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Kinetic model for the phase transition of the van der Waals fluid
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This is a continuation of previous works [S. Takata and T. Noguchi, J. Stat. Phys. 172, 880 (2018); S. Takata,
T. Matsumoto, A. Hirahara, and M. Hattori, Phys. Rev. E 98, 052123 (2018)]. The simple model proposed in the
previous works is extended to be free from the isothermal assumption. The new model conserves the total mass,
momentum, and energy in the periodic domain. A monotone functional is found, assuring the H theorem for
the new model. Different approaches are taken to tell apart the stable, the metastable, and the unstable uniform
equilibrium state. Numerical simulations are also conducted for spatially one-dimensional cases to demonstrate
various features occurring in the time evolution process. A prediction method for the profile at the stationary
state is discussed as well.
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I. INTRODUCTION

A gas-liquid phase transition is a very familiar phe-
nomenon found everywhere in our daily lives. The dryness of
wet clothes, the whitening of exhaled breath in winter, and
the formation of clouds in the sky are all involved in this
phenomenon. In engineering applications, for example, moist
air is avoided to use in a supersonic wind tunnel to prevent
undesired condensation such as the generation of condensa-
tion shock waves. The physics of phase transitions thus pops
up in many phenomena around us and in engineering appli-
cations. The conventional thermofluid dynamics is a powerful
phenomenology that explains many of them, but it is still not
sufficient to discern the phenomena in strong nonequilibrium
processes that far exceed its application range.

To shed light on the nonequilibrium aspects of these phe-
nomena, it is often required to incorporate more microscopic
considerations. One such attempt is the molecular dynamics
(MD) that treats the thermofluid as a particle system according
to the laws of mechanics. In the present paper, we shall take
another approach, namely, the kinetic theory that is in between
the conventional macroscopic continuous approach and the
MD.

In the kinetic theory, the molecular movement is not
tracked one by one. Rather, the collective behavior of
molecules is investigated through the velocity distribution
function (VDF) of molecules [1–3]. Such an approach is by
far less demanding in computational resources than the MD
but still has the advantage over the macroscopic continuous
approach in its wider applicability regardless of whether the
target system is in equilibrium or not. The kinetic theory
has been developing since its foundation by Boltzmann for
rarefied gases based on two-body collision dynamics. Yet, his
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celebrated equation, the Boltzmann equation, is by itself not
enough to describe the gas-liquid two-phase system.

Attempts to extend Boltzmann’s treatment to moderately
dense gases date back to the celebrated work by Enskog [4].
Enskog proposed an extension of the Boltzmann equation,
which is called the Enskog equation [4,5] today, by taking
account of the finite-size effects of a molecule in the collision
integral. In the Enskog equation, the molecules are treated
as rigid spheres, and thus they interact each other only re-
pulsively. Therefore, in application to the phase transition
problem, the Enskog–Vlasov equation [6], which incorporates
the effect of attractive interaction over a wider range than the
repulsive force as a self-consistent Vlasov external force term,
is often adopted in recent kinetic studies [7–12]. The kinetic
approach has also been taken in a very recent attempt [13]
to put a firm foundation on the fluid model of a gas-liquid
interface. The kinetic studies on dense gases, targeting the
understanding of phase transitions, have become more and
more active recently.

The Enskog–Vlasov equation is a legitimate choice to
observe the details of phenomena down to the molecular
size scale, but in many cases such details are not necessar-
ily required. Therefore, the authors proposed the presumably
simplest kinetic model that is equipped with the essential
mechanism required for the phase-transition descriptions un-
der the isothermal assumption [14,15]. In the continuum limit,
the model recovers a Cahn–Hilliard-type equation for the fluid
density. The stability of the uniform equilibrium state in that
limit was investigated in Ref. [14] by both linear stability
analysis and numerical simulations. In Ref. [15], the transition
process from the uniform equilibrium state to a new two-phase
stationary state was investigated in detail, shedding light on
the nonequilibrium aspects. In particular, it was numerically
confirmed that there is a functional that changes monotoni-
cally in time, the manifestation of the H theorem in that model.

In the present paper, motivated by the success of the above
simple model in exhibiting the intended performance, a new
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kinetic model that conserves not only the total mass but also
the total momentum and energy in a system is proposed as
an extension of the previous model. Consideration of the
energy conservation implies that the isothermal assumption
in the previous model is no longer made. Consequently, as
will be seen later, the proposed model is able to handle the
energy exchanges occurring in the formation of the two-phase
interface quantitatively. Furthermore, it is still equipped with
a functional that changes monotonically in time. Hence, the
proposed model is more suitable than the original Enskog
equation for the discussion of phase transitions, because the
original Enskog equation does not satisfy the counterpart
property exactly. This demerit of the Enskog equation was
resolved in the modified Enskog equation [16–19]. However,
there is still a gap to be overcome in using the modified
equation for practical/numerical analyses. Here is the merit
of proposing a kinetic model that conforms to the H theorem.
Thus, the time evolution processes observed in numerical sim-
ulations will be reported in detail in the present paper, as well
as the analyses of the stable, the metastable, and the unstable
condition.

The paper is organized as follows. First, the new model
is proposed in Sec. II. Then, the mass, the momentum, and
the energy balance derived from the model are presented
in Sec. III, where some factors occurring in the model are
shown to play a role of recovering the conventional form of
mass, momentum, and energy equations. Next, in Sec. IV, the
proposed model is shown to have the property corresponding
to Boltzmann’s H theorem. The property is used to discuss the
stability of the uniform equilibrium state in Sec. V. In Sec. VI,
the dimensionless descriptions are introduced to clarify the
parameters that characterize the problem, which is followed
by the presentation of some numerical simulation results for a
spatially one-dimensional system in Sec. VII A. In Sec. VII B,
a prediction method of the stationary state is discussed and its
results are compared with the simulation results. The paper is
concluded in Sec. VIII.

II. THE PROPOSED KINETIC MODEL

We consider a fluid system composed of innumerable
molecules confined in a spatially periodic domain, the unit
cell of which is denoted by D. The behavior of the system is
described by the following kinetic equation:

∂ f

∂t
+ ξi

∂ f

∂Xi
+ Fi

∂ f

∂ξi
= Qc[ f ] + Qd[ f ], (1a)

Qc[ f ] = A(ρ)( fe − f ), A(ρ) > 0, (1b)

Qd[ f ] = − ∂

∂ξi
{(αi + ciβ ) f }, c = ξ − v, (1c)

Fi = − ∂φ

∂Xi
, φ = �S(ρ, T ) + �L[ρ], (1d)

αi =
(

1

ρ

∫
�T dρ

)
∂T

∂Xi
, �T = ∂�S

∂T
, (1e)

β = 1

3ρR

{
∂

∂t

∫
�T dρ + ∂

∂Xi

(
vi

∫
�T dρ

)}
, (1f)

fe = ρ

(2πRT )3/2
exp

(
− c2

2RT

)
, (1g)

ρ =
∫

f dξ, vi = 1

ρ

∫
ξi f dξ, (1h)

T = 1

3ρR

∫
c2 f dξ, (1i)

where t is a time, X and ξ are, respectively, a position and
a molecular velocity (ξ = |ξ| will be used as well later),
f (t, X , ξ) is the VDF of molecules, mF is a potential force
acting on a single molecule with m and φ being the molec-
ular mass and the potential, and R = kB/m with kB being
the Boltzmann constant. The potential φ is further split into
�S and �L. They may be regarded, respectively, as a non-
impulsive short-range (or localized) and long-range effect of
molecular interactions. Unlike the previous model [14,15],
the isothermal assumption is no longer made; accordingly,
the present �S is supposed to depend on T as well as on
ρ. This feature and the new form of the collision effect are
the main differences from the previous model. The density ρ,
flow velocity v, and temperature T are defined as the moment
of f . Here and in what follows, the integral with respect to
ξ represents the definite one over its whole space and that
with respect to ρ is the one from 0 to ρ along the isothermal
process, unless otherwise stated. The right-hand side of (1a)
represents the intermolecular collision effect composed of two
parts Qc and Qd. The first part, Qc, is a familiar Bhatnagar-
Gross-Krook (BGK)-type term [20], except for a generalized
density dependence A(ρ) to be specified later, and preserves
the mass, momentum, and energy. The second part, Qd, is a
new part, the form of which is chosen in accordance with the
external force term on the left-hand side of (1a) for modeling
the nonimpulsive aspect of the repulsive interaction effect in
cooperation with �S and is related to it through the definitions
of αi and β; see (1c), (1e), and (1f). The following properties
of Qd are readily obtained:

〈Qd[ f ]〉 = 0, 〈ξ jQd[ f ]〉 = ρα j, (2a)〈
1
2ξ 2Qd[ f ]

〉 = v
ρα
 + 3βρRT, (2b)

where 〈•〉 = ∫ • dξ. In (1), distinct brackets (•) and [•] are
used. The round brackets represent the argument of a function,
while the square brackets represent that of a functional or an
operator. The reason for the form of αi and β in (1e) and (1f)
will become clear in Sec. III in the connection to the balance
equations of momentum and energy.

