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Effective diffusivity of a Brownian particle in a two-dimensional periodic
channel of abruptly alternating width
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We study diffusion of a Brownian particle in a two-dimensional periodic channel of abruptly alternating
width. Our main result is a simple approximate analytical expression for the particle effective diffusivity, which
shows how the diffusivity depends on the geometric parameters of the channel: lengths and widths of its wide
and narrow segments. The result is obtained in two steps: first, we introduce an approximate one-dimensional
description of particle diffusion in the channel, and second, we use this description to derive the expression
for the effective diffusivity. While the reduction to the effective one-dimensional description is standard for
systems of smoothly varying geometry, such a reduction in the case of abruptly changing geometry requires a
new methodology used here, which is based on the boundary homogenization approach to the trapping problem.
To test the accuracy of our analytical expression and thus establish the range of its applicability, we compare
analytical predictions with the results obtained from Brownian dynamics simulations. The comparison shows
excellent agreement between the two, on condition that the length of the wide segment of the channel is equal to
or larger than its width.
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I. INTRODUCTION

Diffusion in complex media plays a key role in a huge
variety of natural (including biological) and technological
processes ranging, for example, from transport in nanoporous
silicon [1] and crowded biological extracellular and intra-
cellular environments [2–4] to transport in carbon nanotubes
[5,6] and micro- and nanofluidic devices used for a wide
range of separation technologies [7–17]. Transport in two-
dimensional systems possesses specific properties that attract
attention of researchers [10–15]. For example, Karzbrun et al.
used a series of linked two-dimensional compartments for
modelling artificial cells [15]. Since such systems are very
complicated, a main tool for studying transport in them is
stochastic simulations. However, the situation simplifies when
the system has spatial periodicity. The reason is that at suffi-
ciently long times, when the mean particle displacement is
much greater than the system period, one can coarse-grain the
particle motion and describe it as free diffusion characterized
by an effective diffusivity Deff . As an example of transport in
such systems, we mention diffusion in periodic porous media
and nanostructures [18–20]. The goal of the theory is to find
Deff as a function of the geometric parameters of the system.

Although the problem of finding Deff for an arbitrary
periodic three-dimensional tube or two-dimensional chan-
nel has no solution, it can be obtained for systems of
smoothly varying geometry (see below). In this paper we
consider the opposite limiting case, where the system geom-

etry changes abruptly. Specifically, we study diffusion in a
two-dimensional periodic channel formed by alternating wide
and narrow segments of lengths L and l and widths W and w,
respectively, schematically shown in Fig. 1. To find Deff as a
function of these geometric parameters we adopt the method
proposed earlier [21] to find Deff in a three-dimensional cylin-
drical tube of abruptly changing radius. Our main result for
Deff is given in Eqs. (13) and (14). The former is the stan-
dard expression for the effective diffusivity in term of the
tortuosity, and the latter is a simple analytical expression for
the tortuosity as a function of the abovementioned geometric
parameters. The predictions of this expression perfectly agree
with the tortuosity values obtained from Brownian dynamics
simulations over the entire range of the geometric parameters,
on condition that the width of the wide channel segment does
not exceed its length, W � L. It is worth mentioning that
while in tubes and channels of smoothly varying geometry
Deff is controlled by the entropy potential, this potential does
not appear in our analysis. The reason is that the approach
we use here to find Deff differs from the conventional one
applicable for smooth periodic geometries.

