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Effects of external noise on threshold-induced correlations in ferromagnetic systems
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In the present paper we investigate the impact of the external noise and detection threshold level on the
simulation data for the systems that evolve through metastable states. As a representative model of such systems
we chose the nonequilibrium athermal random-field Ising model with two types of the external noise, uniform
white noise and Gaussian white noise with various different standard deviations, imposed on the original
response signal obtained in model simulations. We applied a wide range of detection threshold levels in analysis
of the signal and show how these quantities affect the values of exponent γS/T (describing the scaling of the
average avalanche size with duration), the shift of waiting time between the avalanches, and finally the collapses
of the waiting time distributions. The results are obtained via extensive numerical simulations on the equilateral
three-dimensional cubic lattices of various sizes and disorders.
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I. INTRODUCTION

Although modern equipment is capable of significantly
reducing the superposition of unwanted external noise on
experimental data, still this impact cannot be avoided. Ob-
viously, to optimally capture the observed phenomena one
would like to lower as much as possible the external noise and
the noise from the measurement system. Under the foregoing
conditions the studied events are usually recognized as the
parts of recorded signal lying above/below the upper/lower
threshold level imposed on the base line level (i.e., an ide-
alized signal level in the absence of response signal and all
types of noise). In this way, the events, thresholds, and noise
are intertwined in each experimental signal.

Measurements on the systems exhibiting avalanche-like
relaxation are not an exception. A vast diversity of phenomena
dominantly evolving via avalanche-like events can be found
in everyday life, e.g., earthquakes [1], neuronal activities
[2,3], financial markets [4], crystalline [5–9], and amorphous
[10,11] solids undergoing plastic deformation, cracks propa-
gating in disordered solids [12,13], etc. The mentioned type
of relaxation can cause the extreme events such as avalanches
that span almost the whole system leading to a phase transition
in the thermodynamic limit [14]. Among these phenomena,
magnetization and relaxation processes in ferromagnetic ma-
terials play a distinguished role [15–23].

To model and explain the Barkhausen noise that emerges
when the ferromagnetic sample is driven by varying external
magnetic field, a number of theoretical models were devel-
oped [24–33]. One of the most prominent appears to be the
random-field Ising model (RFIM), that has been extensively
studied in the past few decades [34–40]. Renormalization
group approach has brought certain answers regarding the

RFIM critical behavior, but it turned out to be a rather difficult
task. The results obtained via perturbative renormalization
group showed the limits of this approach as some incorrect
predictions in three dimensions arose [41–43]. This led to the
nonperturbative approach that appeared to give better results
[44,45]. Recent numerical investigation of equilibrium ver-
sion of RFIM offered important information on behavior of
this type of model [46–48].

The nonequilibrium version of RFIM turned out to be
more relevant for the correspondence with experiments due
to its locally driven dynamics. The nonequilibrium model
provides temporal evolution mimicking the response of real
ferromagnetic samples to the varying external magnetic field.
This model has been studied numerically in a lot of papers. Its
critical behavior and scaling laws in the case of equilateral lat-
tices were investigated in Refs. [40,49–56], while recently the
systems with different geometry were studied in Refs. [57–61]
together with the impact of lattice topology on its criticality
[62–66].

So far, very few studies were done on the joint effect that
both threshold and noise have on signals obtained from ferro-
magnetic materials. Recent experimental [67] and theoretical
[68] studies delivered some important results caused by the
implementation of the finite detection threshold when ana-
lyzing the original signal. Effects of thresholding have been
considered also, e.g., in the context of fracture [13,69], and ar-
gued to be of importance in seismicity [70,71]. Moreover, the
problem has been studied also, e.g., in the case of birth-death
processes [72]. However, the joint effects due to thresholding
a crackling noise signal with superimposed additive external
white noise remain largely unexplored.

