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Unconventional low-temperature features in the one-dimensional frustrated q-state Potts model
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Here we consider a one-dimensional q-state Potts model with an external magnetic field and an anisotropic
interaction that selects neighboring sites that are in the spin state 1. The present model exhibits unusual behavior
in the low-temperature region, where we observe an anomalous vigorous change in the entropy for a given
temperature. There is a steep behavior at a given temperature in entropy as a function of temperature, quite
similar to first-order discontinuity, but there is no jump in the entropy. Similarly, second derivative quantities like
specific heat and magnetic susceptibility also exhibit strong acute peaks similar to second-order phase transition
divergence, but once again there is no singularity at this point. Correlation length also confirms this anomalous
behavior at the same given temperature, showing a strong and sharp peak which easily one may confuse with
a divergence. The temperature where this anomalous feature occurs we call the pseudocritical temperature.
We have analyzed physical quantities, like correlation length, entropy, magnetization, specific heat, magnetic
susceptibility, and distant pair correlation functions. Furthermore, we analyze the pseudocritical exponents that
satisfy a class of universality previously identified in the literature for other one-dimensional models; these
pseudocritical exponents are for correlation length ν = 1, specific heat α = 3, and magnetic susceptibility μ = 3.
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I. INTRODUCTION

The advantage of exactly solvable models is their easy han-
dling to analyze several properties, which can show interesting
features despite it is simplicity. In contrast, more detailed
models are rarely exactly solvable, and it would restrict us to
performing only numerical computations, which prevents fur-
ther analysis of these types of models. Some one-dimensional
models [1] can help us understand and predict leading be-
havior in more complex models. From the experimental side,
one-dimensional models accurately describe several chemical
compounds [2,3]. That is why the one-dimensional models
are quite important to investigate, both from theoretical and
experimental points of view.

In the 1950s, van Hove [4] proposed a theorem to verify
the absence of phase transition in uniform one-dimensional
models with short-range interaction. The validity of the pro-
posed theorem follows these conditions: (i) homogeneity, (ii)
the Hamiltonian should not include particles positions terms
(like external fields), and (iii) hard-core particles. Based on the
Perron-Frobenius theorem [5], the van Hove theorem [4] is re-
stricted to limited one-dimensional systems. Later, Cuesta and
Sanchez [6] tried to extend the theorem of nonexistence phase
transition for a more general one-dimensional system. Mainly,
they included an external field and considered pointlike parti-
cles, which extend the theorem. Even with this extension, it
is still far from being a fully general theorem of nonexistence
phase transition.

There are unusual one-dimensional models with a short-
range coupling that exhibit a phase transition at finite

temperature. The zipper or Kittel model [7], which is one
of the simplest models with a finite-size transfer matrix that
exhibits a first-order phase transition. Another model, consid-
ered by Chui-Wicks [8], is typical of models called “solid
on solid” for surface growth. It has the infinite dimension
transfer matrix and is exactly solvable. Because of the im-
penetrable condition of the substrate, the model shows the
existence of a finite-temperature phase transition. One more
model is that considered by Dauxois-Peyrard [9], with an
infinite-dimension transfer matrix, which can be explored
numerically. Lately, Sarkanych et al. [10] proposed a one-
dimensional Potts model with invisible states and short-range
coupling. The term “invisible” means an additional energy
degeneracy, which contributes only to the entropy but not
the interaction energy. They named these states the invisible
states, which generate the first-order phase transition.

Motivated by low-dimensional systems, such as the simple
zipper model [7] that describes the long-chain nucleotides
of deoxyribonucleic acid (DNA), Zimm and Bragg [11]
introduced an essentially phenomenological cooperative pa-
rameter, which provides narrow helix-coil transitions. Since
then, several investigations have been driven in the literature
[12–15]. Cooperative systems in one dimension can be well
represented by Potts-like models [12,14], where the helix-
coil transition in polypeptides [13] can be studied, which is
a typical application of theoretical physics to macromolec-
ular systems, the results of which are quite appropriate to
understanding the physical properties of the helix-coil transi-
tion. The polycyclic aromatic surface elements of the carbon
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nanotube (CNT) and the aromatic DNA provide reversible
adsorption. Tonoyan et al. [15] adapted the Hamiltonian of
the zipper model in order to take into account the DNA-CNT
interactions.

The Potts model is a generalization of the Ising model
to more than two components, such as interacting spins in a
crystalline lattice. The standard q-state Potts model [16] with
q � 2 has been assumed as an integer denoting the number
of states of each site. The Potts model is quite relevant in
statistical physics. In some crystal lattices vacancies would
occur, which lead to a site diluted Potts model. The site di-
luted q-state Potts model [17,18] is equivalent to (q + 1)-state
standard Potts model [16]. Chaves and Riera [19] investigated
a particular case of dilute Potts chain. Recently, a different di-
lute Ising spin-1 chain [20] was also studied in the framework
of the projection operator.

An unusual property called pseudotransition was observed
in some recent works, like in a double-tetrahedral chain of
localized Ising spins with mobile electrons showing a strong
thermal excitation that easily suggests the existence of a
first-order phase transition [21,22]. Similarly, the frustrated
spin-1/2, Ising-Heisenberg’s three-leg tube exhibited a pseu-
dotransition [23]. In Ref. [24], this property was also observed
when studying the specific heat, wherein a sharp peak on the
spin-1/2 Ising-Heisenberg ladder with alternating Ising and
Heisenberg interleg couplings was reported. This weird prop-
erty was even observed in the spin-1/2 Ising diamond chain
in the neighborhood of the pseudotransition [25]. Deeper
investigations were performed on this peculiar property in
Ref. [26]. Additionally, the distant correlation functions have
been studied around the pseudotransition for a spin-1/2 Ising-
XY Z diamond chain [27]. A slightly different proposal to
identify the pseudotransition in one-dimensional models [28]
was explored in the framework of the phase boundary residual
entropy relationship with the finite-temperature pseudotran-
sition. Further investigation around the pseudotransition was
also focused on the universality and pseudocritical exponents
of one-dimensional models [29].

We organize the article as follows. In Sec. II, we present
the model and analyze the zero-temperature phase diagrams.
In Sec. III, we study the thermodynamics of the model and
explore an anomalous phenomenon called pseudotransition
for several physical quantities. In Sec. IV, we investigate the
manifest of the pseudotransition in terms of the distant pair
correlation functions and correlation length. The pseudocrit-
ical exponents for the correlation length, specific heat, and
susceptibility we discuss in Sec. V. Finally, in Sec. VI, we
present our conclusions.

II. THE FRUSTRATED POTTS CHAIN

Let us consider a Potts model [16]; here we assume the
one-dimensional case, whose Hamiltonian becomes

H = −
N∑

i=1

{
Jδσi,σi+1 + Kδσi,1δ1,σi+1 + hδσi,1

}
, (1)

with σ = {1, . . . q}. Whereas J is bound coupling parameter,
h denotes the external field aligned to state 1, and K denotes

the parameter of an anisotropic interaction that selects neigh-
boring sites that are in the spin state 1.

