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Many models have been created for upscaled transport modeling in discrete fracture networks (DFNs).
Random walk examples of these are the Markov directed random walk (MDRW), Monte Carlo solution of
the Boltzmann transport equation (BTE), and the spatial Markov model (SMM). Each model handles the
correlation between the random walk steps using different techniques and has successfully reproduced the
results of full-resolution transport simulations in DFNs. However, their predictive capabilities under different
modeling scenarios have not been compared. We construct a set of random 2D DFNs for three different fracture
transmissivity distributions to comparatively evaluate model performance. We focus specifically on random walk
models to determine what aspects of the space and time step distributions (e.g., correlation and coupling) must be
accounted for to get the most accurate predictions. For DFNs with low heterogeneity in fracture transmissivity,
accounting for correlation generally leads to less accurate predictions of transport behavior, but as the fracture
transmissivity distribution widens, preferential pathways form and correlation between modeling steps becomes
important, particularly for early breakthrough predictions.
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I. INTRODUCTION

Flow and transport in fractured rock are often characterized
by a wide range of velocities. The velocity of solute within the
fracture network can be several orders of magnitude higher
than the velocity of solute within the surrounding rock matrix
[1,2]. This makes numerical solution of the transport behavior
computationally intensive because high gradients require fine
grids.

To model flow and transport in fractured rock, it is often
desirable to upscale via some type of averaging procedure
so that the fine details of the flow are accounted for in an
effective way rather than explicitly resolved. For flow, this
can be done by establishing effective hydraulic conductivity
tensors that account for interconnected sets of fractures [3–6]
or the coupled influences of both the fractures and the matrix
[7,8].

For transport, however, this type of approach is insuffi-
cient. The use of effective hydraulic conductivity in transport
models leads to the use of an advection dispersion equation,
which assumes that transport is Fickian. Variations in small-
scale velocity lead to enhanced spreading of the solute (as
defined by the change in the variance of the solute plume),
which scales faster than linear in time until it asymptotes to
linear spreading. If the area of the domain over which the
effective hydraulic conductivity is defined is large enough for
this asymptotic behavior to occur, then this approach is valid

*nsund@dri.edu

[3]. However, the higher the variation in velocity, the larger the
region must be for the transport within it to become Fickian.

An alternative approach is to model transport only within
the high-velocity regions of the flow. In fractured rock, this
is done using discrete fracture network (DFN) models, which
assume no flow within the rock matrix [9–11]. This approach
gives a more accurate description of transport within the
fractures, but is restricted to small-scale use because of com-
putational expense. Therefore, there is a need for upscaling
models that can accurately extrapolate the transport behavior
from small-scale DFNs to larger scales.

Many models, both Lagrangian and Eulerian, have been
created for and applied to upscaled transport modeling in
DFNs. In this work, we focus specifically on Lagrangian
random walk models, each of which uses particle trajectories
from the DFN simulations to create empirical space and time
step distributions that are sampled from for the random walk
simulations. In a broad sense, these models can all be cat-
egorized as continuous time random walk (CTRW) models
[12–14], but the models have different definitions of what
constitutes a “step” and have different ways of modeling the
correlation between steps. The three models we focus on are
the Markov directed random walk (MDRW) [10], the Monte
Carlo solution of the Boltzmann transport equation (BTE)
[16], and the spatial Markov model (SMM) [15]. Each model
has had success in reproducing the results of full resolution
transport simulations in DFNs [10,16,17], but this is the first
side-by-side comparison of the predictive capability of these
models in both correlated and uncorrelated forms. All models
account for the correlation between steps using a Markov
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chain; the correlated forms of the models use multistate
Markov chains with state-dependent probabilities (Markov-1),
whereas the uncorrelated forms use trivial Markov chains
with either a single-state probability or the same probability
distribution for each state (Markov-0). The hypothetical case
study used to compare these models is a set of realizations
of random 2D DFNs for three different fracture transmissivity
distributions. As the variance of the transmissivity distribution
increases, the range of velocities within the DFN widens while
the number of high flux fractures decreases [11,18]. This
can have a profound effect on the predictive capability of
the upscaled models, particularly with regard to comparisons
between correlated and uncorrelated models. The goal of this
study is to investigate the predictive capability of these three
random walk models to determine what aspects of the space
and time step distribtuions (e.g., correlation and coupling)
must be accounted for to inform model choice for fractured
systems. To keep the analysis simple, we do not perturb the
injection modes or change the initial velocity distribution at
the inlet, which are factors shown to have a strong impact
on transport in DFNs and performance of upscaling methods
[19–21]. The potential effect of the velocity distribution at
the inlet is minimized in our study by restricting the injection
region to a small source area rather than an entire inlet plane.

The capability of the upscaled models to predict transport
in real fractured rock depends on both the accuracy of the
DFN simulations and on how well the upscaled models match
the DFN simulations. The scope of this work is limited to
the latter. For our purposes, we assume the transport results
of the DFN simulations are accurate and try to match up-
scaled models to these simulations. The upscaled models are
analyzed based on how well they match DFN simulations.
This approach can be used to assess the predictive capabilities
of the models, assuming the DFN simulations are accurate.
Upscaled modeling allows for transport behavior of smaller
scale DFNs to be extrapolated to larger scale DFNs (which
are very computationally expensive). For the interested reader,
the development of a 2D DFN flow and transport simulation
is provided in Ref. [11].

The use of 2D DFN models in this study is intended to
serve as the foundation for developing and evaluating trans-
port upscaling methods in 3D DFNs. Three-dimensional flow
and transport simulations differ from their 2D counterparts
in many ways, but for the upscaled models to be considered
robust, they should be capable of predicting transport in both
situations. Some recent work on transport upscaling for 3D
DFNs shows the promise of a Bernoulli CTRW [19,22], but
also highlights the limitations (underestimation of early so-
lute arrival time and overestimation of late-time arrival) for
networks with high aperture variation and different correla-
tion lengths [21]. Bernoulli model predictions improve when
local network topological features (tortuosity distribution) are
included in the upscaling framework [22]. Use of an average
advective tortuosity, a parameter which is sensitive to aperture
heterogeneity and injection modes, leads to poor upscaled
transport predictions [21]. Parametrization of local topolog-
ical features is difficult, hence there is a need to evaluate
applicability and performance of progressively sophisticated
CTRW models in both uncorrelated and correlated modes for
DFNs. With the increased computational expense of 3D flow

and transport simulations, we hope to establish a framework
for evaluating model responses and eliminate some of the
candidate models before extending the upscaling techniques
to 3D in a future study.