In the present paper we investigate the joint impact of the
external noise and imposed threshold level on the avalanche
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FIG. 1. An example illustrating the imposing of threshold Vth on
the response signal, extraction of subavalanches, and definition of
internal and external waiting time, Tw,int (Vth ) and Tw,ext (Vth ). Two
avalanches (labeled by i and j) surpassing the threshold are separated
by one (blue-colored) avalanche lying below the threshold. Two
subavalanches i1 and i2 are extracted from the avalanche i, and a
single subavalanche j′ from the avalanche j. Everything lying below
Vth including parts of the avalanches i and j lying below the threshold
is grayed.

statistics extracted from the simulations of the nonequilibrium
athermal RFIM on equilateral three-dimensional cubic latices
of size L containing L3 spins. In this work we used two types
of noise. One is uniform white noise taken from the uniform
distribution (UWN) of width w, i.e., the noise that takes with
probability density p(n) = 1/2w any value n from the interval
[−w,w] and has the standard deviation σ = w/

√
3. The other

type is the white noise taken from the zero-mean Gaussian
distribution with standard deviation σ (GWN). These two
theoretically convenient types of noise with flat power spectral
density S( f ) = const are (almost) ubiquitous in experiments
(e.g., UWN as the quantization noise and GWN as electronic
noise arising in amplifiers and detectors), and in many in-
stances superposed by some 1/ f noise, having power spectral
density S( f ) ∝ 1/ f αn and various origins (see, e.g., Ref. [73]),
whose influence we defer for later studies.

The paper is organized as follows. Description of the
model, together with the simulation details and algorithm
description, are given in Sec. II. In Sec. III is explained what
is achieved by thresholding of the signal, while in Sec. IV is
shown how addition of external noise affects the properties of
the relevant statistics. Finally, in Sec. V we give a discussion
and conclusion of this study.

II. MODEL

The RFIM is defined as follows. At each site i of the
underlying lattice lies the spin Si having two possible values
±1. There are three types of interaction to which the spins
are exposed: (1) they interact with the nearest neighbors via
exchange interaction, (2) there is the interaction between each
spin and the applied external magnetic field H , and (3) every
spin Si interacts with a local random-field hi at its site. These
random-field values are chosen independently and without
site-to-site correlations from some zero-mean distribution so

FIG. 2. Average avalanche size for a given avalanche duration
for the system of size 1024 × 1024 × 1024 and disorder R = 2.25.
Detecting threshold level is Vth = 150 in UWN case when noise func-
tion standard deviations ranges from 0 to 69.3 (panel a), and Vth = 50
in GWN case when noise function standard deviation ranges from 0
to 17.3 (panel b).

that the average taken over all possible random-field configu-
rations satisfies 〈hih j〉 = R2δi, j , where δi j is the Kronecker δ

function, and R is disorder, i.e., the standard deviation of the
employed random-field distribution. One such distribution is
the Gaussian distribution,

ρ(h) = 1√
2πR

exp

(
− h2

2R2

)
,

used in this paper. Taking all three interactions into account
the Hamiltonian of the system reads

H = −J
∑
{i, j}

SiS j − H
∑

i

Si −
∑

i

hiSi. (1)
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FIG. 3. Example of the noise effect on the γS/T values decrease.
On the left side of the figure is presented the part of the signal with
added noise (red line), while on the right side is the signal without
noise (blue line). At a given threshold level for the same duration we
see that the area (i.e., avalanche size) Sn

T , when the noise is applied,
is larger than the area ST without the noise.

In the first term J represents the strength (1 in this paper) of
ferromagnetic coupling between the nearest neighbors, and
the summation is performed over all distinct pairs {i, j} of
such spins. The system behavior is governed by the local
relaxation rule meaning that the spin Si is stable while its sign
is the same as the sign of the effective field,

heff
i =

∑
〈 j〉

S j + H + hi,

where the summation in the first term is performed over all
nearest neighbors of the spin Si. All spins that are unstable at
the current moment will flip in the next moment of discrete
time affecting neighboring spins in a way that they can be-
come unstable and flip in the next-next moment. This explains
the mechanism for creation of avalanches. During the started
avalanche the external field is kept constant and afterwards
increased in a single step exactly to the value that will flip
the least stable spin. This regime is known as adiabatic. Each
simulation begins with H = −∞ and all spins being −1, and
stops when all spins have value +1. All simulations are done
with periodic boundary conditions along all three directions.

As already mentioned, while an avalanche is active we
check all the nearest neighbors of the spins flipped at the
moment t and those of them that are unstable we flip in the
moment t + 1. In the simulations this a very fast process
whereas the finding of the next spin to be flipped once the
avalanche is over is the most time-consuming. The so-called
brute force algorithm [74] suggests to check all non flipped
spins in the system and find which one is the least stable. In
big systems, like ours in this paper, the time needed for such
search is extremely large. To decrease the time consumption
we use, therefore, the sorted list algorithm [74,75], which we
implemented in Fortran.

