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Chaotic renormalization flow in the Potts model induced by long-range competition
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A proper description of spin glass remains a hard subject in theoretical physics and is considered to be closely
related to the emergence of chaos in the renormalization group (RG) flow. Previous efforts concentrate on models
with either complicated or nonrealistic interactions in order to achieve this chaotic behavior. Here we find that
the commonly used Potts model with long-range interaction could do the job nicely in a large parameter regime
as long as the competition between the ferromagnetic and antiferromagnetic interaction is maintained. With this
simplicity, the appearance of chaos is observed to sensitively depend on the detailed network structure: the parity
of bond number in a branch of the basic RG substituting unit; chaos only emerges for even numbers of bonds.
These surprising and universal findings may shed light on the study of spin glass.
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I. INTRODUCTION

In the paper “Statistical theory of equations of state and
phase transitions,” Yang and Lee mentioned that the problem
of phase transitions and equation of state is closely related
to the distribution of roots of the grand partition function
[1,2]. For a large class of problems of practical interest, the
roots behave remarkably well. For example, these zeros for
an Ising ferromagnet lie on the unit circle when exposed to
a magnetic field [1–3]. For a system with finite size, there
is no real root but the set of zeros may approach a specific
point on the real axis in the thermodynamic limit which in-
dicates a phase transition at the point. In fact, the type of
the phase transition can be deduced from the distribution of
zeros near the positive real axis [4]. So, an accurate determi-
nation of the grand partition function is essential for the study
of phase transition.

Unfortunately, very few models can be solved exactly in
statistical physics. However, the invention of the renormaliza-
tion group (RG) technique provides a powerful tool for this
type of computation and greatly advances our understanding
of phase transitions [5–7]. The RG theory investigates change
of physical laws across scales by defining a flow or a map
relating parameters at different scales. Phase transition is de-
termined by the critical manifold of a certain fixed point of
the RG flow in the parameter space, which is closely related
to scale invariance or self-similarity [8,9].

On the other hand, the partition function could be evaluated
in an iterative way. With one renormalization parameter, the
support of Yang-Lee zeros is the Julia set of the RG map in the
thermodynamic limit [8,10–13]. In this way, the problem of
finding distribution of roots converts to the study of the Julia
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set of the RG map in the complex plane [8,12]. For bulk ma-
terials, the dynamics of the RG map is simple on the real axis,
consisting of several basins of attraction of stable fixed points
separated by unstable ones [14], which serve to distinguish
different phases. As an example, the phase transition point
of the well-known Ising model [15,16] could be accurately
located with the real-space RG [17].

Nevertheless, in special circumstances, the RG dynamics
could be periodic or even chaotic [11–13,18,19]. In the com-
plex plane, chaotic RG trajectories are not so rare [20–23].
Interestingly, these types of trajectories are also found in
the study of spin glass [24–28], which is a very special
condensed matter state and characterized by disorder and
frustration [29,30] but displays cooperative behavior in a non-
conventional way [31]. Approximate or exact RG flows are
constructed for models with random coupling and for spins on
hierarchical lattices but with quite unphysical or artificial cou-
plings interactions [20,22,23,32–35]. It is also found that the
multiplicity in spin states could oust chaos [36]. These models
provide interesting pictures for the spin glass transition.

In literature, many spin systems sitting on hierarchical
lattices could be exactly solved by the RG, among which
stands the Potts model [8,21,37,38]. It is a generalization of
the famous Ising model but the number of states of each
spin goes beyond two [13,39]. Very often, the derived exact
RG map [40,41] has a Julia set more complex than a unit
circle since the required condition for the Lee-Yang circle
theorem is not satisfied any longer. Nevertheless, on the real
axis, the dynamics seems always simple. In a recent paper
[38], unexpectedly Qiao found that on a diamond hierarchical
lattice at some particular parameter values the Julia set of the
RG map of the Potts model fills densely a closed segment
of the real axis with its dynamics being chaotic [38,42,43].
Nevertheless, for this to happen, the number of spin states at
each site is not an integer any more, which does not seem to
make much physical sense. A natural question is whether this
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FIG. 1. First three levels of the hierarchical diamond lattice
model for m = n = 2. The solid lines denote the structure at the
current level and the dashed lines mark all previous connections.

observation could be made in a more general context which
might be physically relevant.