The manuscript is organized into six sections as follows.
First, we describe the DFN simulations in Sec. II, including
the effect of widening the distribution of fracture transmissiv-
ity and the information we collect to parametrize the upscaled
models. Next, we describe the upscaled modeling in Sec. III.
Then, we discuss the modeling results for both correlated and
uncorrelated versions of the models, with varying modeling
scales, in Sec. IV. Finally, we discuss the relevance of the
results with regard to future modeling efforts in Secs. V
and VI.

II. DISCRETE FRACTURE NETWORK
(DFN) SIMULATIONS

We run DFN simulations at both large and small scales
to test and parametrize the set of upscaled transport models.
Large-scale DFN simulations are used to create detailed trans-
port behavior, which we hope to predict using the upscaled
models. Another set of transport simulations is done on a
smaller region of the DFN, in which information on the trajec-
tory of particles is collected and analyzed to create empirical
space and time step distributions that are used to develop
upscaled predictions of the large-scale DFN transport using
each upscaled random walk model. All fracture networks are
generated and flow is solved using a numerical DFN genera-
tor, solver, and transport simulator [11].

A. DFN simulation setup

The first step is to create the large-scale fracture network
itself. We assume that the matrix is of negligible permeability
and flow only takes place in connected sets of fractures. Dis-
crete fracture networks are stochastically generated through
the incremental addition of fractures with statistically de-
fined random location, length, and orientation until a specified
density criterion is reached [11]. Fracture network density
is defined as the total length of all fractures normalized by
the domain area. Fractures may intersect boundaries or other
fractures and we define a fracture segment as the portion of
a fracture between two intersections [13,14]. The network
is split into segments and isolated fractures and dead-end
segments are identified and deleted because they are not hy-
draulically connected to the boundaries, and therefore cannot
convey any flow. Several analyses of field data have deter-
mined that fracture trace length often follows a power law
distribution [3,23–26]. The assumption that DFNs are scale
free underlies the use of power law distributions for fracture
trace length. Studies indicate that the values of the power
law exponent, α, typically range between 1 and 3 for natural
rock fracture networks [23,24,26]. Fracture angles are drawn
from a Von Mises distribution, which is analogous to a normal
distribution on a circle [27]. In this work, fracture density is
1/2 m/m2 and domain size is fixed at 1000 × 200 m. Table I
shows the probability density function (PDF) of each fracture
characteristic used in this work. Figure 1 shows a realization
of the DFN, before removal of isolated segments.
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TABLE I. Distribution of fracture characteristics.

Characteristic (X ) Distribution PDF [ fX (x)] Parameters

Length [m] Pareto
αxα

min
xα+1 x � xmin

0 x < xmin

xmin = 2 m
α = 1.5

Angle [radians] Von Mises exp[κ cos(x−μ)]
2π I0 (κ )a

κ = 20
μb = {0, π

2 }
Transmissivity

[
m2

s

]
Log-normal 1

xσ
√

2π
exp

(− (ln x−μ)2

2σ 2

) μ = −10
σ c = {0, 0.5, 1}

aI0(κ ) is the zeroth-order modified Bessel function of the first kind.
bTwo equiprobable sets of fractures are generated with μ1 = 0 and μ2 = π

2 , respectively.
cσ varies between sets of DFNs.

The only fracture characteristic parameter we vary between
DFNs is the standard deviation, σ , of the transmissivity distri-
bution. When σ = 0, the transmissivity of all fractures are the
same, but as σ increases the range of fracture transmissivity
increases.

The next step is to solve for the flow through the network.
We do so by imposing constant head boundary conditions
such that the global hydraulic head gradient is ∂h

∂x = −0.1 and
∂h
∂y = 0, and therefore the dominant flow direction is from left
to right in Fig. 1. Assuming Darcy’s law describes flow within
each fracture segment, we then solve for the steady-state head
distribution, defined at each fracture intersection according to

∇2h = 0. (1)

This assumes that the fracture network is fully saturated with
incompressible fluid. From the head distribution, we calculate
the flux of fluid through each fracture segment according to
Darcy’s law:

q = −T

b
∇h, (2)

where T is the fracture transmissivity and b is the fracture
aperture. The fracture aperture is related to the transmissivity
by way of the cubic law:

T = b3ρg

12μ
, (3)

where ρ and μ are the density and dynamic viscosity of
the fluid (water) and g is gravitational acceleration [3,28]. In
combination, these laws assume low Reynolds number flow

through a fracture segment with constant aperture (envisioned
as the fracture being bounded by parallel plates).

Finally, we simulate advective transport through the DFNs
(dispersion along the length of the fracture and matrix diffu-
sion are not considered). We use a particle tracking method
in which the solute mass is discretized into particles of equal
mass initially distributed over a 50 m × 50 m region along
the upstream boundary, as shown in Fig. 1. The number of
particles injected into each fracture segment is proportional
to its flux (q). After particles are released at fracture inter-
sections, each particle then proceeds through a segment at
constant velocity:

v = qû, (4)

where û is the unit vector parallel to the fracture segment.
Once the particle reaches the end of the fracture segment, it
chooses a new segment (si ) with probability proportional to
its flux (qi ). That is

P(si ) = qi∑nseg

i=1 qi
, (5)

where nseg is the number of segments connected to the cur-
rent segment. This treatment assumes that dispersion along
the fracture length is negligible and that the concentration
of solute across the fracture width is uniform. Therefore,
the method relies on complete mixing at the fracture inter-
sections assuming that the velocity distribution within the
fracture network is quickly sampled by the solute compared
with the amount of time it spends in the fracture because
of the fracture’s low aspect ratio. This assumption has been
assessed in both smooth- and rough-walled fractures [29,30]

FIG. 1. Modeling domain: one realization of a DFN with injection region highlighted in red and parametrization region highlighted in
yellow.
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and leads to negligible errors, especially in rough walled frac-
tures. Once the particle reaches the boundary of the DFN, it
is removed from the system (all boundaries are absorbing).
Each simulation is run until all particles have been removed.
This flux-weighted particle-tracking method is distinct from
the upscaled models discussed in Sec. III because the particles
in this case have access to the full details of the DFN and
all segment selections depend on the spatial location of the
particles and the flux of the connecting segments.

