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Droplet-scaling versus replica symmetry breaking debate in spin glasses revisited
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Simulational studies of spin glasses since the early 2010s have focused on the so-called replicon exponent α as
a means of determining whether the low-temperature phase of spin glasses is described by the replica symmetry
breaking picture of Parisi or by the droplet-scaling picture. On the latter picture, it should be zero, but we shall
argue that it will only be zero for systems of linear dimension L > L∗. The crossover length L∗ may be of the
order of hundreds of lattice spacings in three dimensions and approach infinity in six dimensions. We use the
droplet-scaling picture to show that the apparent nonzero value of α when L < L∗ should be 2θ , where θ is the
domain wall energy scaling exponent. This formula is in reasonable agreement with the reported values of α.
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I. INTRODUCTION

The nature of the low-temperatures phase of Ising spin
glasses in finite dimensional spin glasses has been controver-
sial for decades. A nice review of the situation was given by
Newman and Stein in 2003 [1]. The two descriptions which
are the most developed are the replica symmetry-breaking pic-
ture (RSB) which derives from Parisi’s exact solution [2–6] of
the Sherrington-Kirkpatrick model [7] and the droplet-scaling
picture [8–10]. There are two other pictures, the TNT picture
of Krzakala and Martin [11] and of Palassini and Young [12]
and the chaotic pairs picture of Newman and Stein [13]. These
four different pictures can be most readily distinguished by the
nature of excitations or droplets produced from their ground
state and the nature of the interfaces of the droplets or domain
walls. Thus in d dimensions consider the interface generated
through changing the boundary conditions from periodic to
antiperiodic in one direction in a cube of length L. The number
of bonds in the interface will scale as Lds . If ds = d , then the
interface is said to be space filling. In the RSB and chaotic
pairs picture, interfaces are space filling. In the droplet-scaling
and TNT picture the fractal dimension ds < d . The other dis-
tinguishing feature of the four pictures is the (free) energy of
the interfaces or droplets. In an Ising ferromagnet the energy
of a domain wall separating “up” spins from “down” spins
scales as Ld−1. In the droplet picture (and also the chaotic
pairs picture) the energy of a spin-glass interface or droplet
is similar, increasing as Lθ and θ > 0 when there is a finite-
temperature spin-glass phase. However, it is different in the
RSB and TNT picture. There an excitation or droplet can have
an energy O(1) even when it contains O(Ld ) spins.

It is my belief that what is the correct picture may change
with the dimensionality d of the system. The strong coupling
renormalization group has been used [14–16] to study the
value of ds as a function of dimensionality d . It was found
that ds became equal to d in six dimensions. This suggests
that for dimensions d > 6 either the RSB picture or chaotic
pairs could apply, while for d < 6 the droplet-scaling or TNT
picture could apply.

Back in 2000 the TNT picture seemed to provide the de-
scription of the spin-glass state which was best supported by
simulational work in d = 3. Simulations have mostly been
done on the Edwards-Anderson Ising spin Hamiltonian [17]
where the bonds Ji j are between nearest-neighbors:

H = −
∑
〈i j〉

Ji jSiS j − h
∑

i

Si. (1)

A focus of many studies has been the Parisi overlap function
[2,3,6] between spins in two copies, a and b of the system,
defined by

P(q) =
〈
δ

(
q − 1

N

∑
i

Sa
i Sb

i

)〉
, (2)

where the overline denotes the bond average over the cou-
plings Ji j . When the field h = 0, P(q) takes the trivial form
of two δ functions in the droplet-scaling and chaotic pairs
pictures (at least in the thermodynamic limit when the number
of sites N → ∞),

