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We introduce a powerful analytic method to study the statistics of the number NA(γ ) of eigenvalues inside
any smooth Jordan curve γ ∈ C for infinitely large non-Hermitian random matrices A. Our generic approach can
be applied to different random matrix ensembles of a mean-field type, even when the analytic expression for the
joint distribution of eigenvalues is not known. We illustrate the method on the adjacency matrices of weighted
random graphs with asymmetric couplings, for which standard random-matrix tools are inapplicable, and obtain
explicit results for the diluted real Ginibre ensemble. The main outcome is an effective theory that determines the
cumulant generating function of NA via a path integral along γ , with the path probability distribution following
from the numerical solution of a nonlinear self-consistent equation. We derive expressions for the mean and the
variance of NA as well as for the rate function governing rare fluctuations of NA(γ ). All theoretical results are
compared with direct diagonalization of finite random matrices, exhibiting an excellent agreement.
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I. INTRODUCTION

Since the pioneering work of Wigner [1], the study of
random matrices has grown into a mature research area,
with remarkable applications in physics, mathematics, biol-
ogy, statistics, and finance [2,3]. This general character stems
mainly from the versatility of random matrix ensembles,
which can be thought of as simple but nontrivial models of
strongly correlated systems.

The derivation of the joint probability distribution of eigen-
values (JPDE) is one of the most important successes of
random matrix theory [4], since spectral observables defined
in terms of the eigenvalues, including the spectral density
and correlation functions [2], can be computed directly from
the JPDE. For non-Hermitian random matrices with Gaussian
distributed elements, Ginibre deduced the JPDE for matrices
with complex and real quaternion entries [5]. Due to its simple
form, the JPDE for the complex Ginibre case can be mapped
in the Boltzmann distribution characterizing an electrostatic
system of interacting charges [5]. This electrostatic analogy is
at the core of the celebrated Dyson’s Coulomb fluid approach
[6], where the spectral observables follow from the partition
function of an analogous physical system. The situation is
considerable more difficult in the Ginibre ensemble with real
matrix elements, owing to the existence of a finite fraction
of real eigenvalues. In fact, the JPDE for the real Ginibre
ensemble was derived only more than 25 years after Ginibre’s
paper in a breakthrough work by Lehmann and Sommers [7]
(see also [8,9]). In this case, the electrostatic analogy becomes
more complicated, as some image charges have to be incor-
porated and the eigenvectors couple to the eigenvalues in a
nontrivial way (see [6,10] for further details).

Among several spectral observables that one may study
in random matrix theory, one of particular importance with
several applications is the distribution of the number ND of
eigenvalues contained in a certain domain D delimited by
a smooth Jordan curve, the so-called number statistics or
full counting statistics [2]. The study of the fluctuations of
ND is a rich mathematical problem on itself, and, likewise,
many problems are transformed into the task of counting how
many eigenvalues of a random matrix lie in a certain domain.
Examples in this context are the study of the ground state
of noninteracting fermions in a harmonic trap [11–15], the
number of stable directions around the stationary points of
disordered energy landscapes [16–18], the number of relevant
fluctuation modes in principal component analysis [19–21],
the localized or extended nature of eigenstates in disordered
quantum systems [22–24], and the stability of large interacting
biological systems [25,26], such as neural networks [27,28]
and ecosystems [29–31].

Due to the well-developed machinery of the Coulomb fluid
method, a complete picture of the typical and rare fluctuations
of ND has emerged for Gaussian Hermitian random matrices
with complex, real, and real quaternion entries [11–13,18].
For non-Hermitian random matrices, the question of how
many eigenvalues lie outside a disk in the complex plane has
been addressed in the case of the real Ginibre ensemble [32].
However, the number statistics has been fully studied only for
the complex Ginibre ensemble [14,15], for which there is a
simple electrostatic analogy for the JPDE, and, consequently,
the Coulomb fluid method is readily applied. Concerning the
shape of D, Refs. [14,15] consider circular domains D, while
results for noncircular domains have also been obtained by
establishing a relation between the Ginibre ensemble and the
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zeros of Gaussian analytic functions [33–35]. In contrast, re-
sults for non-Hermitian diluted matrices are scarce, and more
complicated noncircular domains are mathematically out of
reach in this case.

Ironically, non-Hermitian random matrices with real
entries are very relevant for applications, especially in
the study of high-dimensional nonequilibrium systems
[25,27–31,36,37], where the matrix entries model the pairwise
interactions between the system constituents [38]. Although
in certain cases it is possible to compute ND in terms
of Fredholm determinants or Pfaffians [3,6,39], there is no
generic analytic method to tackle the number statistics of
real asymmetric random matrices, particularly in the case of
sparse matrices, and the fluctuations of ND remain poorly
characterized.

In this work we design an analytic approach to determine
the fluctuations of the number ND of eigenvalues inside a
domain D ⊂ C of arbitrary shape. We show how the study
of the number statistics can be formulated for arbitrary en-
sembles of infinitely large non-Hermitian random matrices,
with real or complex elements, and without relying on the
analytic knowledge of the JPDE. In order to exemplify our
analytic method, we derive, using the replica method, explicit
results for the statistics of ND in the case of a diluted version
of the real Ginibre ensemble, where we consider symmetric
adjacency matrices of random graphs with asymmetric cou-
plings, for which an analytic expression for the JPDE is not
available. The main outcome is a set of effective equations,
valid for infinitely large random matrices, which determine
all the cumulants and the large deviation function controlling,
respectively, the typical and rare fluctuations of ND. The
exactness of our theoretical approach is fully supported by
numerical results obtained from the direct diagonalization of
finite random matrices.