In addition to simulating transport over the entire DFN,
we delineate a small 100 m×100 m region along the up-
stream boundary and run another transport simulation to
obtain parameters to use in the upscaled models. The particle
trajectories obtained over this smaller region are analyzed
and used to create space and time step distributions for the
set of upscaled models in Sec. III. For this reason, we re-
fer to this region of the domain as the “parameterization
region.” For the full DFN transport simulations, we use
105 particles. For the parametrization simulations, we use
106 particles so that we have a large number of trajecto-
ries to analyze. For visualization purposes, Fig. 1 shows the
modeling domain and how it is partitioned into different
regions.

B. Effect of transmissivity distribution on fracture fluxes

It can be seen from Eq. (2) that an increase in the range
of fracture fluxes occurs as the range of transmissivity in-
creases (flux is proportional to transmissivity). The range of
transmissivity is controlled by the standard deviation of the
transmissivity distribution (σ ). Figure 2 shows the PDF of the
absolute value of fracture fluxes, f|q|(x = |q| in m

s ), where qi

is the measured flux through segment i, which is obtained
from all segments in 50 realizations of each of the three
transmissivity distributions. The PDFs are bimodal, with peak
values generally decreasing as σ increases, which spreads the
PDF out toward high-flux fractures. Bimodality is commonly
found in DFN flux distributions (e.g., Refs. [31,32]), which
in this case it is likely because there are two fracture sets:
one aligned with the pressure gradient and one perpendicu-
lar to the pressure gradient (see the parameters of the angle
distribution in Table I). This nonmonotonicity is a property
that each of the upscaled models must be capable of sim-
ulating. Figure 2 also shows the complimentary cumulative
distribution function (CCDF) of flux to highlight the tail of
the distribution.

In upscaled models, it is more difficult to capture the effect
of the transmissivity distribution on the presence of connected
high-velocity flow channels or preferential pathways. Figure 3
shows the correlation coefficient between instantaneous par-
ticle velocities at various distances along the particle paths.
As σ increases, particle velocities become more correlated, at
least for distances below 100 m.

In Fig. 2 and in the remainder of this manuscript, all results
are derived from a set of 50 realizations of the DFN for each
value of σ . The number of realizations generated is chosen
by comparing moments of breakthrough curves from each
realization to moments of the ensemble breakthrough curve at
the furthest distance from the inlet (1 km); details are available
in the Appendix.
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FIG. 2. Fracture flux magnitude for various values of the stan-
dard deviation of the transmissivity distribution (σ ) (a) PDF [ f|q|(x)],
(b) CCDF [1 − F|q|(x)].

III. UPSCALED MODELING

Following the extraction of trajectory data from the small
DFN simulations (done over the parametrization region), we
use this (numerical) data to create space and time step distri-
butions for the three upscaled random walk models. The goal
is to use these models to predict the breakthrough at locations
outside of the parametrization region. Although the capability
of the upscaled models to match the large scale DFN simula-
tions will be assessed, they do not have access to the statistics
of the full DFN, so their results are referred to as predictions.
Furthermore, each realization of the upscaled models only has
access to the trajectories from the parametrization region of a
single realization. In this section, we briefly introduce each of
the upscaled random walk models used to predict transport in
the DFNs.

Each of the three models considered here can be catego-
rized as a continuous time random walk (CTRW) [12]. In
CTRWs, the solute is discretized into particles of equal mass,
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FIG. 3. Spatial correlation between particle velocities measured
in DFNs with different transmissivity distributions.

which take steps in space and time, sampled from a density of
f (δx, δy, δt ), where δx, δy, and δt may or may not be coupled.
For fracture networks, usually a step is considered to be the
spatial and temporal jump a particle would make through a
single fracture segment. However, a variety of step definitions
are considered to determine the effect of modeling scale on
the accuracy of the predictions. Descriptions of the individual
models are discussed later in this section. Once the concept
of what constitutes a step is defined, particles are injected into
the domain (in the red square in Fig. 1). Each particle then
transitions through space and time according to

xn = xn−1 + δxn, yn = yn−1 + δyn,

tn = tn−1 + δtn, n = 1, 2, 3, ..., (6)

where the random triplet (δxn, δyn, δtn) comes
from f (δx, δy, δt ) and may or may not depend on
(δxn−1, δyn−1, δtn−1). Note that there is no requirement that
δx, δy, or δt be decoupled or fixed. Most often, f (δx, δy, δt )
is a parameterized probability density, which allows for
analytical solution of concentration distributions if the space
and time steps are uncoupled [33]. Although this is less
convenient, the theory allows for more general empirical
densities, including coupled space and time steps [34]. The
key to the creation of any CTRW model is the parametrization
of f (δx, δy, δt ), which is assumed to be independent of
particle position (i.e., statistically stationary in space).

Generally, steps are taken to be independent and identically
distributed, but we consider both correlated and uncorrelated
steps. This distinction may affect model predictions, depend-
ing on how much correlation exists between successive steps
in the DFN simulations [21,35,36], which depends on the
geometric and hydraulic attributes of the DFN. In all three
of the upscaled random walk models described in this section,
each step a particle makes in space and time can depend on
its previous step. This correlation between steps is accounted
for using a one-step Markov chain to relate the current step

FIG. 4. Method for partitioning particle trajectories into MDRW
modeling steps. Stars represent fracture intersections of the original
trajectory (in steps of one fracture segment). Circles represent the
intersections between two-segment steps.

to the previous step. Continuous time random walk models,
without the added complexity of a one-step Markov chain,
have been used successfully to describe transport through
fracture networks [13,14].