A frequently used approach to finding Deff in periodic
three-dimensional tubes and two-dimensional channels of
smoothly varying geometry involves two steps: (1) intro-
duction of an approximate one-dimensional description of
particle diffusion along the system axis and (2) derivation
of an expression for Deff in the framework of this descrip-
tion. When the geometry is a smooth function of the x
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FIG. 1. Two-dimensional periodic channel formed by alternating
wide and narrow segments of lengths L and l and widths W and w,
respectively.

coordinate measured along the tube/channel axis, the sim-
plest one-dimensional description is given by the Fick-Jacobs
equation [22]

∂G( x, t |x0)

∂t
= D0

∂

∂x

[
A(x)

∂

∂x

G( x, t |x0)

A(x)

]
, (1)

where G(x, t |x0) is the particle propagator (Green’s function),
which is the distribution function of the particle position x
at time t , conditional on that the particle started from x0

at t = 0, D0 is the intrinsic particle diffusivity, and A(x) is
the cross-section area πR2(x) of the tube of radius R(x) or
the channel width h(x) in the three-dimensional and two-
dimensional cases, respectively. It has been shown [23–33]
that a more accurate reduction to the one-dimensional descrip-
tion results in a position-dependent diffusivity D(x). Then the
propagator satisfies a modified Fick-Jacobs equation,

∂G( x, t |x0)

∂t
= ∂

∂x

[
D(x)A(x)

∂

∂x

G( x, t |x0)

A(x)

]
. (2)

Introducing the entropy potential Uentr (x),

βUentr (x) = − ln (A(x)/Amax), (3)

where β is the inverse absolute temperature measured in the
energy units, and Amax is the maximum value of A(x) (the
minimum value of Uentr (x) is zero, and Uentr (x) � 0), one can
write Eq. (2) as the Smoluchowski equation,

∂G( x, t |x0)

∂t
= ∂

∂x

[
D(x)e−βUentr (x) ∂

∂x
(eβUentr (x)G(x, t |x0))

]
.

(4)

Several approximate expressions for D(x) have been pro-
posed in the literature. Since D(x) is always smaller than D0,
it is convenient to write D(x) as

D(x) = D0/K (x). (5)

Here are expressions for function K (x) proposed by
Zwanzig [23] (Zw), Reguera and Ruby [24] (RR), and Kalinay
and Percus [25–29] (KP):

KZw(x) =
{

1 + R′(x)2/2, for a 2D tube

1 + h′(x)2/12, for a 3D channel
, (6)

KRR(x) =
{√

1 + R′(x)2, for a 3D tube
3
√

1 + h′(x)2/4, for a 2D channel
, (7)

KKP(x) =
{√

1 + R′(x)2, for a 3D tube
h′(x)/2

arctan(h′(x)/2) , for a 2D channel
, (8)

where R′(x) = dR(x)/dx and h′(x) = dh(x)/dx. More com-
plex expressions for K (x) has been proposed in the literature
[32,33].

Having in hand the Smoluchowski equation, Eq. (4), with a
periodic entropy potential, Eq. (3), one cand find the effective
diffusivity by the Lifson-Jackson formula, [34] which is an
exact result,

Deff = 1

〈e−βUentr (x)〉〈eβUentr (x)/D(x)〉 , (9)

where the angular brackets denote averaging over the period
L of the system,

〈 f (x)〉 = 1

L

∫ L

0
f (x)dx. (10)

Coming back to the geometric notations, we can write

Deff = 1

〈A(x)〉〈1/(D(x)A(x))〉 = D0

〈A(x)〉〈K (x)/A(x)〉 . (11)

In the Fick-Jacobs approximation K (x) = 1, and Eq. (11)
reduces to

Deff = D0

〈A(x)〉〈1/A(x)〉 . (12)

The reduction to the one-dimensional description and find-
ing the effective diffusivity discussed above are applicable in
the case of a smoothly varying geometry of the system. In the
present paper the focus is on diffusive transport in the opposite
limiting case, where the system geometry changes abruptly.
Specifically, we study diffusion in a two-dimensional periodic
channel formed by alternating wide and narrow segments
schematically shown in Fig. 1. Although the reduction to the
one-dimensional description discussed above is inapplicable
here, nevertheless, such a reduction is possible by a different
method based on the “boundary homogenization” (see below).
In this method, particle motion in the intervals corresponding
to the wide and narrow segments is described as free one-
dimensional diffusion along the channel axis with the intrinsic
diffusivity D0. The transition between neighboring intervals is
described as trapping by an infinitely thin boundary separating
the intervals, whose trapping rate is a function of the side
from which the particle comes to the boundary. We discuss
this reduction in detail in Sec IV, where the expression for
Deff is derived. Note that similar approach to the reduction to
the one-dimensional description has been applied to diffusion
in a three-dimensional tube of abruptly changing radius in
Refs. [21,35]. Kalinay and Percus [36] provided an analytical
verification of this approach for both two-dimensional chan-
nels and three-dimensional tubes.