Our results are obtained in extensive simulations of system
sizes up to L = 1024 for disorders R surpassing the effective
critical disorder Reff

c (L) which provides only the nonspanning
avalanches which are mostly encountered in experiments; see

FIG. 4. (a) Main panel: values of γS/T versus detecting threshold
level for the standard deviation of UWN from σ = 0 to σ = 28.9.
Inset: Values of γS/T for wider range of σ and for Vth that ranges
from 0 to 90 (i.e., the values of Vth before the plateau). (b) Main
panel: values of γS/T versus detecting threshold level for the standard
deviation of GWN from σ = 0 to σ = 14.4. Inset: The same as in
inset of panel (a).

Ref. [40]. The results gathered from the simulations were
analyzed using the proprietary programs coded in Fortran,
Visual Basic, and Wolfram Mathematica.

III. THRESHOLDING OF THE SIGNAL

The nonequilibrium RFIM systems belongs to the class
of systems whose response signal V (t ) when driven by the
increasing external magnetic field is equal to the number
of spins flipped at the moment t . In what follows we will
limit our analysis to the systems having the response signal
V (t ) > 0 while the system is active and V (t ) = 0 otherwise.
Unlike the signals generated in simulations, where the over-
all registered signal is V (t ), the overall signals registered
in experiments contain external noise n(t ). In this case, the
registered signal is V (t ) + n(t ), so it becomes much harder
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FIG. 5. Plateau values of γS/T obtained from Fig. 4 for various
noise standard deviations. Black squares represent the results for
UWN, while the red circles are the results for GWN.

to extract events from the registered signal corresponding to
individual avalanches. One of the extraction methods is to
impose some threshold level Vth and observe only the activity
above Vth, dividing the signal into sub-avalanches that are
parts of some underlying avalanche. During an avalanche a
sub-avalanche starts at the first moment ts when the signal
surpasses the chosen threshold level, V (ts) + n(ts) > Vth, and
ends at the first moment of time when the signal falls below
it, i.e., at the moment te when V (te) + n(te) � Vth. The dif-
ference between these two moments is the duration of that
subavalanche, T = te − ts, while the size of the subavalanche
is defined as the area that lies between the signal and the
imposed threshold, S = ∫ te

ts
dt[V (t ) − Vth].

The thresholding process defined in this way introduces
concept of waiting time as the time between two consecutive
subavalanches. In simulations one can recognize two basic
kinds of waiting time illustrated in Fig. 1: the internal wait-
ing time Tw,int (Vth ) between two consecutive subavalanches
(yellow-colored and labeled by i1 and i2) that belong to
the same ongoing avalanche (labeled by i) and the external
waiting time Tw,ext (Vth ) elapsed between the end of the last
subavalanche i2 from the ongoing avalanche i and the start
of the next (green-colored) subavalanche j′ belonging to the
first succeeding avalanche j surpassing the threshold; see
Ref. [76].

Since it is known that external noise can have considerable
impact on the properties defined by the thresholding process,
our goal was to investigate that impact. To this end we thresh-
olded generated simulation signals with superimposed noise.

IV. THE EFFECT OF ADDING THE NOISE

In this section we present the impact of adding two types of
white noise, uniform and Gaussian, on the distributions of av-
erage avalanche size and properties of the internal and external
waiting times. The added noise is of external origin (e.g., noise
that in experiments originates from detectors, amplifiers, AD
converters, ambient EM interference, etc.) and is considered

FIG. 6. Number of occurrence of the external waiting time value
Tw,ext = 1051 versus detection threshold level Vth for various standard
deviations varying from σ = 0 to σ = 57.7. As shown in the main
parts of both panels, the distributions collapse onto a single curve
when presented against the threshold displaced by the shift param-
eter p(σ ) depending on the noise standard deviation σ . The data is
obtained for the 1024 × 1024 × 1024 system at R = 2.40.

here to be much more pronounced than the system’s intrinsic
(e.g., thermal) noise. This, in particular, means that the sys-
tem intrinsic dynamics is (practically) not disturbed by such
noise and that the noise solely affects the registered signal by
superposing on the pristine signal, i.e., the signal that would
be registered by an ideal experimental system.