P(q) = (1/2)δ(q − qEA) + (1/2)δ(q + qEA), (3)

where qEA = (1/N )
∑

i〈Si〉2, calculated in the limit h → 0.
In the RSB and TNT pictures P(q) is nonzero in the interval
−qEA < q < qEA. Studies of P(q) at, say, q = 0 showed that
it remains finite as L, the linear dimension of the simulational
box, is increased. However, in the droplet-scaling picture it
is predicted that P(0) should decrease with L at finite tem-
peratures T , as T/Lθ . No simulational study has ever seen
any significant decrease of P(0) with L [18–21]. On the other
hand, the study of interfaces seems to strongly support the idea
that they are not space filling as ds < d (although naturally
this was disputed [22]). The initials TNT refer to the fact that
the behavior of the interface is trivial, that is, as predicted by
droplet-scaling, but that the overlap function P(q) is nontrivial
as in the RSB picture of Parisi and not as given by the trivial
droplet-scaling prediction of Eq. (3).

Supporters of the droplet-scaling picture like the author
of this paper would explain away this failure to predict the
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observed form of P(q) in simulations as a finite-size effect.
Studies of P(q) have been restricted by computational limi-
tations to systems whose linear dimension L are usually less
than 30. It is postulated that there is a length scale, L∗, which
has to be surpassed before the true asymptotic behavior as
P(0) ∼ T/Lθ reveals itself. Evidence that this might be a
possibility has come from studies on the d = 2 spin-glass
problem, which does not have a finite-temperature spin-glass
phase (θ < 0) but it has features which seem to have their
analog in d = 3. In d = 3 Krzakala and Martin [11] noted
that there were excitations on the scale of their system size
L involving O(Ld ) spins whose energies were not as large as
Lθ but were instead of O(1). Domain walls in d = 3 do have
energies of O(Lθ ), but droplets seemed to exist which were as
large as the system (in fact they often touched the boundaries
of the system) but were of lower energy. In the droplet-scaling
picture one considers a compact, connected cluster of N spins,
of linear dimension L, such that Ld < N < (2L)d , containing
the chosen spin. It is assumed [9,10] that the distribution
ρL(EL ) of minimal energy clusters, i.e., excitations has the
scaling form

ρL(EL ) ≈ 1

ϒLθ
ρ̃

[
EL

ϒLθ

]
, (4)

where ϒ is a constant of the order of the standard deviation
of the bonds Ji j and ρ̃(0) > 0 for d � 2. (In Appendix we
shall calculate this distribution function analytically for the
case of d = 1.) Equation (4) implies that the typical minimal
droplet should have energy of O(Lθ ) and that the probability
that the minimal energy droplet has energy of O(1) should
fall off as 1/ϒLθ . It is this which lies behind the droplet-
scaling prediction that P(0) should decrease at temperature T
as ∼T/ϒLθ . In fact in the study of Ref. [11] there seemed to
be more low energy droplets than expected from this formula
and it is this which is the basis of the TNT picture. A supporter
of the droplet-scaling picture has to assert that the systems
studied always have a size L < L∗.

This seems plausible if one looks at the behavior of
droplets in d = 2 dimensions. The great advantage of study-
ing two dimensions is that there exist polynomial time
algorithms which enable one to obtain the ground state of
very large systems. Thus by studying systems of size up to
10 000 × 10 000 it has been found that [23] the energy asso-
ciated with the change from periodic to antiperiodic boundary
conditions has θ = −0.2793(3). The associated domain wall
has a fractal dimension ds = 1.27319(9). However, the sit-
uation with droplets is more complicated and produced a
situation not unlike the debate between the advocates of the
droplet picture and the RSB picture in three dimensions. The
droplet-scaling picture predicts that the correlation length (as
determined from the spin-glass susceptibility) should grows
as the temperature is reduced as ξ (T ) ∼ 1/T 1/|θ | [9] but the
simulations at finite temperature found that they appeared to
grow with an effective exponent θ̃ ∼ −0.48 [24] down to the
lowest temperatures they could simulate. The origin of this
discrepancy produced much controversy [25–28], before the
correct explanation of the puzzle emerged [29,30]. The key
to its understanding lies in the fact that the droplet-scaling
picture is indeed a scaling picture and that there are always
corrections to the leading terms. These can be much larger

in some quantities than in others. For example consider the
domain wall produced by changing the boundary conditions
in one direction from periodic to antiperiodic. The standard
deviation of the energy difference takes the form