As mentioned above, the self-consistent force potential
φ is eventually split into the long-range part �L and the
short-range part �S, along the same line of argument as in
Refs. [14,15]. By use of the long-range intermolecular attrac-
tive potential m�, the part �L is expressed as

m�L(t, X ) =
∫
R3

�(|Y − X |){ρ(t,Y ) − ρ(t, X )}dY , (3)

while the subtracted part {∫R3 �(|Y − X |)dY }ρ(t, X ) is com-
bined with a repulsive potential part �R to form the
short-range part �S in the total self-consistent potential φ:

m�S = m�R +
{∫

R3
�(|Y − X |)dY

}
ρ(t, X ). (4)
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The specific form of �S will be determined later from the van
der Waals equation of state in Sec. III A. The present splitting
strategy is the same as that taken in the construction of the
previous model.

When � decays fast in the system size as usually expected,
the variation of ρ is moderate and the Taylor expansion is
allowed in the molecular-size scale [21] as in the previous
model. The result is that

�L(t, X ) � 1

6m

∫
R3

�(|r|)|r|2dr
∂2ρ

∂X 2
i

≡ −κ
∂2ρ

∂X 2
i

. (5)

Note that κ > 0, since � is attractive. This approximation is
called the diffuse-interface model in the literature [22] and has
been recently derived by Giovangigli [13] in getting the capil-
lary fluid equations from the Enskog–Vlasov system, where
the truncation of the Taylor expansion at the second-order
derivative has also been employed.

III. BALANCE EQUATIONS
AND FLUID-DYNAMIC QUANTITIES

By a few manipulations after taking 1, ξ j , and ξ 2 moments
of (1a), the set of balance equations is obtained:

∂ρ

∂t
+ ∂ρvi

∂Xi
= 0, (6)

∂ρv j

∂t
+ ∂

∂Xi
{ρviv j + 〈cic j f 〉} + ρ

∂φ

∂Xj
= ρα j, (7)

∂

∂t

[
1

2
〈c2 f 〉 + 1

2
ρv2

]
+ ∂

∂Xi

[{
1

2
〈c2 f 〉 + 1

2
ρv2

}
vi

+1

2
〈cic2 f 〉 + 〈cic j f 〉v j

]
+ ρvi

∂φ

∂Xi

= ρv
α
 + 3βρRT, (8)

where (2) has been taken into account. It is seen that (6) is the
conservation equation of mass.

In what follows, in addition to �T = ∂�S/∂T , we shall use
the following short notations for the derivatives of �S(ρ, T ):

�ρ = ∂�S

∂ρ
, �ρT = ∂2�S

∂ρ∂T
, �T T = ∂2�S

∂T 2
.

A. Momentum equation

To identify the specific form of �S, the balance equation
of momentum (7) and the van der Waals equation of state will
be used in a way similar to but slightly extended from that in
Ref. [14]. Bearing in mind that the isothermal assumption is
no longer made, the term related to �S in φ is transformed as
follows:

ρ
∂�S

∂Xj
= ρ

(
�ρ

∂ρ

∂Xj
+ �T

∂T

∂Xj

)

= ∂

∂Xj

∫
ρ�ρdρ +

∫
�T dρ

∂T

∂Xj
.

Remember that the integration with respect to ρ is taken
from zero to ρ under the isothermal process, unless otherwise
stated. Thanks to the definition (1e) of αi, plugging the above

into (7) yields

∂ρv j

∂t
+ ∂

∂Xi

(
ρviv j + 〈cic j f 〉+

∫
ρ�ρdρδi j

)
+ ρ

∂�L

∂Xj
=0.

Thus, the balance equation of momentum takes a familiar
form of the momentum equation by defining the static pres-
sure p and the stress tensor pi j as

p = 1

3
〈c2 f 〉 +

∫
ρ�ρdρ = ρRT +

∫
ρ�ρdρ, (9a)

pi j = 〈cic j f 〉 +
∫

ρ�ρdρδi j . (9b)

In the meantime, the equation of state of the van der Waals
fluid is given by

p = ρRT

1 − bρ
− aρ2, (10)

where a and b are positive constants. With the same b, the fol-
lowing form of A(ρ) in the BGK-type term will be supposed:

A(ρ) = Acρ

1 − bρ
, (11)

where Ac is a positive constant (see Appendix A). By com-
paring (10) with (9a), the specific forms of �S and related
quantities are identified as∫

ρ�ρdρ = ρRT

1 − bρ
− ρRT − aρ2, (12a)

�ρ = b(2 − bρ)

(1 − bρ)2
RT − 2a, (12b)

�S =
∫

�ρdρ

= RT

{
− ln(1 − bρ) + bρ

1 − bρ

}
− 2aρ, (12c)

�T = R

{
− ln(1 − bρ) + bρ

1 − bρ

}
, (12d)

∫
�T dρ = −ρR ln(1 − bρ), (12e)

�ρT = bR(2 − bρ)

(1 − bρ)2
, (12f)

∫
ρ�ρT dρ = bρ2R

1 − bρ
, �T T = 0. (12g)

Note that, except for �ρ and �ρT , they vanish in the low
density limit ρ → 0.

In the rest of the paper, the fact that �T and �S − T �T

are independent of T will be used, sometimes without notice,
for simplifying calculations. If the cubic equation of state
such as Peng–Robinson and Soave–Redlich–Kwong [23] is
adopted in place of the van der Waals equation of state, �T

and �S − T �T become no longer independent of T and,
accordingly, some calculations, especially those in the vari-
ational analysis in Sec. V, become complicated. Moreover,
the transformation of β from (1f) to (16) that appears later
is not allowed. Nevertheless, the monotone property of Hp to
be discussed in Sec. IV, which is the crucial property in the
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present model, is unchanged. In this sense, the present model
approach is applicable to the fluids obeying other equations of
state.

B. Energy equation

Finally, a reduction of the equation of energy balance will
be considered. Before starting, it is necessary to introduce a
thermodynamically consistent definition of the specific inter-
nal energy e. According to the thermodynamics, the specific
internal energy e is related to the pressure p as

e =
∫

ρ−2

(
p − T

∂ p

∂T

)
dρ + 3

2
RT .

In the above expression, the independent variables of the
function p are ρ and T , and the integration with respect to
ρ is taken under the isothermal process. Since p is defined by
(9a), the above equation is recast into

e =
∫

ρ−2

{∫
ρ�ρdρ − T

∫
ρ�ρT dρ

}
dρ + 3

2
RT

=ρ−1

{∫
�Sdρ − T

∫
�T dρ

}
+ 3

2
RT

or, equivalently,

ρe = 1

2
〈c2 f 〉 +

∫
�Sdρ − T

∫
�T dρ, (13)

by using the definition of T in (1).
Bearing in mind the above definition, let us turn to the

energy balance. With the aid of the mass conservation and the
relation ρ�S = ∫

ρ�ρdρ + ∫
�Sdρ obtained by the integra-

tion by parts, the term related to �S is eventually transformed
into

ρvi
∂�S

∂Xi
= ∂

∂Xi

{[∫
ρ�ρdρ +

∫
(�S − T �T )dρ

]
vi

}

+ ∂

∂t

∫
(�S − T �T )dρ

+ T
∂

∂t

(∫
�T dρ

)
+ ∂

∂Xi

(
viT

∫
�T dρ

)
.

