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Fractional Brownian motion of worms in worm algorithms for frustrated Ising magnets
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We study the distribution of lengths and other statistical properties of worms constructed by Monte Carlo
worm algorithms in the power-law three-sublattice ordered phase of frustrated triangular and kagome lattice Ising
antiferromagnets. Viewing each step of the worm construction as a position increment (step) of a random walker,
we demonstrate that the persistence exponent θ and the dynamical exponent z of this random walk depend only on
the universal power-law exponents of the underlying critical phase and not on the details of the worm algorithm
or the microscopic Hamiltonian. Further, we argue that the detailed balance condition obeyed by such worm
algorithms and the power-law correlations of the underlying equilibrium system together give rise to two related
properties of this random walk: First, the steps of the walk are expected to be power-law correlated in time.
Second, the position distribution of the walker relative to its starting point is given by the equilibrium position
distribution of a particle in an attractive logarithmic central potential of strength ηm, where ηm is the universal
power-law exponent of the equilibrium defect-antidefect correlation function of the underlying spin system. We
derive a scaling relation, z = (2 − ηm )/(1 − θ ), that allows us to express the dynamical exponent z(ηm ) of this
process in terms of its persistence exponent θ (ηm ). Our measurements of z(ηm ) and θ (ηm ) are consistent with this
relation over a range of values of the universal equilibrium exponent ηm and yield subdiffusive (z > 2) values of
z in the entire range. Thus, we demonstrate that the worms represent a discrete-time realization of a fractional
Brownian motion characterized by these properties.
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I. INTRODUCTION

Worm algorithms are very useful as a means of generating
nonlocal updates in Monte Carlo simulations of various lattice
models (for a brief review, see Sec. 5.1 of Ref. [1]). The
worm construction typically starts by creating a defect and
an antidefect next to each other in the initial configuration.
The defect and antidefect take the system out of the con-
figuration space of the physical system. The location of the
defect defines the fixed tail of the worm, while the head of
the worm corresponds to the antidefect, which is propagated
through the lattice in a way which satisfies detailed balance
conditions in a larger configuration space that allows for one
defect-antidefect pair. The construction ends when the head
reaches the tail again and annihilates it. All physical variables
encountered during the motion of the worm are updated as a
result of this construction.

An early implementation of a worm algorithm in the
context of classical Monte Carlo simulations used the high-
temperature expansion representation and updated closed path
configurations that represent terms in this expansion [2]. A
similar idea was also used to develop a worm algorithm for the
quantum rotor model in d = 2 spatial dimensions using the
link-current representation [divergence-free configurations of
current variables on links of the equivalent classical (d + 1 =
3)-dimensional space-time lattice] [3,4]. The construction cre-
ates a charged defect (with nonzero divergence of the link

current) at the tail, and a corresponding antidefect at the
head. In this case, the worm maintains detailed balance in
the configuration space relevant to the sampling of the single-
particle Green’s function of the system [5]. In quantum Monte
Carlo simulations of other bosonic systems, a similar worm
algorithm has been used both in the framework of imaginary
time world-line formulations [6,7], and the stochastic series
expansion (SSE) approach [8] to perform nonlocal changes in
the configuration. In this case too, the defects at the head and
the tail of the worm correspond to creation and annihilation of
a particle [9], allowing access to configurations relevant to the
sampling of the single-particle Green’s function.

Dual worm algorithms have also been used to construct
cluster updates for two-dimensional classical Ising
models [10]. These algorithms work by updating dimer
configurations (which encode bond energies of the original
model) along a closed loop on the corresponding dual lattice.
The updated bond energies are used to obtain a new spin
configuration in which all spins in the interior of this closed
loop have been flipped in one step. Recently, this approach has
been used [11] to obtain efficient cluster updates for frustrated
Ising models for which the usual cluster updates [12,13] are
known to perform poorly [14]. For the antiferromagnetic Ising
model on the triangular lattice, bond-energy configurations
correspond to dimer configurations on the dual honeycomb
lattice, with dimers intersecting frustrated bonds on the direct
lattice. At T = 0, ground states of the antiferromagnetic
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Ising model are characterized by the constraint that there is
exactly one frustrated bond per triangle. The corresponding
dual-lattice dimer configuration is hence fully packed (every
dual-lattice site is touched by a dimer) and characterized
by a hard-core constraint (dimers do not touch each other).
At T > 0, the dimer configurations do not obey a hard-core
constraint, since configurations in which some dual-lattice
sites have three dimers touching them (corresponding to
triangles with three frustrated bonds) are accessed by thermal
fluctuations; each dual-lattice site is now touched by one
or three dimers. In the frustrated Ising antiferromagnet
on the kagome lattice, the bond-energy configurations
correspond to dimer configurations of the dual dice lattice
in a similar manner, with one or three dimers touching each
three-coordinated site of the dice lattice.