In this paper, we found that if antiferromagnetic long-range
interactions are properly supplied to compete with the fer-
romagnetic ones, the chaotic RG map becomes a frequent
occurrence. If this competition could be reconciled with no
presence of frustration, chaos will not appear as surprisingly
demonstrated with a very small variation of the network struc-
ture: the bond number changing from even to odd integers in
each branch of the basic RG block. Our findings may shed
light on the study of statistical properties of complex systems
with hierarchical structures.

II. POTTS MODEL ON A HIERARCHICAL
DIAMOND LATTICE

A hierarchical lattice [44] could be constructed by itera-
tion. We start with two nodes (two spins) connected with a
bond (first level), which stands for a direct interaction. The
basic construction step is to replace each bond with a dia-
mondlike structure containing m branches each of which has n
consecutive bonds (second level), together with m(n − 1) new
spins, sitting on the joints of the bonds. To proceed to the next
level, each bond of the current level is replaced again by the
above diamondlike structure. In Fig. 1, the first three levels of
the hierarchical diamond lattice are plotted with solid lines in
which m = n = 2.

The structure is self-similar and each spin has λ states [45],
constituting the Potts model in which λ = 2 recovers the Ising
model. The Hamiltonian without external magnetic field can
be written as

H = −J
∑
〈i, j〉

δ(si, s j ), (1)

where si, s j are two spin states and 〈i, j〉 represents all the
nearest neighboring spin pairs. J is the coupling constant with
J > 0 (J < 0) indicating the (anti)ferromagnetic interaction
and δ(si, s j ) is the Kronecker delta function which is one when
the two arguments are equal and zero otherwise.

To get statistical properties of the system, we need to com-
pute the partition function, which at the pth level is given by

Zp =
∑
{si}

exp

[
K

∑
〈i, j〉

δ(si, s j )

]
, (2)

where K = J
kBT , with kB and T being the Boltzmann constant

and the temperature, respectively. The outer summation is
over all the spin configurations. For later convenience, we
employ the convention eK = z. By invoking the RG trans-
formation [38] (also see Appendix A), we get the recursion
relation for the partition function Zj between neighboring
levels

Zj (z) = fmnλ j (z)Zj−1(ω), (3)

where

ω = Umnλ(z) =
[

(z + λ − 1)n + (λ − 1)(z − 1)n

(z + λ − 1)n − (z − 1)n

]m

(4)

defines the RG map and

fmnλ j (z) =
[

(z + λ − 1)n − (z − 1)n

λ

]m j−1n j−2

(5)

is the integrated-out part. Through repeated application of
Eqs. (3) and (4), the partition function of the hierarchical
lattice could be obtained up to any level.

It has been shown that the set of Lee-Yang zeros in the
thermodynamic limit coincides with the Julia set of the RG
map [8,13,44]. In most cases, the Julia set meets the real
axis at discrete points but for m = 2, n = 5, and λ ≈ 1.824,
unexpectedly, the intersection of the Julia set with the real axis
contains a closed interval lying in (−0.02, 0.2) [38], with the
dynamics being chaotic, which seems very surprising, consid-
ering the simplicity of the Hamiltonian Eq. (1) that contains
no competing interactions and the regular lattice structure.

Nevertheless, as λ represents the number of spin states in
the Potts model, it should be an integer in a real physical
system. But it is proved that, for integer values of λ, no chaotic
behavior could be found on the real axis. What is needed to
maintain chaos in the RG map for more realistic parameters?

III. CHAOTIC RENORMALIZATION FLOW WITH
LONG-RANGE INTERACTION

Interestingly, we find that in the thermodynamic limit,
adding long-range antiferromagnetic interaction will produce
chaotic RG trajectories in a wide range of parameter values.
Specifically, when carrying out the RG transformation, instead
of removing the original link and replacing it with four new
links, we keep the original link but assign a different interac-
tion, which is marked as a dashed line in Fig. 1.

