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Temperature-dependent maximization of work and efficiency in a degeneracy-assisted
quantum Stirling heat engine
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We propose a quantum Stirling heat engine with an ensemble of harmonic oscillators as the working medium.
We show that the efficiency of the harmonic oscillator quantum Stirling heat engine (HO-QSHE) at a given fre-
quency can be maximized at a specific ratio of the temperatures of the thermal reservoirs. In the low-temperature
or equivalently high-frequency limit of the harmonic oscillators, the efficiency of the HO-QSHE approaches
the Carnot efficiency. Further, we analyze a quantum Stirling heat engine with an ensemble of particle-in-a-box
quantum systems as the working medium. Here both work and efficiency can be maximized at a specific ratio of
temperatures of the thermal reservoirs. These studies will enable us to operate the quantum Stirling heat engines
at its optimal performance. The theoretical study of the HO-QSHE would provide impetus for its experimental
realization, as most real systems can be approximated as harmonic oscillators for small displacements near
equilibrium.
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I. INTRODUCTION

Thermodynamics started as an exact science at the length
scales of macroscopic objects. The laws of classical thermo-
dynamics were derived empirically and thus were more robust
than any other theory of that time. One of the many practical
aspects of this theory was to find the fundamental upper bound
in the efficiency of heat engines [1–3], which are devices that
utilize the spontaneous heat flow from a hot to a cold bath and,
in the process, convert this heat into mechanical work. Today
the experimental advances in quantum physics have pushed
the use of macroscopic thermodynamics and its partner, clas-
sical statistical mechanics, to even smaller length scales [4,5].
These advancements have led to a successful generalization of
the classical thermodynamic processes to their corresponding
quantum versions [6–8]. Quantum heat engines are “micro-
scopic” versions of the macroscopic thermodynamic cycles
that capitalize on the “quantumness” of the working system
to generate positive work [7].

The first proposed quantum heat engine was a three-level
maser which operated with Carnot efficiency in the limiting
case [9]. Using the generalization from classical to quantum
theory, the theoretical construction of quantum mechanical
versions of various classical engines such as Otto, Carnot,
Stirling, Brayton, and Diesel have been achieved [10–12].
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Much work is in progress which looks forward to designing
and deriving the optimal performances of quantum mechani-
cal heat engines from microscopic mechanical laws [13–19].
Quantum heat engines using non-Markovian [20], quantum
coherent [21,22], quantum squeezed [4,23–26], and entangled
[27] baths with efficiencies beyond the classical Carnot limit
but with no violations to the second law of thermodynam-
ics have also been proposed. While the extracted work and
efficiency depend on the working media in a quantum heat
engine, these properties are indifferent to the working media
used in a classical heat engine. Different quantum mechani-
cal working media, for instance, multilevel quantum systems
[9,28–31], particle in a box [17,32], and harmonic oscillators
[33–36], have already been employed in designing quantum
heat engines.

In this article, we strive to construct a quantum heat engine
whose working principle is exclusively based on the quantum
features of formation of quantized energy levels and quan-
tum degeneracies [17,32,37], owing to the finite boundary
conditions [38]. In this endeavor, we first propose a quan-
tum Stirling heat engine based on an ensemble of quantum
harmonic oscillators, where the degeneracy is generated by
inserting a barrier in the middle of the harmonic oscillator.
These degeneracies induce a lack of information, which can
be converted to useful work using two reservoirs at different
temperatures. We provide a rigorous study of work and ef-
ficiency in harmonic oscillator quantum Stirling heat engine
(HO-QSHE), where the results show that the efficiency can be
maximized at a specific ratio of hot and cold reservoir temper-
atures, and that this maximum depends on the frequency of the
harmonic oscillator; however, there is no such maximum for
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the extracted work. We also study the quantum Stirling heat
engine based on an ensemble of particle-in-a-box quantum
systems. We discuss work and efficiency for both symmetric
and asymmetric insertion of a single barrier and also the inser-
tion of multiple barriers in particle-in-a-box quantum Stirling
heat engine (PIB-QSHE). The results reveal that both work
and efficiency can be maximized at a certain specific ratio of
hot and cold temperatures, which depends on the length of the
box.

The motivation behind choosing a quantum harmonic os-
cillator as the working medium of the quantum heat engine
is the fact that it is one of the most ubiquitous quantum
systems, which models atoms in a lattice to quantum fields.
Since almost any generic potential can be approximated as a
harmonic oscillator for small displacements near equilibrium
[39], our proposed degeneracy-assisted HO-QSHE may be re-
alized practically. Possible candidates include Bose-Einstein
condensate, Josephson junction, and vibrational modes of
solids [40–43]. Similarly, quantum dots, wires, and wells are
promising candidates for the realization of the degeneracy-
assisted PIB-QSHE [44].

We arrange the paper as follows. Section II describes the
quantum Stirling heat engine based on harmonic oscillators.
The work and efficiency for it are analyzed in Sec. III A,
while the results for a quantum Stirling engine based on an
ensemble of particle-in-a-box quantum systems are discussed
in Sec. III B. In Sec. IV we discuss our results and future
aspects of this work. Appendix A recapitulates the particle-
in-a-box Stirling heat engine.

II. HARMONIC OSCILLATOR BASED QUANTUM
STIRLING HEAT ENGINE

In this section, we propose a quantum Stirling heat engine
with the working medium as a harmonic oscillator. Analogous
to the classical counterpart, a quantum Stirling cycle is a four-
stroke closed cycle regenerative heat engine. The schematic
diagram of a classical Stirling heat cycle is shown in Fig. 1.
The corresponding processes for the quantum Stirling heat
engine are also superposed on the same diagram.