The Hamiltonian (1) for the case q = 2, like the standard
Potts model, drops into the spin-1/2 Ising chain model. For
the case of q � 3, the model becomes a frustrated system for
certain choices of parameters, as shown below.

It is worth noticing that the Hamiltonian (1) can also
be equivalent to a diluted Potts model with q − 1 states, as
demonstrated by Wu [16]. The features of the critical proper-
ties of the two-dimensional diluted Potts model were studied
earlier using Fortuin-Kasteleyn clusters [30] and the transfer
matrix method [31].

A. Zero-temperature phase diagram

In order to analyze the phase diagram of q-state Potts
model at zero temperature, we identify four ground states
assuming q � 3 for the model (1), which read

|FM1〉 =
N∏

i=1

(|1〉i ), (2)

|FM2〉 =
N∏

i=1

(| j〉i ), j = {2, . . . , q}, (3)

|FR1〉 =
N/2∏
i=1

(|1〉2i−1|σi〉2i ), (4)

|FR2〉 =
N∏

i=1

(|σi〉), σi �= σi±1, (5)

where σi = {2, . . . , q}. Additional information, concerning
phases and phase boundaries, are listed in Table I for different
physical quantities at zero temperature, like magnetization,
entropy, and pair distribution functions (PDF), which can be
obtained by taking the limit of T → 0 of the quantities (23),
(55), and (67).

Figure 1(a) illustrates schematically the ground-state phase
diagram in the plane J-h, for the Hamiltonian (1) assuming
K < 0. Here we observe four phases illustrated above. Simi-
larly, Figs. 1(b) and 1(c) illustrate alternative phase diagrams
for K = 0 and K > 0, respectively.

The first state is a type of ferromagnetic (FM1) phase
where all sites are in state σi = 1, with energy per spin
EFM1 = −(J + K + h). The second state is another type of
ferromagnetic (FM2) phase with energy EFM2 = −J . The
average fraction of pairs of adjacent spins in the same
state μ, where μ = 2, . . . , q, is PDF g(1)

μ,μ = 1/(q − 1) (see

Table 1). At the same time, g(1)
μ,μ′ = 0, where μ �= μ′, which

means that in the thermodynamic limit, the fraction of pairs
with different spin states and their contribution to the en-
ergy of the system are equal to zero. This implies that, in
the general case, the FM2 phase consists of q − 1 sorts of
equivalent macroscopic ferromagnetic domains with spins in
the μ state. Equation (3) corresponds to the single-domain
case. The entropy of both FM1 and FM2 phases is zero. The
third is a frustrated type (FR1) phase, with alternating sites
are in states σ2i−1 = 1, while the other sites σ2i can take σ2i =
2, . . . , q, and the corresponding energy is EFR1 = −h/2. This
phase state is frustrated at q > 2. Because every second site
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TABLE I. The nearest neighbor pair distribution functions g(1)
μ,μ′ , μ, μ′ = 2, . . . , q, magnetization m1, and entropy S of the frustrated Potts

chain at zero temperature. Here q1 = √
4q − 3, q2 = √

(q − 1)(q + 3), q3 = 1 + √
q − 1, and q4 = √(q − 1)2 + 4.

GS phase g(1)
1,1 g(1)

μ,μ g(1)
1,μ g(1)

μ,μ′ m1 S

FM1 1 0 0 0 1 0
FM2 0 1

q−1 0 0 0 0
FR1 0 0 1

2(q−1) 0 1
2

1
2 ln(q − 1)

FR2 0 0 0 1
(q−1)(q−2) 0 ln(q − 2)

FR1-FM1
1
q1

0 q1−1
2q1(q−1) 0 2q−1+q1

q1(1+q1 ) ln 1+q1
2

FR2-FM2 0 1
(q−1)2 0 1

(q−1)2 0 ln(q − 1)
FR1-FR2 0 0 1

q(q−1)
1

q(q−1)
1
q ln(q − 1)

FR1-FM2 (K < 0) 0 1
q1(q−1)

q1−1
2q1(q−1) 0 2q−2

q1(1+q1 ) ln 1+q1
2

FR2-FM1 (K > 0) 0 0 0 1
(q−1)(q−2) 0 ln(q − 2)

FM1-FM2 (K > 0) 0 1
q−1 0 0 0 0

FM1-FM2 (K = 0) 1
q

1
q 0 0 1

q 0
FM1-FM2 (K < 0) 1

2
1

2(q−1) 0 0 1
2 0

Q1 0 1
q2 (q−1)

2
q2 (q−1+q2 )

1
q2 (q−1)

2
q+3+q2

ln q−1+q2
2

Q2
1

2q3

1
2q3(q−1)

1
2q3

√
q−1 0 1

2 ln q3

P1
3−q+q4

q4(q−1+q4 ) 0 2
q4(q−1+q4 )

q−3+q4
q4(q−1)(q−1+q4 )

q+1+q4
q4(q−1+q4 ) ln q−1+q4

2

P2 0 1
(q−1)2 0 1

(q−1)2 0 ln(q − 1)
S 1

q2
1

q2
1

q2
1

q2
1
q ln q

can be in any of the q − 1 states, the entropy per spin is
equal to S = 1

2 ln(q − 1). The fourth state is another type of
frustrated (FR2) phase; in each site σi can take independently
σi = {2, . . . , q} but σi �= σi±1, whose corresponding energy is
EFR2 = 0. In this case, each subsequent site of the chain can
be in one of q − 2 states, and the entropy is equal to S =
ln(q − 2). If q > 3, the FR2 phase is evidently frustrated state.
However, for q = 3, there is an alternation of sites in states
σi = 2 and σi = 3, and the entropy of the FR2 phase is zero.

It is important to note that two different situations can
occur at phase boundaries. The first case is when the states
of two adjacent phases are mixed at the microscopic level.
For example, for the FR1-FM1 boundary, the FR1 state of
any pair of sites can be changed to the FM1 state, and vice
versa. Such a replacement does not lead to the appearance of
microscopic states from other phases, and the energy of the
system does not change. As a result, the entropy of such a

mixed state at the phase boundary is greater than the entropy
of the adjacent phases. A similar situation is observed for
the boundaries FR1-FR2, FR2-FM2, and FR1-FM2 at K < 0.
In the second case, it can be a pure state of one of the ad-
jacent phases, or the phase separation, when each phase is
represented by the macroscopic domains. So, on the FR2-FM1

boundary for K > 0, the replacement for a pair of neighboring
nodes in state FR2 by state FM1 leads to the appearance of FR1

states, which are energetically unfavorable. A similar situation
occurs at the FM1-FM2 boundary. Note that in the FM1-FM2

interface curve the residual entropy is zero.