�E = ALθ + BL−ω, (5)

where the second term is the “correction to scaling.” Note that
θ in two dimensions is negative (but is positive in three dimen-
sions). According to Ref. [23] the correction to scaling term
is very small for domain walls. The situation for droplets is
very different and depends on how they are generated [29,30].
Those which involve flipping the central spin but for which
the resulting droplet did not touch the boundaries (the spins at
the boundaries were fixed in their ground-state orientations),
e.g., the cross droplets (see Refs. [29,30] for details) are such
that at small values of L, their energy seemed to decrease
with an effective exponent θ̃ = −0.47 but for values of L >

L∗ ≈ 60 a value close to the expected value of −0.279 was
seen. Thus the simple droplet-scaling behavior did emerge
when droplets of large-enough size could be studied. It would
also be expected that the correlation length ξ (T ) would also
grow according to droplet-scaling expectations if studied at
low-enough temperatures and this has now been confirmed by
recent simulations [31].

We turn now to three-dimensional spin glasses. It is the
contention of this paper that the finite energy droplets gen-
erated by the procedures used in Refs. [11,12] would not be
of size O(Ld ) with a fractal dimension ds < d when L 	 L∗.
Here L∗ denotes the crossover length in three dimensions,
which I suspect might be even longer than its two-dimensional
counterpart. Newman and Stein [32] have proved that in the
large-L limit that excitations or droplets of size O(Ld ) with a
fractal dimension ds < d cannot exist. (They proved that the
interfaces of these excitations must eventually pass outside a
fixed finite window, no matter how large, as the linear size
L of the volume under consideration goes to infinity. So if
TNT applied, then inside of any fixed window one eventually
sees the same, single ground-state pair (with, say, free or
periodic boundary conditions) in the large-L limit, just as
in the droplet-scaling picture). The apparent evidence to the
contrary in the numerical work of Refs. [11,12] is because
they were unable to simulate large-enough systems and were
working for system sizes L < L∗. For systems larger than L∗
droplet-scaling features should emerge: If the finite energy
droplets do not involve O(Ld ) spins when L is large, then they
will not make the Parisi overlap function nontrivial and for
L > L∗ the behavior in Eq. (3) will emerge. Given that in two
dimensions, the crossover length L∗ ≈ 60, then it seems likely
in three dimensions that the length scale L∗ will be even larger,
perhaps of the order of hundreds of lattice spacings. I would
anticipate that it will approach infinity as d → 6 when these
droplet states of O(1) energy will have ds = d [15,16] and
produce the RSB states expected for d > 6.

On this viewpoint the TNT picture is just the droplet-
scaling picture, with the recognition that there are droplets
whose energies are of O(1) in systems whose linear dimen-
sions are less than L∗ and only there do they have size O(Ld ).
This is all due to scaling corrections. In Refs. [29,30] it was
suggested that the possible origin of these droplets whose
energies are of O(1) might arise from the fact that in Eq. (5)
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that �E , now being used to describe the energy of droplets,
has a minimum at some value of L when B > 0 and θ > 0.
Around this minimum the L dependence of �E will be small,
giving rise to an effective value of θ , θ̃ , which would be close
to zero at the L values near the minimum. It will be only
at large L > L∗ that �E will clearly increase as Lθ , just as
occurred for the cross-droplets in two dimensions when they
were larger than L∗ [29,30]. The size of corrections to scaling
depend on the quantity being studied: Domain wall energies
(for θ ) and the interface size (for the exponent ds) may only
have small corrections and the existing studies for L < L∗ may
still be giving accurate answers for these exponents.