The four steps involved in a HO-QSHE are as follows.

A. First step

In the first step of the quantum Stirling heat engine, a
barrier is inserted at the center of the harmonic oscillator in a
quasistatic manner, thus allowing the system to be in constant
equilibrium with the heat bath at temperature Th through heat
exchange between the two. In contrast, the first step in a
classical heat engine is that of isothermal expansion, where
a system coupled to a heat bath at temperature Th expands
isothermally (mechanical work is done by the system). It is
worth mentioning that when we talk about the temperature of
the system, we refer to the temperature of the ensemble of the
working medium. For a one-dimensional quantum harmonic
oscillator of frequency ω as the working medium, the nth
energy level is given as

En = (
n + 1

2

)
h̄ω with n = 0, 1, 2, . . . , (1)

FIG. 1. Schematic of the classical Stirling heat engine on a PV
diagram. The process [(1) → (2)] represents isothermal expansion
of the system. The process [(2) → (3)] shows isochoric cooling
of the engine when it is brought in contact with a reservoir at a
lower temperature Tc. The process [(3) → (4)] represents isothermal
compression, and [(4) → (1)] is the isochoric heating when the
engine is connected back to the heat reservoir at temperature Th.
The corresponding degeneracy-assisted harmonic oscillator quantum
Stirling heat engine is also depicted on the same diagram. Here a
barrier is inserted at the center of the harmonic oscillator during the
process [(1) → (2)]. Consequently, the even-numbered energy levels
are raised to the odd-numbered energy levels, and the final energy
spectrum is doubly degenerate. The working medium during this
process is constantly in equilibrium with the heat reservoir at temper-
ature Th. During the process [(2) → (3)] the system is connected to
the reservoir at a lower temperature Tc, and as a result heat is released
from the system. In the process [(3) → (4)], the barrier is removed
quasistatically from the harmonic oscillator while the Stirling heat
engine is in equilibrium with a cold reservoir at temperature Tc. In
the final process of the cycle [(4) → (1)], the system is brought in
contact with the heat reservoir at temperature Th and heat is absorbed
by the system.

where h̄ is the reduced Planck constant. This is the energy
level spectrum corresponding to the initial state for the first
process of the HO-QSHE cycle (stage 1 in Fig. 1). The parti-
tion function of the initial state Z(1) is given as

Z(1) =
∞∑

n=0

e− En
kBTh = e

−h̄ω
2kBTh

∞∑
n=0

e
−nh̄ω
kBTh , (2)

where kB is the Boltzmann constant. The partition function is
a geometric sum which can be readily evaluated as

Z(1) = e
−h̄ω

2kBTh

1 − e
−h̄ω
kBTh

= 1

2 sinh
(

h̄ω
2kBTh

) . (3)

The isothermal process involves the quasistatic insertion of
a barrier in the center of the harmonic oscillator. For this
work, we assume that the center of the potential is the origin
of the coordinate system. This barrier is an infinite potential
δ function [p δ(0), p → ∞], which introduces an additional
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constraint of the probability amplitude of the wave function
going to zero at the center [45,46]. A barrier inserted in this
way does not alter the volume or the classical energy of the
system but affects the quantum mechanical energy wave func-
tions. The barrier “splits” the wave functions into two exactly
identical parts by introducing a node at their midpoints. Since
the wave functions cannot vanish, the wave functions with
even quantum numbers are “raised” in energy to the next odd-
numbered energy state with the introduction of the barrier at
the origin. The energy states with odd quantum numbers, are
now twofold degenerate (stage 2 in Fig. 1). The new energy
levels of this system are given as

En = (
n + 1

2

)
h̄ω with n = 1, 3, 5, . . . , (4)

which could be alternatively written as

En = (
2n + 3

2

)
h̄ω with n = 0, 1, 2, . . . . (5)

Various thermodynamics variables considered in this article
are normalized to the number of particles in the ensemble and,
therefore, will be intensive. Therefore, the partition function
can be written as

Z(2) = 2e
−3h̄ω
2kBTh

∞∑
n=0

e− 2nh̄ω
kBTh = 2e

−3h̄ω
2kBTh(

1 − e
−2h̄ω
kBTh

) . (6)

The internal energy at stage (1) of the Stirling cycle can
be written in terms of the partition functions as U(1) =
−∂ ln Z(1)/∂βh, where βh is 1/kBTh. Therefore, the change in
the internal energy from stage (1) to stage (2) can be expressed
as

�U12 = U(2) − U(1) = − ∂

∂βh
[ln Z(2) − ln Z(1)]. (7)

Further, the thermodynamic entropy at stage (1) can be ex-
pressed in terms of the partition functions as

S(1) = kB

(
1 − βh

∂

∂βh

)
ln Z(1). (8)

Therefore, the heat absorbed in the process of taking the sys-
tem from state (1) to state (2) is given as Q12 = Th(S(2) − S(1) ),
which can be expressed as follows using Eqs. (8) and (7):

Q12 =
(

1

βh
− ∂

∂βh

)
[ln Z(2) − ln Z(1)],

= U(2) − U(1) + kBTh ln Z(2) − kBTh ln Z(1). (9)

We note that the change in internal energy (U(2) − U(1) ) is not
zero since the energy level spectrum of the harmonic oscillator
changes when the barrier is inserted. This is in contrast with
the classical Stirling heat engine, where the internal energy re-
mains constant during an isothermal process. This is because
the energy level spectrum of the working medium is the same
throughout the cycle.

The work done in the process is given by first law of
thermodynamics as

W12 = Q12 − �U12 = kBTh ln Z(2) − kBTh ln Z(1). (10)

The work in this step is done by the system and hence is
expected to be negative.