III. THERMODYNAMICS

The frustrated q-state Potts model Hamiltonian (1) can be
solved through transfer matrix technique, which results in a

FIG. 1. The ground-state phase diagrams of the q-state Potts chain with Hamiltonian (1) for q � 3. (a) K < 0, (b) K = 0, and (c) K > 0.
Here the points are Q1(0, 0), Q2(−K/2,−K ), S(0, 0), P1(−K, 0), and P2(0, −K ).
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q-dimensional matrix, given by

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

d1 t1 t1 · · · t1 t1
t1 d2 t2 · · · t2 t2
t1 t2 d2 · · · t2 t2
...

...
...

. . .
...

...

t1 t2 t2 · · · d2 t2
t1 t2 t2 · · · t2 d2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (6)

where d1 = xkz, d2 = x, t1 = √
z, t2 = 1, and x = eβJ , k =

eβK , and z = eβh.
Let us write the transfer matrix eigenvalues similarly to

those defined in Ref. [26], and so we have

λ1 = 1
2

(
w1 + w−1 +

√
(w1 − w−1)2 + 4w2

0

)
, (7)

λ2 = 1
2

(
w1 + w−1 −

√
(w1 − w−1)2 + 4w2

0

)
, (8)

λ j = d2 − t2, j = {3, 4, . . . , q}, (9)

where

w1 = d1, (10)

w−1 = d2 + (q − 2)t2, (11)

w0 =
√

q − 1 t1. (12)

The corresponding transfer matrix eigenvectors are

|u1〉 = cos(φ)|1〉 + sin(φ)√
q − 1

q∑
μ=2

|μ〉, (13)

|u2〉 = − sin(φ)|1〉 + cos(φ)√
q − 1

q∑
μ=2

|μ〉, (14)

|uj〉 =
√

j − 2

j − 1

(
1

j − 2

j−1∑
μ=2

|μ〉 − | j〉
)

, j = {3, . . . , q},

(15)

where φ = 1
2 cot−1( w1−w−1

2w0
), with −π

4 � φ � π
4 .

By using the transfer matrix eigenvalues, we express the
partition function as follows:

ZN = λN
1 + λN

2 + (q − 2)λN
3

= λN
1

{
1 +

(λ2

λ1

)N
+ (q − 2)

(λ3

λ1

)N
}
. (16)

It is evident that the eigenvalues satisfy the following relation
λ1 > λ2 � λ3. Hence, assuming q is finite, the free energy per
spin in thermodynamic limit reduces to

f = −T ln (λ1). (17)

Note that the free energy is a continuous function with no
singularity or discontinuity, and thus we do not expect any real
phase transition at finite temperature.

A. Pseudocritical temperature

Recently pseudocritical temperature has been discussed
in Ising and Ising-Heisenberg spin models [21,23,24,26], in
several one-dimensional spin models.

To find pseudocritical temperature, we follow the same
strategy to that used in Ref. [26]. In our case, the largest

eigenvalues has the same structure as that found in Ref. [26],
so necessary conditions for a pseudotransition are met, if
w1 ∼ w−1 ≫ w0, |w1 − w−1| � w0. The pseudotransition
point can be obtained when the first term inside the square
root of λ1 given by Eq. (7) turns to zero, which gives

e
J+K+h

Tp = q − 2 + e
J

Tp . (18)

In principle, using the above relation, one can find the critical
temperature as a function of some Hamiltonian parameters.

The q-state Potts chain does not exhibit a real spon-
taneous long-range order at finite temperature since its
one-dimensional character. Therefore, we define a term
“quasi” to refer low-temperature regions mainly dominated by
ground-state configuration. Hence, FR2 in a low-temperature
region is called as qFR2, and so on. As shown in Ref. [28],
pseudotransitions occur for states near those phase boundaries
whose residual entropy is a continuous function of the model
parameters for at least one of the adjacent phases. As dis-
cussed earlier, the state of the FR2-FM1 boundary coincides
with the FR2 state, so for the qFR2-qFM1 boundary, we get
from Eq. (18) the following relation,

e
K+h
Tp = e− J

Tp (q − 2) + 1, (19)

which we can simplify and write approximately in the form

Tp = J + K + h

ln(q − 2)
. (20)

This is the known expression [21,23,26,28] for the pseudo-
transition temperature:

EFM1 − EFR2 = Tp(SFR2 − SFM1 ), (21)

where the energy and entropy per unit cell are given at zero
temperature. Since EFM1 = EFR2 at the qFR2-qFM1 boundary,
Tp tends to zero near to it.

Another phase boundary we focus on is qFM2-qFM1. It
is worth mentioning that the entropy of the FM1 and FM2

phases is zero, so the entropy is a continuous function for both
adjacent phases. For the qFM2-qFM1 boundary, Eq. (18) can
be approximately written in the following form:

1

Tp
(K + h)eJ/Tp = q − 2. (22)

In Fig. 2(a) is reported the density plot of entropy in
the plane T -h, assuming fixed parameters K = 1, J = −0.5.
Dashed curve describes the boundary qFR2-qFM1, which cor-
responds to the pseudocritical temperature Tp as a function
of h, according to Eq. (19). It can be seen that the curve
is an almost straight line well represented by (20). We can
observe also how the sharp boundary between quasiphase
melts smoothly for higher temperature. Similar density plot is
depicted in Fig. 2(b) for the magnetization m1 in the plane T -h
for the same set of parameters as in Fig. 2(a). Analogously, we
analyze the phase boundary between qFM2-qFM1 in Fig. 2(c),
assuming fixed parameters K = 1, J = 0.99, and T = 0.01.
The dashed line is given by Eq. (19) and nicely approximated
by (22), and since there is no residual entropy in the boundary
the quasiphases qFM1 and qFM2 lead to zero when tempera-
ture vanishes; by looking at entropy we cannot distinguishes
the boundaries of the quasiphases. However, in Fig. 2(d) we
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FIG. 2. Density plot (a) for entropy in the plane T -h, for K = 1
and J = −0.5. (b) Magnetization m1 for the same set of parameters
as in panel (a). In panel (c), entropy in the plane T -h for fixed K = 1,
J = 0.99. In panel (d), magnetization for the same set of parameters
as in panel (c).

illustrate the density plot of magnetization m1 for the same
set of parameters in Fig. 2(c), and we observe clearly a sharp
boundary between qFM1 and qFM2 regions. This boundary
melts smoothly as soon as temperature increases.