It would clearly be very desirable to have estimates of
the value of L∗. This has been done by Middleton [33] for
a particular form of the bond distribution, the ±J model.
This bond distribution produces a macroscopic degeneracy for
the ground state of the system and has zero-energy droplets.
The finite-temperature excitations with free energies of O(1)
are discussed in Ref. [34]. At any nonzero temperature the
properties of the ±J model should be similar to models with a
continuous bond distribution [35] (but the value of L∗ will not
be universal). Middleton [33] estimated a value of L∗ in two
dimensions of ≈64. This is rather similar to the value ≈60
obtained from the behavior of the cross-droplets which were
studied for a Gaussian bond distribution in Refs. [29,30]. One
of his methods for getting a value of L∗ was similar to that
used in Ref. [36] and using it Middleton obtained L∗ ≈ 500 in
three dimensions.

Since the early 2010s, the Janus collaboration and others
[37–40] have presented results which seem at first sight to
be at variance with droplet-scaling expectations. They have
found evidence which suggests that spin glasses in three di-
mensions have the behavior only expected of a system with
RSB or chaotic pairs ordering. In Refs. [37,39] they carried
out the following simulation. Starting from a randomly chosen
set of spin configurations, they quenched to a temperature
T < Tc, where Tc is the spin-glass transition temperature.
They then let the spins evolve according to heat bath dynamics
for a time tW . This results in domains of spin-glass order
whose size is measured by a coherence length ξ (tW ) which
grows as tW increases. They found that the correlation function

C4(Ri j, tW ) ≡ 〈SiS j〉2 ∼ 1

Rα
i j

f

[
Ri j

ξ (tW )

]
. (6)

The overline is the usual bond average. In practice this was
done by simulating two copies of the system with the same
interaction but quenched into different initial random config-
urations, which allows an unbiased estimate of the thermal
averages. The function f (x) falls off with increasing x faster
than exponentially and f (x → 0) = const. The coherence
length ξ (tW ) is itself determined via the ratio of the second and
zeroth moments of C4(Ri j, tW ). The kth moment is defined by

Ik (tW ) =
∫

dd r rkC4(r, tW ), (7)

and then

ξ (tW ) =
√

I2(tW )

I0(tW )
. (8)

The coherence length is found to grow slowly (coarsen) with
tW as ξ (tW ) ∼ t const/T

W . In simulations it can grow as large
as 20 to 30 lattice spacings. Much interest attaches to the
exponent α which is called the “replicon exponent” by the
Janus collaboration. An early estimate of its value in d = 3
was 0.38(2) [37], while in a more recent paper this was revised
downwards to 0.35 > α > 0.25 [41].

It seems likely that the coherence length ξ (tW ) was always
less than the crossover length L∗ in these simulations so
one should expect TNT effects. Then the system will behave
as if it has some RSB features (in particular, it will have
droplets of size O(Ld ) with energy cost O(1) which change
as ξ (tW ) grows). This will make the value of α appear to be
nonzero. The droplet-scaling prediction is C4(Ri j, tW ) → q2

EA
[39,40], but this result will only be seen when ξ (tW ) 	 L∗.
This approach to a constant (which corresponds to α = 0)
will emerge only in the limit L∗ � Ri j � ξ (tW ). The present
simulations are a very long way off this limit. It means that
the values for α currently being reported for d = 3 are just
effective values of this exponent, as they are only valid over
a limited range of Ri j and ξ (tW ). However, because L∗ may
be quite large, the value for the replicon exponent α could
be well defined: The crossover region where it gradually goes
to its true value of zero has not been reached. In Sec. II
the values for α currently being reported are predicted by
a simple argument which rests on the assumption that the
correct picture of the three dimensional spin-glass ordered
phase is that of droplet-scaling. We show that in dimensions
d < 6 that this effective value for α is 2θ , where θ is the usual
exponent describing the energy cost of a domain wall. This
result is consistent with the numerical data on θ and α, neither
of which alas are very accurately determined at the present
time.