B. Second step

In this step, we connect the system to a thermal bath
at temperature Tc < Th after disconnecting it from the ther-
mal bath at temperature Th. Consequently, the temperature of
the system falls from Th to Tc. This process for a classical
Stirling heat engine is termed isochoric cooling, where the
volume remains constant, and thus no mechanical work is
done. Therefore, this process causes the system to lose heat.

The partition function of the initial state for this step is
Z(2). The partition function of the final state is exactly simi-
lar to Z(2), since the energy spectrum of the system remains
the same, with the exception that here the temperature is Tc

instead of Th. The partition function is given as

Z(3) = 2e
−3h̄ω
2kBTc

∞∑
n=0

e− 2nh̄ω
kBTc = 2e

−3h̄ω
2kBTc(

1 − e
−2h̄ω
kBTc

) . (11)

The amount of heat lost in this step can be calculated in
terms of the partition function. Since no mechanical work is
done (W23 = 0), the heat lost is equal to the change in internal
energy:

Q23 = U(3) − U(2) = −∂ ln Z(3)

∂βc
+ ∂ ln Z(2)

∂βh
. (12)

C. Third step

In the next step, the barrier is removed quasistatically such
that the system is in thermal equilibrium with the cold bath
at temperature Tc at all times. At the end of the process,
the energy spectrum becomes identical to that of the initial
state (1). Again the volume remains constant for the quantum
Stirling heat engine. In contrast, the corresponding step in a
classical heat engine is that of isothermal compression, where
a system coupled to a cold bath at temperature Tc undergoes a
compression. The partition function of the final state is same
as that of Z(1), but with temperature Tc instead of Th:

Z(4) = e
−h̄ω

2kBTc

∞∑
n=0

e
−nh̄ω
kBTc = e

−h̄ω
2kBTc(

1 − e
−h̄ω
kBTc

) . (13)

The heat provided to the system at the end of the process is
obtained in terms of the partition functions as

Q34 = U(4) − U(3) + kBTc ln Z(4) − kBTc ln Z(3). (14)

The isothermal work done is obtained from the first law of
thermodynamics as

W34 = Q34 − �U34 = kBTc ln Z(4) − kBTc ln Z(3), (15)

where �U34 = U(4) − U(3) is the change in internal energy in
the process.

D. Fourth step

In the final step, the system is detached from the cold bath
at temperature Tc and connected to the hot bath at temperature
Th. This raises the temperature of the system from Tc to Th.
The corresponding process for a classical Stirling heat engine
is called isochoric heating, where the volume does not change,
and therefore no mechanical work is done. Thus, the system
loses heat during this process. Thus at the end of the process,

062109-3



CHATTERJEE, KONER, CHATTERJEE, AND KUMAR PHYSICAL REVIEW E 103, 062109 (2021)

the system returns to the initial state (1) (the ensemble of
harmonic oscillators at a temperature Th). Since no work is
done in this step, the heat absorbed by the system is equal to
the change in internal energy:

Q41 = −∂ ln Z(1)

∂βh
+ ∂ ln Z(4)

∂βc
. (16)

The four thermodynamic processes described above form
one complete cycle of the quantum Stirling heat engine. The
total work done by the system in one complete cycle of the
HO-QSHE is given as

Wnet = W12 + W34

= kBTh ln
Z(2)

Z(1)
+ kBTc ln

Z(4)

Z(3)
. (17)

Further, since the system absorbs heat only during the
first isothermal step [(1) → (2)] and the final isochoric step
[(4) → (1)], the total heat absorbed during one complete cy-
cle of the HO-QSHE can be written as

Qin = Q12 + Q41. (18)

The efficiency η for the cycle is given in terms of the work
done and the heat intake as

η = Wnet

Qin
= 1 + Q23 + Q34

Q12 + Q41
. (19)

The expression for the efficiency can be obtained from the
partition functions and their derivatives.

III. ANALYSIS OF WORK AND EFFICIENCY

In this section, we first analyze the work and efficiency for
HO-QSHE and then move on to PIB-QSHE.

A. Work and efficiency of the harmonic oscillator quantum
Stirling heat engine

We first explore the work and efficiency of the HO-QSHE
with respect to the frequency ω of the harmonic oscillator
for different values of Th/Tc. For convenience, we introduce
dimensionless units for the work extracted and the frequency
by rescaling them as W/kBTc and ωh̄/kBTc respectively.

We define the harmonic oscillator of frequency ω to be
in the low-temperature limit, when the following condition is
satisfied:

h̄ω � kBTh with Th > Tc. (20)

This condition is satisfied for large values of ω as well as very
small values of Th.

As shown in Fig. 2(a), the work increases monotonically
from zero as a function of the frequency of the harmonic oscil-
lator and asymptotically approaches the high-frequency limit,
which can be derived using Eq. (17) to be (Th/Tc − 1) ln 2.
This result can be numerically verified from the plot. Fur-
thermore, as we increase the value of Th/Tc, the amount of
extracted work increases.

Similarly, the efficiency also starts to rise from zero as
the frequency increases and becomes asymptotic in the high-
frequency limit as shown in Fig. 2(b). We can derive this
asymptotic efficiency value using Eq. (19) as (1 − Tc/Th),

(a)

(b)

FIG. 2. (a) Work W/kBTc as a function of frequency ωh̄/kBTc for
different values of Th/Tc. (b) Efficiency η as a function of frequency
ωh̄/kBTc for different values of Th/Tc.

which can also be verified from the figure. Interestingly, this
is the efficiency of a classical Carnot cycle. Thus, in the
high-frequency or low-temperature limit, the efficiency of a
HO-QSHE approaches the Carnot efficiency.

