exponent ζ for the adia-
batic and nonadiabatic STTs are accurately measured from the
scaling behaviors. Our numerical results are comprehensively
analyzed and compared with the existing experimental and
theoretical ones. In Sec. II the model and the scaling behaviors
are described. In Sec. III the numerical simulations are carried
out to evaluate the exponents for the creep motion of the STT-
driven domain-wall motion. A summary is given in Sec. IV.

II. MODEL AND SCALING BEHAVIORS

A. Landau-Lifshitz-Gilbert equation

The sLLG equation with the STTs along the x axis de-
scribes the microscopic dynamics of the magnetic system at
a finite temperature [6,8,55],

∂mi

∂t
= −mi × heff,i + αmi × ∂mi

∂t
− u

∂mi

∂x
+ bumi × ∂mi

∂x
,

(1)

where mi = Mi/Ms is the unit vector of the local magneti-
zation on site i, Ms is the saturation magnetization, and α

is the Gilbert damping constant. The last two terms on the
right-hand side of the equation are the adiabatic and nonadia-
batic STTs, respectively, and the strength of the nonadiabatic
STT is determined by the coefficient b. In addition, u =
JPgμB/2eMs is the magnitude of the driving current along
the x axis, where J , P, e, g, and μB are the current density,
the polarization rate, the electron charge, the g factor, and the
Bohr magneton, respectively.

The effective field is

heff,i = A∇2mi + K‖mx,iex − K⊥mz,iez + hth,i + hd,i, (2)

where the stochastic thermal fields induced by the temperature
T are introduced via the white Gaussian noises [56],

〈hth,i(t ) · hth, j (t
′)〉 = 2αkBT

μ0μsγ0
δi jδ(t − t ′). (3)

Here γ0 is the gyromagnetic ratio, μs is the magnetic mo-
ment, T is the temperature, and A = Jex/μ0M2

s d2 is the
exchange coefficient with the lattice constant d . In addition,
K‖ = D‖/μ0M2

s and K⊥ = D⊥/μ0M2
s are the easy-axis and

hard-axis anisotropy coefficients, respectively. The thermal
field hth,i and the quenched disorder hd,i in Eq. (2) are
normalized by the saturation magnetization, i.e., hd,i =

Hd,i/Ms and hth,i = Hth,i/Ms. In other words, the parameters
are set to be dimensionless. The time, length, and energy
density are measured in units of (γ0Ms)−1, π

√
A/K‖, and

μ0M2
s , respectively [26,36,52]. Theoretically, we suppose that

the creep motion of the domain wall is investigated in the
thermodynamic limit. Thus, the simulation system should be
regarded as an infinite magnetic film and sufficiently large
lattice sizes should be used to ensure that the finite-size effect
is ignorable. It is shown that the magnetostatic interaction is
mathematically equivalent to an easy-plane anisotropy or a
hard-axis perpendicular anisotropy for an infinite film [6,57].
For simplicity, the magnetostatic interaction is replaced by the
hard-axis perpendicular anisotropy in our model.

B. Scaling behaviors of creep motion

Since the x component of the magnetization vector mi

changes its value from 1 to −1 across the domain wall, the
domain-wall position h(y) is determined by the minimum
absolute value of mx at each y. The average velocity of the
domain wall is thus calculated by

v(t ) = d〈h(y, t )〉
dt

, (4)

where 〈· · · 〉 represents both the statistical average and the
average in the y direction.

The roughness function of the domain wall is defined by

C(L) = 〈[h(y + L) − h(y)]2〉, (5)

where L is the length of the domain-wall segment along the y
axis, and it describes the spatial correlation of the domain-wall
position in the y direction. Based on the functional renor-
malization group theory in the equilibrium state without the
driving force, the roughness function C(L) obeys the scaling
behavior [58]

C(L) ∼ L2ζ , (6)

where ζ is the equilibrium roughness exponent.
In the creep regime of the domain-wall motion, the current-

velocity Arrhenius scaling law is expected to be [15–21]

v = v0 exp
[
− Ec

kBT

(uc

u

)μ]
, (7)

where uc is the depinning current at zero temperature, v0 is the
velocity at uc, Ec is the characteristic energy scale, and kBT is
the thermal energy scale.