The exponent α appears in another form in studies of
the metastates of spin glasses. Most metastates discussions
in spin glasses concern equilibrium properties [42–46]. (One
exception is Ref. [47]). An exponent ζ has been introduced
and discussed at length by Read [48]. It is defined via the log-
arithm of the number of metastates which can be distinguished
in a window of size W which scales as W d−ζ . Read [48]
showed that the RSB picture predicted that ζ = 4 when d > 6.
There is an assumed equivalence between the equilibrium
metastates and those generated using a dynamical coarsening
procedure to define an Aizenman-Wehr metastate [49]. If they
are equivalent d − ζ ≡ α, where α is defined from Eq. (6). In
three dimensions Billoire et al. [40] found using the equilib-
rium metastate approach α = 0.7 ± 0.3, while a coarsening
dynamical metastate procedure was used by Manssen et al.
who analysed their data with α = 0.438 [39]. In Ref. [50]
a simulation on a one-dimensional system with long-range
interactions thought to be equivalent in its behavior to that of
the EA model in d = 8 was used to construct the dynamical
metastate and it gave a value for α consistent with Read’s
predictions and the assumed equivalence of static and dynam-
ical metastate constructions. Our expression for the effective
exponent α agrees with Read’s prediction at d = 6.

In Sec. III we make suggestions for further (mostly simula-
tional) work which could help in checking the validity of the
scenario advocated in this paper.
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II. THE REPLICON EXPONENT

The Janus collaboration [51–53] also studied the effect
of turning on a small field h at time tW and determining
the magnetization m(t + tW ) = (1/N )

∑
i Si(t + tW ) at time

t + tW . They make the “bold” claim [51] that m(t + tW ) has
the form which one might have written down using equilib-
rium arguments, which they take to be

m(t + tw, tw; h) = ξ (t + tW )yh−dF (h[ξ (t + tW )]yh ;Rt,tW ),
(9)

where Rt,tW ≡ ξ (t + tW )/ξ (tW ). The scaling function
F (x,R) is odd in the x argument for symmetry reasons.
t is of order tW so Rt,tW ≈ 1 and dependence on this variable
is ignored. The relevant length scale in this study is ξ (tW ).
The exponent yh was claimed to be related to α by

yh = d

2
− α

4
. (10)

We caution the reader at this point that the Janus collaboration
have taken to writing what we call α as θ . In this paper
θ has its conventional spin-glass meaning as the exponent
associated with the domain or droplet energy (Janus call
that ζ ).

The magnetization can be written as a series expansion in
odd powers of h:

m(h) = χ1h + χ3

3!
h3 + χ5

5!
h5 + O(h7), (11)

where the dependency of the susceptibilities χ1, χ3, χ5 and
m on t and tW has been omitted to simplify the notation.
Combining Eq. (9) and Eq. (11), one deduces for example,
that

χ3 ∝ −ξ (tW )4yh−d ≡ −ξ (tW )d−α. (12)

In Ref. [51] they wrote that “At least in equilibrium χ3 is
related to the space integral of the microscopic correlation
function C4(Ri j, tW ).” This if true would explain why α ap-
pears in yh as in Eq. (10). But it is only true when T > Tc. For
T < Tc the equilibrium expression for χ3 in terms of correla-
tion functions was given long ago [54] and for a symmetric
bond-distribution is the bond average of

χ3 = −6β3

N

∑
i j

GB(Ri j )

+4β3

N

∑
i

(1 − 4〈Si〉2 + 3〈Si〉4). (13)

where the correlation function GB(Ri j ) is the breather or lon-
gitudinal correlation function studied in Ref. [55] and given
by the bond average of

GB(Ri j ) = 〈SiS j〉2 − 4〈Si〉〈S j〉〈SiS j〉 + 3〈Si〉2〈S j〉2. (14)

The second line in Eq. (13) only contributes a finite term to
χ3, whereas the term involving GB gives a contribution which
diverges with the size of the system. GB has been studied
within the droplet-scaling picture [9,10]. There it was shown
that it was given in terms of an integral involving the scaling

function ρ̃ of Eq. (4):

GB(Ri j ) ∼ T q2
EA

ϒRθ
i j

∫ ∞

0
dx ρ̃

(
T x

ϒRθ
i j

)
sech2x(1 − 3tanh2x).