We note that efficiency curves for different values of Th/Tc

cross over each other as the frequency is varied.
To analyze the explicit temperature dependence, we plot

work and efficiency as a function of Th/Tc for different
frequencies of the harmonic oscillator in Fig. 3. Here the fre-
quencies of the harmonic oscillator have been set to be integral
multiples of ω0 (ω = mω0), where ω0 = kBTc/h̄. The results
show that the extracted work starts to increase from zero with
an increase in the value of Th/Tc and becomes asymptotic in
the high Th/Tc limit. The asymptotic value of the net work
extracted can be computed using Eq. (17) as

lim
Th/Tc→∞

Wnet = kBTc

(
ln

[
1 + em

2

]
− m

2

)
. (21)

Therefore, the scaled work is given as ln[(1 + em)/2] − m/2,
which can be numerically verified from the figure. On the
other hand, the efficiency as a function of Th/Tc attains a max-
imum after a steep ascent and then gradually levels off to zero
in the asymptotic limit. In contrast, the efficiency of a classical
heat engine increases monotonically as a function of Th/Tc.
We further notice from Fig. 3(b) that the efficiency approaches
Carnot limit for small Th/Tc. This fact can be verified from
Fig. 4, where we have plotted efficiency normalized by Carnot
limit as a function of Th/Tc.

Furthermore, the monotonic decrease of the efficiency in
Fig. 3(b) after the maxima and consequently the asymptotic
decay to zero in the high Th/Tc limit can be attributed to the
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(a)

(b)

FIG. 3. (a) Work W/kBTc as a function of Th/Tc for different
frequencies of the harmonic oscillator. (b) Efficiency η as a func-
tion of Th/Tc for different frequencies of the harmonic oscillator.
The values considered for the harmonic oscillator frequency are
ω = 5 ω0, ω = 10 ω0, and ω = 15 ω0, where ω0 = kBTc/h̄. The black
dot-dashed line represents the Carnot limit.

fact that as the ratio Th/Tc increases, more heat needs to be
provided to the system to raise its temperature from Tc to Th in
the final step [(4) → (1)] of the Stirling cycle. This increases
the value of total heat input Qin to the system. As can be seen
from Fig. 5, the heat taken in during the isothermal process
Q12 also contributes to Qin, but its effect is small since there is
no temperature change during this process.

Thus, because of the Q41 term, Qin dominates over Wnet,
consequently diminishing the efficiency of the cycle as per
Eq. (19), and thus the efficiency approaches zero in the high
Th/Tc limit.

FIG. 4. Normalized efficiency η/ηC as a function of Th/Tc for
HO-QSHE. ηC denotes Carnot limit.

FIG. 5. Heat (Q/kBTc) as a function of Th/Tc. The superscript “S”
represents the corresponding scaled quantities. The frequency of the
harmonic oscillator is set as ω = 5 ω0.

It should be noted that the curves plotted as a function of
Th/Tc start from Th/Tc = 1, i.e., when both the reservoirs are
at the same temperature, and hence no work is extracted. We
have numerically computed the values of Th/Tc corresponding
to the maximum efficiency for different harmonic oscillator
frequencies and compared them with the Carnot efficiency at
the corresponding values of Th/Tc in Table I. The results show
that although increasing the frequency initially leads to an in-
crease in the efficiency of the HO-QSHE, the rate of increase
slows down and eventually saturates. Further, the efficiency
for the HO-QSHE is bounded from above by the Carnot effi-
ciency. The maximum efficiency asymptotically approaches
unity as the frequency of the harmonic oscillator ω → ∞.
Furthermore, the unit efficiency is achieved for Th/Tc → ∞
as for a Carnot engine. This behavior is reinforced by Fig. 3.

The crossover of the efficiency curves in Fig. 2(b) is a
consequence of the existence of maxima in Fig. 3(b). We
explain our point by comparing the value of efficiency at
two different frequencies for different values of Th/Tc. For
instance, the efficiency curve for ω = 5 ω0, which has a max-
imum at Th/Tc = 2.66, takes the value η = 0.43, 0.46, and
0.41 at Th/Tc = 2, 3, and 4, respectively. Hence, at ω = 5 ω0,
the efficiency is maximum for Th/Tc = 3 and minimum for
Th/Tc = 4, which can be confirmed from Fig. 2(b). Similarly,
the efficiency curve for ω = 10 ω0 takes the value η = 0.49,
0.64, and 0.68 at Th/Tc = 2, 3, and 4, respectively. Hence,
the efficiency is maximum for Th/Tc = 4 and minimum for
Th/Tc = 2 at ω = 10 ω0. These changes in the ordering of the
numerical values of efficiency for different values of Th/Tc

causes a crossover of the efficiency curves.

TABLE I. Comparison of the numerical results for maximum
efficiency of the HO-QSHE (ηmax) and Carnot efficiency (ηC).

Frequency ω Th/Tc ηmax ηC

5 ω0 2.66 0.47 0.62
10 ω0 4.15 0.68 0.76
15 ω0 5.58 0.77 0.82
50 ω0 14.57 0.92 0.93
150 ω0 36.93 0.97 0.97
350 ω0 77.14 0.98 0.99
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(a)

(b)

FIG. 6. (a) Work W/kBTc as a function of length of the box a/λ

for different values of Th/Tc. (b) Efficiency η as a function of length
of the box a/λ for different values of Th/Tc.

It is worth noting that the limit when the frequency of
the harmonic oscillator approaches zero corresponds to the
classical limit. Since the gap between consecutive energy
levels goes to zero as ω → 0, there will be a continuum of
energy levels. Since the particle is like a free particle in this
limit, the work needed to insert or remove the barrier becomes
zero. This feature in the context of particle-in-a-box quantum
Szilard engine has been explored in Ref. [47].