A. Average avalanche size

In Fig. 2 are present against duration T the average size
〈S〉T of avalanches having duration T . This is done for added
(a) UWN and (b) GWN to the original signal with the
threshold levels Vth = 150 and Vth = 50, respectively. Aver-
age avalanche size data follow the power-law 〈S〉T ∼ T γS/T

specified by the universal RFIM exponent γS/T appearing also
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FIG. 7. Schematic illustration of the average effect of added
noise on the external waiting time: the same value of the external
waiting time Tw,ext is found at a higher threshold level V ′

th in the
response signal with added noise (red line) compared to the threshold
level Vth corresponding to the same waiting time for the pure response
signal (blue line).

as the exponent of the power spectral density of the RFIM
signals, S( f ) ∝ 1/ f γS/T [77]. We see that for both types of
noise the slope of the 〈S〉T curves decreases as the noise
standard deviation grows. This decrease happens because the
noise cuts long avalanches into shorter subavalanches. Since
those shorter subavalanches originate from a longer one hav-
ing larger average signal 〈V (t )〉 = 〈S〉/T , their sizes are likely
to be larger than the sizes of the regular avalanches of the
same duration. In Fig. 3 we illustrate an example of how
the avalanche of the same duration has greater size when
the external noise is present in the signal. As the avalanche
duration grows the previously explained effect becomes less
expressed. Thus, the slope on the log-log plot of 〈S〉 versus
T curve, and therefore the γS/T values, decreases with the
increase of the noise standard deviation.

We present how γS/T behaves for various threshold values
and noise standard deviations σ for UWN in Fig. 4(a) and
GWN in Fig. 4(b). In the main panels of both Figs. 4(a) and
4(b) we see that the values of γS/T drop quickly when we
increase the threshold from zero, while after some value of
Vth, there is a plateau, i.e., a wide range of Vth for which
the values of exponent γS/T remain constant. The plateau is
present because at these Vth values the impact of the originally
small avalanches cannot be seen [68]. However, if σ is large
enough, then the difference in γS/T disappears even for the
small threshold values. The reason for this lies in the fact that
regardless the value of Vth, the average size of avalanches of
small duration is dominantly governed by the noise. The av-
erage size of long avalanches in any case is not much affected
by threshold or noise. So we expect that for the large noise
standard deviation, γS/T remains the same independently of
the threshold. This can be observed in the insets of Fig. 4,
where we show how the values of γS/T change for 0 � σ � 60
and 0 � Vth � 90. We notice that with increase of σ the devi-
ations between the γS/T (Vth ) curves corresponding to different
thresholds vanish.

FIG. 8. The curves in insets show the distribution of number of
occurrences for Tw,ext = 490 versus Vth for three different systems of
linear sizes L = 512, L = 724, and L = 1024 and disorder R = 2.40,
while in the main panels are presented the collapses of the curves
from the insets when Eq. (3) is applied for the UWN (a) and GWN
(b). Standard deviation ranges from σ = 0 to σ = 52 for UWN, and
from σ = 0 to σ = 10 for GWN.

In Fig. 5 we present the values of γS/T at plateaus, denoted
by γ

pl
S/T , for various noise standard deviations for both UWN

and GWN. It seems like that there is a wide range of linear
decrease of the γ

pl
S/T with the σ increase in the UWN case,

whereas for the GWN case that range is smaller, after which
the values of γ

pl
S/T saturate. Still, we have no explanation for

such behavior.

B. Waiting times

We start by observing the number of occurrences
n(Tw; R,Vth, σ, L) [78] of waiting time Tw in one run at the
threshold level Vth imposed on the response signal V (t ) with
added noise of standard deviation σ . In insets of Fig. 6,
showing a representative example obtained for Tw = 1051,
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FIG. 9. Shift parameter values p(σ ) obtained from 1024 ×
1024 × 1024 systems with R = 2.25, 2.40, 2.55 when UWN and
GWN are applied. The data fitted to the function Eq. (4) with fitting
values presented in Tables I and II.