B. Entropy and specific heat

The entropy and the specific heat of the system can be
obtained from the free energy (17) by

S = − ∂ f

∂T
, C = −T

∂2 f

∂T 2
. (23)

Of particular interest is the behavior of thermodynamic
characteristics near the pseudotransition point. The general
method for considering this issue was developed in Ref. [29].
For the one-dimensional Potts model, it is possible to find
an explicit form of approximation of the free energy and
other thermodynamic quantities near Tp. Assuming that τ =
(T − Tp)/Tp 	 1 and taking into account Eq. (18), we can
write

w1 = eβ(J+K+h) = w̃
1

1+τ

1 ≈ w̃1(1 − ln w̃1 τ ), (24)

w−1 = q − 2 + eβJ = q − 2 + x
1

1+τ
p ≈ w̃1 − xp ln xp τ,

(25)

where

w̃1 = w1|τ=0 = q − 2 + xp, (26)

and we define the parameters xp = eJ/Tp and kp = eK/Tp . The
value of w1 − w−1 is zero at τ = 0 due to Eq. (18), so we get

w1 − w−1 ≈ −w̃1 a τ, (27)

where we introduce the parameter a as

a = ln w̃1 − xp ln xp

w̃1
. (28)

Note that the parameter a−1 define the slope of the pseudo-
transition curve in the plane T -h [see Figs. 2(a) and 2(c)],
dTp/dh = a−1.

The condition |w1 − w−1| � w0 which is met in the vicin-
ity of Tp causes quasisingular behavior of the derivative of
square root in Eqs. (7) and (8) at τ = 0. Assuming this is the
case, we can write the approximation

4w2
0 = 4(q − 1)eβh ≈ 4(q − 1)

w̃1

xpkp
. (29)

This allows us to write eigenvalues (7) and (8) near τ = 0 as

λ1,2 ≈ w̃1
[
1 + ( 1

2 aτ − ln w̃1
)
τ ± 1

2

√
a2τ 2 + b2

]
, (30)

where b2 = 4w2
0/w̃

2
1, and yields the approximation for the free

energy (17) in the vicinity of Tp:

f ≈ −Tp
[

ln w̃1 − 1
2 aτ + 1

2

√
a2τ 2 + b2

]
. (31)

The expressions (30) and (31), being exact at τ = 0, have a
small deviation from rigorous expansions of λ1,2 and f in the
tiny vicinity 0 < |τ | < ln(xpkp) b2/a2 ≪ 1 due to the neglect
of linear terms in Eq. (29), but well approximate the functions
λ1,2 and f at ln(xpkp) b2/a2 < |τ | 	 1/| ln xp|. This implies a
simple necessary condition for a pseudotransition in the form
b/a 	 Tp/|J|.

For the entropy in the same region of τ , using (23), we
obtain the following expression:

S ≈ a

2

(
1 + aτ√

a2τ 2 + b2

)
. (32)

Equation (32) describes the entropy jump in a small vicinity
of Tp,

�Sp = S
(

τ >
b

a

)
− S

(
τ < −b

a

)
= a, (33)

which may be related to the “latent heat” of pseudotransition,
Q = Tp�Sp = aTp.

Second derivation of Eq. (31) by temperature gives the
approximation of the specific heat near Tp,

C ≈ a2b2

2(a2τ 2 + b2)
3
2

. (34)

This allows us to estimate the maximum value of the specific
heat in Tp as

Cp = 1
2 a2b−1. (35)

We can qualify the peak of the specific heat near Tp by its
half-width at half-maximum 
τ . From (34), we find that

τ = γ b/a, where γ = √

22/3 − 1 ≈ 0.7664, and hence

τ 	 1 due to a necessary condition for a pseudotransition.

The entropy and specific heat of the qFM1 states hav-
ing q = 5, J = −0.5, K = 1 in a given external field h are
shown in Figs. 3(a) and 3(b). At sufficiently low tempera-
tures, the qFR2-qFM1 pseudotransition is observed, which is
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FIG. 3. The entropy and specific heat of the qFM1 states near the
FR2-FM1 boundary [(a), (b)] with q = 5, J = −0.5, K = 1, and [(c),
(d)] with q = 3, J = −0.05, K = 1, in an external field h. The dotted
lines in panels (b) and (d) show the magnitude of Cp at T = Tp given
by Eqs. (37) and (39) respectively.

accompanied by a jump in entropy and a narrow peak in the
specific heat.

For the qFR2-qFM1 transition at q > 3, the condition
xp 	 q − 2 is met, since J < 0 and |J|/Tp � 1, so
approximately

a = ln(q − 2), b = 2

√
q − 1

(q − 2)xpkp
. (36)

The entropy jump �Sp = ln(q − 2) equals the residual en-
tropy of the qFR2 phase (see Table I). An expression for the
maximum value of the specific heat,

Cp = ln2(q − 2)

4

√
q − 2

q − 1
e

K−|J|
2Tp , (37)

shows that Cp decreases for the states close to the point P1

in Fig. 1(c). The magnitudes of the specific heat peaks (37)
are shown in Fig. 3(b) with dotted lines. It is interesting
to note that Cp
τ = 1

2γ ln(q − 2) = const(Tp), so, having a
finite height, the specific heat peak tends to the δ function near
the FR2-FM1 boundary with the Tp lowering.

In Figs. 3(c) and 3(d), the entropy and specific heat of the
qFM1 states having q = 3, J = −0.05, and K = 1 in a given
external field h are shown. The case q = 3 is special, since
the residual entropy of the FR2-FM1 boundary is a continuous
function for both adjacent phases. For the parameter a, we
obtain

a = (1 − ln xp)xp, (38)

so the necessary condition for a pseudotransition b/a ∝
e(3|J|−K )/2Tp 	 Tp/|J| is met if K > 3|J|. Since in this case
J < 0, the entropy jump (33) drops with decreasing of Tp due

FIG. 4. The entropy and specific heat of the qFM1 states near
the FM1-FM2 boundary [(a), (b)] with q = 5, J = 0.25, K = 1 in an
external field h, and [(c), (d)] with q = 5, h = −0.995, K = 1 for
the different values of the coupling parameter J . The dotted lines
in panels (b) and (d) show the magnitude of Cp at T = Tp given by
Eq. (41).

to the exponent in xp = eJ/Tp , as can be seen from Fig. 3(c).
A maximal value of the specific heat in Tp approximately has
the following form:

Cp = (1 − J/Tp)2

4
√

2
e

K−5|J|
2Tp . (39)

From (39) we may conclude that if K > 5|J| the pseudotran-
sition is accompanied with exponentially high peak of the
specific heat. From a general point of view, this issue was
discussed in detail in Ref. [28].

Figure 4 shows the temperature dependencies of the en-
tropy and specific heat for states having parameters close to
the FM1-FM2 boundary for K = 1. One set of states, shown
in Figs. 4(a) and 4(b), has J = 0.25 and different values of
the external field h, and the states in another set, shown in
Figs. 4(c) and 4(d), have the same h and differ in the coupling
constant J .