In these worm algorithms at T = 0, the defect at the head
of the worm corresponds to a monomer, i.e., a site on the dual
lattice with no dimers touching it. The antidefect corresponds
to an antimonomer on the same sublattice, i.e., a site with
two dimers touching it. The initial defect-antidefect pair is
created by simply picking a site at random and pivoting the
dimer touching it to another unoccupied link. The antidefect
is then propagated by pivoting successive dimers along a
closed path, with probabilities chosen to preserve detailed
balance. The updated dimer configuration of the dual lattice is
then mapped back to a new spin configuration after the worm
construction is complete. This flips an entire cluster of spins.
At T > 0, the worm construction is suitably generalized to
work with more general defect antidefect pairs [11]. In this
T > 0 generalization [11], both the defect and the antidefect
correspond to dual sites with an even number of dimers
touching them. These take the system out of the original
configuration space of the equilibrium system, exactly as in
the simpler T = 0 construction.

The fact that all these worm constructions preserve detailed
balance in a larger configuration space with one defect-
antidefect pair allows for an interesting and simple method
to calculate the corresponding correlation functions: The
equilibrium defect-antidefect correlation function is simply
proportional to the histogram of the head-to-tail separations
measured during the worm construction [9,15,16]. In partic-
ular, it is clear from Ref. [11] that no reweighting of this
histogram is needed to measure the defect-antidefect corre-
lation function; this is in contrast to the reweighting needed
[15] for the monomer-monomer correlation function. In the
quantum rotor case, and in the context of world-line and
SSE methods for bosonic systems, this corresponds to the
imaginary time single-particle Green function [4,9,15,16]. As
we detail below, in the example studied in our work here, this
corresponds to the correlation function between half-vortices
(with vorticity ±1/2) in the argument φ of the complex three-
sublattice order parameter of the spin system [11].

Apart from measuring the defect-antidefect correlator
during worm construction, one can also measure various
statistical properties of the worms themselves; the simplest
of these is the distribution of worm lengths. This is of
interest because the Monte Carlo autocorrelation properties
of such worm algorithms depend on the number of variables
updated in a single worm construction, which in turn depends
on the distribution of worm lengths. For instance, the

fractal structure and scaling properties of worms defined
within the high-temperature expansion have been studied
previously [17]. Properties of spin clusters defined by other
cluster algorithms [12,13] have been numerically studied in
the case of the critical two-dimensional Ising model [18] and
found to be in agreement with theoretical predictions [19–23].
Following the generalization of cluster algorithms to the fully
frustrated square lattice [24], the properties of such clusters
have also been studied extensively in that setting [25]. Since
closed worms on the dual lattice define a cluster on the
original lattice, properties of these clusters are also interesting
from this point of view. Statistics of worms constructed by
a direct worm algorithm for a three-dimensional spin ice
model have also been studied, but less information seems to
be available on worms in the corresponding two-dimensional
model [26].

Part of the motivation for the present study is our earlier
observation that the autocorrelation properties of two different
dual worm algorithms (the deposition-evaporation-pivoting or
DEP algorithm and the myopic algorithm) [11] are determined
by the universal exponent of the equilibrium spin-spin correla-
tion function in the power-law three-sublattice ordered phase
of frustrated Ising models on two different two-dimensional
lattices (triangular and kagome) over a range of temperatures.
Since the properties of individual worms are expected to con-
trol the manner in which successive configurations decorrelate
with each other, we attempt to understand this universality
by focusing here on a detailed study of the random geometry
of these worms, specifically the number of steps taken to
complete one worm, the number of distinct dual links flipped
by one worm, and the number of Ising spins flipped by
one worm.

Viewing each step of the worm construction as a posi-
tion increment (step) of a random walker, the distribution of
worm lengths is equivalent to the return time distribution of
this random walker. In the power-law three-sublattice ordered
phase of the equilibrium system, we find that this distribution
also takes on a power-law form. This motivates our detailed
computational study of the persistence exponent θ and the
dynamical exponent (fractal dimension) z of this walk. We
provide convincing numerical evidence that the persistence
exponent θ and the dynamical exponent z of this random
walk depend only on the universal power-law exponents of the
underlying critical phase and not on the details of the worm
algorithm or microscopic Hamiltonian.