Of course the four new links are still supplied, which are
marked with solid lines. In the ensuing steps, only the solid
lines are expanded. Physically, the dashed lines stand for
long-range interaction. A similar setup could be found in the
literature [46] but with a very artificial interaction strength.
Below, we will show that, with constant or even decaying in-
teraction, the RG trajectories could keep chaotic. The partition
function of the new model is shown as

Z =
∑

si

exp

[
K

∑
〈i, j〉

δ(si, s j ) + (−β ′)
∑

dashed line

δ(si, s j )

]
,

(6)
where (−β ′) indicates the coupling constant of the new an-
tiferromagnetic interaction and the related summation is over
all the spin pairs connected by a dashed line.
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FIG. 2. Bifurcation diagram for the RG map Umnλβ ′ (z) [Eq. (7)]
on the real axis (a) at m = 6, n = 2, and β ′ = 2, with respect to λ,
and (b) with respect to β ′, at m = 6, n = 2, and λ = 3, and the phase
diagram (c) deduced from (a) in the λ − J plane and the associated
Julia set in the complex plane (d) for λ = 3.

For this new model, a similar RG calculation (see Ap-
pendix B) gives the exact RG map Umnλβ ′ (z),

Umnλβ ′ (z) = e−β ′
[

(z + λ − 1)n + (λ − 1)(z − 1)n

(z + λ − 1)n − (z − 1)n

]m

, (7)

where the factor e−β ′
accounts for the influence of the long-

range interaction.
For λ ∈ [1, 6], m = 6, n = 2, and β ′ = 2, on the real axis,

the bifurcation diagram of the above RG map is shown in
Fig. 2(a), where we iterate the map Umnλ(z) 500 times, and
plot the last 200 points.

In Fig. 2(a), the empty space (not shown) at λ ∈ [2.5, 2.80]
indicates the fact that, in this range, the RG iteration tends to
infinity eventually so that there is no finite point on the real
axis that can be recorded and plotted. With a decrease of λ,
the bifurcation diagram clearly shows a period doubling route
to chaos and the alternating periodic windows. Especially, at
λ = 3, the system seems chaotic, which may be of physical
significance. The onset of chaos starts at λ ≈ 3.18, and a
periodic-2 orbit appears at λ ≈ 3.29. When λ ≈ 4.225, the
RG map reaches a globally stable fixed point. It is easy to
check that, with the introduction of the long-range interac-
tion, chaotic trajectories on the real axis may appear also
in many other cases. For example, at β ′ ∈ [1, 3.9], m = 6,
n = 2, λ = 3, the bifurcation diagram is shown in Fig. 2(b).
In some papers [24,36], similar behavior could be observed
but only with infinitely strong antiferromagnetic interaction,
which seems unphysical. In Fig. 2(d), the Julia set of the
RG map Eq. (7) is displayed at m = 6, n = 2, λ = 3, and
β ′ = 2, which is symmetric and intersects the real axis in a
considerable range, indicating large variations of the effective
coupling strength.

The maximum Lyapunov exponent η is often used to
characterize the chaotic dynamics [47], which could here be

FIG. 3. Lyapunov exponent of Umnλβ ′ (z) [Eq. (7)] at m = 6, n =
2, and β ′ = 2, with λ ∈ [2.9, 3.2].

computed as

η = lim
j→∞

{
1

j

j−1∑
i=0

ln

∣∣∣∣∂Umnλβ ′ (zi )

∂zi

∣∣∣∣
}

, (8)

where j is the number of iteration steps. We choose a part
of the chaotic region in Fig. 2(b) to calculate η and plot the
result in Fig. 3, where the computation is carried out with λ ∈
[2.9, 3.2].

It can be seen from Fig. 3 that, except for a few small win-
dows, η is bigger than zero. Especially, at λ = 3, η = 0.366,
indicating that the map is indeed chaotic. The set of points
in which η < 0 signals the emergence of periodic windows.
In the above investigation, λ is chosen to be an integer on
purpose for possible physical realization.

In fact, the chaotic RG trajectory emerges quite often in
the situation with long-range interaction. As shown in Table I,
Lyaponov exponents are all greater than zero with different
integer values of λ. In literature, chaos in the RG trajectory is
often associated with spin glass [24]. Spin glass is a special
material state which has unusual properties and is character-
ized with complex energy landscape [48]. Below the critical
freezing temperature, the ergodicity is broken such that the
state is lingering around some local energy minimum. Viewed
locally, each patch of the whole spin network resides possibly
in a different configuration and the dominant ones depend sen-
sitively on temperature or external fields [49]. This sensitive
dependence is generally regarded a salient feature of chaos
[47] and could be observed as well in the RG transformation
[24,50].