Near the FM1-FM2 boundary, for which the residual en-
tropy is zero, as for both adjacent phases, we get

a = (q − 2)
1 + ln xp

xp
, b = 2

xp

√
q − 1

kp
. (40)

The condition for a pseudotransition b/a ∝ e−K/2Tp 	 Tp/|J|
will be met only if K > 0. In this case J > 0, so the en-
tropy jump �Sp = a ∝ e−J/Tp decreases exponentially with
decreasing Tp. This effect is shown in Fig. 4(a). The specific
heat in Tp approximately is given by

Cp = (q − 2)2(1 + J/Tp)2

4
√

q − 1
e

K−2J
2Tp . (41)
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Equation (41) shows that for K > 2J the qFM2-qFM1 pseu-
dotransition entails an exponentially high peak of the specific
heat if the pseudotransition temperature is small enough. The
decrease in the peak of the specific heat near Tp with increas-
ing J is shown in Fig. 4(d).

C. Magnetization and magnetic susceptibility

It is important to study the magnetization property of the
present model. In order to obtain a general average 〈δσ,μ〉, let
us define the following operator:

mμ =
q∑

j=1

δ j,μ| j〉〈 j| = |μ〉〈μ|. (42)

Therefore, the average of mμ becomes

〈δσ,μ〉 = mμ = Z−1
N tr(mμVN ). (43)

Expressing Eq. (42) in the eigenstate basis given in
Eqs. (13)–(15), we have

m̃μ =
q∑

j1, j2=1

〈
u j1

∣∣mμ

∣∣u j2

〉∣∣u j1

〉〈
u j2

∣∣, (44)

with

〈u j1

∣∣mμ

∣∣u j2

〉 = 〈u j1

∣∣μ〉〈μ∣∣u j2

〉
, (45)

and denoting 〈μ|uj〉 = cμ, j , we can write (44) as

m̃μ =
q∑

j1, j2=1

c∗
μ, j1 cμ, j2

∣∣u j1

〉〈
u j2

∣∣. (46)

In a similar way, the transfer matrix in eigenstate basis
(13)–(15) becomes

Ṽ =
q∑

j=1

λ j |u j〉〈u j |. (47)

Hence, substituting (46) and (47) into Eq. (43), we obtain

mμ = 1

ZN

q∑
j1=1

〈
u j1

∣∣ q∑
j2, j3=1

c∗
μ, j2 cμ, j3

∣∣u j2

〉〈
u j3

∣∣λN
j3

∣∣u j1

〉
. (48)

In the thermodynamic limit (N → ∞) we can simplify (48).
Therefore, if we write the magnetization mμ in terms of cμ, j ,
it reduces to

mμ = c∗
μ,1cμ,1 = |cμ,1|2. (49)

The explicit expression of coefficients are given by

c1,1 = cos φ, cμ,1 = sin φ√
q − 1

, (50)

c1,2 = − sin φ, cμ,2 = cos φ√
q − 1

, (51)

where μ = {2, . . . , q}.
Analogously, the remaining coefficients are written by

cμ, j =

⎧⎪⎨
⎪⎩

0; μ = {1, j + 1, . . . , q}
1√

( j−1)( j−2)
; μ = {2, . . . , j − 1}

−
√

j−1
j−2 ; μ = j

, (52)

where we consider j = {3, . . . , q}.

As a consequence, we can get the magnetization by using
(50) in (49), which becomes

m1 = cos2 φ, mμ = sin2 φ

q − 1
. (53)

Additionally, from the above result, we get the following
identity:

m1 + (q − 1)mμ = 1, μ = {2, . . . , q}. (54)

Alternatively one can obtain m1 taking the derivative of
free energy with respect to external field h,

m1 = 〈δσ,1〉 = −∂ f

∂h
, (55)

and mμ we can obtain from (54).
On the other hand, the magnetic susceptibility χ1 can be

obtained by deriving (55), which results in

χ1 = 1

4T
sin(2φ)3

(
d1 + d2 + (q − 2)t2

2t1
√

q − 1

)
, (56)

Similarly, one can obtain for μ = {2, . . . , q},

χμ = ∂mμ

∂h
, (57)

and we have the following relation,

χμ = − 1

q − 2
χ1, (58)

for μ = {2, . . . , q}.
To find an approximate expression for the magnetization

near Tp, we can write it by using Eqs. (17) and (55) in the
form

m1 = T

λ1

∂λ1

∂h
. (59)

When calculating the derivative with respect to h, we take
into account that ∂

∂hw1 = βw1, ∂
∂hw−1 = 0, ∂

∂hw2
0 = βw2

0, and
obtain

m1 = 1

2λ1

(
w1 + (w1 − w−1)w1 + 2w2

0

(w1 − w−1)2 + 4w2
0

)
. (60)

Using Eqs. (24)–(29) and leaving only the leading terms, we
find an approximation for m1 in the following form:

m1 ≈ 1

2

(
1 − aτ√

a2τ 2 + b2

)
. (61)

Equation (61) describes the jump in magnetization from m1 =
0 at τ > b/a to m1 = 1 at τ < −b/a in the small vicinity of
Tp for both qFR2-qFM1 and qFM2-qFM1 pseudotransitions.

Similarly, for the susceptibility χ1 we may write, differen-
tiating (59) with respect to h,

χ1 = −m2
1

T
+ T

λ1

∂2λ1

∂h2
. (62)

The quasisingular behavior in Tp is caused by the second term
in (62). Using the same steps as in deriving (61) and leaving
the main contributions, we come to the following approxima-
tions for the susceptibility near Tp,

χ1 ≈ b2

2Tp(a2τ 2 + b2)
3
2

, (63)
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FIG. 5. The specific heat (blue line) and susceptibility (orange
line) peaks in the vicinity of pseudotransition points at (a) q = 3,
J = −0.25, K = 1, h = −0.749995, and (b) q = 5, J = 1, K = 1,
h = −0.9999.

and its maximum value,

χ1,p = b−1

2Tp
. (64)

Comparing (34) and (63), we see that dependencies of the
specific heat and susceptibility in the vicinity of Tp are similar:
They have the same half-width at half-maximum 
τ and differ
by a scale factor α, which is the ratio of the specific heat and
susceptibility in the pseudotransition point

α = Cp

χ1,p
= a2Tp. (65)

If for the qFR2-qFM1 pseudotransition at q > 3 the factor
α decreases linearly with lowering Tp, for the qFR2-qFM1
pseudotransition at q = 3 and the qFM2-qFM1 pseudotran-
sition, it decreases exponentially due to dependence of a. In
both the latter cases, for some parameters, the giant mag-
nitude of χ1,p can be realized at the low magnitude of Cp.
Indeed, for the qFR2-qFM1 pseudotransition at q = 3, we
have χ1,p ∝ e(K−|J|)/2Tp , so the giant peak of susceptibility
exists at sufficiently low Tp in the entire pseudotransition
region defined, as it was found earlier [see Eq. (38)], by
the condition K > 3|J|, but for the specific heat it becomes
exponentially high only if K > 5|J| due to Eq. (39). This case
is shown in Fig. 5(a), where in the vicinity of the qFR2-qFM1
pseudotransition at q = 3, J = −0.25, K = 1, the peaks of
the specific heat and susceptibility differ in amplitude by
seven orders of magnitude and coincide in shape. In turn, for
the qFM2-qFM1 pseudotransition we have χ1,p ∝ e(K+2J )/2Tp .
Taking into account (40), we can conclude that the giant peak
of susceptibility exists for all J > 0 at K > 0, while for the
specific heat, the giant peak exists only at 0 < 2J < K , as it
follows from Eq. (41). The similarity of the specific heat and
susceptibility peaks in the vicinity of the qFM2-qFM1 pseu-
dotransition at q = 5, J = 1, K = 1, is shown in Fig. 5(b).