Further, we argue that two key properties of this random
walk follow directly from the detailed balance requirement
obeyed by the worms and the power-law correlations of the
underlying equilibrium system: First, the steps of the walk
are expected to be power-law correlated in time. Second,
the position distribution of the walker relative to its start-
ing point is given by the equilibrium position distribution
of a particle in an attractive logarithmic central potential of
strength ηm, where ηm is the universal power-law exponent of
the equilibrium defect-antidefect correlation function of the
underlying system. This latter observation is a particularly
useful reformulation of the well-known idea that the head-
to-tail separations measured during the worm construction
directly measure the equilibrium defect-antidefect correlation
function [9,15,16].

062101-2



FRACTIONAL BROWNIAN MOTION OF WORMS IN WORM … PHYSICAL REVIEW E 103, 062101 (2021)

Using this reformulation, we derive a scaling relation,

z = 2 − ηm

1 − θ
, (1)

that allows us to relate the dynamical exponent z(ηm) of this
process to its persistence exponent θ (ηm).

If this random walker had no memory (corresponding to
the usual case of a Markovian random walker with dynamical
exponent z = 2) and was attracted to its starting point by
a static logaritmic potential of strength ηm, the equilibrium
position distribution (relative to its starting point) of this ran-
dom walker would be consistent with the expected form of
the distribution of head-to-tail displacements for our worms.
Standard results [27,28] on such random walks in a cen-
tral logarithmic potential would immediately imply θ (ηm) =
ηm/2. Of course, this result is consistent with the more gen-
eral scaling relation Eq. (1), since z = 2 for the Markovian
random walker.

However, our results on the random geometry of the worms
are not consistent with this simple picture of a Markovian
random walker in a static potential. This is not entirely unex-
pected: As we detail below, this simple picture corresponds
to an alternate dynamics in which the “background” dimer
model has rapid thermal fluctuations, allowing it to equilibrate
very rapidly for each new position of the antidefect, while the
motion of the antidefect pair is very slow in contrast. This
may be viewed as a kind of “Born-Oppenheimer limit” of the
dynamics. However, the actual worm dynamics being studied
is as far from this Born-Oppenheimer limit as can be, since
the background dimer configuration only changes each time
the antidefect moves.

Indeed, our computational study yields values of z(ηm) and
θ (ηm) that are consistent with the scaling relation Eq. (1) over
a large range of values of the universal equilibrium exponent
ηm. Throughout this range, the dynamical exponent is subd-
iffusive (z > 2) and θ (ηm) is consistently larger than ηm/2.
Thus, we demonstrate that the worms constitute a discrete-
time realization of a fractional Brownian motion characterized
by these properties.

The rest of this paper is organized as follows: In Sec. II,
we provide a brief review of the models which are simulated
by the worm algorithms studied here, along with a schematic
description of their phase diagram. In Sec. III, we provide a
quick summary of the DEP and myopic worm algorithms of
Ref. [11] whose properties we study. In Sec. IV, we present
our derivation of the scaling relation, Eq. (1), review the
relevant facts about a Markovian random walker in a static
central logarithmic potential, discuss how this simple Marko-
vian walker scenario corresponds to the Born-Oppenheimer
limit mentioned earlier, and sketch the connection between
the random geometry of our worms and the ensemble of
overlap loops obtained by superposing two dimer configura-
tions drawn independently from the equilibrium ensemble. In
Sec. V, we provide precise definitions of various properties of
the worm which are measured during the worm construction.
In Sec. VI, we summarize our results for these statistical
properties of the worms including the persistence exponent θ

and the dynamical exponent z. Finally, in Sec. VII, we discuss
some promising directions for future work.