Although the theory developed here can be used, in princi-
ple, to study any random-matrix ensemble, the success of its
application depends on the details of the particular ensemble
considered. The replica method, as discussed in Appendix B,
can be applied to various ensembles, provided they are of a
mean-field type [i.e., the coupling strengths in Eq. (13) are
independent of the distance between the spinors]. Examples
include the adjacency matrix of asymmetric Erdös-Rényi ran-
dom graphs, the adjacency matrix of directed random graphs
with arbitrary degree distributions [38], and non-Hermitian
random matrices with Gaussian distributed elements [5]. In
the latter case, we expect that finite-size corrections are
needed in order to take into account the slow dependency
of the number variance with respect to N [40]. The replica
calculation, as presented in Appendix B, does not apply to
non-Hermitian systems defined on finite dimensional lattices,
such as the Hatano-Nelson model [41] and optical lattices with
non-Hermitian disorder [42,43].

The paper is organized as follows. In the next section we
explain how the cumulant generating function of ND can
be written in terms of the partition function of an analo-
gous system. Section III introduces the ensemble of sparse
random matrices with asymmetric couplings considered here
and presents the effective theory for the cumulant generating
function in this case. We show numerical results for the diluted
real Ginibre ensemble in Sec. IV, and we conclude in the

last section. The paper also includes three appendices that
essentially explain how to calculate the cumulant generating
function for the ensemble of Sec. III using the replica method.

II. THE ANALYTIC METHOD FOR THE NUMBER
STATISTICS

Let λ1, . . . , λN be the eigenvalues of an N × N non-
Hermitian random matrix A drawn from a distribution P (A).
The number of eigenvalues inside a domain D ⊂ C enclosed
by a smooth Jordan curve γ = ∂D is given by

NA(γ ) = N
∫

D
dx dyρA(x, y), (1)

where ρA(x, y) is the density of eigenvalues around the point
z = x + iy:

ρA(x, y) = 1

N

N∑
i=1

δ(x − Reλi)δ(y − Imλi ). (2)

In the limit N → ∞, the statistics of NA(γ ) is encoded in the
cumulant generating function (CGF)

Fγ (μ) = − lim
N→∞

1

N
ln〈e−μNA(γ )〉, (3)

with 〈. . . 〉 denoting the ensemble average with the distribution
P (A). The derivatives of the CGF with respect to μ determine
the cumulants of NA(γ ). In particular, the intensive mean
Nκ1 = 〈NA〉 and variance Nκ2 = 〈N 2

A〉 − 〈NA〉2 read

κ1 = ∂Fγ (μ)

∂μ

∣∣∣∣∣
μ=0

, κ2 = −∂2Fγ (μ)

∂μ2

∣∣∣∣∣
μ=0

. (4)

The CGF also provides information about the atypically large
fluctuations of NA. In fact, the probability that NA = Nn
(0 � n � 1) decays, for N → ∞, as

Probγ [NA = Nn] � e−N�γ (n), (5)

where the rate function �γ (n) is determined by the Legendre-
Fenchel transform of the CGF [44,45]

�γ (n) = −infμ∈R[μn − Fγ (μ)]. (6)

Thus, our goal is precisely to calculate the CGF, since it
contains all information about the number statistics.

The first step is to understand how NA depends on A, so
that we can compute, in principle, the ensemble average in
Eq. (3). We rewrite the density of eigenvalues as [46]

ρA(x, y) = 1

Nπ
∂z∂z∗ ln det [(zIN − A)(zIN − A)†], (7)

where ∂z = 1
2 ( ∂

∂x − i ∂
∂y ), ∂z∗ = 1

2 ( ∂
∂x + i ∂

∂y ), and IN is the
N-dimensional identity matrix. Inserting the above equation
back in Eq. (1) and using the Stokes’ theorem, we obtain

NA(γ ) = −
∮

γ

dz

2π i
∂z ln QA(z, z∗), (8)

where

QA(z, z∗) = 1

det[(A − zIN )(A − zIN )†]
, (9)
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with (· · · )∗ and (· · · )† denoting complex and Hermitian con-
jugation, respectively. The arbitrary contour γ of integration
in Eq. (8) is traversed once along the counterclockwise di-
rection. By discretizing γ through a countable set of points
z1, . . . , zL, with zL+1 ≡ z1 and zl+1 ≡ zl + 
zl , we get the
formal identity

NA(γ ) = − 1

2π i
lim

L→∞

L∑
l=1

[ln QA(zl+1, z∗
l ) − ln QA(zl , z∗

l )],

(10)
and the CGF, Eq. (3), assumes the form

Fγ (μ) = − 1

N
ln

〈
L∏

l=1

[QA(zl+1, z∗
l )]n+ [QA(zl , z∗

l )]n−

〉
, (11)

where n± = ± μ

2π i . The limits N → ∞ and L → ∞ are
implicit in Eq. (11).

Although Eqs. (9) and (10) expose how NA depends on
A, the calculation of the ensemble average in Eq. (11), with
QA in its current form, seems a hopeless task. Using Gaussian
integrals, we will rewrite QA in a quadratic form, suitable
to compute the average 〈(· · · )〉 using methods of statistical
physics. Let us introduce the 2N × 2N block matrix

Fη(z, z∗) =
(

ηIN i(zIN − A)
i(zIN − A)† ηIN

)
, (12)

which is related to QA via QA = limη→0+ (det Fη )−1. The reg-
ularizer η > 0 ensures that Fη has a positive Hermitian part,
which enables us to represent QA as a Gaussian integral over
the spinors ψi ∈ C2 (i = 1, . . . , N)

QA(z, z∗) = lim
η→0+

∫ (
N∏

i=1

dψi dψ†
i

)

× exp

(
−

N∑
i=1

ψ†
i Mη(z, z∗)ψi + i

N∑
i j=1

ψ†
i Bi jψ j

)
,

(13)

where we introduced the 2 × 2 matrices

Mη(z, z∗) = ηI2 + i(zσ+ + z∗σ−),

Bi j = Ai jσ+ + A†
i jσ−, (14)

and the ladder operators

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (15)

Equation (13) is analogous to the partition function of a
system with N spinors placed on the sites of a graph and
coupled through the 2 × 2 matrices {Bi j}i, j=1,...,N , i.e., Bi j

quantifies the strength of the pairwise interactions between
ψi and ψ j . The graph structure and the distribution of
{Bi j}i, j=1,...,N are determined by the specific properties of
P (A).