TABLE I. Lyapunov exponent η of the chaotic RG trajectories of
Umnλβ ′ (z) [Eq. (7)] at different parameters.

m n β ′ λ η

3 2 2 2 0.637
6 2 2 3 0.366
9 2 2 4 0.091
13 2 2 5 0.427
16 2 2 6 0.365
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FIG. 4. Bifurcation diagram for the RG map Umnλβ ′ (z) on the real
axis at m = 6, β ′ = 2, with respect to λ, n = 3 (a) and n = 4 (b). The
Julia set (nonwandering set within 30 steps) of the RG map when β ′

changes as CP−α (c) and as C e−αP (d) at C = 2, α = 0.01, λ = 3,
m = 6, and n = 2.

The parameter K = J
kBT is a rescaled form of the inter-

action J . If we take kBT = 1, K = J . When K > 0, J > 0,
and z = eK > 1, the interaction of spins is ferromagnetic.
When K < 0, J < 0, and 0 < z = eK < 1, the interaction is
antiferromagnetic. Similarly, when β ′ > 0, the long-range in-
teraction is antiferromagnetic and vice versa for β ′ < 0. The
Julia set extends over the interval [0.1, 3.3] as displayed in
Fig. 2(d), which indicates that the effective coupling constant
K can be positive or negative at different levels of the net-
work model. As we checked, chaotic RG trajectories do not
appear for β ′ < 0, which articulates the importance of the
competition between the two opposite types of interactions,
a source for the generation of randomness and frustration as
in spin glass [51]. Chaos will not appear if the absolute value
of β ′ is too small since the ferromagnetic interaction then
dominates. From the above calculation, a phase diagram is
obtained as shown in Fig. 2(c). It is easy to see that, if λ is
too big or too small, the glass phase vanishes and we have
either ferromagnetic or antiferromagnetic phase. In this sense,
the spin glass phase appears also out of a kind of quite subtle
balance or competition between two opposite forces [52].

A. Parity of n matters a lot

The bifurcation diagram with respect to λ for Eq. (7) is
plotted with different n’s in Fig. 4. It is surprising that in this
figure, when n is even, the map could reach chaos, while for
odd n the map is never chaotic but arrives and stays at a stable
fixed point. We also checked a sequence of other n values
and found the same fact, which may be explained as follows.
We know that n is the number of bonds in each branch of
the basic substituting unit. When n is odd, if the renormalized
coupling constant is negative, the paths through the solid and
the dashed lines in Fig. 1 will be consistent with each other,
being antiferromagnetic. There would be no frustration and a
simple fixed point of the RG map representing the free energy

minimum could be achieved. In Fig. 4(a) for n = 3, we see
that the stable fixed point z < 1, indicating J < 0, which is
the case also for n = 5, 7, 9, . . .. However, when n is even as
in Fig. 4(b), the overall effect of the m paths through the solid
lines connecting the two end spins is always ferromagnetic,
which competes with the antiferromagnetic interaction repre-
sented by the dashed line. So, in this case, the frustration is
always present, which possibly leads to chaos and thus the
sensitive dependence of the dominant configurations on the
bond strength or temperature, as in all models of spin glass
[48]. Without frustration as for an odd n, the spin glass phase
never shows up in the present context. We also checked the
bifurcation diagram for different m’s but found no obvious
connection to the chaotic behavior.

B. RG flow with decaying interaction

The RG relates physical laws across different scales. The
more the iteration steps, the coarser the picture. Consequently,
the long-range interaction strength β ′ should decay with dis-
tance in a more realistic model, which indicates the decay
of β ′ with respect to iteration steps in the RG framework.
Even with this consideration, the overall picture presented
above remains the same. In Eq. (7), if the interaction constant
β ′ is decaying with the distance transient chaotic behavior
could still be seen within some finite steps depending on the
decaying rate. In Figs. 4(c) and 4(d), we plot the Julia sets for
two decaying scenarios: (c) a power law decay β ′ ∼ CP−α and
(d) an exponential decay β ′ ∼ C e−Pα , where C is a constant
and P is the number of iteration steps. α is a parameter used
to control the decay rate.