Note that, because of (1e) and (1f),

T
∂

∂t

(∫
�T dρ

)
+ ∂

∂Xi

(
viT

∫
�T dρ

)
= 3ρRT β + ρviαi,

and that the contribution from the Qd term is canceled out.
Hence, the energy balance (8) is transformed into

∂

∂t

[
1

2
〈c2 f 〉 +

∫
(�S − T �T )dρ + 1

2
ρv2

]

+ ∂

∂Xi

[{
1

2
〈c2 f 〉 +

∫
ρ�ρdρ +

∫
(�S − T �T )dρ

+ 1

2
ρv2

}
vi + 1

2
〈cic2 f 〉 + 〈cic j f 〉v j

]

+ ρvi
∂�L

∂Xi
= 0,

which is rewritten in the form

∂

∂t

[
ρ

(
e + 1

2
v2

)]
+ ∂

∂Xi

[
ρ

(
e + 1

2
v2

)
vi

+1

2
〈cic2 f 〉 + pi jv j

]
+ ∂�L

∂Xi
ρvi = 0,

with the aid of the expressions of the stress tensor (9b) and of
the internal energy (13). By simply defining the heat flow qi

as

qi = 1
2 〈cic2 f 〉,

the familiar form of energy equation is recovered.

C. Summary

In summary, the familiar form of the mass conservation,
the momentum, and the energy equation has been recovered:

∂

∂t
ρ + ∂

∂Xi
(ρvi ) = 0, (14a)

∂

∂t
(ρv j ) + ∂

∂Xi
(ρviv j + pi j ) + ρ

∂�L

∂Xj
= 0, (14b)

∂

∂t

[
ρ

(
e + 1

2
v2

)]
+ ∂

∂Xi

[
ρ

(
e + 1

2
v2

)
vi (14c)

+qi + pi jv j

]
+ ρvi

∂�L

∂Xi
= 0, (14d)

with the following definitions of pressure, internal energy,
stress tensor, and heat-flow vector:

p = 1

3
〈c2 f 〉 +

∫
ρ�ρdρ, (15a)

ρe = 1

2
〈c2 f 〉 +

∫
(�S − T �T )dρ, (15b)

pi j = 〈cic j f 〉 +
∫

ρ�ρdρδi j, qi = 1

2
〈cic2 f 〉. (15c)

The nonideal gas effect occurs in the above definitions as the
integration terms of �S and its derivatives.

In the case of the van der Waals fluid, �T is independent
of T as seen from (12), and the time derivative term of �T in
the definition of β can be transformed into a spatial derivative
with the aid of the mass conservation as

β = 1

3ρR

(∫
�T dρ − ρ�T

)
∂vi

∂Xi
. (16)

Remember that the specific forms of �S and its related quan-
tities have been identified as well, see (12). Accordingly, αi

and β also depend on the parameters a and b in the van
der Waals equation of state through �S. Incidentally, the κ

defined in the diffuse-interface approximation (5) for �L has
a close connection with the parameter a through the attractive
intermolecular potential �. Namely, comparing (4) with (12c)
gives

a = − 1

2m

∫
R3

�(|r|)dr,
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while κ in (5) is defined as

κ = − 1

6m

∫
R3

|r|2�(|r|)dr.

In the rest of the paper, κ and a will be treated as independent
parameters, reflecting the degree of freedom on the choice
of �.

Finally, it should be noted that the term containing �L is
responsible for the interface creation between two phases. Its
effect in the stationary state will be demonstrated and briefly
discussed later in Sec. VII in the case of the diffuse-interface
approximation (5). Incidentally, (14) with (15) is not a closed
system. It can be made closed only in the fluid-dynamic limit.
By the standard asymptotic analyses, say the Hilbert or the
Chapman-Enskog expansion, one should obtain the constitu-
tive equations for the stress tensor and the heat flow, which is
not discussed in the present paper.

IV. H THEOREM AND MINIMIZATION PROBLEM

In the present section, a functional that is monotonic in
time is shown to exist for the proposed model.

As in the usual step to derive the Boltzmann H theorem
[3], integrate (1a) multiplied by 1 + ln( f /c0) over the whole
space of ξ, where c0 is a constant having the same physical di-
mension as f . Then, after a few manipulations, the following
identity is obtained:

∂

∂t

〈
f ln

f

c0

〉
+ ∂

∂Xi

〈
ξi f ln

f

c0

〉

= A(ρ, T )

〈
fe

(
1 − f

fe

)
ln

f

fe

〉
− 3βρ.

In the above, the first and the second term on the right-hand
side come from Qc and Qd, respectively. Note that the first
term is nonpositive. Then, the substitution of (1f) leads to

∂

∂t

{〈
f ln

f

c0

〉
+ 1

R

∫
�T dρ

}

+ ∂

∂Xi

{〈
ξi f ln

f

c0

〉
+ vi

R

∫
�T dρ

}

= A(ρ, T )

〈
fe

(
1 − f

fe

)
ln

f

fe

〉
� 0, (17)

where the equality condition for the last inequality is that
f = fe. Therefore, if the domain is periodic, the following
inequality holds:

d

dt
Hp ≡ d

dt

∫
D

{〈
f ln

f

c0

〉
+ 1

R

∫
�T dρ

}
dX � 0. (18)

This means that Hp monotonically decreases in time and that
f becomes the local Maxwellian fe in the stationary state.
In other words, the minimizer of the present minimization
problem is the Maxwellian. If the kinetic extension of the
specific entropy s is defined as

ρs = −R

〈
f ln

f

c0

〉
−

∫
�T dρ, (19)

it recovers the thermodynamically consistent expression based
on the relation de = T ds − pd (1/ρ) in the local equilibrium

state:

s = −R ln(ρT −3/2) − (1/ρ)
∫

�T dρ + const. (20)

Hence, Hp may be interpreted as a kinetic extension of the
negative total entropy. Similarly, the kinetic extension of the
specific Gibbs energy g may be defined based on the thermo-
dynamic relation as

g = e − T s + p/ρ = 5

2
RT + �S + RT

ρ

〈
f ln

f

c0

〉
. (21)

It leads to the following familiar expression in the local equi-
librium state:

g = 5
2 RT + �S + T {R ln(ρT −3/2) + const}. (22)

The minimization problem in the case of the domain sur-
rounded by the isothermal wall is discussed in Appendix B.

V. PRELIMINARY ANALYSES

In the present section and numerical simulations, the
approximation (5) for �L will be used. However, in the ma-
nipulations that apply to the original form of �L as well, the
notation �L will be retained.

Before going into detail, it should be noted that there are
five conservative quantities. To see it, integrate the mass, the
momentum, and the energy equation with respect to X over
the domain D. Then it is found that

∂

∂t

∫
D

ρdX = 0,

∂

∂t

∫
D

ρv jdX +
∫

D
ρ

∂

∂Xj
�LdX = 0,

∂

∂t

∫
D

[
ρ

(
e + 1

2
v2

)]
dX +

∫
D

ρvi
∂

∂Xi
�LdX = 0.

Irrespective of whether the original definition or
the approximation (5) is taken for �L, it can be
shown that

∫
D ρ∂ j�LdX = 0 and

∫
D{ρvi∂�L/∂Xi −

(1/2)∂ (ρ�L)/∂t}dX = 0 [24]. Using these relations, it
is immediate to see that the following quantities are constant
in time:

C0 =
∫

D
ρdX , (23a)

Ci =
∫

D
ρvidX (i = 1, 2, 3), (23b)

C4 =
∫

D

[
ρ

(
e + 1

2
v2 + 1

2
�L

)]
dX . (23c)

The constants C0, Ci, and C4 represent the total mass, momen-
tum, and energy, respectively.

A. Stationary state

Consider first the variational problem for Hp under the
above total mass, momentum, and energy constraints. To this
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end, consider

Hp[ f ; λ0, λ1, λ2, λ3,λ4]

= Hp[ f ] + λ0

{∫
D

ρdX − C0

}

+ λi

{∫
D

ρvidX − Ci

}

+ λ4

{∫
D

ρ

(
e + 1

2
v2 + 1

2
�L

)
dX − C4

}
,

where λ0, λi, and λ4 are the Lagrangian multipliers. Its first
variation δHp is then written as

δHp = δHp + λ0

∫
D

δρdX + λi

∫
D

δ(ρvi )dX

+ λ4δ

∫
D

{
ρ

(
e + 1

2
v2 + 1

2
�L

)}
dX .

Note that δρ = 〈δ f 〉 and δ(ρvi ) = 〈ξiδ f 〉. By using the iden-
tity

∫
D ρ�L[δρ]dX = ∫

D �L[ρ]δρdX [25], it is eventually
transformed into

δHp =
∫

D

〈{
ln

f

c0
+ 1 + 1

R
�T + λ0 + λiξi

+ λ4

(
1

2
ξ2 + �S − T �T + �L[ρ]

)}
δ f

〉
dX ,

where the fact that �S − T �T is independent of T has been
used. Thus, in the stationary state, it holds that

f = c0 exp

(
− λ4

2

{
ξi + λi

λ4

}2

+ λ2
i

2λ4

− 1 − 1

R
�T − λ0 − λ4(�S − T �T + �L[ρ])

)
.