The analogy of QA with a partition function suggests that
standard tools of statistical physics can be employed to cal-
culate the CGF. However, there is an additional problem:
the presence of the complex-valued exponents n± = ± μ

2π i
in Eq. (11) hampers any direct attempt to evaluate 〈(· · · )〉.

To overcome this difficulty, we invoke the main strategy of
the replica method [47,48] and compute, first, the ensemble
average in Eq. (11) considering n± ∈ N+. After performing
the limit N → ∞, the resulting Fγ (n±) for n± ∈ N+ is an-
alytically continued to its limiting value as n± → ± μ

2π i (see
Appendix B). Although we do not prove rigorously that we
can do such analytic continuation, the final equations of the
method are verified by exact numerical diagonalizations of a
particular random-matrix ensemble (see Sec. IV). Note that
the product over z1, . . . , zL and the presence of the exponents
n± ∈ N+ in Eq. (11) do not formally change the quadratic
form appearing inside 〈(· · · )〉, a feature that is independent
of the non-Hermitian random-matrix ensemble under study.
In fact, the derivation of Eq. (B8) in Appendix B is fully
general, i.e., valid for any contour γ ∈ C and for arbitrary
non-Hermitian random-matrix ensembles, but the success in
computing the ensemble average 〈(· · · )〉 in Eq. (B8) and ob-
taining final equations for the CGF using the replica approach
will depend on the choice of P (A), as emphasized in the
previous section.

III. APPLICATION OF THE METHOD
TO SPARSE RANDOM MATRICES

In the first part of this section we define an ensemble of
sparse random matrices with asymmetric coupling strengths.
In the second part, we apply our method to this ensemble and
derive a set of equations that determine the CGF. These results
will be useful on the next section, where we present explicit
results for a diluted real Ginibre ensemble.

A. Sparse random matrices with asymmetric weights

In this work we illustrate the theory on the adjacency
matrix of random graphs with asymmetric couplings [38].
It is convenient to write the matrix elements as Ai j = ci jJi j ,
where ci j ∈ {0, 1}, ci j = c ji, and cii = 0. The binary entries
{ci j}i, j=1,...,N encode the graph structure and {Ji j}i, j=1,...,N rep-
resents the asymmetric interaction strengths, i.e., Ji j weights
the influence of site i on site j. The random variables
{ci j}i, j=1,...,N are drawn from

pc({ci j}) =
∏
i< j

[
c

N
δci j ,1 +

(
1 − c

N

)
δci j ,0

]
, (16)

where c ∈ R+ is independent of N . Equation (16) yields
sparse random matrices A with an average number c of
nonzero elements per row and column in the limit N → ∞.
The couplings {Ji j}i, j=1,...,N are independent identically dis-
tributed random variables drawn from a distribution pJ . The
real asymmetric matrix A corresponds to the adjacency matrix
of a weighted random graph with directed edges [38], where
the number of neighbors connected to each node follows a
Poisson distribution with average c [38,49]. Directed random
graphs are key models of networked systems, such as the
Internet, neural networks, and food webs (see [50] and refer-
ences therein). The analytic formula for the JPDE of A is not
known for sparse random-matrix ensembles, which renders
traditional tools of random matrix theory unsuitable to study
the number statistics.
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B. The effective problem for the cumulant generating function

In Appendix B we explain how one calculates the average
〈(· · · )〉 for the random-matrix ensemble given by Eq. (16),
takes the limit N → ∞ through the solution of a saddle-point
integral, and finally performs the replica limit n± → ± μ

2π i .
The main outcome is an effective theory defined over the space
of functions mapping each point z along the curve γ onto a
pair of 2 × 2 matrices (�(z), R(z)). The CGF is determined
from

Fγ (μ) = − c

2
+ ln

〈
e− μ

2π i

∮
γ

dzTr[�−1(z)R(z)]〉
{�,R}

+ c

2

〈〈
e− μ

2π i

∮
γ

dzTr[G(z)H (z)]〉
J

〉
{�,R},{�′,R′}, (17)

where we defined the auxiliary 2 × 2 matrices at z ∈ γ

G(z) = [
I2 + �′(z)J�(z)J†

]−1
,

H (z) = �′(z)JR(z)J† + R′(z)J�(z)J†.
(18)

The symbol 〈. . . 〉J stands for the average over

J = Jσ+ + J ′σ−, (19)

with the real-valued interaction strengths J and J ′ indepen-
dently drawn from pJ . The brackets 〈(· · · )〉{�,R} denote the
average over all possible paths {�, R} along the curve γ . For
an arbitrary functional S[{�, R}], we have

〈S[{�, R}]〉{�,R} =
∫

d{�, R}w[{�, R}] S[{�, R}], (20)

where w[{�, R}] is the path probability. A single path
{�, R} can be thought of as the limit L → ∞ of a
sequence {�(zl ), R(zl )}l=1,...,L, with zl ∈ γ , while the
path integration measure formally reads d{�, R} =
limL→∞

∏L
l=1 d�(zl )dR(zl ). The path probability distribution

w[{�, R}] follows from the solution of the self-consistency
equation

w[{�, R}] = 1

�

∞∑
k=0

e−cck

k!