While our approach is based on the reduction to an ef-
fective one-dimensional description, an alternative approach
to finding Deff in a periodic two-dimensional channel was
recently proposed by Mangeat, Guerin, and Dean [37]. These
authors did not rely on the reduction to a one-dimensional
description and considered a general case of a 2D periodic
channel of smoothly varying width in the presence of in-
finitely thin partitions and the width discontinuities at certain
points. They developed a first order perturbation theory con-
sidering the ratio ε = a/L, where a is the minimum channel
width, as a small parameter, and assuming that the leading
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term in the expansion in ε is given by the expression in
Eq. (12) with A(x) = h(x).

The outline of the present paper is as follows. In the next
Sec II we give and discuss the obtained expression for Deff ,
which is the main result of our work. Since the effective diffu-
sivity is always smaller than the intrinsic one, it is convenient
to write the former as

Deff = D0/T , (13)

where T is the tortuosity, defined as the ratio D0/Deff , and for-
mulate our main result in terms of the tortuosity. The derived
expression for the tortuosity shows how T depends on the
lengths L and l and widths W and w of the wide and narrow
sections of the channel. These dependences are compared with
the results obtained from Brownian dynamics simulations, as
described in Sec III. A derivation of our expression for the
tortuosity is given in Sec IV. Some concluding remarks are
made in the final Sec V.

II. MAIN RESULT

Our main result is an expression for the tortuosity T ,
which, by means of Eq. (13), shows how the effective diffu-
sivity Deff of the channel illustrated in Fig. 1 depends on its
geometric parameters:

T = D0

Deff
= 1 + 1

L 2

[
Ll

(1 − ν)2

ν
+ (LW + lw)ϕ(ν)

]
,

(14)

where L = L + l is the channel period, ν = w/W is the ratio
of the widths of the narrow and wide segments, and function
ϕ(ν) is given by

ϕ(ν) = (2/π ) ln (1/sin (πν/2)). (15)

The expression in Eq. (14) is derived in Sec IV, assuming
that the width of the wide section does not exceed its length
W � L. As explained below, this condition guarantees good
agreement between Deff predicted by the theory and obtained
from Brownian dynamics simulations.

One can see that the tortuosity is equal to 1 for a straight
channel of constant width (ν = 1) and greater than 1 when
ν < 1. The tortuosity monotonically increases as ν decreases
at fixed values of the segment lengths. As ν and hence the
width of the narrow segment approaches zero, the tortuosity
diverges, and Deff vanishes, as it must be. In general, the value
of T depends on the interplay between ν and the lengths L and
l of the two segments. The expression in Eq. (14) shows that
the tortuosity approaches 1 as the length of one of the two
segments tends to infinity at fixed values of other parameters.