It is now clear that f is a Maxwellian in the stationary state.
Moreover, λ’s are expressed with the aid of the definitions of
ρ, ρvi, and T as

λ4 = 1

RT
, λi/λ4 = −vi,

c0 exp

(
λ2

i

2λ4
− 1 − 1

R
�T − λ0

− λ4(�S − T �T + �L[ρ])

)
= ρ

(2πRT )3/2
.

The equations on the first line tell that T and vi are constant,
and the last equation is reduced to

c0(2πRT )3/2 exp

(
v2

i

2RT
− 1 − λ0

)

= ρ exp

(
�S + �L[ρ]

RT

)
. (24)

Therefore, ρ exp( �S+�L[ρ]
RT ) is constant as well in the station-

ary state. In particular, any uniform equilibrium state is a
stationary state.

B. Stability of the uniform equilibrium state against
small disturbances

Next study the local stability of the uniform equilibrium
state. Since the uniform equilibrium state is a stationary state
of the functional Hp, its stability for small deviations can be
studied by the second variation of Hp; see, e.g., Ref. [26].
Since ρ and ρv are linear moments of f , the second and third
terms of Hp do not contribute to the second variation. δ2Hp is
then written as

δ2Hp = δ2Hp + λ4δ
2
∫

D

{
ρ

(
e + 1

2
v2 + 1

2
�L

)}
dX .

After some manipulations, the above equation is eventually
reduced to

δ2Hp =
∫

D

{〈
1

f
(δ f )2

〉
+ �ρ (δρ)2 + �L[δρ]δρ

RT

}
dX ,

where λ4 = 1/RT has been taken into account. Again, the
fact that �S − T �T is independent of T has been used. By
the Cauchy–Schwartz inequality, 〈δ f 〉2 = 〈(δ f /

√
f )

√
f 〉2 �

〈(δ f )2/ f 〉〈 f 〉, so that (δρ)2 � ρ〈(δ f )2/ f 〉, where the equality
holds only when (δ f )/ f = const. Moreover, it can be shown
that

∫
D �L[δρ]δρdX � 0, so that

δ2Hp �
∫

D

( 1

ρ
+ �ρ

RT

)
(δρ)2dX .

Bearing in mind that the uniform equilibrium state is a station-
ary state, the necessary condition for the uniform equilibrium
state with density ρ0, temperature T0, and velocity v0 to be
stable for any small disturbances is given by [27]

1

ρ0
+ �ρ (ρ0, T0)

RT0
> 0, (25a)

which is eventually reduced to

a <
RT0

2ρ0(1 − bρ0)2
. (25b)

The bound of the above condition,

c

(
≡ a

bRT0

)
= 1

2bρ0(1 − bρ0)2
, (26)

becomes critical in the limit
∫

D �L[δρ]δρdX → 0 or κ → 0.
The conditions (25) and (26) derived above are essentially
the same as those for the previous model in Ref. [15], if T0

is regarded as the temperature T∗ of the thermal bath in that
model.

In the meantime, the above stability criteria should be ob-
tained by the linear stability analysis, as was done in Ref. [15]
for the previous model. However, the required calculation
becomes by far more cumbersome than the previous model,
which motivates us to take the above different approach. In
spite of such a difficulty, a simplification method of the linear
stability analysis can be found in Ref. [28] for the Enskog–
Vlasov system with a special form of correlation factor for
the two-particle distribution function. To follow the method,
first linearize the stationary state (24) around the uniform
state with the density ρ0 and temperature T0, and then put the
density perturbation in the form exp(ik · X ), namely, focus on
the frozen wave, the perturbation with zero growth. Just for
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simplicity, let us consider �L of the form (5) here. Then it is
eventually obtained that

κ

2
|k|2 = a − RT0

2ρ0(1 − bρ0)2
. (27)

According to Benilov and Benilov [28], the existence of a
positive frozen wave mode is the indicator of instability,
namely, the state satisfying a > RT0

2ρ0(1−bρ0 )2 should have un-
stable modes. Then, the same stability criterion as (26) is
obtained. However, it should be remarked as in Ref. [15] that
the present linear stability analysis does not take into account
the period of domain; thus, when applied to the periodic
domain, there are forbidden areas of mode near |k| = 0. We
will come back later to this issue in the first paragraph of
Sec. VII A 2 with numerical examples. Incidentally, Ref. [28]
further discussed the solid/fluid transition based on the frozen
mode investigation. Since we do not intend to reproduce the
solidification by the present model, we do not proceed further
here.

C. Metastable state

In Sec. V B, the stability of the uniform state against small
disturbances has been discussed by the second variation, and
the explicit form of the neutral curve (26) in the case �L → 0
or κ → 0 has been obtained. However, the uniform state may
be unstable for large disturbances, even if it is stable against
small ones, and is accordingly called metastable. This issue
is discussed in the present subsection. Additional discussions
will be given in Sec. VII B.

The analyses in Sec. V A show that the stationary state
is characterized as the local equilibrium state fe with the
uniform velocity v = C/C0 and the uniform temperature T ,
and T is determined through the total energy conservation that
eventually takes the following form:

C4 =3

2
RTC0 + 1

2

C2

C0

+
∫

D

{∫
(�S − T �T )dρ + 1

2
ρ�L[ρ]

}
dX . (28)

Moreover, the substitution of such a stationary state into the
original kinetic equation gives the following identities:

1

ρ

∂ρ

∂Xi
+ 1

RT

(
∂�S

∂Xi
+ ∂�L[ρ]

∂Xi

)
= 0,

1

ρ

∂ρ

∂t
− vi

RT

(
∂�S

∂Xi
+ ∂�L[ρ]

∂Xi

)
= 0.

It should be remarked that these are identical to the stationary
condition (24) that has already been derived in Sec. V A.
Indeed, combining these, it is seen that

∂ρ

∂t
+ vi

∂ρ

∂Xi
= 0,

saying that the density profile is conveyed by the fluid mo-
tion, without changing its shape in the stationary state (vi is
constant in the stationary state). Moreover, the first equation

can be transformed in two different ways: One is

∂

∂Xi

(
ln ρ + �S + �L[ρ]

RT

)
= 0,

⇔ ∂

∂Xi
(g + �L[ρ]) = 0, (29)

which is equivalent to the stationary condition (24) [see (22)
for the form of g at the local equilibrium], and the other is

∂

∂Xi
(ρRT ) + ρ

(
∂�S

∂Xi
+ ∂�L[ρ]

∂Xi

)
= 0,

⇒ ∂

∂Xi

(
ρRT +

∫
ρ�ρdρ

)
+ ρ

∂�L[ρ]

∂Xi
= 0,

⇔ ∂

∂Xi
p + ρ

∂�L[ρ]

∂Xi
= 0. (30)

Equations (29) and (30) are identical as a differential equation,
but g and p are different as a function of ρ. When �L is
negligible, they imply that the specific Gibbs energy g and
the static pressure p are both spatially uniform; the classical
phase equilibrium condition in thermodynamics [29,30] is
recovered.

Motivated by this observation, let us consider the stationary
state established after a long-time evolution from the uniform
equilibrium state with density ρ0, flow velocity v0, and tem-
perature T0. The state is initially disturbed in such a way that
the total density, momentum, and energy in the system are
unchanged. Then,

C0 = ρ0L3, C = C0v0,

C4 = 3

2
RT0C0 + 1

2

C2

C0
+ L3

∫ ρ0

0
(�S − T �T )dρ,

where L3 is the volume of domain and (28) is reduced to

T = T0 − 2

3

1

Rρ0L3

∫
D

{∫ ρ

ρ0

(�S − T �T )dρ

+ 1

2
ρ�L[ρ]

}
dX . (31)

Here it is used that �S − T �T depends only on ρ. Since∫
D

∫ ρ

ρ0
(�S − T �T )dρdX = −a

∫
D(ρ − ρ0)2dX � 0 and∫

D ρ�L[ρ]dX � 0, (31) says that, once the phase transition
takes place, the attractive molecular interaction part of the
internal energy is released and spent on the temperature raise
and the interface creation.