∫ (
k∏

r=1

d{Rr,�r}w[{Rr,�r}]
)

× eμW [{�,R}]〈δ(F)(R − �k )δ(F)(� − χk )〉J1,...,k
,

(21)

where 〈. . . 〉J1,...,k is the average over J1, . . . , Jk , δ(F) represents
the functional Dirac delta in the path space, and � ensures
the normalization of w[{�, R}]. We have also introduced the
2 × 2 matrices at z ∈ γ :

χk (z) =
[

Mη(z, z) +
k∑

r=1

Jr�r (z)J†
r

]−1

,

�k (z) = −χk (z)

[
iσ+ +

k∑
r=1

JrRr (z)J†
r

]
χk (z).

The statistical contribution of each path in Eq. (21) is also
weighted according to an exponential factor, controlled by

W [{�, R}] =
∮

γ

dz

2π i
Tr

[
�−1(z)R(z)

]
. (22)

Equation (21) must be solved in the limit η → 0+.

IV. NUMERICAL RESULTS FOR SPARSE
RANDOM MATRICES

Equation (17) for the CGF, together with Eq. (21) for
the path probability, form the main outcome of our work,
from which one can study, in the limit N → ∞, the statistics
of NA for an ensemble of asymmetric and sparse random
matrices defined by Eq. (16). In general, Eq. (21) has no
explicit solution, and therefore one has to resort to a popula-
tion dynamics approach [51,52] to obtain numerical solutions
for w[{�, R}]. In this numerical procedure, we discretize a
single path over γ through a finite set {�(zi ), R(zi)}i=1,...,L

containing L two-dimensional random matrices that are sam-
pled consistently with Eq. (21) via a Monte Carlo scheme. The
discrete representation of w[{�, R}] as the joint distribution
of {�(zi), R(zi )}i=1,...,L does not factorize, because different
points along γ are correlated through the randomness of the
graph ensemble.

Let us present explicit results for the fluctuations of NA

and compare our effective theory for N → ∞ with direct
diagonalization of finite random matrices. The mean and the
variance of NA follow from Eqs. (4):

κ1 = −〈W [{�, R}]〉{�,R}

− c

2

〈∮
γ

dz

2π i
〈Tr[G(z)H (z)]〉J

〉
{�,R},{�′,R′}

, (23)

κ2 = 〈
(W [{�, R}])2

〉
{�,R} − 〈W [{�, R}]〉2

{�,R}

+ c

2

〈〈(∮
γ

dz

2π i
Tr[G(z)H (z)]

)2〉
J

〉
{�,R},{�′,R′}

, (24)

where the path probability w[{�, R}] appearing in κ1 and κ2

is calculated at μ = 0. Figure 1 depicts the first two cumu-
lants as a function of the radius R defining a disk centered
at z = 0, for average connectivities c = 3 and c = 10, and
a real Gaussian distribution pJ with zero mean and variance
1/c; this corresponds to a diluted version of the real Ginibre
ensemble. Each shaded region delimits the error involved
in the numerical solution of Eq. (21) using the population
dynamics algorithm (see Appendix C). Figure 1 compares
our theoretical findings with results obtained from the exact
numerical diagonalizations of N × N adjacency matrices A
with different N . The diagonalization results for the second
cumulant show a stronger dependence with the matrix dimen-
sion, but they approach the theoretical results for increasing N .

For small c, the first two cumulants converge to a finite
value as R → 0+, due to the existence of a δ-peak in ρ(x, y)
at z = 0 [53]. Thus, the theory allows us to calculate the
average and the variance of the weights characterizing the
δ-peak contributions to the eigenvalue distribution in the limit
N → ∞. For larger values of c, the δ-peak disappears and
the first cumulant resembles the behavior κ1 ∝ R2 observed in
the complex Ginibre ensemble [15]. For R  0, κ1 is slightly
bigger than R2, and it approaches R2 from above as c is
increased. The behavior of the variance of NA for the diluted
Ginibre ensemble is even more different than in the complex
Ginibre ensemble [14,15]. Since κ2 is finite for R > 0, the
variance of NA scales linearly with N � 1, akin to the weak
repulsion between the eigenvalues of sparse random matrices
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FIG. 1. The intensive mean κ1 (left) and variance κ2 (right) of the number of eigenvalues NA within a disk of radius R centered at the origin
of the complex plane. The random matrix A represents the adjacency matrix of random graphs [see Eq. (16)] with mean connectivities c = 3
(red solid line) and c = 10 (orange solid line). The asymmetric interactions are independently drawn from a Gaussian distribution pJ with
zero mean and variance 1/c. The theoretical solid lines are obtained from the solutions of Eqs. (23) and (24) using the population dynamics
algorithm, while the markers are numerical diagonalization results of N × N random matrices. For the first cumulant we consider N = 1500,
and for the second cumulant the values of N are indicated on the figure. The diagonalization results are averaged over 104 samples and the
process is repeated 10 times, yielding the scatter plots shown in the figures; for the theoretical lines, the contour of the disk is discretized into
3000 points, and the population dynamics algorithm, employing a population size of 104, is iterated 4 × 107 times.

[52,54,55]. This scaling behavior is different from the com-
plex Ginibre ensemble, where the dependence of the variance
of NA with the system size shows three remarkably different
regimes [14,15]. The second cumulant, shown in Fig. 1, dis-
plays a nonmonotonic behavior with a maximum at a certain
radius, whose location approaches R = 1 for increasing c,
consistently with the sharp boundary of ρ(x, y) in the dense
limit c → ∞ [15,53]. Besides the difference in the scaling of
the variance of NA with respect to N , the behavior of κ2 in
Fig. 1 is also different from the one of the complex Ginibre
ensemble. In the latter case, the second cumulant is essentially
a linear function of R in the interval R ∈ [0, 1], and it decays
rapidly to zero near R = 1 [15]. For the diluted Ginibre en-
semble, we do not see such strong linear regime for different
values of c up to c = 10. One can also notice that the error bars
of κ2 increase for lower values of c. This is because low values
of c favor the appearance of isolated finite clusters in the cor-
responding random graph. The eigenvectors become localized
on these finite clusters, which induces stronger fluctuations in
the spectra, increasing the size of the error bars [56].