(15)

For small values of the ratio T/(ϒRθ
i j ) the integral can be

approximated by setting the term in ρ̃ to its value at ρ̃(0).
However, the integral then is zero, so one has to expand ρ̃(x)
to next order in its Taylor-series expansion; ρ̃(x) = ρ̃(0) −
Ax + · · · . Then GB(Ri j ) becomes

GB(Ri j ) ∼ Aq2
EA

(
T

ϒRθ
i j

)2

. (16)

Previously [9,10], out of an abundance of caution, the possi-
bility that ρ̃(x) = ρ̃(0) − Axφ was considered. This changes
the exponent of the term in T/ϒRθ

i j in Eq. (16) from 2 to
(1 + φ). In Appendix it is shown for the case of d = 1 that
the Taylor-series form for ρ̃(x) is appropriate. The numerical
data in d = 2 [30] is at least consistent with the Taylor-series
expansion form φ = 1. We shall in this paper from now on
just take φ = 1.

Using Eq. (16) for GB(Ri j ) one deduces that χ3 ∼ −Ld−2θ .
Compare this with Eq. (12); χ3 ∼ −ξ (tW )d−α in the coarsen-
ing investigation. In coarsening the relaxation modes of the
system with wave vectors greater than 1/ξ (tW ) are equili-
brated. At wave vectors k < 1/ξ (tW ) the system will still have
the imprint of the infinite-temperature system it was before
the quench. This suggests that this region of k space will only
make a finite contribution to χ3. Hence we should be able to
equate the exponents of L and ξ (tW ) in the two expressions for
χ3, so making

α = 2θ. (17)

The equilibration of the system within the length scale ξ (tW )
is not such as happens in a finite system on ergodic timescales
which drives 〈Si〉 to zero. Instead it is more like the equili-
bration of an infinite system in which boundary conditions
are applied to break the up-down symmetry and leave 〈Si〉
nonzero. It is to this situation that Eqs. (13) and (14) are
applicable.

We next compare Eq. (17) with the current numerical esti-
mates of α and θ . Alas neither are known with great precision.
In d = 3, α was found to be 0.38(2) in Ref. [37]. In later
work [41], they noticed there was an apparent temperature
dependence in the value of α. If the quench were not to a tem-
perature less than Tc but instead to Tc itself α = d − 2 + η ≈
0.610(4) [see the definition of C4(Ri j, tW ) in Eq. (6)]. They
argued that their apparent temperature dependence was due
to proximity to Tc in their work. This effect would go away
if ξ (tW ) → ∞. However, by using an extrapolation to this
limit they estimated that 0.35 > α > 0.25. The value for θ

was given by Hartmann [56] to be 0.19(2) and by Boettcher
[57] as 0.24(1). For d = 4 both exponents are even less pre-
cisely determined: α = 1.03(2) according to Ref. [58], while
θ is 0.64(5) according to Ref. [59] and 0.61(1) according to
Ref. [57]. In d = 6, the RSB formula of Read [48] gives
α = 2, while the RSB based calculations of Ref. [60] give
θ = 1. The numerical estimate in d = 6 by Boettcher [57]
was θ = 1.1(1). I would judge that the agreement of Eq. (17)
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with the data for d � 6 to be satisfactory, given the large
uncertainties in the numerical values of α and θ .

III. DISCUSSION

In this paper we have argued that the old TNT picture
of spin glasses can explain not only the old puzzle of the
behavior of the Parisi overlap function P(q) but also the more
recent results of the Janus group on the correlation function
C4(Ri j, tW ). It has also been argued that the TNT picture
is only relevant when phenomena on length scales <L∗ are
studied, and that the RSB-like behavior seen on length scales
less than L∗ will change to droplet-scaling behavior on the
longest length scales. It has been possible to show the replicon
exponent α of the Janus collaboration is equal to 2θ for d < 6.
This result shows that even in the RSB-like region L < L∗,
droplet-scaling calculations have utility.