As will be shown in numerical simulations, the uniform
equilibrium state changes to a new stationary state, which has
plateaux with higher density, say ρA, and with lower density,
say ρB, in the density profile, unless the uniform state is stable
against the initial disturbance. Moreover, under the approxi-
mation �L = −κ∂2ρ/∂X 2

i , as κ tends to zero, the interface
connecting plateaux becomes thinner and finally turns into a
discontinuity, so the volume fraction of the plateaux can be
defined without ambiguity. Let χA denote the volume fraction
of the plateau with density ρA in such a situation. Then the
mass conservation is reduced to

ρ0 = ρAχA + ρB(1 − χA), (32)
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FIG. 1. The density, temperature, and volume fraction in the stationary state in the limit κ → 0. (a) ρA, (b) ρB, (c) T , and (d) χA. The
dashed line indicates the curve (26), while the solid line the curve (35). The symbols (© or ×) with the label C1, L1, R1, etc. indicate the
cases where the numerical simulation has been carried out.

and (29) and (30) are reduced to [31]

g(ρA, T ) = g(ρB, T ), p(ρA, T ) = p(ρB, T ). (33)

Since the contribution of ρ�L vanishes [32], (31) is reduced
to

T = T0 − 2

3

1

Rρ0L3

∫
D

{∫ ρ

ρ0

(�S − T �T )dρ

}
dX

= T0 + 2

3

a

Rρ0
{χA(ρA − ρ0)2

+ (1 − χA)(ρB − ρ0)2}
= T0 + 2

3

a

Rρ0
(ρA − ρ0)(ρ0 − ρB). (34)

Hence there are four equations [(32)–(34)]—enough to deter-
mine four constants χA, ρA, ρB, and T —that characterize the
new stationary state in the limit κ → 0. Such a transition to
the new stationary state takes place in a certain (not the entire)
region of (a, b). On the bound of that region, the volume
fraction of one of the plateaux vanishes, because only a single
state (or initial uniform equilibrium state) is allowed outside
of the bound. Hence, the bound can be found by taking the
limit χA → 0 or χA → 1, which corresponds to ρB → ρ0 or

ρA → ρ0, respectively. Then, by (34), T → T0 and (33) is
solved to give

g

(
1 − bρ0

2b
+ 1

2b

√
(1 + bρ0)2 − 4bRT0

a(1 − bρ0)
, T0

)

= g(ρ0, T0), (35a)

for 1/3 < bρ0 < 1 and

g

(
1 − bρ0

2b
− 1

2b

√
(1 + bρ0)2 − 4bRT0

a(1 − bρ0)
, T0

)

= g(ρ0, T0), (35b)

for 0 � bρ0 < 1/3. The set of equations (35) represents the
curve of the bound, i.e., the relation between a and b in the
limit κ → 0; see Appendix C for the derivation. Figure 1
shows the map of ρA, ρB, T , and χA thus obtained. The
curves (26) and (35) are overplotted in the same figure. It is
clearly seen that the density, which plays a role of the order
parameter here, changes abruptly across the curve (35), which
is in marked contrast with its smooth change across the curve
(26).

It should also be noted that the temperature in the sta-
tionary states after the phase transition is different from T0,
as seen in Fig. 1(c). This is due to the physical system

062110-8



KINETIC MODEL FOR THE PHASE TRANSITION OF THE … PHYSICAL REVIEW E 103, 062110 (2021)

under consideration being thermodynamically isolated. In
other words, the system under consideration is thermodynam-
ically different from the previous model [14,15], even though
the previous model gives essentially the same stability crite-
rion. The change of temperature will affect the densities of
two phases that emerge after the phase transition. The details
will be discussed in Appendix D.

VI. DIMENSIONLESS DESCRIPTION AND THE
CHARACTERISTIC PARAMETERS

Let us introduce the following notation:

t = L(2RT0)−1/2t̃, Xi = Lxi, ξi = (2RT0)1/2ζi,

ρ = ρ0ρ̃, T = T0T̃ , vi = (2RT0)1/2ṽi,

f = ρ0

(2RT0)3/2
f̃ , c0 = ρ0(2πRT0)−3/2,

φ = 2RT0φ̃, �S = 2RT0�̃S, �L = 2RT0�̃L,

� = (2RT0/(ρ0L3))�̃, κ = (2RT0L2/ρ0)κ̃,

a = ãRT0/ρ0, b = b̃/ρ0, c̃i = ζi − ṽi,

A(ρ) = A(ρ0)Ã(ρ̃), Qd[ f ] = ρ0

2RT0L
Q̃d[ f̃ ].

Then,

Ã = 1 − b̃

1 − b̃ρ̃
ρ̃, ρ̃ =

∫
f̃ dζ, ṽi = 1

ρ̃

∫
ζi f̃ dζ,

T̃ = 2

3ρ̃

∫
c̃2 f̃ dζ, Q̃d[ f̃ ] = − ∂

∂ζi
( f̃ g̃i ),

g̃i = 1

ρ̃

∫
�̃T̃ dρ̃

∂T̃

∂xi
− 2

3ρ̃

∫
ρ̃�̃ρ̃T̃ dρ̃

∂ ṽk

∂xk
c̃i,

where

�̃S = 1

2

{
− ln(1 − b̃ρ̃) + b̃ρ̃

1 − b̃ρ̃

}
T̃ − ãρ̃,

∫
�̃T̃ dρ̃ = −1

2
ρ̃ ln(1 − b̃ρ̃),

∫
ρ̃�̃ρ̃T̃ dρ̃ = 1

2

b̃ρ̃2

1 − b̃ρ̃
,

�̃L(x) =
∫

�̃(|r̃|){ρ̃(x + r̃) − ρ̃(x)}d r̃

or = −κ̃
∂2ρ̃

∂x2
i

with κ̃ = −2

3
π

∫ ∞

0
�̃(r̃)r̃4dr̃,

and the original equation is reduced to

∂ f̃

∂ t̃
+ ζi

∂ f̃

∂xi
− ∂φ̃

∂xi

∂ f̃

∂ζi
= 2√

π

1

Kn
Q̃c[ f̃ ] + Q̃d[ f̃ ], (36)

where

Q̃c[ f̃ ] = Ã(ρ̃)( f̃e − f̃ ), f̃e = ρ̃

(π T̃ )3/2
exp

(
− c̃2

T̃

)
,

φ̃ = �̃S(ρ̃) + �̃L,

and Kn is the Knudsen number defined by

Kn = (8RT0/π )1/2

A(ρ0)L
.

As is clear from the above, the present fluid system is charac-
terized by the following parameters: ã, b̃, κ̃ , and Kn. In place
of this set of parameters, we shall use c ≡ ã/b̃[= a/(bRT0)],
b̃(= bρ0), K ≡ κ̃/b̃, and k ≡ (

√
π/2)Kn as the independent

parameters in the presentation of numerical simulations in
Sec. VII.

One may find some similarity of (36) to the kinetic equa-
tion with chemical reactions in the sense that Kn occurs only
in front of Q̃c; see, e.g., Refs. [33,34]. Here, Q̃d and a part of
∂�̃S/∂xi may be thought to represent the effects of repulsive
interactions of a nonimpulsive nature between molecules.

VII. NUMERICAL SIMULATIONS:
RESULTS AND DISCUSSIONS

The numerical simulations are planned under the setting
that the state is periodic in x1 and is uniform in the other two
spatial directions under the approximation �̃L = −κ̃∂2ρ̃/∂x2

1.
Each simulation starts by disturbing the uniform equilibrium
state at rest with density ρ0 and temperature T0 to make it
another local Maxwellian at rest with the following density
ρini and temperature Tini:
ρini

ρ0
= 1 + ερ sin(2πX1/L),

Tini

T0
= 1+ 2

3

1

Rρ0T0L

∫ L

0

{
a(ρini − ρ0)2+ 1

2
ρiniκ

∂2ρini

∂X 2
1

}
dX1.

The form of the above temperature comes from the specified
density disturbance as the consequence of the total energy
constraint (31).

Numerically studied are cases (b̃, c) = (1/3, 3.3),
(1/3, 3.4), (1/3, 3.6), (1/3, 3.8), (1/3, 4.0), (4/15, 3.4),
(4/15, 3.45), (4/15, 3.5), (4/15, 3.8), (2/5, 3.4), and
(2/5, 3.8), which will be labeled as case C1, C2, C3, C4, C5,
L1, L2, L3, L4, R1, and R2, respectively. For each case, the
other parameters k, K , and ερ in the initial disturbance are set
variously, according to the purpose of computations. Cases
C1–R2 above are shown in each panel of Fig. 1. In the figure,
the open circle indicates the case where the phase transition
took place at least for one set of values of k, K , and ερ , while
the cross symbol indicates the case where the transition was
not observed.