For each realization of all of the upscaled models, we
inject 105 particles, whose initial distribution matches the
initial condition in the DFN simulations (recall the particles
are initially distributed over a 50 × 50 m region along the
upstream boundary, where the number of particles that start
at each location is weighted by fracture segment flux). We use
absorbing boundary conditions to match the boundary condi-
tions in the DFN simulations, which means that particles that
move outside of the domain are removed from the simulation.
Each simulation is run until all particles have been removed.

A. Markov directed random walk (MDRW)

The MDRW model was introduced in Ref. [10]. In addition
to modeling correlation between steps with a Markov chain, it
also provides further flexibility to explicitly model retention, a
feature which we do not require because our DFN simulations
are not designed to model retention.

We define the steps (δxn, δyn, δtn) to correspond to trans-
port through a fixed number of fracture segments, k. This is
done by splitting every trajectory from our parametrization
simulations into groups of k segments and recording the dis-
tance and travel time from the beginning of the first segment
in each group to the end of the kth segment in each group.
Therefore, from each trajectory, depending on the number
of segments it passes through, we are often able to extract
multiple samples that can be used to construct f (δxn, δyn, δtn).
Figure 4 shows the full path of an individual particle and how
it is partitioned into steps of length k = 2. Larger values of k
would produce larger values of the triplet (δxn, δyn, δtn) and
smoother trajectories.

To account for correlation between steps, we first define a
set of 20 discrete equiprobable states based on speed. Each
state is defined by a range of speed, which for state si is from
li−1 to li, where l0 ≡ 0. A particle is in state si at step n if its
speed, qn, is between li−1 and li. The speed of each step is
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FIG. 5. Ensemble averaged transition matrix [P(qn ∈ si|qn−1 ∈ s j )] over all realizations with modeling step size k = 1 fracture segments
for transmissivity distributions with (a) σ = 0, (b) σ = 0.5, and (c) σ = 1.

defined by

qn =
√

δx2
n + δy2

n

δtn
. (7)

This means that low-numbered states cover low speeds and
high-numbered states cover high speeds.

Given this definition, we can create a Markov chain, which
consists of the initial (now discretized) distribution and a tran-
sition matrix using the trajectories from the DFN simulations.
The transition matrix is the conditional probability that the
speed at step n is in state si given that the speed at step n − 1 is
in state s j , P(qn ∈ si|qn−1 ∈ s j ). Figure 5 shows the transition
matrix, P(qn ∈ si|qn−1 ∈ s j ), averaged over all 50 realizations
for each transmissivity distribution, using a single fracture
segment (k = 1) as the modeling step. This is obtained by
creating transition matrices for each realization, adding them
together, and then dividing by the number of realizations.
All of the transition matrices are diagonally dominant, which
indicates a tendency for particles to remain in their current
speed state. We attribute this behavior to preferential pathways
that form because of the connectivity of high-flux fractures
(e.g., see Refs. [37–40]). As the spread of the transmissiv-
ity distribution increases with σ , the probability of particles
transitioning many states in one step decreases, which can
be seen in the slendering of the bands around the diagonal.
This indicates that the correlation between a particle’s speeds
does increase with increasing σ (as also evidenced in Fig. 3
at scales less than 100 m). Note that an MDRW model,
which uses only one speed state, would automatically have
uncorrelated steps. Therefore, the construction of the MDRW
(and the other two models discussed hereafter) allows us to
run simulations in both correlated and uncorrelated forms and
compare their performance.

This is all the information necessary to run the MDRW
simulations. Each particle transitions through space and time

according to Eq. (6), with

fMDRW (δx, δy, δt ) = f (δxn, δyn, δtn|qn ∈ si )

× P(qn ∈ si|qn−1 ∈ s j ). (8)

This model has been successfully applied to transport
through DFNs in Ref. [10], which gives further details of the
model.

B. Monte Carlo solution of the Boltzmann transport
equation (BTE)

The BTE model was introduced in Ref. [16]. It also
models correlation between steps with a Markov chain, but
based on velocity (both speed and direction). It defines steps
(δxn, δyn, δtn) to correspond to transport through a fixed num-
ber of fracture segments, k, so DFN particle trajectories are
split up in the same way as with the MDRW. Contrary to
the MDRW methodology, the step length of a particle as
it travels at the velocity sampled from the DFN trajectories
is also random (albeit dependent on velocity state) rather
than being the same length as the corresponding trajectory
segment.

To do this, spatial steps are put in polar form:

δxn = dn cos θn, δyn = dn sin θn, (9)

where dn is log uniformly distributed between limits that de-
pend on the velocity class and θn is the angle of the randomly
chosen trajectory.

To account for correlation between steps, and to define the
distribution of dn, we first define a set of 10 discrete equiprob-
able states based on speed. Similar to MDRW, each state is
defined by a range of speeds, which for state sp is lp−1 to
lp, where l0 ≡ 0. From here, we find the average jump length
of trajectory segments corresponding to each state, which for
state sp is rp. The distance a particle travels at its current
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FIG. 6. Ensemble averaged transition matrix (P[(qn, θn) ∈ si|(qn−1, θn−1) ∈ s j]) over all realizations with modeling step size k = 1 fracture
segments for transmissivity distributions with (a) σ = 0, (b) σ = 0.5, and (c) σ = 1.

velocity, dn, is then generated as

dn = − ln(U )rp, (10)

where U is a uniform random number between 0 and 1. There-
fore, in theory, a particle may continue at its current velocity
until it travels a distance between 0 and ∞ times the length of
the trajectory segment.

Next, the distribution of speed states is further discretized
by angle to create velocity states. For our purposes, because
we want the BTE to have the same number of states as the
MDRW, we split each speed state into two equiprobable angle
bins (for a total of 10 speed × 2 angles = 20 velocity states).
The full range of possible angles is [−π, π ], with an angle of
0 being aligned with the predominant flow direction. Because
we are only using two angle states for each speed bin, we
split the absolute value of the angles into “upstream” [0, π/2]
and “downstream” (π/2, π ]. A particle is in velocity state
si=2(p−1)+q if its speed is in state sp and the absolute value of
its angle is between angle limits lp,q−1 to lp,q, where lp,0 ≡ 0,
which are defined for each speed state p separately. Although
the distribution of angles can be further discretized, the num-
ber of bins here is kept minimal for the sake of simplicity and
comparison with the other models.