In Figs. 4(c) and 4(d), we find that the Julia sets still meet
the real axis at a finite interval. But this chaos is essentially
transient since with P → ∞ the long-range interaction de-
cays to zero and only one type of interaction remains, which
restores the common ferro- or antiferromagnetic behavior.
Nevertheless, if the decaying rate is small, the glass transition
may still be observable in a finite-sized piece of bulk material.

IV. THERMODYNAMICS ON THE HIERARCHICAL
DIAMOND LATTICE

In the following, we calculate thermodynamic functions of
the model to see how they are related to the Julia set based on
the partition function [17]. In the previous computation, we
took the lattice structure up to the 30th level where the number
γ of spins in the model reaches 2 + m(n − 1)( (mn)29−1

mn−1 ). Ex-
pectedly, the extensive thermal quantity of the whole system
will increase with γ linearly in the thermodynamic limit.
From the free energy F = −kBT ln Z , we may compute the
internal energy 〈E〉 = − ∂

∂β
ln Z and the entropy S = (〈E〉 −

F )/T . Below, we evaluate the average values per spin of
these quantities. For convenience, we take T = 1, kB = 1, and
the calculation details are given in Appendix C. In Fig. 5(a),
the average free energy is plotted in the interval [1,3.5] at the
parameters λ = 3, m = 6, n = 2, and β ′ = 2, which decreases
when J increases, as expected in a ferromagnetic interaction.
The average internal energy vs J is plotted in Fig. 5(b), which
has a maximum at J ∼ −1 = −β ′/n indicating an antiferro-
magnetic interaction associated with the dashed lines in Fig. 1
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FIG. 5. Average free energy (a), the average internal energy (b),
and the average entropy (c) vs J on the real axis for T = 1, kB = 1,
λ = 3, m = 6, n = 2, and β ′ = 2.

competing with the ferromagnetic one indicated by the solid
lines. At J = 0, the entropy achieves its maximum value at
J ≈ 0 as shown in Fig. 5(c), giving the maximum freedom
to the points lying in the middle of a branch of the basic
substituting unit.

V. CONCLUSION

In this paper, we studied the chaotic dynamics of the RG
transformation for the Potts model on diamond hierarchical
lattices. By supplying long-range competing interactions to
the original Potts model, chaos in the RG map becomes a
common scene on the real axis. As a result, the Julia set, being
identical to the set of Lee-Yang zeros in the thermodynamic
limit, indeed meets the real axis at a closed interval. Unlike
the previous case [24,38,46], here the number λ of spin states
could assume a multitude of integer values and the interaction
strength also seems reasonable, which may be physically more
relevant [53]. Even in the chaotic regime, averages of ther-
modynamic functions are computed which look quite regular
as the coupling constant changes in contrast to the irregular
variation of the renormalized interaction strength.

The jump of the RG parameter indicates that at different
scales the system may exhibit qualitatively different statistical
behavior, which is a character of spin glass [30]. The added
long-range interaction is antiferromagnetic in our model,
which is competing with the original ferromagnetic interac-
tion and hence possibly leads to the chaotic behavior of the
effective interaction strength. This type of competition is also
essential in spin glass, which leads to disorder and frustration.
The current viewpoint is further strengthened by the obser-
vation that the emergence of chaos critically depends on the
number n of bonds in each branch of the basic substituting
unit. The competition is present and thus chaos chips in only
when n is even. For an odd n, the RG map always settles to

a fixed point since the frustration could be mitigated in this
configuration.

From the above analysis, chaos in the RG map arises due
to the competition of interactions. Therefore, even though
our computation was carried out to the Potts model on a
hierarchical lattice which seems quite artificial, by introduc-
ing appropriate long-range interactions, we believe similar
behavior should be observed in more general systems, e.g., a
complex network with properly set parameter values. How-
ever, unlike the current case where the RG map could be
derived exactly, it is still a challenge to extend the RG com-
putation in this article to systems such as Potts model on
scale-free or small-world networks [54].
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APPENDIX A: PROOF OF EQ. (4) AND EQ. (3)

From Sec. II, we know that the partition function of level
N of our hierarchical diamond lattice can be written as

ZN =
∑
SN

exp

[∑
BD

[Kδ(si, s j )]

]
, (A1)

where
∑

SN
indicates a summation over states of all spins at

level N and
∑

BD sums up all the spin pairs connected by a
bond.