A scaling relation between the creep exponent and the
equilibrium roughness exponent has been derived from the
theoretical analysis based on the sLLG equation under certain
assumptions or approximations [22,23], and for b = 0,

μa = 2ζ − 1

2 − 2ζ
, (8)

while for b 
= 0,

μn = 2ζ − 1

2 − ζ
. (9)

Here μa and μn denote the creep exponents of the adiabatic
and nonadiabatic STTs, respectively.
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III. NUMERICAL SIMULATION

The model parameters without the normalization, i.e.,
the exchange constant, anisotropy constant, lattice constant,
and saturation magnetization, are chosen to be Jex = 2.99 ×
10−12J/m, D‖ = 1.06 × 105J/m3, D⊥ = 1.06 × 104J/m3,
d = 1.68 × 10−9 m, and Ms = 9.2 × 105A/m, mainly fol-
lowing the parameters of the FePt materials [26–28]. The
experimental value of the damping constant varies in a
wide regime, from α = 0.001 to 4.0 in different materials
[43,52,53]. A smaller α leads to a larger velocity of the do-
main wall and a stronger fluctuation, and larger lattice sizes
and more samples for the statistical average are required.
In order to obtain reliable results in a reasonable simulation
time, we set α = 1 in our simulations. Additional simula-
tions for α = 0.5 are also performed to verify the important
results, such as the creep exponent and roughness exponent.
The direction of the quenched disorder hd,i is randomly and
uniformly distributed in the unit spherical space, while the
amplitude is uniformly distributed within an interval [−�,�]
with � = 0.5. In our simulations, the strength of the quenched
disorder is not large; thus the spins in the bulk, i.e., the spatial
region outside the domain wall, almost do not evolve with
time at zero temperatures and with only some random fluc-
tuations at nonzero temperatures. We set the temperature to
be T = 200, 250, and 300 K, respectively. At these tempera-
tures, the thermal effect is much larger than the pinning effect
induced by the quenched disorder. Therefore, the dynamic
system can successively overcome the potential barriers, re-
sulting in the creep motion of the domain wall. The typical
value of the nonadiabatic coefficient b is 0.01–0.1 in experi-
ments. In our simulation, we set b = 0.1. If only the adiabatic
STT is applied, i.e., b = 0, there exists an intrinsic pinning
potential in the absence of disorder and therefore the domain
wall is pinned below a certain threshold [8–10]. When both
the adiabatic and nonadiabatic STTs are present, the nonadia-
batic STT dominates the domain-wall motion and the intrinsic
pinning effect is suppressed, even for a small nonadiabatic
coefficient b [6,8].

The sLLG equation on a two-dimensional lattice is nu-
merically integrated with a standard explicit fourth-order
Runge-Kutta method with a time step �t = 0.01 in units of
(γ0Ms)−1. To explore the scaling laws of the creep motion, the
dynamic system should be considered in the thermodynamic
limit. In our simulations, the antiperiodic and periodic bound-
ary conditions are adopted for the x and y axes, respectively
[26,27,44,59–62]. The main results are presented with the
lattice size Lx × Ly = 256 × 128. Additional simulations with
the larger lattice sizes Lx × Ly = 512 × 512 and 256 × 256
confirm that the finite-size effects are negligible and the lat-
tice size Ly = 128 is already large enough to obtain reliable
results. Meanwhile, the maximum position of the domain wall
in our simulations is always smaller than Lx = 256 and it
does not reach the boundary. The fluctuations increase as the
temperature rises, and the timescale for reaching the steady
state increases as the driving force decreases. In order to
reduce errors and obtain sufficiently accurate results for the
creep exponent and roughness exponent at finite temperatures,
the total number of samples of the quenched disorder for the
statistical average is over 5000 and the maximum simulation

time of one sample is up to 100 000. All the samples are ran-
domly divided into three groups. The roughness exponent and
creep exponents are then calculated in each group. The errors,
i.e., the standard deviations of the average value, are estimated
through the independent measurements in three groups.