Temperature dependencies of the magnetic moment and
susceptibility of the qFM1 states near the FR2-FM1 boundary
are shown in Fig. 6. These states both for q = 5, J = −0.5 and
q = 3, J = −0.05 exhibit the qFR2-qFM1 pseudotransition
with the continuous jump in the magnetic moment and the
exponentially high peak of susceptibility. Figure 7 shows the
magnetic moment and susceptibility for the same set of states
as in Fig. 4. The dotted lines in Figs. 6(b), 6(d) 7(b), and 7(d)
show approximate values of susceptibility in the pseudotran-
sition point defined by Eq. (64).

FIG. 6. The magnetic moment and susceptibility of the qFM1

states near the FR2-FM1 boundary [(a), (b)] with q = 5, J = −0.5,
K = 1, and [(c), (d)] with q = 3, J = −0.05, K = 1, in an external
field h. The dotted lines in panels (b) and (d) show the magnitude of
χ1,p at T = Tp given by Eq. (64).

Temperature dependencies of the magnetic moment and
susceptibility for states near the FM1-FM2 boundary at K = 0
and K < 0 are shown in Fig. 8. The qualitative difference
from the case K > 0 is seen. At K � 0, the magnetic moment

FIG. 7. The magnetic moment and susceptibility of the qFM1

states near the FM1-FM2 boundary [(a), (b)] with q = 5, J = 0.25,
K = 1 in an external field h, and [(c), (d)] with q = 5, h = −0.995,
K = 1 for the different values of the coupling parameter J . The
dotted lines in panels (b) and (d) show the magnitude of χ1,p at
T = Tp given by Eq. (64).
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FIG. 8. The magnetic moment and susceptibility near the
FM1-FM2 boundary for qFM1 and qFM2 states (green and blue lines)
with q = 10, J = 1, [(a), (b)] for K = 0, in an external field equal
to h = �h, and [(c), (d)] for K = −1, in an external field equal to
h = 1 + �h.

changes with decreasing temperature from the value at the
FM1-FM2 boundary, m1 = 1

q−1 at K = 0, or m1 = 1
2 at K < 0,

to the values of the magnetic moment in the FM1 or FM2

phase, which are equal to 1 and 0. Because of this, the suscep-
tibility peak is observed in both the qFM1 and qFM2 states.

As shown in Figs. 8(b) and 8(d), the peak of susceptibility
at K � 0 becomes arbitrarily large in height for the qFM1 and
qFM2 states, which are quite close to the FM1-FM2 bound-
ary, but it is significantly wider compared to the case of a
pseudotransition at K > 0, or near the qFR2-qFM1 pseudo-
transition. The extremely narrow peak, which is characteristic
of a pseudotransition, exists only for K > 0. This follows
formally from Eq. (40) and the necessary inequality b/a 	
Tp/|J|. The physical reason for this is the phase separation
in the FM1-FM2 boundary at K � 0, which causes an in-
termediate value of the magnetic moment at the FM1-FM2

boundary and its jump in both the qFM1 and qFM2 states.
The one-dimensional ferromagnetic Ising model has the same
properties: Zero magnetization of the ground state in the
absence of an external field is achieved by splitting into ferro-
magnetic domains with opposite magnetization, and this state
represents the boundary on the phase diagram between phases
with magnetizations equal to +1 and −1 depending on the
sign of the external field. This situation can be considered
as intermediate between microscopic mixing of neighboring
phases at the phase boundary when there is no pseudotransi-
tion and a pure phase equal to one of the neighboring phases
when the pseudotransition is realized.

IV. PAIR DISTRIBUTION CORRELATION FUNCTION

In order to accomplish our analysis, we consider the
pair distribution correlation function, which is defined as

follows:

�
(r)
μ,μ′ = 〈δσi,μδσi+r ,μ′

〉− 〈δσi,μ

〉〈
δσi+r ,μ′

〉
, (66)

where �
(r)
μ,μ′ ≡ �μ,μ′ (σi, σi+r ).

If the system is translationally invariant, we have 〈δσi,μ〉 =
〈δσi+r ,μ〉 = 〈δσ,μ〉 = mμ, and �

(r)
μ,μ′ depends only on the dis-

tance (r).
Now let us defined the average of PDF,

g(r)
μ,μ′ = 〈δσi,μδσi+r ,μ′

〉 = 〈mμmμ′ 〉, (67)

so, in a natural basis it is expressed by

g(r)
μ,μ′ = Z−1

N tr(mμVrmμ′VN−r ), (68)

whereas in the eigenstate basis it becomes

g(r)
μ,μ′ = Z−1

N tr(m̃νṼrm̃τ ṼN−r ). (69)

Writing this in terms of eigenstates,

g(r)
μ,μ′ = Z−1

N

q∑
j1=1

〈
u j1

∣∣ q∑
j2, j3=1

c∗
μ, j2 cμ, j3

∣∣u j2

〉〈
u j3

∣∣λr
j3

×
q∑

j4, j5=1

c∗
μ′, j4 cμ′, j5

∣∣u j4

〉〈
u j5

∣∣λN−r
j5

∣∣u j1

〉
(70)

and simplifying (70), we have

g(r)
μ,μ′ = Z−1

N

q∑
j1=1

q∑
j2=1

c∗
μ, j1 cμ, j2λ

r
j2 c∗

μ′, j2 cμ′, j1λ
N−r
j1

, (71)

in the thermodynamic limit (ZN → λN
1 ). The above expression

reduces to

g(r)
μ,μ′ =

q∑
j1=1

q∑
j2=1

c∗
μ, j1 cμ, j2

(λ j2

λ1

)r
c∗
μ′, j2 cμ′, j1

(
λ j1

λ1

)N−r

, (72)

which by manipulating it conveniently we have

g(r)
μ,μ′ = c∗

μ,1cμ,1c∗
μ′,1cμ′,1 +

q∑
j=2

c∗
μ,1cμ, j

(
λ j

λ1

)r

c∗
μ′, jcμ′,1.

(73)
Even in terms of Eq. (43), we have

g(r)
μ,μ′ = mμmμ′ + c∗

μ,1cμ′,1

q∑
j=2

cμ, jc
∗
μ′, j

(
λ j

λ1

)r

. (74)

Therefore, we can write the correlation function as follows:

�
(r)
μ,μ′ = c∗

μ,1cμ′,1

q∑
j=2

cμ, jc
∗
μ′, j

(
λ j

λ1

)r

= c∗
μ,1cμ′,1

{
cμ,2c∗

μ′,2

(
λ2

λ1

)r

+
(

λ3

λ1

)r q∑
j=3

cμ, jc
∗
μ′, j

}
.