L = 1024, and R = 2.40, one can see that the graphs of these
distributions at fixed values of σ shift to the right as σ grows.
This happens because on average the added noise increases
the threshold level (at which a certain waiting time is found in
a given section of recorded signal) from the value Vth for the
pure signal to V ′

th for the signal with noise, as is illustrated in
Fig. 7. In the case of n(Tw; R,Vth, σ, L) distribution, we found
that the mentioned increase can be described by a shift param-
eter p(σ ) depending on the standard deviation σ of the applied
noise. More specifically, if distribution n(Tw; R,V ′

th, σ, L) is
translated along the threshold axis by the amount p(σ ), it
overlaps with the distribution n(Tw; R,Vth, σ = 0, L):

n(Tw; R,V ′
th − p(σ ), σ, L) = n(Tw; R,Vth, σ = 0, L). (2)

For the fixed R > Rc, where Rc = 2.16 is the critical disor-
der in the three-dimensionalnonequilibrium RFIM [49], the
shift parameter is independent on the lattice size L and on
the type and length of waiting time, given that waiting time
is long enough. However, n(Tw; R,Vth, σ, L) depends on L
and should scale with L3, because the number of peaks in
the signal scales in that way with the system size. In the
main parts of Fig. 8 we present the collapse of the raw
n(Tw = 490; R = 2.40,Vth, σ, L = 1024) data from the insets.
The collapses are obtained dividing the distribution data by
L3 and translating the threshold values by the shift parameter
p(σ ) corresponding to the UWN data in Fig. 8(a) and to the

TABLE I. The best fit values of the parameters appearing in
Eq. (4) in the case of UWN.

R a b c

2.25 −3.3 ± 0.3 1.33 ± 0.02 1.041 ± 0.002
2.40 −3.6 ± 0.3 1.35 ± 0.02 1.038 ± 0.003
2.55 −3.6 ± 0.3 1.39 ± 0.02 1.033 ± 0.002

TABLE II. The same as in Table I, but for the GWN.

R a b c

2.25 −3.9 ± 0.9 3.8 ± 0.3 1.20 ± 0.02
2.40 −2.6 ± 0.6 3.4 ± 0.2 1.26 ± 0.02
2.55 −4.3 ± 0.8 4.8 ± 0.2 1.16 ± 0.02

GWN data in Fig. 8(b), respectively. Consequently,

n(Tw; R,Vth, σ, L) = L3ñ[Tw; R,Vth − p(σ )], (3)

where ñ(Tw;Vth ) is the scaling function. Complete collapse
can be achieved only for sufficiently long waiting times com-
pared to the noise standard deviation. When the examined
waiting time is short and σ wide, it may happen that there
is no such waiting time in the system at all, although it was
present for lower values of σ .

FIG. 10. In the main figure of panel (a) is presented shifted col-
lapse of the external waiting time distributions obtained from system
with L = 2508, R = 2.24,Vth = 126 with added UWN of standard
deviation σ shown in inset. In panel (b) is shown collapse of internal
waiting time distributions obtained from the same system with added
GWN.

062114-6



EFFECTS OF EXTERNAL NOISE ON … PHYSICAL REVIEW E 103, 062114 (2021)

FIG. 11. Shift functions f (σ ) (in main parts) and g(σ ) (in insets)
for the distributions of external waiting time in panel (a) and internal
waiting time in panel (b). The values of shift functions are those used
to perform the collapsing shown in main panels of Fig. 10 of the
distributions from the insets of that figure. In the UWN case values
are fitted to the power-law function φ(σ ) ∼ σ s, while in the GWN
case they are fitted to the error function, φ(σ ) ∼ erf (σ ).

It is expected that the shift parameter increases with σ ,
since the larger value of threshold is needed to obtain the
same value of n(Tw; R,Vth, σ, L) for larger σ . On the ground
of the p(σ ) values obtained for three different disorders, see
Fig. 9, we assume that the shift parameter obeys a modified
power-law behavior,

p(σ ) = a + bσ c. (4)

The fitting curves to this function of several sets of the p(σ )
data are shown in Fig. 9. The best fits are obtained for the
values of parameters given in Table I for UWN and in Table II
for GWN. Here one can notice that the parameter values are
the same within the error bars for various disorders of UWN,
whereas for GWN they significantly depend on disorder.