We suspect that the length scale L∗ in d = 3 might be so
large that any crossover in behavior might be impossible to
see in simulations at present, where ξ (tW ) or the linear size L
of an equilibrated system are usually less than 30. However,
in experiments it has been claimed [61] that values of ξ (tW )
of order 250 are being seen. In d = 2 a crossover was seen
at values of L∗ = 60 [30] which suggests that L∗ could be
hundreds of lattice spacings for d = 3. Indeed L∗ probably
grows to infinity as d → 6 when the droplets of energy O(1)
of the TNT picture become the pure states of RSB. Our value
for α coincides with that derived from the RSB picture by
Read [48] in six dimensions. However, the large value of L∗
allow the possibility that for sizes L < L∗ the apparent values
quoted for α could be well defined and not influenced by the
expected creep toward 0 when L grows past L∗.

I shall now make a few suggestions for a number of inves-
tigations which might help to clarify what is going on.

(1) If indeed L∗ is of order 500 in three dimensions many
properties of spin glasses will appear both in simulations
and experiments to be just as expected from the RSB pic-
ture. However, a key difference between RSB (and chaotic
pairs) and droplet-scaling is that on the droplet-scaling picture
ds < d , whereas on the other two pictures, the domain wall
produced by (for example) a change of boundary conditions
from periodic to antiperiodic in one direction, is space filling
with ds = d . Domain wall energies seem to have much smaller
corrections to scaling than those of droplets and so studying
domain walls would seem likely to be a good way of also
getting at ds. Much numerical work, although it was done for
L < L∗, does favor ds < d , thus supporting the droplet-scaling
picture. Exponents like θ and ds are exponents associated with
the zero-temperature fixed point and it would be natural to
expect that the best results for their value would be obtained
from T = 0 studies. Alas, that requires finding ground states
of the Hamiltonian which is NP hard for d > 2. The methods
which have been used at finite temperature usually involve
extensive data manipulation [37]. An old simulation by Huse
[62] gave a way of determining ds at finite temperatures using
a coarsening procedure which avoided extensive data manip-
ulation (and yielded ds < d). That approach could nowadays
be pushed to larger values of ξ (tW ).

(2) The susceptibility χ3 is an integral over all space of the
correlation function GB(Ri j ). This correlation function was

studied using simulations in d = 3 in Ref. [63] but only for
rather modest system sizes (L = 12). Both RSB and droplet-
scaling predict a power law decrease of GB with Ri j . In
Ref. [63] a more rapid decay, possibly exponential, with Ri j ,
was seen. That might be due to finite-size effects, but it would
be useful if this topic could now be revisited.

(3) The predictions of the Janus collaboration of the be-
havior of χ3 as Ld−α should presumably extend to the RSB
region d > 6. Using Read’s result α = d − 4 for d > 6, the
divergence of χ3 is then χ3 ∼ L4. The analytical work in
Ref. [63] predicts a divergence of χ3 from GB as L in dimen-
sions d > 6. It would be interesting to study this discrepancy
using the one-dimensional proxy model for high dimensions
used in Ref. [50]. However, ageing a system with RSB toward
equilibrium needs to be re-examined in the light of the recent
findings in Ref. [64] for the Viana-Bray model [65] who found
that the system stayed trapped in a confined region of the
configuration space.

Within the spin-glass phase itself the large value of the
crossover length L∗ will make it difficult to provide good nu-
merical or experimental evidence as to which picture of spin
glasses, droplet-scaling or RSB, is correct. L∗ is, however, a
feature of the zero-temperature fixed point. Fortunately there
is another way to resolve the debate which avoids features
produced by the zero-temperature fixed point and that is to
determine whether there is an de Almeida-Thouless transition
[66] when a magnetic field is applied. This line marks the
onset to a state with RSB, on cooling in a field and is absent
according to the droplet-scaling picture [9,10]. There have
been doubts as to its existence below six dimensions ever since
Bray and Roberts [67] were unable to find a stable perturbative
critical fixed point for it in dimensions d just below 6. Further
arguments to this effect have been given [68,69]. In three
dimensions there is experimental evidence [70] supporting the
absence of the de Almeida-Thouless line. Simulations on this
issue [71] provide in the view of this author excellent evidence
that there is no de Almeida-Thouless transition, (but some still
remain of the view that there is a transition [53]; finite-size
complications [72,73] are not insignificant).
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APPENDIX: THE DROPLET DISTRIBUTION FUNCTION
IN ONE DIMENSION