(75)

Note that for q = 2, the last term in (75) ceases to exist.
Taking into account the orthogonality relations for the co-

efficients in Eqs. (13)–(15),
q∑

j=1

cμ, jc
∗
μ′, j = δμ,μ′ , (76)
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FIG. 9. The pair distribution correlation function �
(r)
μ,μ′ as a func-

tion of temperature T in logarithmic scale, assuming fixed q = 5,
J = 0.9, K = 1, h = −0.995 and several values of r. (a) For μ = μ′,
with μ = {2, 3, . . . }. (b) For μ �= μ′ with μ, μ′ = {2, 3, . . . }. (c) For
μ = μ′ = 1.

(75) becomes

�
(r)
μ,μ′ = c∗

μ,1cμ′,1

{
cμ,2c∗

μ′,2

(
λ2

λ1

)r

+ (δμ,μ′ − cμ,1c∗
μ′,1 − cμ,2c∗

μ′,2
)(λ3

λ1

)r
}

. (77)

From (77), and after some algebraic manipulation, we can find
the pair correlation functions in terms of magnetization and
transfer matrix eigenvalues, which have the following form:

�
(r)
1,1 = m1(1 − m1)

(
λ2

λ1

)r

, (78)

�(r)
μ,μ = (1 − m1)

[
m1

(
λ2

λ1

)r

+ (q − 2)

(
λ3

λ1

)r]
, (79)

�
(r)
1,μ = −m1(1 − m1)

q − 1

(
λ2

λ1

)r

, (80)

�
(r)
μ,μ′ = (1 − m1)

[
m1

(
λ2

λ1

)r

−
(

λ3

λ1

)r]
, (81)

where μ,μ′ = 2, . . . , q and μ �= μ′. An alternative expres-
sion of Eqs. (78)–(81) are given in the Appendix.

In Fig. 9, we illustrate the pair correlation function �
(r)
μ,μ′

as a function of temperature in logarithmic scale, and here
we consider the fixed parameters q = 5, J = 0.9, K = 1,
h = −0.995 and several distances r = {1, 5, 10, 20, 50, 100}.
In Fig. 9(a), we report for the case of μ = μ′ and μ =
{2, 3, . . . }, given by Eq. (79). It is worth noticing that for
T < Tp (enough below) this amount is closely null, meaning
that the pair distribution spin orientations have no almost

relationship, although for T > Tp (enough above) the system
exhibits clearly the relationship between pair spin orienta-
tions and as expected decreases with the distances as well as
temperature. Figure 9(b) depicts the correlation function for
the case μ �= μ′ and μ,μ′ = {2, 3, 4, . . . }, given by Eq. (81).
For T < Tp (enough below), the �

(r)
μ,μ′ become nearly null

correlation function, while for T > Tp (enough above) the
systems exhibits a qualitatively different behavior, which in
module decreases with r and T . Figure 9(c) displays the case
of μ = μ′ = 1 [according to Eq. (78)], and for this particular
case we observe that the correlation function becomes almost
null far enough from the pseudocritical temperature Tp, while
at Tp the correlation function illustrate a peak, which decreases
as expected with r. The case μ = 1 and μ′ = {2, 3, . . . } given
by Eq. (81) is simply the same as the case Eq. (78) divided by
(q − 1).

We can also notice that the four expressions given by
(78)–(81) satisfy the following couple of identities:

�
(r)
1,1 + (q − 1)�(r)

1,μ = 0, (82)

�(r)
μ,μ + �

(r)
1,μ + (q − 2)�(r)

μ,μ′ = 0. (83)

An equivalent expressions of the relations (82) and (83) are
given in the Appendix.

Similarly, we can obtain a couple of identities for g’s, by
using (82) and (83), which reduce to the following relations:

g(r)
1,1 + (q − 1)g(r)

1,μ = m1, (84)

g(r)
μ,μ + g(r)

1,μ + (q − 2)g(r)
μ,μ′ = mμ, (85)

which is useful to studying the phase diagram, like illustrated
in Table I.

A. Correlation length

From transfer matrix eigenvalues, one can observe that 1 >
λ2
λ1

> λ3
λ1

, and thus for r > 1, we can ignore ( λ3
λ1

)r → 0, since

( λ2
λ1

)r � ( λ3
λ1

)r . Consequently, we can define the correlation
length as follows:

ξ =
[

ln

(
λ1

λ2

)]−1

. (86)

An approximation for the correlation length in the vicin-
ity of the pseudotransition point immediately follows from
Eq. (30) for the eigenvalues

ξ ≈ 1√
a2τ 2 + b2

. (87)

At the pseudotransition point, the correlation length reaches
extremely high values,

ξp = b−1, (88)

since the condition b 	 1 is necessarily satisfied. Indeed,
using the expressions of b in the given limit cases, we obtain

ξp =

⎧⎪⎨
⎪⎩

1
2

√
(q−2)xpkp

q−1 ∝ e
K−|J|
2Tp , qFR2−qFM1;

xp

2

√
kp

q−1 ∝ e
K+2J
2Tp , qFM2−qFM1.

(89)
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FIG. 10. The correlation length for qFM1 states with (a) q = 5,
J = −0.5, K = 1, (b) q = 3, J = −0.05, K = 1, (c) q = 5, J =
0.25, K = 1, and for (d) qFM1 and qFM2 states with q = 10, J = 1,
K = 0, at a given h.

The half-width at half-maximum for the peak (87) of the
correlation length is 
̃τ = √

3b/a and only by numeric factor
differs from 
τ .

Figure 10 shows the temperature dependences of the cor-
relation length for the same sets of states as in Figs. 6(b),
6(d), 7(b), and 8(b). As for the specific heat and susceptibil-
ity, the correlation length near the pseudotransition point in
Figs. 10(a)–10(c) shows the giants peaks, which are qualita-
tively different from other cases like shown in Fig. 10(d).

V. PSEUDOCRITICAL EXPONENTS

Now let us analyze the nature of the peaks of the spe-
cific heat, susceptibility, and correlation length around Tp and
whether they follow some critical exponent universality. A
general technique to calculate the critical exponents in the
systems was developed in Ref. [29]. For the one-dimensional
frustrated q-state Potts model, we can find these quantities di-
rectly from approximations (34), (63), and (87). Considering
the region of τ where the curvature of the peaks be-
comes positive, b/a < |τ | 	 Tp/|J|, we obtain the following
asymptotics:

ξ = cξ |τ |−1, cξ = a−1, (90)

C = c f |τ |−3, c f = 1
2 a−1b2, (91)

χ1 = cχ |τ |−3, cχ = 1

2Tp
a−3b2. (92)

These found critical exponents are the same as for one-
dimensional models of the general class with pseudotransi-
tions [29]. Combining the critical amplitudes, one can write

FIG. 11. (a) The correlation length as a function of |τ | in loga-
rithmic scale, for q = 5, J = 0.25, K = 1, blue curves correspond to
τ > 0, orange curves denote the case τ < 0, and dotted lines corre-
spond to ξ (τ ) in asymptotic limit. (b) The specific heat as a function
of |τ | in logarithmic scale for the same set of fixed parameters in
panel (a). (c) The magnetic susceptibility as a function of |τ | in
logarithmic scale, for the parameters assumed in panel (a).

the following relation,
c f

cχ

c2
ξ = Tp, (93)

which is fulfilled for all pseudotransitions in the frustrated
Potts model.