C. Scaling properties

Both types of waiting time, Tw,int and Tw,ext, (jointly
denoted by Tw) follow the scaling properties of temporal cor-
relations Eq. (5) induced by imposing threshold Vth on the
signals obtained from systems with disorders R, linear lattice
size L and without external noise [68]:

V
αintσ

′νz
1−σ ′νz

th DTw (Tw;Vth, r, 1/L)

= DTw

(
Tw/V

σ ′νz
1−σ ′νz

th ;V
σ ′2νz

σ ′νz−1
th r,V

σ ′2ν2z
σ ′νz−1

th /L
)
. (5)

Here α, β, σ ′, ν, δ, z, and αint = α + σ ′βδ/σ ′νz are standard
RFIM exponents [26,49,50] (note that the standard notation
of the, here denoted, exponent σ ′ is σ , but we choose to
denote it here by σ ′ to avoid possible confusion with the
noise standard deviation), while r = (R − Rc)/R represents
reduced disorder of the system. The exponent αint is used
because the data was gathered from the finite windows of the
external magnetic field [55,68]. This means that the distribu-
tions DTw (Tw;Vth, r, 1/L) of the waiting time, Tw multiplied by

V
αintσ

′νz
1−σ ′νz

th and presented versus Tw/V
σ ′νz

1−σ ′νz

th , will collapse onto a
single curve, if the conditions

V
σ ′2νz

σ ′νz−1
th r = const, V

σ ′2ν2z
σ ′νz−1

th /L = const, (6)

demanding that systems with the lowest size L have the
biggest disorders R and the smallest threshold levels Vth, are
satisfied.

The addition of external noise alters distributions of wait-
ing time in a way that the increase of the added noise is
followed by the rise of short waiting times, while the dura-
tion of the longest waiting times decreases, see insets in the
Fig. 10. This means that, upon applying Eq. (5), the wait-
ing time distributions will transform differently so that full
collapse will not be achieved. To obtain the full collapse of
distribution of waiting time curves when the external noise
is applied we propose the shift functions f (σ ) and g(σ ) that
modify scaling relation Eq. (5) into

[Vth − g(σ )]
αintσ

′νz
1−σ ′νz DTw (Tw;Vth, r, 1/L)

= DTw

{
Tw/[Vth − f (σ )]

σ ′νz
1−σ ′νz ;V

σ ′2νz
σ ′νz−1

th r,V
σ ′2ν2z
σ ′νz−1

th /L
}
. (7)

In this way it is achieved that the transformed distribu-
tions overlap with the original distribution obtained without
the added noise. In other words, when adequately shifted,
noisy distributions behave like the noiseless distributions, see
Fig. 10. There, as in Fig. 13, distributions DTw (Tw;Vth, r, 1/L)
are shortly denoted by DTw .

An example of shifting functions is presented in Fig. 11,
where one can see that their behavior is not the same for
UWN and GWN. The reason for this lies in the difference
in the type of noise. Namely, UWN is bounded from the
both sides while GWN theoretically can have any value,
meaning that in GWN case we need to shift distributions
more than in UWN case for the same σ . Both f (σ ) and
g(σ ), when UWN is applied, have a power-law behavior
φ(σ ) ∼ σ s [ f (σ ) is almost linear], while in the case when
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FIG. 12. In the insets of panels (a) and (b) are presented shift functions f (σ ) and g(σ ) for the external waiting time distributions obtained
for four systems such that their dimensions L, disorders R, and threshold levels Vth satisfy conditions Eq. (6): L = 1448, R = 2.27,Vth =
75, L = 2046, R = 2.25,Vth = 102, L = 2508, R = 2.24,Vth = 126, and L = 3072, R = 2.231,Vth = 153. On the main panels are shown the
collapses of the shift functions divided by Vth as functions of σ/σth, fitted to the proposed forms Eqs. (8) and (9). The best fit parameters are
given in Tables III and IV. Panels (c) and (d): the same as panels (a) and (b) but for the internal waiting time.

the observed signal contains added GWN their behavior can
be described using the error function, φ(σ ) ∼ erf (σ ). Here
it can be seen that after σ reaches the value σth ≈ Vth/

√
3,

there is almost no difference between f (σ ) functions in the
UWN and GWN case [the same for g(σ )] and that both tend

TABLE III. Values of the best fit parameters for Eq. (8) of the
shift functions calculated for internal and external waiting times
when the UWN is applied.