The situation is different when the lengths of both segments
tend to infinity at fixed l/L ratio. Here the sum in the square
brackets in Eq. (14) is determined by the first term. As a result,
this equation reduces to

T = 1 + ξ (1 − ξ )(1 − ν)2/ν, (16)

where ξ = l/(L + l ) is the fraction of the period occupied by
the narrow segment. Note that one can derive this expression
for the tortuosity formally using Eq. (12) for Deff obtained for
a channel of smoothly varying geometry. Indeed, according to

FIG. 2. Compartmentalized channel (upper panel) and the tor-
tuosity in such a channel as a function of ν = w/W for L/W = 1,
2, and 3 from top to bottom (lower panel). Solid curves are the
dependences given by Eq. (21), and symbols are the tortuosity values
obtained from our simulations.

this equation,

T = D0

Deff
= 〈h(x)〉〈1/h(x)〉. (17)

In our case of the channel of alternating width we have

〈h(x)〉 = 1

L + l
(LW + lw) (18)

and

〈1/h(x)〉 = 1

L + l

(
L

W
+ l

w

)
. (19)

Substituting these expressions into Eq. (17), we arrive at

T = 1

L2

[
L2 + l2 + lL

(
ν + 1

ν

)]
= 1 + lL

L2

(1 − ν)2

ν
,

(20)
which is the expression for the tortuosity in Eq. (16).

Another type of the tortuosity dependence on the channel
parameters arises when the length of the narrow segment
vanishes, l = 0. Here, the channel is a set of compartments
of length L and width W (L � W ) separated by infinitely thin
partitions containing connecting windows of width w in their
centers, as shown in Fig. 2, upper panel. In this case L = L,
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FIG. 3. Functions f (ν ), Eq. (23), and ν f (ν ).

and the expression in Eq. (14) simplifies and reduces to

T = 1 + W

L
ϕ(ν). (21)

This expression gives the tortuosity of a compartmental-
ized channel as a function of two dimensionless parameters:
the width ratio ν = w/W and the dimensionless compartment
length L/W . The tortuosity dependence on ν is illustrated in
Fig. 2, lower panel by solid curves drawn at three values of
L/W : L/W = 1, 2, and 3. Symbols in this figure show the
values of the tortuosity obtained from Brownian dynamics
simulations discussed in the following Sec III. One can see
excellent agreement between our theoretical predictions and
the simulation results.

To study the l-dependence of the tortuosity at fixed values
of L, W , and ν, it is convenient to write Eq. (14) as

T = 1 + L(1 − ν)2

L 2ν
(W f (ν) + αl ), (22)

where function f (ν) and factor α are

f (ν) = ν

(1 − ν)2 ϕ(ν) (23)

and

α = 1 + W

L
ν f (ν). (24)

Plots presented in Fig. 3 show that functions f (ν) and ν f (ν)
monotonically increase from zero to π/4 as ν goes from
zero to 1. As a consequence, factor α is constrained by the
inequality 1 < α < 2, and the first term in the parenthesis in
Eq. (22) can be neglected when the length of the narrow part
of the channel significantly exceeds the width of its wide part,
l � W . In this case the tortuosity, Eq. (22), takes the form

T = 1 + α
lL(1 − ν)2

L 2ν
. (25)
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FIG. 4. Tortuosity dependence on the length l of the narrow
segment at fixed values of the length of the wide segment L and the
segment width ratio ν = w/W . Solid curves are theoretical depen-
dences predicted by Eq. (14), symbols are simulation results. Two
upper curves correspond to ν = 0.05. Two lower curves correspond
to ν = 0.1.

When νW /L → 0, factor α approaches unity, and Eq. (25)
reduces to the expression for the tortuosity in Eq. (16).

The l-dependence of the tortuosity is illustrated in Fig. 4
(solid curves) at two values of the dimensional length of the
wide section of the channel, L/W = 1 and 2, and two values
of the segment width ratio, ν = 0.05 and 0.1. One can see that
the tortuosity first increases with l , reaches a maximum, and
then decrease approaching 1, as l → ∞. Symbols shown in
Fig. 4 are the values of the tortuosity obtained from Brownian
dynamics simulation, as explained in the following Sec III.
One can see excellent agreement between our theoretical and
simulation results.