Given this definition, we then approximate the transi-
tion matrix, which is the conditional probability P[(qn, θn) ∈
si|(qn−1, θn−1) ∈ s j], using the trajectories from the DFN sim-
ulations. Figure 6 shows the transition matrix averaged over
all realizations for each transmissivity distribution, using a
single fracture segment (k = 1) as the modeling step. As with
speeds (Fig. 5), as σ increases, the correlation between suc-
cessive velocities also increases, although the bandwidth of
the transition matrices for velocities is larger than the transi-
tion matrices for speeds. As with the MDRW, a BTE model
that uses only one velocity state would have uncorrelated
steps, so we can also run the BTE in both correlated and
uncorrelated forms and compare them.

Each particle transitions through space and time according
to Eq. (6), with

fBTE(δx, δy, δt ) = f [dn cos θn, dn sin θn, δtn|(qn, θn) ∈ si],

P[(qn, θn) ∈ si|(qn−1, θn−1) ∈ s j]. (11)
This model has been successfully applied to transport

through DFNs in Ref. [16], which gives further details of the
model.

C. Spatial Markov model (SMM)

The SMM model was introduced in Ref. [15]. It also mod-
els correlation between steps with a Markov chain, but based
on speed over fixed longitudinal spatial increments of length
L. It defines steps (δxn = L, δyn, δtn) to correspond to trans-
port over increments of length L in the longitudinal direction.
In a sense, this means that we are projecting onto the axis
longitudinal to transport the correlations between velocities
at different spatial locations and implicitly assuming these
are the dominant correlations in the DFN. This inherently
assumes incremental stationarity for the correlations, as the
same transition matrix is expected to be valid along the entire
SMM path [41]. To keep the average modeling scale the same
for all models, we set L = Lk to be the average longitudinal
step taken by particles over k fracture segments, defined as

Lk = 1

N

N∑
i=1

ri cos θi, (12)

where ri and θi are the length and angle of trajectory i over
k segments, and N is the number of trajectories. For k =
1, 2, 3 fracture segments, Lk ≈ 3, 5, 7 m, respectively. The
trajectories from the DFN simulations are then used to create
breakthrough curves along the longitudinal direction of the
parametrization region at increments of length, Lk (e.g., for
k = 2, we create 20 breakthrough curves, each at 5 m incre-
ments). Then, for each location, X , we find the distribution of
travel times, fτ (X, t ), using Eq. (15).
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FIG. 7. Ensemble averaged transition matrix [P(δtn ∈ si|δtn−1 ∈ s j )] over all realizations with modeling step size Lk=1 (the average length
of 1 fracture segment) for transmissivity distributions with (a) σ = 0, (b) σ = 0.5, and (c) σ = 1.

To account for correlation between steps, we first define a
set of 20 discrete equiprobable states based on travel times.
Because Lk is fixed, this is equivalent to defining states based
on speed, as in the MDRW. Each state is defined by a travel-
time range, which for state si is li−1 to li, where l0 ≡ 0. We
then approximate the transition matrix, which is the condi-
tional probability P(δtn ∈ si|δtn−1 ∈ s j ), using the trajectories
from the DFN simulations. Figure 7 shows the transition
matrix averaged over all realizations for each transmissivity
distribution. As with speeds (Fig. 5) and velocities (Fig. 6), as
σ increases, the correlation between successive travel times
also increases. The bandwidth of the SMM transition matri-
ces is wider than that of the MDRW transition matrices, but
smaller than that of the BTE transition matrices. As with both
the MDRW and the BTE models, an SMM model that uses
only one travel-time state would have uncorrelated steps, so
we can also run the SMM in both correlated and uncorrelated
forms and compare them.

Each particle transitions through space and time according
to Eq. (6), with

fSMM(δx, δy, δt ) = δ(L − δxn) f (δyn, δtn|δtn ∈ si )

× P(δtn ∈ si|δtn−1 ∈ s j ). (13)

Versions of this model has been successfully applied to
transport through DFNs [17,42], even in real fractured rock
[43]. Further details of the model are provided in Ref. [15].

D. Importance of correlation of each model

To further quantify the importance of correlation in these
models and to account for variability between realizations, we
looked at the importance of correlation parameter (IC), orig-
inally introduced in Ref. [35]. The importance of correlation

parameter is defined as

IC = 1

N

N∑
i=1

N∑
j=1

T 2
i j , (14)

where N is the number of states in transition matrix Ti j . This
metric ranges from 1

N , for a completely uniform transition
matrix (no correlation), to 1 for a diagonal of ones, with
every other entry being zero (perfect correlation). Figure 8
shows boxplots of IC for each transmissivity distribution. In
all cases, the BTE model has the most variability in IC, fol-
lowed by MDRW, with SMM having the least variability. For
all three models, the median IC increases with σ , indicating
that correlation is increasingly important as transmissivity
becomes more heterogeneous.
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FIG. 8. Boxplots of the importance of correlation parameter for
transmissivity distributions with different values of σ . Plus signs
indicate outliers.
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All three upscaled random walk models are quite simi-
lar because they all rely on Markov chains. The states of
the Markov chains differ between models, from the simplest
model, which relies on longitudinal flux (SMM), to total
flux (MDRW), to the most complicated model, which re-
lies on full velocity (BTE). Intercomparison between models
allows us to determine the extent of the velocity informa-
tion required to properly account for correlation, whereas
model intracomparison allows us to determine whether cor-
relation needs to be accounted for at all. The challenge
with all of the models is ensuring sufficient parametrization.
The amount of data needed for sufficient parametrization
is reduced for the uncorrelated versions of the models be-
cause the transition matrices required for correlated models
are based on more information than just the distribution
f (δx, δy, δt ).

IV. RESULTS

Here, we compare the breakthrough results of the upscaled
random walk models to the large-scale DFN simulations. We
focus largely on ensemble statistics created using aggregates
of particles in all realizations. Each upscaled model is run
using three different modeling scales, for which the number
of fracture segments used to define a step are k = 1, 2, 3.

Furthermore, we run each model in both correlated and un-
correlated forms. Recall that the uncorrelated forms differ
from the correlated forms in that their corresponding Markov
chains consist of a single state. These uncorrelated models are
referred to as uMDRW, uBTE, and uSMM.