p q s

Internal
f (σ ) −0.028 ± 0.009 0.83 ± 0.01 1.16 ± 0.03
g(σ ) −0.003 ± 0.008 0.77 ± 0.01 1.45 ± 0.05

External
f (σ ) −0.042 ± 0.007 0.96 ± 0.01 1.08 ± 0.02
g(σ ) 0.002 ± 0.008 0.76 ± 0.01 1.44 ± 0.05

to the value of threshold level Vth. In the UWN case, the shift
functions reach the threshold value when the noise width w

becomes comparable to the value of Vth (equivalently, when
σ ≈ Vth/

√
3), while in the GWN case this happens for a

smaller value of σ . In the insets of Fig. 12 can be seen that

TABLE IV. Values of the best fit parameters for Eq. (9) of the
shift functions calculated for internal and external waiting times
when the GWN is applied.

i j k l

Internal
f (σ ) 0.391 ± 0.007 0.51 ± 0.01 2.32 ± 0.06 0.94 ± 0.04
g(σ ) 0.387 ± 0.007 0.46 ± 0.01 2.47 ± 0.08 1.09 ± 0.05

External
f (σ ) 0.462 ± 0.004 0.505 ± 0.005 3.09 ± 0.05 1.29 ± 0.03
g(σ ) 0.439 ± 0.004 0.458 ± 0.005 2.96 ± 0.07 1.44 ± 0.04
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FIG. 13. Main figures of panels (a) and (b) show collapses of the distributions of external (a) and internal (b) waiting times obtained from
the same systems as the data shown in Fig. 12 (noncollapsed data is shown in insets) but with such a noise that the ratio between standard
deviation of added UWN and imposed threshold ρ ranges from 0 to 0.6. Values of shift functions are calculated using fitting parameters given
in Tables III and IV. The same is presented in panels (c) and (d) but for GWN and ρ in the range from 0 to 0.3.

the shift functions f (σ ) and g(σ ), obtained for four different
systems follow the same rules: the systems in question satisfy
conditions Eq. (6): L = 1448, R = 2.27,Vth = 75; L =
2046, R = 2.25,Vth = 102; L = 2508, R = 2.24,Vth = 126
and L = 3072, R = 2.231,Vth = 153. This indicates that the
functions f (σ ) and g(σ ), divided by threshold values Vth and
presented as functions of σ/σth, collapse onto a single curve,
meaning that the behavior of the shift functions obtained
using the set of parameters that satisfy conditions Eq. (6), can
be jointly described by

φ(σ )

Vth
= p + q

(
σ

σth

)s

(8)

when UWN is applied, and by

φ(σ )

Vth
= i + jerf

(
k

σ

σth
− l

)
(9)

in the GWN case. Such collapses are presented in the main
panels of Fig. 12 alongside the fitting functions obtained for
the values of parameters presented in Tables III and IV.

As an illustration, in Fig. 13 are given the collapses
obtained for several values of ρ = σ/σth, where the shift func-
tions are calculated using the fit parameters from Tables III
and IV.

The distribution of avalanche duration T also follows the
scaling properties Eq. (5), (with a change in notation Tw → T )
which are affected when the external noise is added, see insets
in Fig. 14. One can see that adding of noise doesn’t change
significantly these distributions as external noise grows like in
the case of waiting times. This holds as long as the threshold
level was chosen so that the majority of signal stays above
the Vth and the standard deviation of the external noise, com-
parable to Vth, is much smaller than the amplitude of the
signal, as is usually accomplished in experiments. In this way
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FIG. 14. Main figures of panels (a) and (b) show shifted collapse
of the distributions of duration obtained from the same system as the
data shown in Fig. 10 when UWN (a) and GWN (b) is added, while
noncollapsed distributions, much less affected than the waiting time
distributions by the presence of noise from the employed range, are
shown in insets.

the presence of external noise can not significantly decrease
the number of events of long duration. Still, the symmetry
between distributions of duration and internal waiting time is
present since both distributions follow the power laws, DT ∼
T −τT and DTw,int ∼ Tw,int

−τTw,int with the same value of expo-
nent τ = τT = τTw,int ≈ 1.62 [13], which is unaffected when
the external noise is added. The shifting Eq. (7) can also be
applied in the case of duration distributions, see main panels
in Fig. 14, but now the shifting functions behave differently—
g(σ ) is zero, while f (σ ) is nearly linear for both UWN and
GWN, as can be seen in Fig. 15.