III. BROWNIAN DYNAMICS SIMULATIONS

In this section we discuss Brownian dynamics simulations
that we run to validate our analytical result for the tortuosity,
Eq. (14). To find the tortuosity in Brownian dynamics simula-
tions we take advantage of the relation between this quantity
and the mean first-passage time of a diffusing particle from
its starting position (averaged over the channel cross-section)
to one of the two absorbing boundaries separated from the
starting position by the channel period. Denoting this mean
first-passage time by τ we can write the relation as

T = 2D0τ

L2
. (26)

This relation follows from the definition of the effective diffu-
sivity in term of the mean first-passage time,

Deff = L2

2τ
. (27)

Substituting this into the definition of the tortuosity,
T = D0/Deff , we arrive at the relation in Eq. (26).

Thus, to find the tortuosity we need to know the mean first-
passage time obtained from Brownian dynamics simulations.
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FIG. 5. Channel geometry used in our simulations. Particles start
in the middle of the wide segment of the channel and are trapped by
absorbing boundaries separated from the starting cross section by the
period L = L + l .

To this end, we run the simulations in the two-dimensional
channel in the geometry shown in Fig. 5. In our simulations
we run N = 25 000 trajectories of Brownian particles whose
starting points were uniformly distributed over the channel
cross section located in the middle of its wide segment. The
trajectories were terminated as soon as they cross one of the
two absorbing boundaries, located at distance L from the start-
ing cross section, for the first time (see Fig. 5). The lifetimes
of individual trajectories ti, i = 1, 2, ..., N , were used to find
the mean first-passage time, denoted by τsim,

τsim = 1

N

N∑
i=1

ti, (28)

which was substituted into Eq. (26) to find the tortuosity.
In our simulations we set W = D0 = 1 and took the dimen-
sionless time step �t measured in units of W 2/(2D0) to be
�t = 10−7.

The value of the tortuosity obtained from Brownian dy-
namics simulations are compared with their theoretically
predicted counterparts in Figs. 2, lower panel, and 4. The
former illustrate the tortuosity dependence on the segment
width ratio ν = w/W in compartmentalized channels (l = 0)
of different periods L = L. The latter shows the tortuosity
dependence on the length l of the narrow segment at several
values of L and ν. As mentioned earlier, the theoretical pre-
dictions are in perfect agreement with the tortuosity values
obtained from the simulations that were run for channels
with sufficiently long wide segments, whose lengths satisfied
L � W . This guarantees the applicability of boundary homog-
enization, an approximation that is central for our approach to
the problem (see Ref. [38] and the following Sec IV for more
details).

IV. DERIVATION

A key step in our approach to finding the effective dif-
fusivity and tortuosity is the introduction of an approximate
one-dimensional description of the particle diffusion in the
channel. This can be done using the result obtained for the
problem of trapping of particles diffusing in three dimensions
by a flat surface which is periodically, with period W , covered
by parallel absorbing strips of width w, w � W . It turns
out that this striped surface, in what concerns trapping, is
equivalent to a uniformly absorbing surface characterized by
a properly chosen trapping rate κ . This can be understood if

one takes into account the fact that the lateral component of
the diffusion flux to the surface vanishes as the distance from
the surface increases. As a consequence, significantly far away
from the surface the flux becomes indistinguishable from the
flux to a uniformly absorbing surface, and the trapping prob-
lem becomes essentially one-dimensional.

An exact solution for κ is given by the Moizhes-Muratov-
Shvartsman formula,

κ = πD0

W ln {1/sin [πw/(2W )]} , (29)

where D0, as before, is the particle intrinsic diffusivity. This
expression for κ was obtained by Muratov and Shvartsman,
[39] who carried over to diffusion-limited kinetics the exact
result obtained for the corresponding electrostatic problem by
Moizhes [40]. The same trapping rate characterizes absorption
of particles diffusing in a semi-infinite plane restricted by a
linear boundary containing alternating absorbing and reflect-
ing intervals of length w and W −w, respectively. Because
of the symmetry, κ in Eq. (29) is also the exact effective
trapping rate for particles diffusing in a semi-infinite strip
of width W with reflecting side boundaries terminated by a
reflecting interval containing an absorbing window of width w