A. Results

In cases C1, L1, and R1, which are all below the curve
(35), the phase transition was not observed at all for different
values of K and ερ ; the disturbance decreases and the uniform
equilibrium state is recovered. In contrast, in cases C2–C5,
L2–L4, and R2, which are all above the curve (35), the phase
transition was observed, at least for a certain set of values of K
and ερ . As an example, the time evolution process of the phase
transition for case C4 is shown in Fig. 2. It is observed that the
disturbance develops to establish a new stationary state with
two plateaux of density; the temperature becomes uniform but
not the same as Tini nor T0. As is already explained just below
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FIG. 2. Time evolution of the density and temperature: Case C4 with K = 1.0 × 10−4, k = 0.1, and ερ = 0.1. (a) Density and
(b) temperature.

(31), the increase of temperature in Fig. 2(b) is due to the
release of attractive intermolecular force energy in the internal
energy. Since K is small, the released energy is mostly spent
on the temperature raise (nearly by 10%), not on the interface
creation.

1. The stable, the metastable, and the unstable region

Next let us show the cases close to the curves (26) and
(35). Cases L1, L2, and L3 belong, respectively, to the stable,
the metastable, and the unstable region in the limit K → 0.
Figures 3 and 4 show the results for these cases in the case
of K = 1.0 × 10−5 and k = 0.1. In case L2, which locates
between the two curves (26) and (35) in Fig. 1, the disturbance
decreases for a very small disturbance with ερ = 0.01, while
it grows for the disturbance with ερ = 0.1. In the latter, the
initially dense spot becomes the nucleus that triggers the nu-
cleation, the characteristic process expected in the metastable
region, see Fig. 3(b). In case L1, even for a very large dis-
turbance with ερ = 0.9, the phase transition does not occur,
suggesting that the uniform equilibrium state is stable, see
Fig. 4(a). In case L3, on the contrary, even a very small distur-

bance with ερ = 0.01 causes the phase transition, suggesting
that the uniform state is unstable, see Fig. 4(b). Because K is
very small, the theoretical consequences in the limit K → 0
in Secs. V B and V C well predict the occurrence of the phase
transition.

2. Influence of K and the Knudsen number

Although the results for K = 1.0 × 10−5 agree well with
the consequences in Secs. V B and V C, some discrepancies
are found as K increases. Indeed, as shown in Fig. 5(a),
when K = 1.0 × 10−4, even for a very large disturbance with
ερ = 0.9, the phase transition does not occur in case L2,
although case L2 is above the curve (35). Another example
is found in case L3, which is above the curve (26), where
the phase transition ceases to occur even for a very large dis-
turbance with ερ = 0.9 when K = 1.0 × 10−3, see Fig. 5(b).
These results suggest that the stable region extends upward in
the b̃c plane as K increases, see Fig. 1. Judging from (27)
and the last paragraph of Sec. V in Ref. [15], this is due
to the simulations being performed in the periodic domain.
Since small but nonzero modes have wavelengths that are too

FIG. 3. Time evolution of the density: Case L2 with K = 1.0 × 10−5 and k = 0.1 from different initial disturbances. (a) ερ = 0.01 and (b)
ερ = 0.1.
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FIG. 4. Time evolution of the density for large and small disturbances. (a) Case L1 with ερ = 0.9 and (b) case L3 with ερ = 0.01. The
other parameters are commonly set as K = 1.0 × 10−5 and k = 0.1.

long and are not compatible with the periodic condition, they
are excluded. It explains why the criterion may depend on
K (or κ).

The influence of K appears as well in the cases enough
above the curve (26). It was observed that, as K becomes
smaller, features of higher frequency modes appear in the
time evolution process and the interface becomes thinner.
Moreover, the temperature rises more from its initial value
as K becomes smaller. (Compare Fig. 2 with Figs. S.1 and
S.2 in Supplemental Material (SM) [35].) It is due to less
energy being spent on the interface creation because of its
small thickness [32]. The close observation on the temperature
based on the energy consideration is one of the merits of the
present model over the previous simple model. The influence
of the temperature change in phase transition is discussed in
detail in the Appendix D.

Finally, the influence of the Knudsen number on the tran-
sient process was also examined in case C4 with K = 1.0 ×
10−4 and k = 0.005, 0.01, and 1. The result for the same K
with k = 0.1 has already been shown in Fig. 2. Comparisons

of the results show that the stationary state is not affected
by the difference of k. However, k affects the duration of
time required to reach the stationary state: the time duration
becomes longer for smaller k. Moreover, the transient process
becomes more complicated for smaller k. (Compare Fig. 2
with Fig. S.3 in the SM [35].)

Before closing the simulation result presentation, the in-
formation of computations is briefly described. The actual
computations are carried out, after a uniform discretization
both in the spatial and the velocity space, by a semi-
Lagrangian method with a uniform time interval �t̃ . The
typical setting of computational parameters is the combination
of 640 uniform intervals both in the spatial and the velocity
space, where the velocity space is truncated at ζ1 = ±6, and
�t̃ = 5 × 10−5 and mostly gives satisfactory results. There
are, however, some exceptions that required much finer in-
tervals in space, velocity, and time. The results shown in
the present paper are those for which the numerical con-
vergence has been judged within the error invisible in the
figures.

FIG. 5. Time evolution of the density: Cases L2 and L3. (a) Case L2 with K = 1.0 × 10−4, k = 0.1, and ερ = 0.9. (b) Case L3 with
K = 1.0 × 10−3, k = 0.1, and ερ = 0.9.
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B. Discussions

As presented in Sec. VII A, the density plateaux are even-
tually established after a long time as the final stationary
state, when the uniform state is not stable against the initial
disturbance. That stationary state can be, however, predicted
by the set of Eqs. (29), (30), and (31) without solving the ki-
netic equation directly. The method of prediction is explained
below in referring the preliminary analyses in Sec. V C.

In the one-dimensional case, Eqs. (29), (30), and (31) are
reduced to

κ
∂2ρ

∂X 2
1

= g − gA = g − gB, (37a)

p − ρκ
∂2ρ

∂X 2
1

+ κ

2

(
∂ρ

∂X1

)2

= pA = pB, (37b)

T = T0 + 2

3

1

Rρ0L

∫
D

{
a(ρ2 − ρ2

0 ) + κ

2
ρ

∂2ρ

∂X 2
1

}
dX1, (37c)

where the quantities with the subscripts A and B denote their
values at the individual plateaux. The following iterative pro-
cedure is adopted to predict the stationary state:

(1) Put T = T0 as the initial guess of T .
(2) Solve gA = gB and pA = pB to get ρA and ρB. Then

get the temporal value of χA by using (32).
(3) Set the origin of the coordinate X1 so that ρ(0) =

ρ�, where ρ� = (ρA + ρB)/2. By eliminating ∂2ρ/∂X 2
1 from

(37a) and (37b), another condition at X1 = 0 is obtained as

∂ρ

∂X1

∣∣∣∣
�

=
√

2

κ
{pA − p� + ρ�(g� − gA)}, (38)

where the quantities with the subscript � denote their values at
X1 = 0.

(4) Then using (38) and ρ(0) = ρ� as the set of boundary
conditions, solve (37a) to get ρ from X = 0 in the positive
and the negative direction, respectively, say, by the Successive
Over-Relaxation (SOR) method. The plateau ρA will appear
on the positive side, while the plateau ρB will appear on the
negative side of X1.

(5) Integrate the obtained density over a half period, from
X1 = −(1 − χA)L/2 to X1 = χAL/2, and compute

�C0 = ρ0L − 2
∫ χAL/2

−(1−χA )L/2
ρdX1,

�χA = �C0

(ρA − ρB)L
.

Then update χA by �χA, so that the constraint of the total
mass is fulfilled. The density over one period is obtained
by ρ(X ) in (−(L/2)(1 − χA), (L/2)χA] and ρ(χAL − X ) in
((L/2)χA, (L/2)(1 + χA)].

(6) Put D = (−(L/2)(1 − χA), (L/2)(1 + χA)] and up-
date T by (37c).

(7) Go back to the step 2 until the appropriate convergence
criterion is fulfilled.

Practically, step 6 requires a certain relaxation skill in
updating T for the stable numerical computation.