In the initial state, a head-to-head domain wall parallel to
the y axis lies on the xy plane at the position x = 16. The
domain wall is smooth without roughness. The initial width of
the domain wall is five grids and the results are not sensitive
to this initial width. In Fig. 1 the domain-wall structure at
u = 0.10 and T = 200 K is plotted. The arrow represents
the local magnetization on the lattice site. For clarity, we
draw an arrow every four lattice sites in the y direction. The
x component of mi is depicted by the grayscale level. In
Figs. 1(a) and 1(b) the proportions of the nonadiabatic STT
are b = 0.0 and 0.1, respectively. When the driving current
in the x direction is applied, the domain wall propagates in
the x direction; meanwhile, it roughens in the y direction, i.e.,
the domain-wall profile fluctuates in the y direction, due to
the quenched disorder. The domain-wall width may slightly
change during the time evolution.

The domain-wall velocity v versus the driving current u
for the adiabatic and nonadiabatic STTs at T = 200 K is
plotted in Fig. 2. In the adiabatic case, there is an intrinsic
threshold ui below which the domain wall does not move
at zero temperature even without the disorder. This intrinsic
pinning is entirely due to the hard-axis magnetic anisotropy
K⊥ and does not occur for the field-driven domain-wall mo-
tion or the current-driven domain-wall motion with b 
= 0. As
shown in Fig. 2(a), the intrinsic pinning threshold for a perfect
film without the disorder is ui = 0.08. The extrinsic pinning
threshold induced by the disorder, i.e., the critical current of
the pinning-depinning phase transition at zero temperature, is
determined based on the dynamic approach, which has been
investigated in previous works [26,28]. Since the fluctuation at
zero temperature is much smaller than that at a finite tempera-
ture, the total number of samples of the quenched disorder for
the statistical average is about 1000. For the domain-wall mo-
tion driven by the adiabatic STT, the critical current induced
by the disorder is uc = 0.48 for b = 0.0. The intrinsic pinning
effect is suppressed when the nonadiabatic STT is applied.
As shown in Fig. 2(b), the critical current is uc = 0.45 for
b = 0.1, smaller than the adiabatic one. When u < uc at a
finite temperature, the intrinsic pinning potential induced by
the hard-axis anisotropy and the extrinsic pinning potential
induced by the disorder are overcome by the thermal effect,
resulting in the nonzero velocity of the domain wall. The inset
of Fig. 2(a) shows the zoomed-in view of the velocities at low
currents.

As shown in Fig. 3, the creep exponents ua and un of
the adiabatic and nonadiabatic STTs are accurately measured
at different temperatures. In these measurements, Eq. (7) is
reformulated as ln v ∼ u−μ, so the creep exponent can be
determined from a linear fit in the figure. In the inset, the
standard error σ , which quantifies the quality of the linear
fit, is plotted as a function of the possible μ. The creep ex-
ponents μa = 0.37(3) and μn = 0.25(2) are thus determined
from the minimum of σ . Additional simulations for α = 0.5
give the same values of the creep exponents within errors,
μa = 0.38(5) and μn = 0.24(3), and these results support
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FIG. 1. Domain-wall structures with the driving current u = 0.10 at T = 200 K and t = 50 000 plotted for the (a) adiabatic (b = 0.0) and
(b) nonadiabatic (b = 0.1) STTs. Arrows represent the projections of mi onto the xy plane. The x component of mi is depicted by the grayscale
level.

that the damping constant does not alter the universality
class. Various measurements and calculations of the creep
exponent are reported in the experiments and theories. The
simplified theory based on elastic domain-wall lines predicts
μa = 0.5 and μn = 0.25 [22]. In most experiments, the adi-
abatic and nonadiabatic STTs are not clearly distinguished.
The nonadiabatic coefficient b in most magnetic materials
is not equal to zero, which results in the creep exponent
μ = 0.23–0.25 [24,25,37,38,63,64]. Thus, it is reasonable to
believe that the nonadiabatic creep exponent μn is approx-
imately equal to 0.25. There are at least two independent
measurements in the experiments which yield the adiabatic
creep exponents μa = 0.33(6) in (Ga,Mn)As [17] and μa =
0.39(6) in Ta/CoFeB/MgO [24]. For comparison, the creep

exponent for the field-driven domain-wall motion is μh =
0.25 [15–17,19,20].