in its center. As shown in Ref. [38], Eq. (29) provides a good
approximation for the trapping rate in the case of a strip of
finite length L, on condition that this length satisfies L � W/2.
The replacement of nonuniform boundary conditions by an ef-
fective uniform one, called boundary homogenization, allows
one to introduce a one-dimensional description of trapping of
a particle diffusing in the two-dimensional chamber of size
L × W by the absorbing window of length w, located in the
center of the chamber wall of length W . Here we require that
the length of the wide segment satisfies L � W as, according
to our results, this guarantees good agreement between our
theoretical predictions and simulations.

In our one-dimensional description of diffusion, we use
boundary homogenization to describe the entrance of the par-
ticle into the narrow segment of the channel from the wide
one. The exit of the particle from the narrow segment, i.e., its
transition to one of the two neighboring wide segments, is also
described as trapping by uniform partially absorbing bound-
aries at the segment ends. These boundaries are characterized
by the trapping rate κ ′. The two trapping rates, κ and κ ′, are
not independent. They must satisfy the relation κW = κ ′w,
which follows from the condition of detailed balance [41,42].
As a consequence, we have

κ ′ = κ
W

w
= πD0

w ln {1/sin [πw/(2W )]} . (30)

Thus, our one-dimensional description replaces diffusion in
the two-dimensional periodic channel shown in Fig. 1 by free
one-dimensional diffusion within each repeating interval of
length L and l with interval boundaries characterized by two
trapping rates κ and κ ′, as shown in Fig. 6. The former charac-
terizes trapping of particles diffusing in an interval of length
L (corresponding to a wide segment of the channel) upon ap-
proaching its boundary. The latter does the same for particles
diffusing in an interval of length l , which corresponds to a
narrow segment.
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FIG. 6. Effective one-dimensional description of particle diffu-
sion in a two-dimensional channel shown in Fig. 1.

In the rest of this section, we find the tortuosity in the
framework of the one-dimensional description illustrated by
Fig. 6. The effective diffusivity here is given by Eq. (27).
Correspondingly, the tortuosity is given by Eq. (26). So, to
find the tortuosity, we derive an expression for τ , substitute
this expression in Eq. (26), and, after some manipulations, we
recover our result for the tortuosity in Eq. (14).

It is convenient to choose the center of an interval of length
L corresponding to a wide section of the channel as the origin
and as the particle starting point. To find τ , consider a steady
state where a constant flux j is injected at the origin and
injected particles are trapped by two absorbing boundaries
located at points ±L, where L = L + l is the system period
as shown in Fig. 7. There is a simple exact relation between
τ , j, and the steady state number of particles in the system,
denoted by N ,

τ = N/ j, N =
∫ L

−L
c(x)dx = 2

∫ L

0
c(x)dx, (31)

where c(x) is the steady-state concentration of the particles,
and factor 2 in front of the second integral accounts for the
symmetry of function c(x), c(−x) = c(x). Thus, to find τ we
need to know the steady-state concentration in the interval
0 < x < L.





 
� 
�
�
�

FIG. 7. Illustration of the one-dimensional model used to find the
mean first-passage time τ .

This concentration satisfies

j

2
= −D0

dc(x)

dx
, 0 < x <

L

2
,

L

2
< x < l + L

2
, l + L

2
< x < L. (32)

At points of contacts, x = L/2 and x = l + L/2 the concentra-
tion makes jumps, which are controlled by the trapping rates
κ and κ ′. The concentrations on the two sides of the contact
points satisfy

j

2
=

{
κc

(
L
2 − ε

) − κ ′c
(

L
2 + ε

)
κ ′c

(
l + L

2 − ε
) − κc

(
l + L

2 + ε
) , ε → 0

. (33)

Finally, the concentration vanishes at x = L, where the ab-
sorbing boundary is located,

c(L + l ) = 0. (34)