B. Work and efficiency of particle in a box quantum
Stirling heat engine

In this section, we consider PIB-QSHE, which was pro-
posed in [17]. While a preliminary numerical analysis of
PIB-QSHE can be found in [17], we study it in significant
detail and provide important insights into the behavior of net
work and efficiency of the PIB-QSHE. In this regard, we first
analyze the net work and efficiency when a single barrier
is inserted symmetrically, i.e., in the middle of the box. We
then consider the symmetric insertion of multiple barriers
and finally move on to the case, where a single barrier is
inserted asymmetrically into the box. We have described the
respective steps in the Stirling cycle for these different cases in
Appendix A.

1. Symmetric insertion of a single barrier

We consider the scenario where a barrier is inserted at the
center of a box of length 2a. We have described the different
stages of PIB-QSHE in Appendix A 1. We first analyze the
work and efficiency of PIB-QSHE with respect to the length
of the box. We rescale the work as W/kBTc and the length

(a)

(b)

FIG. 7. (a) Work W/kBTc as a function of Th/Tc for different
length of the box. (b) Efficiency η as a function of Th/Tc for different
length of the box. The values considered are a = λ/3, λ/4, and λ/5,
where λ = h/

√
2mkBTc is the thermal de Broglie wavelength. The

black dot-dashed line represents the Carnot limit.

of the box as a/λ, where λ = h/
√

2mkBTc is the thermal de
Broglie wavelength.

We define the box of length 2a to be in the low-temperature
limit, when the condition

π2h̄2

2m(2a)2
� kBTh, with Th > Tc, (22)

holds. We also note that the above condition is satisfied for
small lengths of the box as well as for small temperatures Th.

The low-temperature limit of the scaled work (A18) turns
out to be (Th/Tc − 1) ln 2. This numerical value can also be
confirmed for small “a” values from Fig. 6(a). On further
increasing the value of the length of the box a/λ, the work
starts to decrease and eventually becomes zero for a particular
value of a/λ. For Th/Tc = 2, the value of a/λ for which the
work becomes zero turns out to be 0.65. Similarly, the low-
temperature limit of the efficiency expression (A20) turns out
to be 1 − Tc/Th, which can also be numerically verified from
Fig. 6(b). The efficiency also starts to drop with an increase in
the value of a/λ and becomes zero at the same value where
work becomes zero.

As we increase the value of Th/Tc in Fig. 6, the work and
efficiency corresponding to a particular value of a/λ increase
till the low-temperature limit is satisfied. This is also seen
from the low-temperature limit expressions for work and ef-
ficiency. As we move away from the low-temperature limit,
crossover between work as well as efficiency curves is seen.
Furthermore, it can be seen that with an increase in Th/Tc, the
work and efficiency reach zero for smaller values of a/λ.
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FIG. 8. Normalized efficiency η/ηC as a function of Th/Tc for
PIB-QSHE.

We now study the dependence of work and efficiency on
the temperature of the system. We take the length of the box
as a fraction of the de Broglie wavelength and plot work and
efficiency with respect to Th/Tc in Fig. 7. The results show
that as the length of the box decreases, work and efficiency
increase. We already saw this property in Fig. 6.

Furthermore, both work and efficiency attain a maximum
at a certain specific value of Th/Tc. The maxima of these plots
is the reason for the crossover seen in Fig. 6. From Fig. 7(a),
we see that the work becomes zero at larger values of Th/Tc

as the length of the box decreases. So, if we plot the work as
a function of length, Fig. 6(a), the plot for higher Th/Tc will
go to zero earlier, crossing over the other curves on its way.
The crossover for the efficiency curve in Fig. 6(b) is due to
the same reason.

From Fig. 7(b), we also see that the efficiency approaches
Carnot limit for small Th/Tc. This can be explicitly seen in
Fig. 8, where we have plotted normalized efficiency η/ηC as a
function of Th/Tc.

We now compare numerically the maximum efficiency of
the PIB-QSHE with the Carnot efficiency in Table II. We note
that this behavior is similar to that of the HO-QSHE. Although
the maximum efficiency increases as the length of the box
decreases, it always lies below the Carnot efficiency. Thus,
the efficiency of the PIB-QSHE is also bounded by the Carnot
efficiency from above. In the limit of a → 0, the maxima of
the efficiency asymptotically approach unity.

We now consider the limit of the length of box becom-
ing large, i.e., a → ∞. The gap between two energy levels
approaches zero as a → ∞, and we obtain a continuum of en-
ergy levels. Therefore, the particle behaves as a free particle,

TABLE II. Comparison of the numerical results for maximum
efficiency of the PIB-QSHE (ηmax) and Carnot efficiency (ηC).

Length a Th/Tc ηmax ηC

λ/3 3.669 0.585 0.727
λ/4 5.850 0.749 0.829
λ/5 8.488 0.833 0.882
λ/10 28.067 0.954 0.964
λ/20 95.988 0.987 0.990

(a)

(b)

FIG. 9. (a) Work W/kBTc as a function of length of the box a/λ

for different number of barriers. (b) Efficiency η as a function of
length of the box a/λ for different number of barriers. The value of
Th/Tc is taken to be 2.

and the work needed to insert or remove the barrier becomes
zero.

2. Symmetric insertion of multiple barriers

This section studies work and efficiency in the scenario
where we insert N barriers symmetrically into the box. The
details of the Stirling cycle for this process are provided in
Appendix A 2. We analyze the work and efficiency for multi-
ple barrier insertions as functions of the length of the box and
Th/Tc, similar to that in Sec. III B 1, and we use the partition
functions Eq. (A21) to Eq. (A24).