The RG transformation makes a local summation over the
basic units so that the graph at level N reduces to the graph at
level N − 1. Explicitly, we sum all the spins on each diamond
block at the level N except the spins at end points connected
by the edges at the level N − 1, and eliminate the spin vari-
ables in the partition function, so that the partition function
formula at the level N can be expressed with the partition
function at the level N − 1. First, we carry out the basic RG
step reducing a diamond block to a bond. We use s1 and sn+1

to denote the states of two spins at two end points connected
by the resulting bond after the reduction.

It is known that each diamond block is composed of m
branches, each of which has n bonds. The new parameter
K1 is used to denote the interaction strength after the RG
transformation and K2 for the factor integrated out. The two
spins s1, sn+1 stand at the ends of all branches. The partition
function of the diamond block could be written as

ZDBKRG ==
∑
SBD

∏
BH

∑
NSBH

exp

[∑
BD

Kδ(si, s j )

]

=
∑
SBD

exp [K1δ(s1, sn+1) + K2], (A2)

where SBD denotes the spin states of s1, sn+1, BH for different
branches, and NSBH for the states of the n − 1 spins between
the end points on each branch. Because there is no interaction
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between different branches except at s1, sn+1, we can sum the
local spins on each branch independently and the resulting
partition function of each branch is the same. Thus

ZDBKRG =
∑
SBD

(∑
NSBH

exp

[
K

∑
BD

δ(si, s j )

])m

. (A3)

Next, we carry out the summation
∑

NSBH
to decimate the

n − 1 intermediate spins on a branch. The resulting interac-
tion strength K1BD and the factor K2BD are used in the branch
partition function ZBH after the RG decimation

ZBH (K1BD , K2BD )

=
∑

s1,sn+1

exp [K1BDδ(s1, sn+1) + K2BD ]. (A4)

Two different cases are distinguished for the summation.
(i) When s1 = sn+1, after the RG transformation, the parti-

tion function is

ZBH (K1BD , K2BD ) = λ exp (K1BD + K2BD ), (A5)

where λ is the number of states for each spin. A transfer matrix
V could be used to do the summation ZBH = TrV n, where n
is the number of bonds on the branch. The transfer matrix V
is

V =

⎛
⎜⎜⎜⎜⎜⎝

eK 1 1 . . . 1 1
1 eK 1 . . . 1 1
1 1 eK . . . 1 1
. . . . . . . . . eK . . . 1
1 1 . . . . . . eK 1
1 1 . . . . . . 1 eK

⎞
⎟⎟⎟⎟⎟⎠. (A6)

To get the trace, we need to solve the characteristic equa-
tions D = ‖V − qE‖ = 0 to find all the eigenvalues [55].
Subtract the second column from the first one, the third col-
umn from the second, and so on. Then add the first row to the
second one, the second row to the third, and so on. The matrix
becomes very simple:

D =

⎛
⎜⎜⎜⎜⎜⎝

eK − q − 1 0 0 . . . 0 1
0 eK − q − 1 0 . . . 0 2
0 0 . . . . . . 0 3
. . . . . . . . . . . . . . . . . .

0 0 . . . . . . eK − q − 1 λ − 1
0 0 . . . . . . 0 eK − q + λ − 1

⎞
⎟⎟⎟⎟⎟⎠, (A7)

from which we may find λ − 1 identical eigenvalues eK − 1
and one singlet eK + λ − 1. Thus

ZBH = (eK + λ − 1)n + (λ − 1)(eK − 1)n. (A8)

So

eK1BD +K2BD = (eK + λ − 1)n + (λ − 1)(eK − 1)n

λ
. (A9)

(ii) When s1 �= sn+1, the partition function after RG trans-
formation is written as

ZBH (K1BD , K2BD ) = (λ2 − λ)eK2BD . (A10)

To continue using the transfer matrix technique, one extra spin
sn+2 may be added to connect with the spin sn+1 and assume
that sn+2 = s1. If there was no restriction on s1 and sn+1, we
have

ZBHt = (eK + λ − 1)n+1 + (λ − 1)(eK − 1)n+1

= (eK + λ − 1)(eK + λ − 1)n

+ (eK − 1)(λ − 1)(eK − 1)n. (A11)