According to the functional renormalization group theory,
the roughness exponent ζ is computed with Eq. (6) from
the domain-wall structure in the equilibrium state without
the driving force. In order to accurately obtain the roughness
exponent, the lattice size Lx × Ly = 128 × 256 is adopted in
the simulation. In Fig. 4(a) the logarithmic roughness func-
tion ln C(L) is plotted against ln L at different temperatures.
When the spatial length L > 90, the roughness function C(L)
almost reaches the saturation regime and deviates from the
power-law behavior [65]. From the slopes of the curves be-
fore the saturation regime, one measures 2ζ = 1.34(4). Thus,
the equilibrium roughness exponent ζ = 0.67(2) is obtained.

(a) (b)

FIG. 2. Domain-wall velocity v versus the driving current u for the (a) adiabatic and (b) nonadiabatic STTs at T = 200 K. (a) Adiabatic
coefficient b = 0.0. The extrinsic pinning threshold induced by the disorder at zero temperature is uc = 0.48. The intrinsic pinning threshold
without the disorder is ui = 0.08. In the inset, a close-up plot of the velocity versus the current is shown. (b) Nonadiabatic coefficient b = 0.1.
The critical current at zero temperature is uc = 0.45. There is no intrinsic pinning.
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(a) (b)

FIG. 3. Logarithmic domain-wall velocity ln v plotted as a function of u−μ. Error bars are smaller than the symbol sizes. Dashed lines
represent the linear fits. The creep exponents (a) μa and (b) μn are evaluated at different temperatures. The insets of (a) and (b) show the
standard error σ of the linear fit.

For comparison, ζ = 2
3 was predicted by the theory and ζ =

0.5–0.7 was measured in the experiments [38,42,66–71]. The
Curie temperature Tc = 345 K is determined with the dynamic
approach, which has been verified in our previous work on
the order-disorder phase transitions with the sLLG equation
[27]. Since the temperature T = 300 K is high and closer
to Tc = 345 K, overhangs and islands are observed in the
bulk, which may alter the universality class [72]. This might
explain why the creep exponent and the roughness exponent at
T = 300 K slightly deviate from those at T = 250 and 200 K.
The roughness exponent as a function of the driving current u
for the adiabatic and nonadiabatic STTs is plotted in Fig. 4(b).
Generally speaking, the roughness exponent decreases as the
driving force increases. The values for b = 0.0 are larger than
those for b = 0.1 at the same driving current u in the entire
creep region. The roughness exponent seems to be constant for
b = 0.0 in the region u < 0.06, where the driving force could

not overcome the intrinsic pinning potential, resulting in no
rotations and movements of the domain wall. This behavior
is almost as if there were no driving force. For b = 0.0 with
u > 0.06, the rotation of the domain wall and the variation
of the tilting angle are observed. Compared with the nona-
diabatic case at b = 0.1, the roughness exponent at b = 0.0
decreases more slowly as u increases.

With the equilibrium roughness exponent ζ = 0.67(2) as
input, the scaling relations in Eqs. (8) and (9) yield μa =
0.52(2) and μn = 0.26(1). Compared with our numerical
results μa = 0.37(3) and μn = 0.25(2), the scaling relation
holds for the nonadiabatic exponents, but it is invalid for the
adiabatic ones. In order to explain this unexpected result, we
focus on the tilting angle θ of the domain wall. In the initial
state, the domain wall lies on the xy plane, i.e., the tilting
angle of the domain wall is zero. As time evolves, however,
the tilting angle θ changes; this is shown in Fig. 5. For the

(a) (b)

FIG. 4. (a) Logarithmic roughness function ln C(L) plotted against ln L at different temperatures. Dashed lines are the linear fits. Error bars
are smaller than the symbol sizes. (b) Roughness exponent plotted as a function of the driving current for the adiabatic and nonadiabatic STTs.
Each error bar corresponds to the standard deviation of the average value.
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FIG. 5. Tilting angle θ of the domain wall versus the time t at
T = 200 K and u = 0.1 for the adiabatic and the nonadiabatic STTs.
For b = 0.0, as shown by the black solid line, the domain wall keeps
rotating along the x axis. For b = 0.1, the tilting angle θ represented
by the red dashed line only fluctuates near the equilibrium angle
〈θ〉 = 0.37. The red dashed horizontal lines shows the value 0.37.