II. MODELS

Ising models on triangular and kagome lattices with an-
tiferromagnetic nearest neighbor interactions are among the
simplest models of geometric frustration [29,30]. For these
models, the pattern of nearest neighbor bond energies can be
represented in terms of dimer models on the corresponding
dual lattice (honeycomb and dice respectively) [11]. When
further neighbor ordering interactions are absent, there is a
macroscopic degeneracy of minimum energy spin configu-
rations, which corresponds to a T = 0 ensemble of dimer
configurations on the dual lattice. For the triangular lattice
antiferromagnet, this T = 0 ensemble is made up of all per-
fect matchings (fully packed dimer configurations) on the
honeycomb lattice, while the T = 0 dimer configurations on
the dice lattice have exactly one dimer touching each three-
coordinated site and an even number of dimers touching
each six-coordinated site. The former ensemble has power-
law dimer correlations with power-law exponent ηd = 2 (at
the uniform and the three-sublattice wave vectors). This
corresponds to power-law correlations for the spins at the
three-sublattice wave vector, with power-law exponent ηs =
1/2 at T = 0 [29,31]. The kagome lattice antiferromagnet in
this limit is a short-range correlated spin liquid [30], corre-
sponding to short-range dimer correlations.

At T = 0 for the nearest neighbor triangular antiferromag-
net, the relationship between ηd and ηs can be understood
in terms of a coarse-grained height model [15,32–34] for
the ensemble of fully packed dimer configurations on the
honeycomb lattice. In this representation, the spin operator
at the three-sublattice wave vector corresponds to exp(iπh)
(where h is the height field) while the dimer operator has a
uniform part given in terms of the gradient ∇h and a second
piece exp(2π ih) at the three-sublattice wave vector. Thus, one
can think of this height field h as being proportional to the
phase φ of the local three-sublattice order parameter of the
spin system: h ≡ φ/π .

This coarse-grained effective field theory is useful because
the action for h (equivalently for φ) is Gaussian, character-
ized by a single dimensionless stiffness g. Dimer correlations
at the uniform wave vector fall off as 1/r2 independent of
the stiffness of the height model, while correlations at the
three-sublattice wave vector decay with power-law exponent
ηd (g) controlled by the stiffness of the height model. Spin
correlations at the three-sublattice wave vector fall of as a
power law with exponent ηs (with ηd = 4ηs). When all fully
packed dimer configurations have equal weight (as is the case
for the nearest neighbor antiferromagnet in the T → 0 limit),
ηd = 2 and ηs = 1/2.

A second-neighbor ferromagnetic interaction J2 on the tri-
angular lattice, with J2 ∝ T in the T → 0 limit, is equivalent
to an attractive interaction favoring columnar three-sublattice
order in the fully packed dimer model that describes this limit.
This interaction gives rise to a ηd < 2 and ηs < 1/2 as shown
in Fig. 1. Indeed, ηs decreases monotonically with increas-
ing J2/T (in this zero-temperature limit), until the system
develops long-range three-sublattice order when ηs = 1/9 is
reached [33]. In the coarse-grained height representation, this
is understood by noting that J2/T tunes the stiffness g of
the height model, thereby influencing the value of ηs (and
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FIG. 1. The T − J2 phase diagram of a triangular lattice anti-
ferromagnet at a fixed nearest neighbor antiferromagnetic coupling
J1 > 0. J2 > 0 represents a ferromagnetic second neighbor inter-
action on the triangular lattice (thus, the sign conventions for J1

and J2 are opposite of each other). The dashed red lines represent
the T → 0 limit at a fixed value of J2/T . In this limit, the critical
exponent ηs of the two-point spin correlation function at the three-
sublattice wave vector goes from 1/2 at J2/T = 0 limit to 1/9 as
J2/T is monotonically increased to reach the threshold of long-range
three-sublattice order. The solid green lines represent the lower and
upper phase boundaries of the power-law three-sublattice ordered
phase associated with the two-step melting of three-sublattice order
at nonzero J2 > 0. This critical phase has a continuously varying
ηs ∈ [1/9, 1/4], with the lower (upper) limit being achieved at the
lower (upper) phase boundary of this phase. See Sec. II for a detailed
discussion.

of ηd = 4ηs). When ηs = 1/9, the leading allowed cosine
interaction cos(6πh) becomes relevant, driving the transition
to three-sublattice order.

Monomers in this fully packed dimer model correspond,
in the Coulomb gas (CG) description of the coarse-grained
height model [15,34], to a magnetic charge ±1 on A/B sites of
the honeycomb lattice (likewise, antimonomers have magnetic
charge ∓1 on A/B sites of the honeycomb lattice). As a result,
the monomer-antimonomer correlator decays as a power law
with an exponent ηm = 1/ηd = 1/4ηs. In terms of the argu-
ment φ of the complex three-sublattice order parameter of
the spin model, these monomers and antimonomers are half-
vortices since φ ≡ πh and each monomer or antimonomer
results in a height ambiguity of �h = ±1 along any path that
encircles the defect once.