The results of the prediction method above are compared
with the stationary states obtained by the numerical simula-

tions of the kinetic equation in Fig. 6. Excellent agreement is
achieved, even in Fig. 6(c) where the formation of the higher
density plateau is not sufficient. Since the Knudsen number
is not involved in the present prediction method, the excellent
agreement explains why the final stationary states were not
affected by k in the simulations; see Fig. S.3 in the SM [35].

VIII. CONCLUSION

In the present paper, we propose a kinetic model for the
phase transition of the van der Waals fluid. The model is
constructed as follows:

(1) As was done in the previous simple model, the short-
range interaction represented by �S is determined to be
consistent with the van der Waals equation of state.

(2) To get rid of the isothermal assumption in the previous
model, the new collision effect Qd is introduced. Its form is
determined so that the momentum and the energy conserva-
tion are assured.

(3) The collision frequency A(ρ) in the BGK-type colli-
sion term Qc is determined to recover the leading order part
of the viscosity obtained from the Enskog equation. Conse-
quently, the real gas effect is introduced in Qc as well.

For the new model, the H theorem holds. The stability
of the uniform equilibrium state and the stationary state to
be established after a long time are discussed in detail. The
following qualitative features are clarified.

(1) There is a monotonically decreasing function Hp. This
function takes a different form from the counterpart of the
previous model with the isothermal assumption and may be
interpreted as a kinetic extension of the negative entropy of
the fluid system.

(2) In the stationary state, the VDF is the local Maxwellian
with the uniform temperature and velocity. That Maxwellian
is determined by the constraints of the total mass, momentum,
and energy (23) and the stationary condition (24) [or (29)].
Moreover, the thus-determined state recovers the phase equi-
librium condition in thermodynamics, i.e., the temperature,
static pressure, and specific Gibbs free energy are common
to two phases, in the limit κ → 0.

(3) By the procedure given in Sec. VII B, it is possible
to predict the local Maxwellian at the final stationary state
without directly solving the kinetic equation. It is also sug-
gested from the prediction in the limit κ → 0 (Fig. 1) that the
parameter b̃ largely affects the volume fraction χA, while c
largely affects the temperature.

(4) The sufficient condition for the uniform equilibrium
state to be stable or meta-stable is (26). It becomes a neces-
sary condition as well in the limit κ → 0. Hence (26) is the
so-called spinodal line in the conventional thermodynamics,
while (35) is the so-called binodal line. The latter coincides
with the bound of the coexisting state or the bound between
the metastable and the stable region in the limit κ → 0.

(5) For a given uniform equilibrium state, its stability and
the final stationary state depend only on a, b, and κ , not on the
Knudsen number.

Finally, the numerical simulations for spatially one-
dimensional periodic domain are performed. The approxima-
tion (5) for �L is employed, supposing that the attractive part
of the intermolecular potential decays fast in the scale of the
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FIG. 6. Comparisons of density profile between the simulation and the prediction result. (a) Case C4, (b) case R2, and (c) case L4. Here K
is commonly put as K = 1.0 × 10−4. The solid line indicates the prediction result, while the bullets the simulation result. The prediction result
is shifted to adjust the position of the interface with the simulation result.

period of domain under consideration. The following results
are obtained.

(1) The numerical simulations confirm the existence of the
unstable, the metastable, and the stable uniform equilibrium
state. In the first two cases, the phase transition is induced
even by a small disturbance and only by a large disturbance,
respectively. In the last case, the transition is not induced even
by a large disturbance.

(2) As K increases, the stable region in the (b̃, c) diagram
becomes larger, while the unstable region becomes smaller.
Moreover, K affects the transient process toward the station-
ary state; for smaller K , features of higher frequency modes
appear and the process becomes more complicated. The inter-
face thickness in the stationary state is also affected by K ; it
becomes thinner for smaller K .

(3) The Knudsen number also affects the transient process
toward the stationary state but not the stability and the final
stationary state. In the simulations for k < 1, it is observed
that the time duration to reach the stationary state becomes
longer and the transient process appears more complicated for
smaller k.
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APPENDIX A: ON THE FORM OF A(ρ)

In the literature, the equation of state of a hard-sphere
dense gas is given as [36]

p = ρRT

(
1 + 2π

3
σ 3 ρ

m
χ

)
,

where σ is a diameter of a molecule and χ is a density-
dependent factor required to be unity in the low density limit
ρ → 0. Since there are no attracting forces among hard-
sphere molecules, there is no counterpart of the parameter a
occurring in the van der Waals equation in the above equation
of state. Then, it is seen that there is the following correspon-
dence of quantities:

2π

3
σ 3 ρ

m
χ = bρ

1 − bρ
.

To have the consistent second virial coefficient,

b = 2π

3

σ 3

m
,

is required as well. Hence, it follows that

χ = 1

1 − bρ
.

In the meantime, by the standard Chapman–Enskog
method [5] or Hilbert method [3], the viscosity μ is expressed
as μ = RT/A(ρ) for the present model. For the Enskog equa-
tion, μ is related to the counterpart of the rarefied gas μ0 as

μχ = μ0,

at the leading order of expansion with respect to φχ , where
φ = πρσ 3/(6m) [1,36]. Hence, it is appropriate to put

A(ρ) = Acρ

1 − bρ
.

Incidentally, as in the literature on the original BGK model,
Ac can be extended to be a positive function of T . In that case,
it is appropriate to denote it as A(ρ, T ) = Ac(T )ρ/(1 − bρ).

APPENDIX B: SUPPLEMENTAL DISCUSSIONS ON THE
CASE SURROUNDED BY THE ISOTHERMAL

SOLID WALL

When the domain is surrounded by the resting isothermal
wall with temperature Tw, there are some subtle issues to be
addressed on the proposed model.

First, in the definition of �L, the integration with re-
spect to Y is no longer taken over the whole space R3 but
within the domain D. Then, it becomes straightforward
to show that

∫
D(∂ρ/∂t )�LdX = (1/2)(∂/∂t )

∫
D ρ�LdX ,

thanks to the domain of integration being common between
X and Y , giving an additional symmetry for their exchange
[37].

Second, the minimization problem needs additional con-
siderations. Suppose that the conventional kinetic boundary
condition [38] is applied on the wall, i.e.,

f (t, X , ξ) =
∫

ξ′ ·n<0
R(ξ′ → ξ; t, X )
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× f (t, X , ξ′)
|ξ′ · n|
|ξ · n| dξ′, ξ · n > 0.

Here n is the unit normal of the boundary pointing to the gas
side and R is the reflection probability density such that∫

ξ·n>0
R(ξ′ → ξ; t, X )dξ = 1, ξ′ · n < 0,

R(ξ′ → ξ; t, X ) � 0,

Mw(ξ) =
∫

ξ′ ·n<0
R(ξ′ → ξ; t, X )Mw(ξ′)

|ξ′ · n|
|ξ · n| dξ′,

where Mw ≡ (2πRTw)−3/2 exp[−ξ2/(2RTw)] is the wall
Maxwellian with unit density, and any other Maxwellian with
unit density does not satisfy the boundary condition. Thus, the
specular reflection is excluded from the present discussion.
Then, the multiplication of (1a) by 1 + ln( f /ρ0Mw) in place
of 1 + ln( f /c0) does work, where ρ0 is a certain reference
density. After a few manipulations, the integration of the result
over the whole space of ξ is transformed into

∂

∂t

〈
f ln

f

ρ0Mw

〉
+ ∂

∂Xi

〈
ξi f ln

f

ρ0Mw

〉

+ ∂φ

∂Xi

ρvi

RTw
= A(ρ, T )

〈
fe

(
1 − f

fe

)
ln

f

fe

〉

−3βρ + 1

RTw
{v
ρα
 + 3ρβRT }

� −3βρ + 1

RTw
{v
ρα
 + 3ρβRT }, (B1)

where the last equality holds only when f = fe. In the mean-
time, because of the transformation

∂�S

∂Xi
ρvi = ∂

∂Xi
(�Sρvi ) + ∂

∂t

∫
�Sdρ

−
∫

�T dρ
∂T

∂t
,

(B1) is rewritten as

∂

∂t

{〈
f ln

f

ρ0Mw

〉
+ 1

RTw

∫
�Sdρ

}

+ ∂

∂Xi

{〈
ξi f ln

f

ρ0Mw

〉
+ ρvi�S

RTw

}
+ ∂�L

∂Xi

ρvi

RTw

� 1

RTw

∫
�T dρ

∂T

∂t
− 3ρβ + ρ

RTw
(α
v
 + 3βRT ).