In the low-temperature limit, the work for multiple barrier
insertion case attains a value of (Th/Tc − 1) ln(N + 1), which
can be numerically verified from Fig. 9(a). The work, there-
fore, increases with an increase in the number of barriers.

We explain the work extracted in the low-temperature limit
due to the degeneracy of the lowest energy level as it is
the only energy level which is accessible in this limit. We
note that N + 1 is the degeneracy of the energy levels of the
box after symmetric insertion of N barriers. Therefore, the
factor ln(N + 1) arising in the work can be attributed to the
degeneracy of the ground state energy level. As pointed out
earlier, it is the lack of information due to this degeneracy
that is converted to work in our degeneracy-assisted quantum
heat engine. Hence in the low-temperature limit, the work is
entropic in the sense that it is proportional to the Boltzmann
entropy given as S = kB ln(N + 1). A direct verification of
this claim can be stated. If the barrier is inserted in a manner
such that no degeneracy is attained, we would expect the
low-temperature limit of the work obtained to be zero. This
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(a)

(b)

FIG. 10. (a) Work W/kBTc as a function of Th/Tc for different
number of barriers. (b) Efficiency η as a function of Th/Tc for
different number of barriers. The half-length of the box is taken
to be a = λ/3, where λ = h/

√
2mkBTc is the thermal de Broglie

wavelength. The black dot-dashed line represents the Carnot limit.

is one of the motivations behind the analysis of asymmetric
barrier insertion in the next section.

In the low-temperature limit, the efficiency turns out to be
1 − Tc/Th, which can be numerically verified from Fig. 9(b).
Thus, in the low-temperature limit, efficiency is independent
of the number of barriers. However, in the high-temperature
limit, efficiency does depend on the number of barriers.
Further, as we increase the number of barriers, work and
efficiency become zero at larger values of a/λ.

We also plot work and efficiency with respect to Th/Tc in
Fig. 10 for a different number of barriers. We can see that as
Th/Tc increases, both work and efficiency attain a maximum
and then gradually come down to zero for any fixed number
of barriers. We also observe that as the number of barriers
increases, the maximum value of both work and efficiency
increases. Further, with an increase in the number of barriers,
the maximum as well as zero shifts to higher values of Th/Tc.

3. Asymmetric insertion of a single barrier

In this section, we examine the work and efficiency for an
asymmetric insertion of a barrier in the box, as functions of the
length of the box and Th/Tc, and we use the partition functions
Eq. (A27) to Eq. (A30). This process divides the box into
two parts of lengths x and y with x + y = 2a. We provide
the details of the Stirling cycle for this case in Appendix
A 3. We first study the work W/kBTc as a function of the
length of the box a/λ for different values of “d ,” which we
define to be the ratio of the lengths of the two box parts, i.e.,

(a)

(b)

FIG. 11. (a) Work W/kBTc as a function of length of the box a/λ

for different ratios d of the box lengths. (b) Efficiency η as a function
of length of the box a/λ for different ratios of the box lengths. The
value of Th/Tc is taken to be 2.

d = x/y. The results are shown in Fig. 11. The plots reveal
that both work and efficiency attain a maximum at a certain
value of a/λ. This result is completely different from the
symmetric barrier insertion case Fig. 6. Interestingly, the work
in the low-temperature limit goes to zero as predicted from
the ln(N + 1) dependence (where N + 1 is the degeneracy of
the lowest energy level). The rationale behind this behavior
would be that in the low-temperature limit, only the lowest
energy level is accessible, which is nondegenerate in the case
of asymmetric barrier insertion, and consequently the work
reduces to zero.

We now move on to study the work and efficiency depen-
dence on the temperature for different half-lengths of the box
a = λ/3, λ/4, and λ/5, where λ = h/

√
2mkBTc is the thermal

de Broglie wavelength. The results are shown in Fig. 12. We
have set d = 0.95 in both the plots. We observe that both work
and efficiency attain a maximum at a certain specific value of
Th/Tc. This result is similar compared to the symmetric barrier
insertion case Fig. 7; however, the magnitude of work and ef-
ficiency decreases in the asymmetric insertion case compared
to the symmetric one.

IV. CONCLUDING REMARKS

In this paper, we propose a degeneracy-assisted HO-QSHE
in this work and analyze the work and efficiency as functions
of the frequency of the harmonic oscillator and the ratio Th/Tc

of temperatures of the hot and cold thermal baths. We also
examine PIB-QSHE in full detail, which was proposed in
[17]. We note that the energy levels are inhomogeneously
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(a)

(b)

FIG. 12. (a) Work W/kBTc as a function of Th/Tc for different
length of the box. (b) Efficiency η as a function of Th/Tc for different
length of the box. The values considered are a = λ/3, λ/4, and λ/5,
where λ = h/

√
2mkBTc is the thermal de Broglie wavelength. In both

plots, we have taken d = 0.95.

scaled upon symmetric insertion of a single barrier in har-
monic oscillator and particle in a box [37]. We show that
efficiency is maximized at certain temperature ratios for both
HO-QSHE and PIB-QSHE. However, the work extracted can
be maximized for PIB-QSHE only at a certain temperature
ratio. It remains an open problem to find the reason behind this
contrasting behavior. In the low-temperature limit, efficiency
of both HO-QSHE and PIB-QSHE approach the Carnot effi-
ciency.