adiabatic case (b = 0.0), θ varies between −π and π . There-
fore, the domain wall keeps rotating along the x axis all the
time. There exists an extra degree of freedom, i.e., the tilting
angle θ of the domain wall, for the domain-wall motion driven
by the adiabatic STT. In other words, to overcome the intrinsic
pinning barrier, the domain wall will rotate while moving,
whereas for the nonadiabatic case (b = 0.1), the tilting angle
is bound at a fixed value 〈θ〉 = 0.37, which is similar to that
of the domain wall driven by the magnetic field. The thermal
effect just makes the angle fluctuate around the steady value of
the angle. This indicates that the rotation of the domain wall
is the main mechanism leading to the violation of the scaling
relation for μa in Eq. (8).

There have been some theoretical analyses on the domain-
wall creep motion based on the sLLG equation [22,23]. For
simplification, however, the domain-wall motion is analyzed
under certain assumptions or approximations, such as the
amplitude of the tilting angle being much smaller than π or
the disorder coupling only to the domain-wall position, not to
its tilting angle. These assumptions or approximations may be
valid to some extent only for the creep motion of the domain
wall driven by the magnetic field or the nonadiabatic STT. The
new degree of freedom, i.e., the tilting angle of the domain
wall, has not been fully considered. In fact, the tilting angle
of the domain wall is significantly affected by the disorder in
the creep motion driven by the adiabatic STT. On the other
hand, the domain wall was simplified to a single-value elastic
line or a rigid body without a width variation in Refs. [22,23].
Hence, the dynamic effects of overhangs and islands are ig-
nored, which may also modify the universality class. All these

reasons explain why our numerical simulations yield a differ-
ent creep exponent μa = 0.37(3).

Theoretically, the universality class and the creep exponent
are generally believed to be determined only by the sym-
metry, the spatial dimension, the correlation of the disorder,
the driving force, etc. [22,23,58]. For example, it has been
demonstrated that the types of domain wall do not alter the
universality class [23], although the magnetostatic interaction
determines whether the steady state is a Néel domain wall
or a Bloch domain wall. The parameters of the materials and
some specific realizations in our simulations, such as the type
of domain wall and the direction that the material is magne-
tized, are different from those of previous experiments; it is
still meaningful to compare our results with the experimental
and theoretical ones, at least in the sense of the universality
classes. In fact, as discussed above, the theoretical models in
Refs. [22,23] are also simplified. Nevertheless, all the theo-
retical, the experimental, and our numerical results give the
consistent values for the nonadiabatic creep exponent μn, in
the same universality class of the field-driven domain-wall
motion. However, the adiabatic creep exponent μa obtained in
our numerical simulation is close to the experimental results,
rather than that predicted by the theoretical analysis [22].

IV. SUMMARY

We have performed numerical simulations of the SLLG
equation to investigate the creep motion of the domain wall
driven by the adiabatic and the nonadiabatic STTs in a disor-
dered film. From the scaling behaviors of the creep motion,
the adiabatic and nonadiabatic creep exponents as well as the
roughness exponents are accurately determined. The nona-
diabatic creep exponent μn = 0.25(2) is consistent within
errors with the creep exponent μh = 0.25 for the magnetic
field. However, the adiabatic creep exponent μa = 0.37(3)
belongs to a different universality class. These results from
our simulations are comparable to the experimental measure-
ments μa = 0.33–0.39 and μn = 0.23–0.25, but go beyond
the existing theoretical analysis under certain assumptions or
approximations. Further, the domain-wall tilting angles for the
adiabatic and nonadiabatic STTs are respectively measured,
which indicates that the disorder-induced pinning effect on
the domain-wall rotation cannot be ignored in the theoretical
analysis and it leads to the difference between the adiabatic
and the nonadiabatic creep exponents.
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