From (1e) and (1f), the right-hand side is eventually reduced
to

R.H.S. = 1

RTw

{
∂

∂t

(
(T − Tw)

∫
�T dρ

)

+ ∂

∂Xi

(
vi(T − Tw)

∫
�T dρ

)}
,

and the following inequality is obtained with the aid of the
mass conservation equation (6):

∂

∂t
A + ∂

∂Xi
Ai + �L

RTw

∂ρ

∂t
� 0, (B2)

where

A =
〈

f ln
f

ρ0Mw

〉
+ 1

RTw

∫
�Sdρ

− T − Tw

RTw

∫
�T dρ,

Ai =
〈
ξi f ln

f

ρ0Mw

〉
+ ρvi(�S + �L)

RTw

− vi
T − Tw

RTw

∫
�T dρ.

By the identity announced in the second paragraph of the
Appendix B, the third term of (B2) is then incorporated with
the first term, and the integration with respect to X and apply-
ing the Gauss divergence theorem leads to

d

dt
Hth ≡ d

dt

∫
D

{
A + ρ�L

2RTw

}
dX

�
∫

∂D
niAidS =

∫
∂D

〈
ξini f ln

f

ρ0Mw

〉
dS � 0. (B3)

Here two properties on the boundary have been used. Namely,
the normal component of the flow velocity vanishes and the
following Darrozes-Guiraud inequality [3,39] holds on the
boundary, ∫

ξini f ln f dξ �
∫

ξini f ln(ρ0Mw)dξ,

where the equality holds only when f ∝ ρ0Mw. Hence, com-
bining two equality conditions leads to the equality condition
f = ρMw for (B3). In conclusion,

Hth ≡
∫

D

(
A + ρ�L

2RTw

)
dX ,

monotonically decreases in time in the system that is sur-
rounded by the isothermal wall.

Incidentally, it should be noted that
∫

D �(|Y − X |)dY may
depend on X in the vicinity of the boundary. Hence, the
second term of the right-hand side of (4) does not necessarily
match the assumption that �S is a function of ρ and T . One
possibility to avoid the inconsistency is to introduce the ansatz
that �R cancels out the undesired X dependence. The other
possibility is to keep the definition (4) unchanged and instead
to change the definition of �L slightly as

m�L(t, X ) =
∫

D
�(|Y − X |){ρ(t,Y ) − ρ(t, X )}dY

−
∫
R3\D

�(|Y − X |)dYρ(t, X ).

This modification of �L, which is appreciable only near the
boundary due to the rapid decay of �, does not affect the
transformation of the third term of (B2). The inequality (B3)
still holds accordingly.

APPENDIX C: THE BOUND OF CO-EXISTING REGION

As announced in Sec. V C, the derivation of the bound of
coexisting region is given in this Appendix.
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FIG. 7. Comparisons of the density profile in the stationary state between the previous and the present model. (a) Case C2 and (b) Case
C4. In both cases, K = 1.0 × 10−4.

In the limit ρA ↓ ρ0 (χA ↑ 1) or ρB ↑ ρ0 (χA ↓ 0), one
may put T = T0 by (34) and, accordingly, the condition of the
uniform static pressure is simplified as

ρRT0

1 − bρ
− aρ2 = ρ0RT0

1 − bρ0
− aρ2

0

and is solved for ρ as

ρ = 1

2b

{
1 − bρ0 ±

√
(1 + bρ0)2 − 4bRT0

a(1 − bρ0)

}
.

The condition of the uniform specific Gibbs energy then takes
the form [see (22)]

RT0

(
ln

bρ

1 − bρ
+ 1

1 − bρ

)
− 2aρ

= RT0

(
ln

bρ0

1 − bρ0
+ 1

1 − bρ0

)
− 2aρ0,

which is eventually reduced to the condition

G(ρ) = G(ρ0),

where

G(ρ) ≡ ln
bρ

1 − bρ
−

( 1

1 − bρ
+ 1

1 − bρ0

)ρ − ρ0

ρ + ρ0
.

It is readily seen that G takes its maximum at ρ∗ ≡ (1 −
bρ0)/(2b), because

dG
dρ

= (ρ − ρ0)2(1 − 2bρ − bρ0)

ρ(1 − bρ)2(ρ + ρ0)2(1 − bρ0)
.

Hence, when ρ0 > ρ∗, i.e., bρ0 > 1/3, the solution for
G(ρ) = G(ρ0) is smaller than ρ∗ and represents ρB, while the
solution is larger than ρ∗ and represents ρA when bρ0 < 1/3.

When bρ0 = 1/3, there is no difference between ρA and ρB

and they take the common value of ρ0. Thus, on the bound of
region of the coexisting states:

ρA = ρ∗ + 1

2b

√
(1 + bρ0)2 − 4bRT0

a(1 − bρ0)
,

ρB = ρ0, (C1a)

for 0 � bρ0 <
1

3
,

ρA = ρB = ρ0, (C1b)

for bρ0 = 1

3
, and

ρB = ρ∗ − 1

2b

√
(1 + bρ0)2 − 4bRT0

a(1 − bρ0)
,

ρA = ρ0, (C1c)

for 1
3 < bρ0 < 1. These expressions, in turn, give the rela-

tion between a and b on the bound of the coexisting region,
once substituted to G(ρA) = G(ρ0) when 0 � bρ0 < 1/3 and
to G(ρB) = G(ρ0) when 1/3 < bρ0 < 1. It is the solid line
shown in Fig. 1.

APPENDIX D: COMPARISONS
WITH THE PREVIOUS MODEL

As mentioned at the end of Secs. V C and VII A 2, the
previous and the present model are compared in this Ap-
pendix. Figure 7 shows the density profiles at the stationary
state obtained by the respective models for cases C2 and C4
with K = 1.0 × 10−4, see Fig. 1. As seen from the figure, the
densities at the flat parts do not agree between the models.
This is in marked contrast to the agreement of the stability
criterion discussed in Sec. V B. The discrepancy in quan-
tity comes from the fact that the previous isothermal model
was thermodynamically designed for the system in contact
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FIG. 8. The equiarea rule applied to g̃ for the previous and the present model. (a) Case C2 and (b) case C4. The horizontal coordinate of
the open circle and that of the closed circle indicate ρA/ρ0 and ρB/ρ0, respectively.

with the thermal bath through its collision term. The physical
system in the present paper is thermodynamically isolated
and thus the temperature is no longer constant. The tem-
perature change is rather small but the two phase densities
are sensitive to the change of temperature, as is explained
below.

By using the method in Sec. VII B, the temperature after
the phase transition in the present model is computed as T̃ =
1.01466 for case C2 and T̃ = 1.08964 for case C4. Since the
difference of temperature is small (at least for case C2), one
may wonder why such a distinct difference occurs in density.
The reason is as follows. In the previous model, the densities
of two phases after the phase transition have been predicted
by applying the equiarea rule to �(ρ̃) of Ref. [15]. In viewing
its functional form, it is essentially identical to the specific
Gibbs energy g in the present model at the stationary state,
see (22). Remember that the VDF is the Maxwellian with the

uniform temperature in the stationary state. Introducing the
dimensionless version of g after getting rid of the constant
terms with respect to ρ by

g̃(ρ̃, T̃ ) = �̃S + 1
2 T̃ ln ρ̃,

the �(ρ̃) in Ref. [15] is equivalent to g̃(ρ̃, 1) + 1/2. There-
fore, the densities of two phases after the phase transition
can be predicted by applying the equiarea rule to g̃(ρ̃, 1)
for the previous model and g̃(ρ̃, T̃ ) for the present model,
where T̃ is the uniform temperature in the stationary state.
As shown in Fig. 8, the difference of temperature affects
the density values determined by the equiarea rule. Case C2
with T̃ = 1 gives ρA/ρ0 = 1.30198 and ρB/ρ0 = 0.71555,
while that with T̃ = 1.01466 gives ρA/ρ0 = 1.17466 and
ρB/ρ0 = 0.83128. Case C4 with T̃ = 1 gives ρA/ρ0 =
1.69571 and ρB/ρ0 = 0.39755, while that with T̃ = 1.08964
gives ρA/ρ0 = 1.36906 and ρB/ρ0 = 0.65703.
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D
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�(|r|) ∂

∂Xj
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D
ρ(X )

∫
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where the dependence on t is suppressed for the brevity of
notation. In the above transformation, besides the integration
by parts, it has been used that ρ(X ) is periodic in X and that �
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