At nonzero T , the dimer representation of bond energies
now allows three-coordinated sites touched by three dimers
or one dimer, greatly increasing the entropy of allowed con-
figurations. The sites touched by three dimers correspond to
vortices in the phase φ of the three-sublattice order parameter
of the spin model. The worm algorithm now makes other
defects (Sec. III) apart from monomers and antimonomers;
like monomers and antimonomers, these too take the sys-
tem outside the physical subspace of the spin model during
the construction of the worm. These defects can again be
thought of as half-vortices in the argument φ [35–37] of the
Fourier component of the spin density at the three-sublattice
wave vector.

A fixed nonzero value of second-neighbor ferromag-
netic interaction induces long-range three-sublattice order
on both lattices at sufficiently low temperature. This melts
via a two-step process, wherein the intermediate state has
power-law spin correlations at the three-sublattice wave vec-
tor, with power-law exponent ηs that ranges from 1/9 (at
the low-temperature end) to 1/4 (at the high-temperature
end) as shown in Fig. 1 [33,37–39]. As noted earlier,
the low-temperature boundary of the power-law ordered
state corresponds to the threshold at which the leading co-
sine interaction cos(6πh) becomes relevant. Conversely, the
high-temperature boundary corresponds to the threshold at
which vortices in the three-sublattice order parameter of the
spin model become relevant. Finally, we note that when
spin correlations display power-law three-sublattice order,
the dimer correlations also have a power-law form, with
exponent ηd = 4ηs.

Since the power-law phase is described by a Gaussian
theory for φ characterized again by a single dimensionless
stiffness g, the defect-antidefect correlator is again expected
to decay with exponent ηm = 1/4ηs = 1/ηd (where ηd , the
dimer correlation exponent, is again related to the power-
law exponent ηs via ηd = 4ηs). The values ηm < 1 can only
be accessed in the zero-temperature limit on the triangular
lattice by tuning J2/T , while the power-law three-sublattice
ordered phase at nonzero temperature corresponds to the
range (1/2, 9/4) for ηm on both lattices.

With this background, we use the previously developed
DEP and myopic algorithms [11] in the triangular case and the
myopic algorithm in the kagome case to simulate the classical
Ising model

H = J1

∑
〈RR′〉

σRσR′ − J2

∑
〈〈RR′〉〉

σRσR′ , (2)

where 〈RR′〉 and 〈〈RR′〉〉 denote nearest neighbor and next
nearest neighbor links of the lattice in question, and σR = ±1
are the Ising spins on sites R of the triangular or kagome
lattice. In our convention, J1 > 0 (J2 > 0) corresponds to an
antiferromagnetic (ferromagnetic) coupling. We focus here
on the case with J1 > 0 and J2 > 0, and study the statistics
of worms generated by these algorithms in the power-law
three-sublattice ordered phase on both lattices.

III. ALGORITHMS

In this section, we provide a brief description of the al-
gorithms developed in Ref. [11], whose statistics we wish to
study here.

As mentioned in the introduction, these worm algorithms
are defined on the dual lattice and work with the dimer
representation of the frustrated Ising antiferromagnet on the
triangular and kagome lattices. At nonzero temperatures on
the triangular lattice, each triangle has either one or three
frustrated bonds. This translates to either one or three dimers
touching each lattice site of the dual honeycomb lattice. Sim-
ilarly, on the kagome lattice at nonzero temperatures, every
spin configuration corresponds to a dimer configuration in
which each three-coordinated site of the dual lattice is touched
by either one or three dimers, while each six-coordinated
site of the dual lattice is touched by an even number of

062101-4



FRACTIONAL BROWNIAN MOTION OF WORMS IN WORM … PHYSICAL REVIEW E 103, 062101 (2021)