In Sec. II we made the assumption that the scaling function
of Eq. (4), ρ̃(x), had a Taylor-series expansion as ρ̃(x) =
ρ̃(0) − Ax + · · · rather than as ρ̃(x) = ρ̃(0) − Axφ . In this
Appendix the scaling function is obtained analytically for
d = 1 and it is shown that in this case φ = 1 and that the
Taylor-series expansion of ρ̃(x) is valid.

The ground state of a one-dimensional spin system with
open boundary conditions is found by making (say) the spin
at one end, S1 = 1 and fixing the orientation of the remaining
spins using SiSi+1 = sgn(Ji,i+1). To find the domain wall en-
ergy one flips the spin SN . This causes all the spins up to the
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FIG. 1. The scaling function f (x) = ρ̃(x) for the droplet energy
distribution scaling function in one dimension.

bond of smallest magnitude to flip. In a system of L bonds, the
bond |J| of smallest magnitude has the distribution for large L
[9]

PL(|J|) = 1

J (L)
exp

[
− |J|

J (L)

]
(A1)

and

J (L) = 1

PJ (0)L
. (A2)

Here PJ (0) denotes the value of the bond distribution function
at J = 0, and provided it is nonzero, Eq. (A2) implies that
θ = −1 for d = 1. Equation (A1) is the distribution function
for “domain wall energies” E , which is equal to that of |J|.

The minimal droplet energy E around site i is the sum of
the energy of the bond, E1, to the right of site i where all
the bonds between i and the bond to the right of the site at

i + L1 have magnitudes greater than E1 = |Ji+L1,i+L1+1| plus
the energy of the bond, E2, to the left of site i where all
the bonds between i and the bond to the left of the site at
i − L2 have magnitudes larger than E2 = |Ji−L2,i−L2−1|. Then
the L = L1 + L2 spins lying between i − L2 and i + L1 can all
be flipped together at a total energy cost of E = E1 + E2. For
large L1 and L2 the distribution of E1 and E2 will be as given in
Eq. (A1), so the probability distribution of droplets of energy
E and size L will be

ρL(E ) = 1

L

∫
dL1

∫
dL2

∫
dE1

∫
dE2δ(E − E1 − E2)

× δ(L − L1 − L2)PL1 (E1)PL2 (E2). (A3)

The coefficient 1/L arises as the spin i can be in any of the
L sites between the weak bonds which are broken when the
droplet is flipped. Writing ρL(E ) in terms of its scaling form
ρL(E ) = (1/J (L))ρ̃(E/J (L)) one finds

ρ̃(x) =
∫ 1

0
dy

y(1 − y){exp(−xy) − exp[−x(1 − y)]}
1 − 2y

= 1

2
e−x

[
− 2 + ex(−2 + x) + x

x2
+ ex/2Shi(x/2)

]
,

where Shi is the sinh integral and x = E/J (L). The function
ρ̃(x) in shown in Fig. 1.

In two dimensions ρ̃(0) is finite rather than as here zero.
The function ρ̃(x) is an increasing function of x at small values
of x just as in two dimensions [30]. In d = 3 I suspect that
ρ̃(x) is actually a decreasing function of x. Figure 1 shows
that the scaling function has a long tail at large x; in fact it is
so long tailed that the mean droplet size is not well defined.
ρ̃(x) has the Taylor-series expansion at small x

ρ̃(x) = x/6 − x2/12 + x3/45 − O(x)4, (A4)

which implies that φ = 1 in one dimension.
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