A breakthrough curve at location X is a measure of
concentration arriving at that location, which is related to
the distribution of times it takes particles to arrive at the
location by

fτ (X, t ) =
∫ ∞

−∞

C(x = X, y, t )

Ctot (X )
dy, (15)

where fτ (X, t ) is the probability of a particle arriving at
location X at time t , C(x = X, y, t ) is the concentration of
solute arriving at location X, y at time t , and Ctot(X ) is a
normalization constant, which is the integral of C(x = X, y, t )
over all time. Note that constant head boundary conditions
are assigned in the transverse direction (as opposed to no-
flow boundary conditions), and therefore Ctot is not equal
to the amount of concentration initially injected because
particles are free to exit the DFN through the transverse
boundaries.

The metrics we use to test the predictive capability of each
upscaled model are:

(1) Relative mean absolute error in the ensemble cumu-
lative travel-time distributions, Fτ (X, t ) at X = 500 m and
X = 1 km.

(2) Relative mean absolute error in total mass in ensemble
breakthrough curves, Ctot(X ), at ten intervals of 100 m length
along the entire domain (X = 100, 200,... 900, 1000 m).

To calculate the relative mean absolute error in Fτ (X, t ),
we discretize time into one-hundred-day increments up to the
longest travel time from the DFN simulations. The error is

then defined as

rMAE[Fτ,mod(X )] =
∑n

i=1 |Fτ,DFN(X, ti ) − Fτ,mod(X, ti )|∑n
i=1 Fτ,DFN(X, ti )

,

(16)

where Fτ,DFN(X, ti ) and Fτ,mod(X, ti ) are the cumulative travel-
time distributions at time ti for the DFN and upscaled model
simulations, respectively.

The relative mean absolute error in Ctot(X ) is defined as

rMAE(Ctot ) =
∑10

i=1 |Ctot,DFN(Xi ) − Ctot,mod(Xi )|∑10
i=1 Ctot,DFN(Xi )

, (17)

where Ctot,DFN(Xi ) and Ctot,mod(Xi ) are the total mass in the
breakthrough curves at location Xi for the DFN and upscaled
model simulations, respectively.

These metrics are used so that errors in prediction of
longitudinal and transverse transport are kept separate. The
errors in the cumulative travel-time distribution tell us how
well the models are predicting longitudinal transport, whereas
the total mass in the breakthrough curves tells how well the
models are predicting transverse transport because any mass
not contained in the breakthrough curve has escaped the do-
main through a transverse boundary. Because of the boundary
conditions and the high aspect ratio of the domain, we find
Ctot to be a better measure of transverse behavior than spatial
moments.

A. Longitudinal predictions: Error in the ensemble cumulative
travel-time distributions

Figure 9 shows the cumulative and complementary cumu-
lative travel-time distributions at x = 500 m of DFN simula-
tions with each transmissivity distribution (σ = 0, 0.5, 1) and
of upscaled random walk model simulations with modeling
step k = 1, along with the corresponding error. By looking at
the cumulative distribution function (CDF) on a log-log scale,
we can zoom in on how well each model is capturing the pre-
peak portion of the breakthrough curve. For σ = 0 [Fig. 9(a)],
the SMM predicts too much early breakthrough and the uBTE
predicts too little, which means that fast particles are too fast
in the SMM model and too slow in the uBTE model. The
predictions of the other models are nearly identical and are
close to the ensemble DFN result. By looking at the CCDF
on the same scale, we can zoom in on how well each model
is capturing the tail of the breakthrough curve. The uSMM
and SMM capture the tail of the DFN breakthrough well, but
all other models predict too much late breakthrough, which
means that the slow particles in these models are too slow.
For σ = 0.5 [Fig. 9(b)], the CDF shows that the MDRW and
BTE overpredict early breakthrough almost as much as the
SMM does. The predictive capability of each model on the
tailing behavior is largely unchanged with changing σ . For
σ = 0.5, correlation is negligible (which can also be seen in
Fig. 8) and accounting for correlation in this situation leads to
increased error. This could possibly be because the numerical
error in the calculation of the transition matrices is of the
same order as the small amount of correlation that actually
exists, particularly at early times. For σ = 1 [Fig. 9(c)], the
CDF shows that the uncorrelated models severely underpre-
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FIG. 9. Ensemble cumulative and complementary cumulative travel-time distributions at x = 500 m of large-scale DFN simulations and
of upscaled random walk model simulations with modeling step size k = 1 with transmissivity distributions (a) σ = 0, (b) σ = 0.5, and (c)
σ = 1 and (d) the corresponding relative error. The shaded yellow region shows the range of errors among individual DFN realizations.

dict the early breakthrough, whereas the correlated models
come closer to capturing the true DFN behavior. This indi-
cates that for σ = 1, correlation is important and accounting
for it leads to a reduction in error. In this case the BTE
model best predicts the tailing behavior. Both SMM models
begin to predict the tailing behavior well, but deviate from
the DFN result at very long times (over 105 days), which
is likely because the transport process is projected onto the
longitudinal axis for the SMM. With the significant difference
in early breakthrough predictions, the correlated models edge
out their uncorrelated counterparts in relative error as shown
in Fig. 9(d). The only model that predicts both the early and
late breakthrough well is the uSMM, which has the lowest
relative error. The only model that predicts both poorly was
the uBTE, which has the highest relative error. The errors
of the other models fall between these two models. To fur-

ther illustrate the tailing behavior of the upscaled models,
Appendix B shows the mean-squared logarithmic error of the
complimentary cumulative travel-time distributions.

Figure 9(d) also shows the range of errors of each in-
dividual realization of the DFN simulations (yellow boxes).
Note that these are not typical error bars, because the error
in the ensemble prediction can be below the yellow boxes
(in fact, the ensemble error of the DFN simulations is by
definition 0, whereas the realization error range, shown in
yellow, is not). The ensemble predictions for all models
are within the range of error of individual DFN simula-
tions. This means that the error in ensemble upscaled models
is within the range of error because of the variability of
the individual DFN realizations. For those interested in the
amount of variabilty between individual DFN realizations,
Appendix C shows the cumulative and complementary cumu-
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FIG. 10. Ensemble cumulative and complementary cumulative travel-time distributions at x = 1 km of large-scale DFN simulations and of
upscaled random walk model simulations with modeling step size k = 1 with transmissivity distributions (a) σ = 0, (b) σ = 0.5, (c) σ = 1,

and (d) the corresponding relative error. The shaded yellow region shows the range of errors among individual DFN realizations.

lative travel-time distributions of each of the individual DFN
realizations.