In Fig. 11, we verify the power law behavior around the
peak for some physical quantities; these results are only valid
for the ascending and descending parts of the peak, while this
approach fails around the top of the peak. In Fig. 11(a), we
report the correlation length as a function of |τ | in logarithmic
scale assuming the parameters q = 5, J = 0.25, K = 1. Blue
curves correspond for τ > 0, orange curves denote for τ < 0,
and dotted lines describe the asymptotic behavior given by
Eq. (90). We consider two values of the magnetic field as in-
dicated in Fig. 11(a). For h = −0.995, we can observe clearly
a straight line with pseudocritical exponent ν = 1 in a range
of 10−4 � τ � 10−1 (blue curve). Such behavior we also ob-
serve for the case −10−1 � τ � −10−4 (orange curve). Note
that for |τ | � 10−4 the asymptotic behavior fails because it
corresponds to the peak of the curve. Similar behavior is
illustrated for h = −0.9995 and the pseudocritical exponent is
accurately described by a straight line with the same exponent
ν = 1, although the asymptotic approach is valid roughly in
the interval 10−1 � |τ | � 10−6. Figure 11(b) depicts the spe-
cific heat as a function of |τ | in logarithmic scale, assuming
the same fixed parameters as those considered in Fig. 11(a),
where the specific heat also exhibits a descending part of
the peak as a straight line, which fits precisely to a straight
dotted line with angular coefficient α = 3 given by Eq. (91),
although in the shorter interval and for smaller |τ |, the straight
lines fail for |τ | � 10−5 (h = −0.9995) and |τ | � 5 × 10−3

(h = −0.995) because we are dealing with a peak and not
a real singularity. Analogous behavior is observed for the
magnetic susceptibility in Fig. 11(c), assuming the same set of
fixed parameters given in Fig. 11(a). Once again, we observe
clearly a straight line with angular coefficient μ = 3 given by
Eq. (92), which is valid for a wider interval compared to that
of specific heat.
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In summary, the pseudocritical exponents are independent
of the magnetic field. We also conclude that these exponents
satisfy the same universality class found previously for other
one-dimensional models.

VI. CONCLUSION

Although one-dimensional systems could appear to be
thoroughly studied, they still surprise us by exhibiting uncon-
ventional physics. There are some peculiar one-dimensional
models that exhibit the presence of phase transition at finite
temperature under the condition of nearest-neighbor interac-
tion [21–26]. One-dimensional models of statistical physics
are attractive from both theoretical and experimental points
of view for developing new methods to solve more realistic
models.

Here we investigated more carefully the one-dimensional
Potts model with an external magnetic field and anisotropic in-
teraction that selects neighboring sites that are in the spin state
1, by using the transfer matrix method. The largest and second
largest eigenvalues are almost degenerate for a given tem-
perature, leading to pseudotransition. The rise of anomalous
behavior in this model is caused by the peculiar behavior of
the transfer matrix elements: All transfer matrix elements are
positive, but some off-diagonal matrix in the low-temperature
region can be extremely small compared to at least two di-
agonal elements. We have analyzed the present model for
several physical quantities assuming K = 1. The entropy and
magnetization show a steep function around pseudocritical
temperature, similar to a first-order phase transition, while
the correlation length, specific heat, and magnetic suscepti-
bility exhibit sharp peaks around pseudocritical temperature,
resembling a second-order phase transition, although there
is no true divergence. A further investigation of the pseu-
docritical exponent satisfies the same class of universality
previously identified for other one-dimensional models; these
exponents are for correlation length ν = 1, specific heat α = 3
and magnetic susceptibility μ = 3. For K = 0 (standard Potts
chain), we observe a qualitatively different behavior, such as
in entropy there is no steplike function, there is no sharp
peak in specific heat, and a broad peak arises for magnetic
susceptibility.

It is worth mentioning that the pseudotransition is quite
different from a true phase transition because there is no jump
in the first derivative of free energy nor divergence in the sec-
ond derivative of free energy. In this sense, it would be fairly
relevant to observe this anomalous property experimentally in
chemical compounds.
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APPENDIX: SOME ADDITION RELATIONS

Here we give some additional alternative expressions,
which would be useful for further analysis. Equations (78)–
(81) can be reduced to

�
(r)
1,1 = sin2(2φ)

4

(
λ2

λ1

)r

, (A1)

�(r)
μ,μ = �

(r)
1,1

(q − 1)2
+ (q − 2) sin2(φ)

(q − 1)2

(
λ3

λ1

)r

, (A2)

�
(r)
1,μ = − �

(r)
1,1

q − 1
, (A3)

�
(r)
μ,μ′ = �

(r)
1,1

(q − 1)2
− sin2(φ)

(q − 1)2

(
λ3

λ1

)r

. (A4)

Considering the identities given by (82) and (83), we obtain
the following identity which must satisfy

�
(r)
1,1 + (q − 1)�(r)

μ,μ + 2(q − 1)�(r)
1,μ + (q − 1)(q − 2)�(r)

μ,μ′ = 0.

(A5)

An equivalent relation we can verify, so the pair average
distribution functions obey the identity

g(r)
1,1 + (q − 1)g(r)

μ,μ + 2(q − 1)g(r)
1,μ + (q − 1)(q − 2)g(r)

μ,μ′ = 1.

(A6)

Below we simplify for the nearest-neighbor PDF g(1)
μ,μ′ ,

which can be written as

g(1)
1,1 = (λ1 − λ3 − (q − 1)t2)(λ1 + λ2 − λ3 − (q − 1)t2)

λ1(λ1 − λ2)
,

(A7)

g(1)
μ,μ = (λ3 + t2)(λ3 − λ2 + (q − 1)t2)

(q − 1)λ1(λ1 − λ2)
, (A8)

g(1)
1,μ = (λ1 − λ3 − (q − 1)t2)(λ3 − λ2 + (q − 1)t2)

(q − 1)λ1(λ1 − λ2)
, (A9)

g(1)
μ,μ′ = (λ3 − λ2 + (q − 1)t2)t2

(q − 1)λ1(λ1 − λ2)
, (A10)

where μ,μ′ = 2, . . . q, and μ �= μ′. These amounts are useful
to analyze the phase boundary properties illustrated in Table I.
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