Integrating Eq. (32) subject to the boundary conditions in
Eqs. (33) and (34), we arrive at

c(x) = j

2D0
×

⎧⎪⎨
⎪⎩

L + lκ ′/κ − x + 2D0/κ, 0 � x < L/2

(1 + κ/κ ′)L/2 + l − x + D0/κ
′, L/2 < x < l + L/2

L − x, l + L/2 < x � L
. (35)

We use this to find τ by Eq. (31). The result is

τ = 2

j

∫ L

0
c(x)dx = 1

2D0

[
L2 + l2 + Ll

(
κ

κ ′ + κ ′

κ

)]

+ l

κ ′ + L

κ
. (36)

Substituting here the expressions for κ and κ ′, Eqs. (29) and
(30), we can write the above result for time τ as

τ = 1

2D0

[
L2 + l2 + Ll

(
ν + 1

ν

)]
+ (LW + lw)ϕ(ν). (37)

This leads to the following expression for the tortuosity,
Eq. (26),

T = 1

L2

[
L2 + l2 + Ll

(
ν + 1

ν

)
+ (LW + lw)ϕ(ν)

]
. (38)

One can check that this is identical to the expression for the
tortuosity in Eq. (14) using the relation

L2 + l2 + Ll

(
ν + 1

ν

)
= L2 + Ll

(1 − ν)2

ν
. (39)

V. CONCLUDING REMARKS

The present paper is devoted to diffusion of Brownian
particles in two-dimensional periodic channels of abruptly
changing geometry. More specifically, the focus is on the
particle effective diffusivity Deff in a channel of alternating
width schematically shown in Fig. 1. We write Deff as the ratio
of the particle intrinsic diffusivity D0 to the tortuosity T which
describes the lowering of Deff compared to D0, Eq. (13). The
main result of our study is the expression for the tortuosity
in Eq. (14), which gives the tortuosity as a function of the
geometric parameters: lengths L and l and widths W and w of
the wide and narrow segments of the channel. Our analysis has
demonstrated a nontrivial dependence of the effective diffu-
sivity on these parameters. For example, the nonmonotonicity
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in the tortuosity (and hence effective diffusivity) dependence
on the length l of the narrow segment shown in Fig. 4.

To find the tortuosity, and hence effective diffusivity,
we introduce an approximate one-dimensional description of
two-dimensional diffusion in the channel. Since the channel
width changes abruptly, the conventional reduction to the
one-dimensional description (which assumes that the channel
width is a slowly varying function) is inapplicable in our case.
Therefore, to introduce such a description we take advantage
of an exact result for the trapping problem in diffusion-
limited kinetics obtained using the boundary homogenization
approach. This is discussed in detail in Sec IV, where the
expression for the tortuosity, Eq. (14), is derived.

As discussed in Sec III, this expression is applicable for
the entire range of the geometric parameters L, l , W , and w of
the channel on condition that the length of the wide segment
exceeds or is equal to its width, L � W . Since our result for
the tortuosity, Eq. (14), is obtained in the framework of an
approximate one-dimensional description of the particle diffu-
sion in the channel, we tested its predictions against the values
of the tortuosity obtained from Brownian dynamics simula-
tions. Comparison showed excellent agreement between our
theoretical and simulation results when the condition L � W
is fulfilled.

It is worth mentioning that although we consider point
Brownian particles, this is not a severe restriction, since a
finite size of the particle can be easily taken into account by
renormalizing the widths w and W of the channel segments.
In this work we study periodic channels of alternating width,
which have a very simple shape of their elementary cells. It
would be interesting to generalize the above analysis to the
case of channels in which the elementary cells have more
complex shape. Another interesting direction for future work
is to develop a theory of biased transport in channels of
abruptly changing geometry.

Data availability statement. The data that support the
findings of this study are available from the corresponding
author upon reasonable request.
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