Figure 10 shows the cumulative and complimentary cumu-
lative travel-time distributions at X = 1 km. Qualitatively, the
performance of the models continue in the same way as shown
in Fig. 9, so model comparability does not change when con-
sidering the breakthrough curve further downstream. Note that
the early breakthrough behavior of BTE model for σ = 0.5
begins to improve, as shown in Fig. 10(b), but this change
does not strongly affect the overall relative error, shown in
Fig. 10(d).

B. Transverse predictions: Error in total mass in ensemble
breakthrough curves

Here we compare the total mass in the ensemble break-
through curves [Ctot(X )], which is a measure of how many

particles remain in the domain long enough to arrive at
the breakthrough location (X ). Figure 11 shows the to-
tal mass in each ensemble breakthrough curve, taken at
100 m increments, for each fracture transmissivity distribution
(σ = 0, 0.5, 1) and the corresponding error [calculated using
Eq. (17)]. Similar to the results shown for longitudinal predic-
tions, the predictions here are also made using a single fracture
segment (k = 1). The mass is calculated by setting the initial
injected concentration, C0 = 1, so that if all particles arrive
at the breakthrough location at some time, then Ctot = 1. For
σ = 0 [Fig. 11(a)], at the first breakthrough location (X =
100 m), all model predictions come close to the total mass
in the breakthrough curves of the DFN simulations, but at
further distances, most of the models begin to underpredict
the total mass. This means that most of the models predict an
overly high degree of spreading in the transverse direction.
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FIG. 11. Total mass in ensemble breakthrough curves of DFN simulations and of upscaled random walk model simulations with modeling
step size k = 1 with transmissivity distributions (a) σ = 0, (b) σ = 0.5, (c) σ = 1, and (d) the corresponding average relative error.

The SMM outperforms all of the models at all breakthrough
locations, followed by the uSMM. As the spread of frac-
ture transmissivity increases, from Figs. 11(a)–11(c), the total
mass predictions of the uSMM and uMDRW improve and the
results of the uSMM become similar to those of the SMM.
Therefore, it can be argued that although the design of the
upscaling models tends to overpredict the transverse spread,
the difference in DFN-simulated transverse spread and the
random-walk-model-produced transverse spread reduces as
the heterogeneity in hydraulic properties (i.e., transmissivity
distribution) increases. The error in Fig. 11(d) also shows
these trends. The similar performance of the MDRW and
BTE models in predicting the transverse spreading is probably
because the definition of what constitutes a step in these two
models is linked to random walk steps over a fixed number of
actual fracture segments. Surprisingly, the model which treats
transverse behavior in the most trivial fashion (the SMM that
takes δy from the transverse jump over fixed longitudinal steps
rather than from actual fracture segment geometry) is the one
that best predicts transverse behavior, although this may be

due to the aspect ratio of the modeling domain. Overall, it is
interesting to observe here that random walk upscaling models
are suited to better capture the transverse spread of fracture
networks with enhanced hydraulic heterogeneity. This has
strong significance for modeling transport in fracture net-
works because the performance of model evaluation metrics is
generally expected to decrease as the complexity of a system
increases (as seen in the CDF, CCDF, and error plots of Figs. 9
and 10).

C. Effect of changing modeling scale

Figure 12 shows how the model predictions change as
the modeling scale increases from k = 1 to k = 3 frac-
ture segments for simulations with constant transmissivity
distribution (σ = 0). Although the errors in longitudinal pre-
dictions (breakthrough) [Fig. 12(a)] tend to decrease with a
larger modeling scale, the transverse behavior of each model
[Fig. 12(b)] is not significantly changed by varying the mod-
eling scale over this range, which can be seen in the relatively
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FIG. 12. Relative errors in ensemble upscaled random walk
model simulations as a function of modeling scale for σ = 0: (a) rel-
ative error in cumulative breakthrough at X = 1 km and (b) average
relative error in mass.

constant errors of each model as k increases. This trend exists
for all three values of σ . The decreased error in longitudinal
predictions for large values of k is understandable because the
models are based on data captured from longer continuous
portions of particle trajectories. The fact that increasing k
does not significantly improve transverse errors is likely due
to the combination of the models overpredicting spreading
and the aspect ratio of the domain. If we allowed particles
to reenter the domain rather than using absorbing boundaries
for the upscaled models, then the transverse errors would be
reduced overall and we may begin to see improvements with
increasing k.

V. DISCUSSION

All of the upscaled random walk models can predict the en-
semble DFN breakthrough as well as a single DFN realization
(recall the yellow boxes in the error plots show the range of

errors in individual DFN realizations). The model predictions
differ, so the best model to use depends on what behavior the
model is meant to capture. The model comparisons in this
manuscript use particles that represent conservative solute, but
if the solute to be modeled is nonconservative and degrades
over time, it is most important that the model predicts early
breakthrough. The models that predict early breakthrough the
best were uSMM and uMDRW for σ < 1 and SMM and BTE
for σ = 1. Alternatively, if the solute is a contaminant and
modeling of pump and treat remediation is desired, then it is
important that the model effectively predicts the breakthrough
curve tail. The models that predict late breakthrough the best
are uSMM and SMM for σ < 1 and MDRW and BTE for
σ = 1. In both of these cases, the best model depends on
the fracture transmissivity distribution. If there are no-flow
boundary conditions on the transverse sides of the domain,
then the error in total mass can be ignored. Otherwise, using
SMM for all values of σ , or uSMM for σ > 0, will better
capture the transverse spreading.