We would like to point out one important distinction be-
tween a harmonic oscillator and particle in a box. The two
systems differ in the way their specific heat capacity behaves
as a function of temperature. This is essentially a consequence
of the difference in the structures of the energy levels in a har-
monic oscillator and particle in a box. For a one-dimensional
harmonic oscillator, the heat capacity per particle increases
monotonically with temperature and asymptotically reaches
kB in the infinite temperature limit. On the other hand, for a
one-dimensional particle in a box, the heat capacity per parti-
cle starts to increase with temperature and attains a maximum
value of approximately 9kB/16 and in the high-temperature
limit approaches kB/2 from the above [48]. A careful analysis
of these facts will provide more insights into the working
principle of degeneracy-assisted quantum heat engines and
might help in resolving the aforementioned problem.

Quantum heat engines have already been realized on sev-
eral different systems, for instance, quantum dots [49], cold
bosonic ions [50], optomechanical systems [51], and liquid
NMR-based platforms [52]. The degeneracy-assisted quan-

tum heat engine proposed in this work may be practically
realized in the near future, and our theoretical analysis would
be useful in operating the quantum heat engine at optimal
conditions.

As we have mentioned earlier that efficiency of quantum
heat engines can go beyond the Carnot limit, it would be
interesting to see this effect for degeneracy-assisted quantum
heat engines by considering different type of baths. Another
interesting direction is to construct a quantum engine based
on entangled states of the harmonic oscillator (an infinite-
dimensional system). Entangled quantum heat engines based
on two-qubit systems [53–55] (a finite-dimensional system)
have already been proposed.
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APPENDIX: PARTICLE IN A BOX-BASED QUANTUM
STIRLING HEAT ENGINE: BACKGROUND MATERIAL

In the Appendix, we discuss quantum Stirling heat engine
with a particle in a box as the working medium (PIB-QSHE)
[17]. We consider three different scenarios in detail: (1) sym-
metric insertion of a single barrier, (2) symmetric insertion
of multiple barriers, and (3) asymmetric insertion of a single
barrier.

1. Symmetric insertion of single barrier

We first consider symmetric insertion of single barrier in a
box of length 2a.

a. First step

In the first step, we insert a barrier in the middle of the
box, which is coupled to a thermal bath at temperature Th.
The insertion of the barrier is done in a quasistatic manner, so
that the system is in equilibrium with the thermal bath during
the entire process. For the working medium as a particle of
mass m confined in a one-dimensional box of length 2a, the
nth energy level is given as

En = n2h̄2π2

2m(2a)2
with n = 1, 2, 3, . . . . (A1)

Therefore, the expression for the partition function Z1 can be
written as

Z(1) =
∞∑

n=1

e− En
kBTh =

∞∑
n=1

e
− n2π2 h̄2

2m(2a)2kBTh . (A2)

The partition function Z1 can also be expressed in terms of
Jacobi 
 functions as

Z(1) = 1
2

[ − 1 + 
3
(
0, e

π2 h̄2

2m(2a)2kBTh

)]
, (A3)
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where 
3(z, q) is defined as


3(z, q) = 1 + 2
∞∑

n=1

qn2
cos(2nz). (A4)

The final state obtained after the isothermal process by the
quasistatic insertion of the barrier introduces an additional
constraint that the probability amplitude of the wave function
should be exactly zero in the middle of the box, as well as at
the boundaries of the box. Consequently, the wave functions
with odd quantum number are “raised” in energy to the next
even-numbered energy state. Hence, the energy states with
even quantum number are now doubly degenerate. The eigen-
states of the new system are given as

En = (2n)2π2h̄2

2m(2a)2
with n = 1, 2, 3, . . . . (A5)

Thus, the partition function can be expressed as

Z(2) =
∞∑

n=1

2e
− (2n)2π2 h̄2

2m(2a)2kBTh = 2Za
Th

, (A6)

where

Za
Th

=
∞∑

n=1

e
− n2π2 h̄2

2ma2kBTh

is the partition function of a particle in a box of length a
attached to a bath at temperature Th. In terms of the Jacobi

 function, the partition function Z(2) of the final state is
obtained as

Z(2) = 2
{

1
2

[ − 1 + 
3
(
0, e

π2 h̄2

2ma2kBTh

)]}
. (A7)

The heat absorbed in the process is

Q12 = U(2) − U(1) + kBTh ln Z(2) − kBTh ln Z(1). (A8)

The change in internal energy is

�U12 = U(2) − U(1) = − ∂

∂βh
[ln Z(2) − ln Z(1)]. (A9)

Thus, the work done in the process can be directly written as
following by the first law of thermodynamics:

W12 = Q12 − �U12 = kBTh ln Z(2) − kBTh ln Z(1). (A10)

b. Second step

In this step, the system is attached with a cold bath at
temperature Tc after disconnecting it from the hot bath at
temperature Th. This results in lowering the temperature of
the system from Th to Tc.

The partition function of the final state can be written as

Z(3) =
∞∑

n=1

2e
− n2π2 h̄2

2ma2kBTc . (A11)

In terms of the Jacobi 
 function, the expression turns out to
be

Z(3) = [ − 1 + 
3
(
0, e

π2 h̄2

2ma2kBTc
)]

. (A12)

Since no mechanical work is done (W23 = 0), the heat lost
is equal to the change in internal energy:

Q23 = U(3) − U(2) = −∂ ln Z(3)

∂βc
+ ∂ ln Z(2)

∂βh
. (A13)

c. Third step

In the next step, the barrier is lifted in a quasistatic manner
such that the system is in equilibrium with the thermal bath
at temperature Tc during the whole process. This brings the
system to the same energy level structure as that of the initial
state (1). The partition function of the final state is given as