In Fig. 2 we present the theoretical results and the direct
diagonalization results for the rate function �γ (n) controlling
the large deviations of the fraction n = NA

N of eigenvalues in-
side a disk of radius R = 0.5. The shaded area in Fig. 2 bounds
the error involved in the numerical solution of Eq. (21). The
direct diagonalization results in Fig. 2 consistently approach
the theoretical curve for increasing N , supporting the ex-
actness of our theory. A striking property is the asymmetry
of �γ (n) around its minimum, located at n = κ1. Sparse
and asymmetric random matrices normally contain delocal-
ized eigenvectors around z = 0 and localized eigenvectors
close to the boundary of ρ(x, y) [57,58]. Since the eigen-
value repulsion is stronger within the delocalized region [58],
large fluctuations of n corresponding to an attraction of more
eigenvalues to inside the disk are less likely, resulting in a
rate function that grows faster for n > κ1 in comparison to

n < κ1. This property is at variance with the Ginibre ensemble
[15,32], whose rate function �γ (n) is symmetric around its
minimum due to the absence of localized eigenvectors.

V. CONCLUSIONS

While in the last decades there has been a leap for-
ward in understanding the statistical properties related to the

FIG. 2. Rate function �γ (n) for the fraction n of eigenvalues of A
inside a disk of radius 0.5 centered at the origin of the complex plane
[see Eq. (5)]. The matrix A is the adjacency matrix of a random graph
with mean connectivity c = 4 and asymmetric couplings drawn from
a Gaussian distribution pJ with zero mean and variance 1/c. The red
solid line corresponds to our theoretical findings for N → ∞, while
the markers are the results of numerical diagonalizations of N × N
random matrices. The diagonalization results are averaged over 107

samples and the process is repeated 10 times, yielding the scatter
plots in the figure; for the theoretical line, the contour of the disk is
discretized over 3000 points, and the population dynamics algorithm,
with a population size of 104, is iterated 4 × 107 times.
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spectrum of Hermitian random matrices, similar studies for
non-Hermitian matrices, in particular those for sparse matri-
ces, are still in their infancy. This is mostly due to a lack of
mathematical tools to analyze systems with asymmetric inter-
actions. In this paper we have developed a powerful technique
to study the typical and atypical eigenvalue fluctuations of
infinitely large non-Hermitian random matrices A, and applied
it to a diluted real Ginibre ensemble.

The method does not rely on the analytic knowledge of
the joint probability distribution of eigenvalues, and it can
be applied to various random-matrix ensembles of a mean-
field type, where the random couplings in Eq. (13) do not
depend on the distance between the sites. We have formulated
the theory for arbitrary non-Hermitian random matrices [see
Eq. (B8)], but we have applied the replica method and derived
explicit results for an ensemble of weighted random graphs
with asymmetric couplings [38]. The main outcome is an ef-
fective theory for the cumulant generating function of NA(γ ),
from which we computed the first two cumulants of NA and
its large deviation behavior. In particular, we found that the
large deviation probability of NA is asymmetric around its
minimum, due to the existence of both delocalized and local-
ized eigenvectors in the spectra of sparse asymmetric random
matrices.

In the case of sparse random matrices, the variance of
NA scales linearly with N , while 〈N 2

A〉 − 〈NA〉2 grows very
slowly with N in the case of Gaussian random matrices.
This fundamental difference has important consequences to
the application of the replica method. Indeed, the scaling
〈N 2

A〉 − 〈NA〉2 ∝ ln N observed in Gaussian Hermitian ran-
dom matrices is recovered from the replica method when
finite-size corrections are included in the saddle-point inte-
gral [40]. For Gaussian non-Hermitian random matrices, we
expect that the situation is analogous, i.e., the results for the
Ginibre ensemble [14,15] are reproduced from the formalism
of Appendix B if finite-size fluctuations are taken into account
in the solution of the saddle-point integral. This is an interest-
ing open problem that we will consider in a future work.

The generality of our approach opens the door to inves-
tigate the fluctuations of other observables describing the
spectra of directed random networks, such as the fraction of
real eigenvalues, the index, and the spectral radius. All these
quantities play an important role to characterize the stability
of large biological systems [26,30–32].
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APPENDIX A: WRITING THE NUMBER
OF EIGENVALUES OF A MATRIX INSIDE A CURVE

AS A CONTOUR INTEGRAL

In this Appendix we present a method to obtain Eq. (8) for
an arbitrary N × N non-Hermitian matrix A. This approach is
different from the one that is usually found in the literature.

Consider a region � of the complex plane enclosed by a
smooth Jordan curve γ . Let λ1, . . . , λN be the eigenvalues of

A, and define the function

EA(z, z∗) =
N∑

i=1

1

z − λi
. (A1)

By using the residue theorem, we perform the contour integral
of EA(z, z∗) and get the number of eigenvalues of A inside γ :

NA =
∮

γ

dz

2π i
EA(z, z∗). (A2)

Next, we find a nice expression for EA(z, z∗). Consider the
following function:

ϕA(z, z∗) =
N∑

i=1

ln[(z − λi )(z
∗ − λ∗

i )]. (A3)

Clearly we have that ∂zϕA(z, z∗) = EA(z, z∗). Finally, note that
ϕA(z, z∗) = − ln QA(z, z∗), where QA is given by (9). From
here, Eq. (8) follows immediately.