If the restriction s1 = sn+1 is imposed, we have

ZBH p = eK (eK + λ − 1)n + eK (λ − 1)(eK − 1)n. (A12)

Therefore, the case with s1 �= sn+1 is obtained by subtracting
Eq. (A12) from Eq. (A11),

ZBH = (λ − 1)(eK + λ − 1)n + (−1)(λ − 1)(eK − 1)n,

(A13)
which results in

eK2BD = (eK + λ − 1)n − (eK − 1)n

λ
(A14)

and thus

eK1BD =
[

(z + λ − 1)n + (λ − 1)(z − 1)n

(z + λ − 1)n − (z − 1)n

]
, (A15)

with regard to Eq. (A9). Considering all the m branches, we
have

eK2 =
[

(eK + λ − 1)n − (eK − 1)n

λ

]m

(A16)

and

eK1 =
[

(eK + λ − 1)n + (λ − 1)(eK − 1)n

(eK + λ − 1)n − (eK − 1)n

]m

. (A17)

By replacing every diamond block with just one bond, we
relate the partition function at level N to that at level N − 1,

ZN (K ) =
∑
SN

exp

[∑
BDN

[Kδ(si, s j )]

]

=
∑
SN−1

exp
{∑

BDN−1
[K1δ(si, s j )] + ∑

BDN−1
K2

}
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=
∑
SN−1

(exp
[∑

BDN−1
K2

]
exp

{∑
BDN−1

[K1δ(si, s j )]
}

)

= exp

[ ∑
BDN−1

K2

] ∑
BDN−1

exp
{∑

SN−1
[K1δ(si, s j )]

}

= exp

[ ∑
BDN−1

K2

]
ZN−1(K1), (A18)

where BDN , BDN−1 distinguishes the summation over all
bonds at level N or level N − 1. The summation of K2 is
independent of spin variables so that it can be taken out. As
(mn)N−2 bonds are present in the level N − 1, we have

exp

(∑
BD

K2

)
= exp[K2(mn)N−2]. (A19)

Thus

ZN (K ) = exp[(mn)N−2K2]ZN−1(K1). (A20)

If we denote eK1 = ω, eK = z, from Eq. (A20), Eq. (A16), and
Eq. (A17), we get

ZN (z) =
[

(z + λ − 1)n − (z − 1)n

λ

]mN−1nN−2

ZN−1(ω),

(A21)
where

ω = Umnλ(z) =
[

(z + λ − 1)n + (λ − 1)(z − 1)n

(z + λ − 1)n − (z − 1)n

]m

. (A22)

APPENDIX B: PROOF OF EQ. (7)

With the new hierarchical diamond lattice in Sec. III, if the
strength of the long-range interaction is assumed to be −β ′,
we get

ZN (K, β ′) =
∑
SN

exp

[∑
BD

[Kδ(si, s j )] +
∑
SLRI

(−β ′)δ(si, s j )

]
,

(B1)

where SLRI denotes the set of long-range interaction bonds. A
similar process will be employed for an RG reduction to what
has been done in the above section. In the calculation of the
partition function of a branch, when s1 = sn+1, we still have

ZBH (K1BD , K2BD ) = λ exp (K1BD + K2BD ). (B2)

In this case, the long range gives a factor e−β ′
and thus

ZBH = e−β ′
[(eK + λ − 1)n + (λ − 1)(eK − 1)n], (B3)

which results in

eK1BD +K2BD = e−β ′
[

(eK + λ − 1)n + (λ − 1)(eK − 1)n

λ

]
.