VI. CONCLUSIONS

In this work we focus on the comparison between La-
grangian random walk models, each of which uses particle
trajectories from the DFN simulations to create empirical
space and time step distributions that are sampled from in
the random walk simulations. The three models we focus on
are the Markov directed random walk (MDRW) [10], Monte
Carlo solution of the Boltzmann transport equation (BTE)
[16], and the spatial Markov model (SMM) [15]. We vary and
compare multiple scenarios with different fracture transmis-
sivity distributions (with σ = 0, 0.5, 1) and find the following
overall conclusions:

(1) All models, both correlated and uncorrelated versions,
have error within the range of error for single DFN realiza-
tions. Therefore, none of the models sacrifice accuracy in
exchange for computational cost. The computational time as-
sociated with simulating the parametrization region is ∼0.8%
of the time associated with the full DFN and simulations of
multiple parametrization regions can be run in parallel.

(2) As the distribution of fracture transmissivity widens,
preferential pathways for solute form, creating correlation in
particle velocities over successive steps.

(3) For the log-normal transmissivity distributions used
here, models that take correlation into account gain an ad-
vantage over their uncorrelated counterparts for higher values
of σ .

(4) Early breakthrough is best predicted by the uncorre-
lated models (uMDRW and uSMM) for σ < 1 and by the
correlated models (BTE and SMM) for σ = 1.

(5) Tailing behavior is best predicted by the SMM models
(uSMM, SMM) for σ < 1 and by the correlated BTE and
MDRW models for σ = 1.

(6) For fracture networks with wide transmissivity distri-
butions (σ = 1 in this study), the BTE model consistently
performs well in predicting both early and late breakthrough.

(7) Transverse spreading is best predicted by the SMM for
all values of σ , and the uSMM for σ > 0.
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FIG. 13. Relative mean absolute deviation between moments of
breakthrough curves for each realization and moments of the ensem-
ble breakthrough curve, averaged over the number of realizations, for
(a) σ = 0, (b) σ = 0.5, and (c) σ = 1.

(8) The upscaled random walk models tend to better cap-
ture the transverse spreading of DFN simulations for networks
with wide transmissivity distributions.

(9) In comparison to the effects of model choice and
correlation, the effect of modeling scale (number of fracture
segments used to define modeling steps) on model predictive
performance is small, at least over the range of k = 1 to k = 3
covered in this paper.

The results of this study can be used to guide upscaled
model selection in fracture network settings. For each DFN
realization, we run upscaled simulations for six different mod-
els at three different scale lengths for a total of 18 simulations
per realization. Through this process, we had hoped we could
eliminate some of the models and length scales before moving
on to vary other DFN parameters, such as density, fracture
length, and angle distributions. The uBTE gives predictions
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FIG. 14. Mean-squared logarithmic error of complimentary cu-
mulative travel-time distributions of each upscaled model for (a)
x = 500 m and (b) x = 1 km.
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FIG. 15. Cumulative and complementary cumulative travel-time distributions of DFN realizations and the resulting ensemble at (left)
x = 500 m and (right) x = 1 km of large-scale DFN simulations with transmissivity distributions (a, b) σ = 0, (c, d) σ = 0.5, and (d, e) σ = 1.
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with the highest errors and all three length scales give similar
predictions for total mass in the system. For the most part
errors in breakthrough are reduced with larger length scales.
For future research, this enables us to eliminate more than
two-thirds of the model runs leaving five models and one
length scale, allowing us to consider the effects of varying
DFN parameters other than transmissivity distribution and to
expand model use to three dimensions.
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APPENDIX A: NUMBER OF REALIZATIONS

The number of realizations used to create ensemble DFN
simulation results was chosen by comparing moments of
ensemble breakthrough curves at X = 1 km to moments of
corresponding breakthrough curves from individual realiza-
tions. The moments of the breakthrough curves are defined as

M0 = Ctot(X ) =
∫ ∞

−∞

∫ ∞

−∞
C(x = X, y, t )dydt,

M1 =
∫ ∞

−∞

∫ ∞

−∞
t
C(x = X, y, t )

Ctot (X )
dydt, (A1)

where M0 is the zeroth moment, which measures the total
mass arriving at location X , and M1 is the first moment, which
measures the average travel time to location X .

For each realization, we find the relative mean absolute
deviation of these moments, defined as

rMAD(real j ) =
∣∣Mens

i − M
real j

i

∣∣
Mens

i

, (A2)

where Mens
i and M

real j

i are the ith moments of the ensemble
and realization, real j , respectively.

Figure 13 shows the average of these deviations. The num-
ber of realizations used to define the ensemble is shown on
the x axis. The order in which the realizations are added to the

ensemble is randomized. We define “enough” realizations to
be the number of realizations it takes for the relative mean
absolute deviations to decrease regularly. Fifty realizations
was the number chosen because this standard is met for all
values of σ .

APPENDIX B: MEAN-SQUARED LOGARITHMIC ERROR

Here we show the mean-squared logarithmic error (MSLE)
of the complimentary cumulative travel-time distributions of
the ensemble of each of the upscaled models. This metric
is used to further accentuate the error in predictions of late
time (tailing) behavior because it weighs errors logarithmi-
cally (small errors in small values carry more weight than in
rMAE). To calculate the MSLE in the complimentary cumu-
lative travel-time distribution (1-Fτ (X, t )), we discretize time
into 100-day increments from 104 days up to the longest travel
time from the DFN simulations. The reason 104 days was
selected is because that is approximately where the tailing
begins. The error is then defined as

MSLE[1 − Fτ,mod(X )]

= 1

n

n∑
i=1

[ln(1 − Fτ,DFN(X, ti )] − ln[1 − Fτ,mod(X, ti )]
2,

(B1)

where 1-Fτ,DFN(X, ti ) and 1-Fτ,mod(X, ti ) are the complimen-
tary cumulative travel-time distributions at time ti for the
DFN and upscaled model simulations, respectively. Figure 14
shows the MSLE for each upscaled model and looks similar
to Figs. 9(d) and 10(d), except that the late time overpredic-
tions of the uSMM and SMM for σ = 1 are more severely
penalized.

APPENDIX C: TRAVEL-TIME DISTRIBUTIONS
FOR INDIVIDUAL DFN REALIZATIONS

Figure 15 shows the cumulative and complementary
cumulative travel-time distributions for each of the DFN re-
alizations along with the distributions of the ensemble.
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