APPENDIX B: COMPUTING THE CUMULANT
GENERATING FUNCTION FOR RANDOM GRAPHS

WITH ASYMMETRIC EDGES

In this Appendix we derive an expression for the cumulant
generating function (CGF) of NA(γ ) for the case of sparse
random matrices A that correspond with the adjacency ma-
trices of random graphs with asymmetric edges, as defined
in the main text [see Eq. (16)]. First, we rewrite Eq. (8) in a
more suitable form. We discretize the contour integral along
γ by introducing a set of points z1, . . . , zL such that zL+1 = z1

and zl+1 = zl + 
zl for all l . Equations (8) and (3) can be
reformulated as

NA(γ ) = − 1

2π i
lim

L→∞

L∑
l=1

[ln QA(zl+1, z∗
l ) − ln QA(zl , z∗

l )]

(B1)

and

Fγ (μ) = − lim
N→∞

1

N
lim

L→∞
lim

n±→± μ

2π i

ln

〈
L∏

l=1

[QA(zl+1, z∗
l )]n+

× [QA(zl , z∗
l )]n−〉, (B2)

respectively. Note that, in the previous equation, we com-
muted the ensemble average with the limit L → ∞. Our final
theoretical expressions are confirmed by direct diagonaliza-
tion results (see Sec. IV), which strongly suggests that the
above working hypothesis is valid. The next step is to express
QA as a multivariate Gaussian integral. We first introduce the
block matrix

Fη(z, z∗) =
(

ηIN i(zIN − A)
i(zIN − A)† ηIN

)
, (B3)

which is related to QA via QA(z, z∗) =
limη→0+ (det Fη(z, z∗))−1. The parameter η > 0 simply
ensures that Fη has a positive Hermitian part, thus allowing
us to represent QA as a multivariate Gaussian integral over a
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set of spinors ψi ∈ C2, i = 1, . . . , N ,

QA(z, z∗) = lim
η→0+

∫ [
N∏

i=1

dψi dψ
†
i

π2

]
eH[{ψi}], (B4)

with

H[{ψi}] = −
N∑

i=1

ψ
†
i Mη(z, z∗)ψi + i

N∑
i, j=1

ψ
†
i Bi jψ j,

Mη(z, z∗) = ηI2 + i(zσ+ + z∗σ−),

Bi j = Ai jσ+ + A†
i jσ−, (B5)

and σ+, σ− are the usual ladder operators

σ+ =
(

0 1
0 0

)
, σ− =

(
0 0
1 0

)
. (B6)

Since ψi = (ui, vi )T is a spinor with components ui, vi ∈ C2,
the measure dψi dψ

†
i is given by

dψi dψ
†
i

π2
= dReui dImui

π

dRevi dImvi

π
. (B7)

We will also write d�i ≡ dψi dψ
†
i /π2 in order to shorten the

notation. Following the main strategy of the replica approach
and assuming that n± are positive integers in Eq. (B2), we can
rewrite this expression as follows:

e−NFγ (μ) =
∫ [

N∏
i=1

L∏
l=1

n+∏
a=1

d�i,la

][
N∏

i=1

L∏
l=1

n−∏
b=1

d�i,lb

]
exp

[
−

N∑
i=1

L∑
l=1

(
n+∑

a=1

ψ
†
i,laMη(zl+1, z∗

l )ψi,la +
n−∑

b=1

φ
†
i,lbMη(zl , z∗

l )φi,lb

)]

×
〈

exp

[
i

N∑
i< j

L∑
l=1

{
n+∑

a=1

(
ψ

†
i,laBi jψ j,la + ψ

†
j,laB†

i jψi,la
) +

n−∑
b=1

(
φ

†
i,lbBi jφ j,lb + φ

†
j,lbB†

i jφi,lb
)}]〉

, (B8)

where, for simplicity, we have set Aii = 0. We have also as-
sumed that the limits appearing in Eq. (B2) are implicit. The
next step is to calculate the average over the distribution of
A. Thus, we must consider a particular form for the ensemble
of random matrices. Here we will present results for the adja-
cency matrix A of weighted Poisson graphs with asymmetric
edges, where the matrix elements are defined as Ai j = ci jJi j ,
and {ci j}i, j=1,...,N are drawn from the distribution

pc({ci j}) =
∏
i< j

[ c

N
δci j ,1 +

(
1 − c

N

)
δci j ,0

]
,

with ci j = c ji and cii = 0. The number of links connected to
an arbitrary node follows a Poisson distribution with average
c ∈ R+. The binary random variables {ci j}i, j=1,...,N tell who
is connected to whom in the graph, while the real-valued
variables {Ji j}i, j=1,...,N control the strength of the pairwise
interactions among different sites. These random variables
are independently drawn from a distribution pJ , so that the
weights of the directed links i → j and j → i are differ-
ent, and the random matrix A is asymmetric. After carrying
out the average over A, we obtain the following expression
for N � 1:

e−NFγ (μ) =
∫ [

N∏
i=1

L∏
l=1

n+∏
a=1

d�i,la

][
N∏

i=1

L∏
l=1

n−∏
b=1

d�i,lb

]
exp

[
−

N∑
i=1

L∑
l=1

(
n+∑

al =1

ψ
†
i,al

Mη(zl+1, z∗
l )ψi,al +

n−∑
b=1

φ
†
i,lbMη(zl , z∗

l )φi,lb

)]

× exp

[
c

2N

N∑
i, j=1

〈
exp

[
i

L∑
l=1

{
n+∑

a=1

(ψ†
i,laJψ j,la + ψ

†
j,laJ†ψi,la) +

n−∑
b=1

(φ†
i,lbJφ j,lb + φ

†
j,lbJ†φi,lb)

}]
− 1

〉
J

]
, (B9)

where 〈(· · · )〉J stands for the average over

J = Jσ+ + J ′σ−, (B10)

with the random interactions J and J ′ independently drawn from pJ .
Next, in order to decouple sites, we introduce the following order-parameter function:

P(�,�) = 1

N

N∑
i=1

L∏
l=1

[
n+∏

a=1

δ(ψla − ψi,la)

][
n−∏

b=1

δ(φlb − φi,lb)