(B4)

When the s1 �= sn+1, the long-range interaction does not con-
tribute and so we get the same expression as before:

eK2BD = (eK + λ − 1)n − (eK − 1)n

λ
. (B5)

Denoting eK = z, from Eqs. (B4) and (B5), we get

eK1BD = e−β ′
[

(z + λ − 1)n + (λ − 1)(z − 1)n

(z + λ − 1)n − (z − 1)n

]
. (B6)

In a diamond block with m branches, there is only one
dashed line. Hence

eK1 = e−β ′
[

(z + λ − 1)n + (λ − 1)(z − 1)n

(z + λ − 1)n − (z − 1)n

]m

(B7)

and

eK2 =
[

(z + λ − 1)n − (z − 1)n

λ

]m

. (B8)

In the RG reduction, the long-range interaction at the lower
level does not change. In this function, fN−1(β ′) is used to
represent exp{∑OLRI [(−β ′)δ(si, s j )]}, which represents the
summation of the long-range interaction built before level
N − 1. Then we make eK1 = ω, eK = z. If we take the pre-
vious calculation of eK1 , eK2 into the above function, we can
get

ZN (z, β ′) =
[

(z + λ − 1)n − (z − 1)n

λ

]m j−1n j−2

ZN−1(ω, β ′),

(B9)
where

ω = ek1 = Umnλβ ′ (z)

= e−β ′
[

(z + λ − 1)n + (λ − 1)(z − 1)n

(z + λ − 1)n − (z − 1)n

]m

. (B10)

From the above computation, it is easy to see that even if
β ′ changes with level the renormalization is similar, which
results in

ZN (z, {β ′
i }i=2,...,N )

=
[

(z + λ − 1)n − (z − 1)n

λ

]m j−1n j−2

× ZN−1(ω, {β ′
i }i=2,...,N−1), (B11)

where β ′
i denote the interaction strength at the ith level and

the RG map ω is

ω = Umnλβ ′
N

(z) = e−β ′
N

[
(z + λ − 1)n + (λ − 1)(z − 1)n

(z + λ − 1)n − (z − 1)n

]m

.

(B12)

APPENDIX C: CALCULATION PROCESS OF
THERMODYNAMICS

From Eqs. (4) and (3), we get

Zj (z) = fmnλ j (z)Zj−1(ω), (C1)

where

fmnλ j (z) =
[

(z + λ − 1)n − (z − 1)n

λ

]m j−1n j−2

. (C2)

For convenience, we write fmnλ j (z) as f j (z). At the first level,
the lattice is a line, so that we can directly calculate the par-
tition function as Z1(z) = λ(z + λ − 1), which is the starting
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point of the iteration Eq. (C1). The average free energy is then
computed as

F = −γ −1kBT ln Zj (z)

= −γ −1kBT {ln [Zj−1(ω j−1) f j (z)]}
= −γ −1kBT {ln [Zj−1(ω j−1)] + ln [ f j (z)]}
= −γ −1kBT {ln [Zj−2(ω j−2) f j−1(ω j−1)] + ln [ f j (z)]}
· · ·
= −γ −1kBT {ln [Z1(ω1)] + ln [ f2(ω2)] + · · ·

+ ln [ f j−1(ω j−1)] + ln [ f j (z)]}, (C3)

where γ is the total number of spins at level j and Zi is the
partition function at the ith level of the hierarchical lattice.
ωi−1 = Umnλ(ωi ) with ω j = z. We may write kBT = J/ ln(z)
and if T = 1, kB = 1 is taken for convenience, J = ln(z).

The internal energy could be computed as

〈E〉 = −γ −1 ∂

∂β
ln Z = −γ −1 ∂

∂β
ln Zj (z)

= −γ −1 ∂

∂β
{ln [Zj−1(ω j−1) f j (z)]}

= −γ −1 ∂

∂β
{ln [Zj−1(ω j−1)] + ln [ f j (z)]}

= −γ −1 ∂

∂β
{ln [Zj−2(ω j−2) f j−1(ω j−1)] + ln [ f j (z)]}

· · ·

= −γ −1 ∂

∂β
{ln [Z1(ω1)] + ln [ f2(ω2)]

+ ln [ f3(ω3)] · · · + ln [ f j (z)]}, (C4)

where ω2 is a function of ω1, ω3 is a function of ω2 . . ., and
ω j−1 is a function of z. When taking the derivative with respect
to β, we need to use the chain rule

〈E〉 = −γ −1 ∂z

∂β

{
∂ω j−1

∂z
· · · ∂ω2

∂ω3

∂ω1

∂ω2

∂

∂ω1
ln [Z1(ω1)]

+∂ω j−1

∂z
· · · ∂ω3

∂ω4

∂ω2

∂ω3

∂

∂ω2
ln [ f2(ω2)]

· · · + ∂

∂z
ln [ f j (z)]

}
. (C5)
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