Z(4) =
∞∑

n=1

e
− n2π2 h̄2

2m(2a)2kBTc ,

= 1

2

[ − 1 + 
3
(
0, e

π2 h̄2

2m(2a)2kBTc
)]

. (A14)

The heat lost at end of the process is obtained in terms of the
partition functions as

Q34 = U(4) − U(3) + kBTc ln Z(4) − kBTc ln Z(3). (A15)

The work done in the process is

W34 = Q34 − �U34 = kBTc ln Z(4) − kBTc ln Z(3), (A16)

where �U34 is U(4) − U(3).

d. Fourth step

In the final step, the system is connected to a thermal bath
at temperature Th > Tc after disconnecting it from the thermal
bath at temperature Tc. The temperature of the system is raised
from Tc to Th during this process, and the system is restored to
the initial state (1). The heat absorbed by the system is given
as

Q41 = −∂ ln Z(1)

∂βh
+ ∂ ln Z(4)

∂βc
. (A17)

These four processes comprise one complete cycle of the heat
engine. The net work done by the heat engine in one complete
cycle is given as

Wnet = W12 + W34

= kBTc ln
Z(4)

Z(3)
+ kBTh ln

Z(2)

Z(1)
. (A18)

Further, the total heat absorbed by the system can be written
as

Qin = Q12 + Q41. (A19)

The efficiency η for the cycle is given as

η = Wnet

Qin
= 1 + Q23 + Q34

Q12 + Q41
. (A20)

More details about PIB-QSHE are available in [17].

2. Symmetric insertion of multiple barriers

We now generalize the PIB-QSHE to the scenario where
we insert N barriers symmetrically into the box. To understand
the changes in the energy levels, let us consider the insertion
of two barriers symmetrically into the box of length 2a. This
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divides the box into three equal parts, each of length 2a/3. The
energy levels which have nodes falling on the barrier positions
remain unchanged, while the other energy levels shift up to
the nearest unchanged energy level. This renders an energy
level structure where each energy state is threefold degenerate.
Similarly, for symmetric insertion of N barriers, we obtain an
energy level structure with N-fold degeneracy.

The expression for partition functions at various four stages
of the Stirling cycle, as mentioned in Appendix A 1, for sym-
metric insertion of N barriers is given as follows:

Z(1) =
∞∑

n=1

e
− n2π2 h̄2

2m(2a)2kBTh

= 1

2

[ − 1 + 
3
(
0, e

π2 h̄2

2m(2a)2kBTh

)]
, (A21)

Z(2) = N
∞∑

n=1

e
− n2π2 h̄2

2m(2a/N )2kBTh

= N

{
1

2

[ − 1 + 
3
(
0, e

π2 h̄2

2m(2a/N )2kBTh

)]}
, (A22)

Z(3) = N
∞∑

n=1

e
− n2π2 h̄2

2m(2a/N )2kBTc

= N

{
1

2

[ − 1 + 
3
(
0, e

π2 h̄2

2m(2a/N )2kBTc
)]}

, (A23)

Z(4) =
∞∑

n=1

e
− n2π2 h̄2

2m(2a)2kBTc

= 1

2

[ − 1 + 
3
(
0, e

π2 h̄2

2m(2a)2kBTc
)]

. (A24)

Using these partition functions, we can write the correspond-

ing work (A18) and efficiency equation (A20).

3. Asymmetric insertion of single barrier

We insert a barrier asymmetrically into the box such that it
is divided into two parts of length x and y with x + y = 2a.

The energy eigenstates for a particle in a box of length x
and y is given as follows:

Ei =
∞∑

i=1

e− i2π2 h̄2

2mx2 with i = 1, 2, 3, . . . (A25)

and

E ′
i =

∞∑
i=1

e
− i′2π2 h̄2

2my2 with i′ = 1, 2, 3, . . . . (A26)

The energy level structure is a collection of all these energy
eigenstates corresponding to the two boxes. Therefore, the
partition function after the asymmetric insertion of barrier
is the sum of Boltzmann factor over the whole energy level
structure, i.e., all the energy eigenstates corresponding to the
two boxes.

The expression for various partition functions at the four
stages of the Stirling cycle, as discussed in Appendix A 1, for
asymmetric insertion of a single barrier is given as follows:

Z(1) =
∞∑

n=1

e
− n2π2 h̄2

2m(2a)2kBTh

= 1

2

[ − 1 + 
3
(
0, e

π2 h̄2

2m(2a)2kBTh

)]
, (A27)

Z(2) =
∞∑

n=1

e
− n2π2 h̄2

2mx2kBTh +
∞∑

n=1

e
− n2π2 h̄2

2my2kBTh

= 1

2

[ − 1 + 
3
(
0, e

π2 h̄2

2mx2kBTh

)]

+1

2

[ − 1 + 
3
(
0, e

π2 h̄2

2my2kBTh

)]
, (A28)

Z(3) =
∞∑

n=1

e
− n2π2 h̄2

2mx2kBTc +
∞∑

n=1

e
− n2π2 h̄2

2my2kBTc

= 1

2

[ − 1 + 
3
(
0, e

π2 h̄2

2mx2kBTc
)]

+1

2

[ − 1 + 
3
(
0, e

π2 h̄2

2my2kBTc
)]

, (A29)

Z(4) =
∞∑

n=1

e
− n2π2 h̄2

2m(2a)2kBTc

= 1

2

[ − 1 + 
3
(
0, e

π2 h̄2

2m(2a)2kBTc
)]

. (A30)

The above partition functions can be utilized to write the
work (A18) and efficiency equation (A20). We note that for
x = y, the situation becomes the same as the symmetric in-
sertion of a single barrier case, which has been dealt with in
Appendix A 1.
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