]
, (B11)

with notation P(�,�) ≡ P(�,�; {�i,�i}N
i=1), and where we have introduced the shorthand notations � = {ψla} and � = {φlb},

for l = 1, . . . , L, a = 1, . . . , n+, and b = 1, . . . , n−. Analogously, we have also defined �i ≡ {ψi,la} and �i ≡ {φi,la}, with
i = 1, . . . , N . After some tedious algebra, we can write e−NFγ (μ) as the following path integral over P(�,�) and the conjugate
order parameter P̂(�,�),

e−NFγ (μ) =
∫

D[{P, P̂}]e−NS[{P,P̂}], (B12)
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where S[{P, P̂}] is defined as follows:

S[{P, P̂}] = − ln

{∫
d� d� exp

[
−

L∑
l=1

(
n+∑

a=1

ψ†
al

M(zl+1, z∗
l )ψal +

n−∑
b=1

φ
†
bl

M(zl , z∗
l )φbl

)
− iP̂(�,�)

]}

− c

2

∫
d� d�′ d�d�′P(�,�)P(�′,�′)

〈
ei

∑L
l=1

{∑n+
a=1[ψ†

laJψ ′
la+(ψ ′

la )†J†ψla]+∑n−
b=1[φ†

lbJφ′
lb+(φ′

lb)†J†φlb]
}

− 1
〉
J

− i
∫

d� d�P(�,�)P̂(�,�). (B13)

1. The saddle-point method and the replica symmetric ansatz

Using the saddle-point method, the integral in
Eq. (B12) is solved in the limit N → ∞, resulting in∫
D[{P, P̂}]e−NS[{P,P̂}] � e−NS[{P0,P̂0}], where P0, P̂0 are a pair

of functions that extremize the functional S[{P, P̂}]. To be
able to compute the limit N → ∞, we assume that we can

interchange the limit N → ∞ with the limits n → 0, L → ∞,
and η → 0. We point out once more that the final outcome
of our theory is independently confirmed by numerical
diagonalization results, which strongly support the validity of
such interchange of the order of limits.

Thus they obey the following saddle-point equations:

−iP̂(�,�) = c
∫

d� d�P(�′,�′)
〈
ei

∑L
l=1 {∑n+

a=1 [ψ†
laJψ ′

la+(ψ ′
la )†J†ψla]+

∑n−
b=1 [φ†

lbJφ′
lb+(φ′

lb)†J†φlb]} − 1
〉
J
, (B14)

P(�,�) = exp
{−∑L

l=1

[∑n+
a=1 ψ

†
laMη(zl+1, z∗

l )ψla + ∑n−
b=1 φ

†
lbMη(zl , z∗

l )φlb
] − iP̂(�,�)

}
∫

d�′d�′ exp
{−∑L

l=1

[∑n+
a=1 ψ ′†

laMη(zl+1, z∗
l )ψ ′

la + ∑n−
b=1 φ′†

lbMη(zl , z∗
l )φ′

lb

] − iP̂(�′,�′)
} , (B15)

where, for simplicity, we have dropped the subindex zero. To push further the derivation, we assume the replica symmetric (RS)
ansatz

P(�,�) =
∫ [

L∏
l=1

d	l d�l

]
ω
({	l ,�l}L

l=1

) L∏
l=1

[
n+∏

a=1

e−ψ
†
la	

−1
l ψla

det 	l

n−∏
b=1

e−φ
†
lb�

−1
l φlb

det �l

]
, (B16)

where 	l and �l are 2 × 2 complex matrices defined for each zl ∈ γ , and ω({	l ,�l}L
l=1) is the joint probability distribution of

the pairs of matrices {	l ,�l }L
l=1 along the L points on the contour.

Combining Eqs. (B14) and (B15) in a single equation for P(�,�), expanding its numerator in powers of c, using the RS
ansatz (B16), and resolving the various integrals, we obtain the following self-consistency equation for ω({	l ,�l}L

l=1):

ω
({	l ,�l}L

l=1

) = 1

�

∞∑
k=0

e−cck

k!

∫ [
k∏

r=1

dJr

L∏
l=1

d	lr d�lr

][
k∏

r=1

pJ (Jr )ω
({	lr,�lr}L

l=1

)]

× exp

[
− μ

2π i

L∑
l=1

ln det

(
Mη(zl+1, z∗

l ) +
k∑

r=1

Jr	lrJ†
r

)
+ μ

2π i

L∑
l=1

ln det

(
Mη(zl , z∗

l ) +
k∑

r=1

Jr�lrJ†
r

)]

×
L∏

l=1

δ

[
	l − 1

Mη(zl+1, z∗
l ) + ∑k

r=1 Jr	lrJ†
r

]
L∏

l=1

δ

[
�l − 1

Mη(zl , z∗
l ) + ∑k

r=1 Jr�lrJ†
r

]
, (B17)

where we have already performed the replica limit n± → ± μ

2π i , assuming that continuing the replica limit to imaginary values
yields correct results. Similarly, we can also obtain an expression for the CGF by evaluating S[{P, P̂}], given by Eq. (B13), at the
replica-symmetric saddle point. Inserting Eq. (B16) in Eq. (B13) and calculating the remainder integrals, we obtain

Fγ (μ) = − ln

{ ∞∑
k=0

e−cck

k!

∫ [
k∏

r=1

dJr p(Jr )

][
k∏

r=1

L∏
l=1

d	lrd�lr

]
k∏

r=1

ω
({	lr,�lr}L

l=1

)

× exp

[
− μ

2π i

L∑
l=1

ln det

(
Mη(zl+1, z∗

l ) +
k∑

r=1

Jr	lrJ†
r

)
+ μ

2π i

L∑
l=1

ln det

(
Mη(zl , z∗

l ) +
k∑

r=1

Jr�lrJ†
r

)]}
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+ c

2

∫
pJ (J )dJ

∫ [
L∏

l=1

d	l d�l d	′
l d�′

l

]
ω
({	l ,�l}L

l=1

)
ω
({	′

l ,�
′
l}L

l=1

)

× exp

[
− μ

2π i

L∑
l=1

ln det
(
I2 + 	lJ	′

lJ
†
) + μ

2π i

L∑
l=1

ln det
(
I2 + �lJ�′

lJ
†
)] − c

2
. (B18)

The final step is to perform the continuous limit L → ∞.