V. DISCUSSION AND CONCLUSION

In experimental research the impact of external noise and
detection threshold is inevitably present. Still, it is often com-
mon to pay a minor attention to those impacts in theoretical

FIG. 15. Shift function f (σ ) for the distributions of duration.
The values of shift functions are those used to perform the collapsing
shown in main panels of Fig. 14. In both UWN and GWN cases
the values of shift function are fitted to the power-law function
φ(σ ) ∼ σ s. The values of parameter s are 1.04 ± 0.05 in UWN and
0.96 ± 0.06 GWN case.

and numerical analysis of the experimental results. For exam-
ple, in Ref. [68] was shown that the reason for the difference
in the experimentally and numerically obtained values of ex-
ponent γ lies possibly in the effects of nonzero threshold
level. Thus, in the present paper we focused on the particular
features that are affected by the introduced threshold level and
external noise. We observe that the external noise may cause
the exponent γ to reach its plateau value for lower threshold
levels than in the case when there is no external noise. This
means that in experiments it would be very difficult to detect
the higher values of γ before the plateau because the external
noise sets a very low threshold level above which the plateau
appears. However, the different noise level impacts the num-
ber of occurrences of the given waiting time in the system; see
Fig. 6. Here we see that the interplay between the threshold
level and the noise can explain the potential disagreements in
the experimental curves of the same type.

In this paper we did not present the results that correspond
to a very large noise, i.e., the noise having magnitude com-
parable to the average signals. Still, we can see some of the
consequences that arise from the large noise, for example, in
Fig. 5 in the GWN case, where the γ values decrease linearly
for smaller σ , but after some value of noise standard deviation
the analytical type of decrease changes. This does not happen
in the case of UWN, due to the fact that UWN is bounded
from both sides, while in GWN case there are no boundaries
for the noise values. Thus, although the standard deviations
are the same, there is a larger probability of getting greater
values for the noise in the GWN case. We expect that the linear
drop in the UWN case, presented in Fig. 5, also proceeds to
some other type of decrease, but with much larger values of
σ . Although the effects created by noise would possibly lead
to some substantial differences in the presented quantities, it
is still not of interest to investigate such noise, because the
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main motivation for the present research came from the exper-
imental studies, and experimental study of any phenomenon
becomes useless if the external (unwanted) noise is that large.

The collapses presented in Sec. IV C also show in what
way the applied noise disturb the original system’s response.
We see that the curves of the distributions of waiting time
and duration can also collapse onto a single curve when the
external noise is applied, but one has to be careful and to
modify Eq. (5) by adding the shifting functions like in Eq. (7).
Although different types of noise bring quantitatively differ-
ent effects, these effects are qualitatively the same. This is
expected due to the above explained reasons and the manner
how the noise affects the signal.

To conclude, in this paper we examined the joint impact
of the external noise and detection threshold level on the
response of the externally driven nonequilibrium athermal
RFIM. We showed that both noise and threshold level signifi-
cantly affect the behavior of the signal properties and scaling
relations. Thus, the inevitable experimental occasions indeed
influence the studied phenomena and should be adequately
treated to obtain adequate results.
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Rep. 8, 2571 (2018).

[69] J. Barés, D. Bonamy, and A. Rosso, Phys. Rev. E 100, 023001
(2019).

[70] R. A. J. Post, M. A. J. Michels, J.-P. Ampuero, T. Candela, P. A.
Fokker, J.-D. van Wees, R. W. van der Hofstad, and E. R. van
den Heuvel, Sci. Rep. 11, 3540 (2021).

[71] M. Radiguet, H. Perfettini, N. Cotte, A. Gualandi, B. Valette, V.
Kostoglodov, T. Lhomme, A. Walpersdorf, E. C. Cano, and M.
Campillo, Nat. Geosci. 9, 829 (2016).

[72] F. Font-Clos, G. Pruessner, N. Moloney, and A. Deluca, New J.
Phys. 17, 043066 (2015).

[73] M. B. Weissman, Rev. Mod. Phys. 60, 537 (1988).
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