2. The continuous limit along the contour

Let us now take the continuous limit L → ∞ in Eqs. (B17) and (B18). From the definition of Mη, Eq. (B5), we obtain that

Mη(zl+1, z∗
l ) = Mη(zl , z∗

l ) + i
zlσ+ + O
(

z2

l

)
, (B19)

for 
zl � 1. Henceforth we expand all quantities in powers of 
zl up to the leading term. As a result, we get[
Mη(zl+1, z∗

l ) +
k∑

r=1

Jr	lrJ†
r

]−1

= 1

Mη(zl , z∗
l ) + ∑k

r=1 Jr	lrJ†
r

(
I2 − σ+

i
zl

Mη(zl , z∗
l ) + ∑k

r=1 Jr	lrJ†
r

)
. (B20)

From the arguments of the Dirac deltas appearing in the self-consistency, Eq. (B17), we see that it is convenient to make the
following change of variables 	l = �l + 
zlRl , so that the r.h.s. of Eq. (B20) can be rewritten as

�l + 
zlRl ← 1

Mη(zl , z∗
l ) + ∑k

r=1 Jr�lr J
†
r

+ 
zl

[
1

Mη(zl , z∗
l ) + ∑k

r=1 Jr�lrJ†
r

iσ+
1

Mη(zl , z∗
l ) + ∑k

r=1 Jr�lrJ†
r

+ 1

Mη(zl , z∗
l ) + ∑k

r=1 Jr�lrJ†
r

k∑
r=1

JrRlrJ†
r

1

Mη(zl , z∗
l ) + ∑k

r=1 Jr�lrJ†
r

]
. (B21)

Plugging Eq. (B21) into Eqs. (B17) and (B18) and taking the continuous limit L → ∞, we arrive at the final equations

ω[{R,�}] = 1

�

∞∑
k=0

e−cck

k!

∫ [
k∏

r=1

d{Rr,�r}ω[{Rr,�r}]
]

e
μ

2π i

∮
γ

dzTr[R(z)�−1(z)]

〈
δ(F)

[
R + �

(
iσ+ +

k∑
r=1

JrRrJ†
r

)
�

]
δ(F)

[
� − 1

Mη + ∑k
r=1 Jr�rJ†

r

]〉
J1,...,k

(B22)

and

Fγ (μ) = c

2
+ c

2

∫
d{R,�}d{R′,�′}ω[{R,�}]ω[{R′,�′}]

×
〈
exp

(
− μ

2π i

∮
γ

dzTr
{[

I2 + �(z)J�′(z)J†
]−1[

R(z)J�′(z)J† + �(z)JR′(z)J†
]})〉

J

− ln

〈 ∞∑
k=0

e−cck

k!

∫ [
k∏

r=1

d{Rr,�r}ω[{Rr,�r}]
]

× exp

{
− μ

2π i

∮
γ

dzTr

[(
Mη(z) +

k∑
r=1

Jr�r (z)J†
r

)−1(
iσ+ +

k∑
r=1

JrRr (z)J†
r

)]}〉
J1,...,k

, (B23)

where 〈· · · 〉J1,...,k denotes the average over the 2 × 2 matrices {Jr}r=1,...,k [see Eq. (B10)], δ(F ) represents the Dirac functional
delta in the path space, and the path integration measure reads d{R,�} = limL→∞

∏L
l=1 dR(zl ) d�(zl ). The above two equations

are the main outcome of our work, since they determine the CGF of the random variable NA(γ ) in the limit N → ∞.

APPENDIX C: POPULATION DYNAMICS ALGORITHM

In this Appendix we explain some aspects of the
population dynamics algorithm. The key points of the al-
gorithm can be found in [52,55], and here we discuss
only those specific points that are different from previous
works.

Notice that Eq. (B22) is a self-consistency equation for the
functional probability density ω[{R,�}] along the contour γ .
Here ω[{R,�}] corresponds to the path density for the pair of
matrices R and � along γ , and therefore it contains all possi-
ble correlations of these matrices at any collection of points
along γ . Since we are dealing with path integrals, solving
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numerically Eq. (B22) seems a hopeless task. Fortunately,
we can adapt the population dynamics algorithm to deal
with this situation. The first step consists in discretizing
the contour γ into a finite number of L points. It is im-
portant to realize that this discretization has nothing to do
with the original discretization scheme we use to reach
the aforementioned equations. Rather, we use a suitable
discretization to resolve numerically the contour integrals
appearing in the equations for ω[{R,�}] and Fγ (μ) by
seeking an integration algorithm that provides the most
efficient quadratures along the contour γ . Thus, the func-
tional density ω[{R,�}] is replaced by the joint distribution
ω[{R(zl ),�(zl )}L

l=1]. Then we proceed as usual, i.e., we in-
troduce a population with a total number of M sets of

matrices {Rα (z1), . . . , Rα (zL ),�α (z1), . . . ,�α (zL )}M
α=1 at each

point zl ∈ γ . The joint distribution ω[{R(zl ),�(zl )}L
l=1] is

formally given by

ω
[{R(zl ),�(zl )}L

l=1

] ∼ 1

M

M∑
α=1

L∏
l=1

δ[R(zl ) − Rα (zl )]δ[�(zl )

−�α (zl )]. (C1)

Then we use the standard weighted population dynamics
algorithm to obtain a numerical solution of Eq. (B22).
The original path probability density ω[{R,�}] is for-
mally obtained from ω[{R(zl ),�(zl )}L

l=1] when L → ∞
and M → ∞.
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