FIG. 2. The first row shows the allowed dimer configurations and defect-antidefect configurations of the three-coordinated sites of the
honeycomb lattice (solid lines) dual to the triangular lattice (dashed lines). Dimers occupy bonds on the dual lattice and intersect a frustrated
bond on the triangular lattice. For Ising spins with antiferromagnetic nearest neighbor exchange couplings on the triangular lattice, a frustrated
bond connects Ising spins that point in the same direction. Defect-antidefect dimer configurations do not represent physical spin configurations,
and hence take the dimer model out of the physical configuration space of the Ising antiferromagnet. The second row shows a worm propagating
on the dual honeycomb lattice. Consecutive steps of the worm algorithm are numbered. Step 1 of the worm algorithm (in both the DEP and
the myopic algorithms) involves pivoting a dimer to create a pair of defect-antidefect sites (marked by five-pointed stars in the figure) on
the dual lattice. As the worm propagates, the antidefect moves with the head of the worm, whereas the defect, associated with the tail of the
worm, remains static at the starting site. The worm construction ends when the head reaches the tail again, causing the defect and antidefect to
annihilate to produce a new physical dimer configuration that can be mapped to a legitimate configuration of the Ising spins so long as some
parity constraints on the winding numbers are preserved. See Sec. III for a detailed discussion.

dimers. Thus, at nonzero temperatures, the configuration
space of the dual dimer model is larger than that of the usual
fully packed dimer model. The dimer configurations corre-
sponding to various spin configurations have been shown in
Fig. 2.

As noted earlier, a power-law three-sublattice ordered
phase is obtained on the triangular lattice both at T = 0
(with a ferromagnetic J2 ∝ T ) and at T > 0 (associated with
the melting of long-range three-sublattice order). On the
kagome lattice, power-law three-sublattice order is obtained
only at T > 0 (associated with the melting of long-range
three-sublattice order). In Ref. [11], two worm algorithms
were introduced for the triangular lattice model (the DEP and
myopic algorithms), only one of which (the myopic algo-
rithm) generalizes to the kagome lattice [11]. Thus, we have
five different settings in which we can test the idea that the
statistics of worms in the power-law three-sublattice ordered
phase depends only on the exponent ηs, independent of the
details of the worm construction and form of Hamiltonian:
One can study the worm statistics of both algorithms in the
T = 0 power-law phase as well as the T > 0 power-law phase
on the triangular lattice, and one can also study the worm
statistics of the myopic algorithm in the T > 0 power-law
phase on the kagome lattice. (Both the DEP and myopic worm
algorithms, though developed for the larger dual configuration
space at T > 0, reduce in an obvious way at T = 0 to previ-
ously known implementations of worm algorithms for dimer
models on the honeycomb and dice lattices [11]).

Both algorithms proceed by first translating the spin con-
figuration into a dual dimer configuration, with each dimer
configuration thus assigned a Boltzmann weight of the parent
spin configuration. Next, we update the dimer configuration
using these worm algorithms. The DEP and myopic worm
algorithms differ in the way they perform this update. While
the DEP worm algorithm keeps track of the local dimer envi-
ronment near the head of the worm at every step of the worm
construction, the myopic worm algorithm does not keep track
of the local dimer environment near the head of the worm at
alternate steps (it is thus “myopic” or short-sighted at alternate
steps). The details of the worm construction protocol for both
algorithms, and the proofs that these protocols obey detailed
balance, have already been discussed extensively in Ref. [11].
Here, we confine ourselves to providing a simple example of
the worm construction in the T → 0 limit in Fig. 2.

Since detailed balance is explicitly satisfied, the dimer con-
figuration obtained after the worm is constructed can always
be accepted. However, there is one subtlety when it comes to
accepting the corresponding spin configuration: We work with
periodic boundary conditions along x̂ and ŷ of the triangular
and kagome lattices. This translates to constraints on the par-
ity of the global winding number of the corresponding dimer
model (for details on preserving detailed balance and wind-
ing number constraints, see Ref. [11]). Thus, after the worm
construction, only updated dimer configurations which satisfy
this constraint can be translated back to the spin configuration.
Therefore, one has to occasionally reject a worm which winds
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around the lattice, if the result leads to a dimer configuration
in an illegal winding number sector.

The worm algorithm typically propagates the head of the
worm along a complicated path on the dual lattice. As we
discuss in more detail in the next section, this path can have
frequent self-intersections in addition to backtracking. As a
result, the correspondence between the geometry of this worm
and the degrees of freedom it updates is not entirely straight-
forward. Nevertheless, it is straightforward to construct a new
spin configuration from the new dimer configuration obtained
after the head of the worm has recombined with the static tail
(if the new dimer configuration does not obey the winding
number parity constraints necessary for being in correspon-
dence with a spin configuration, we do not keep track of
this worm). Since each valid dimer configuration corresponds
to two spin configurations related by a global spin flip, we
randomly chose one of these when translating back to the spin
configuration.

IV. RANDOM WALK CONSIDERATIONS

A. Scaling relation between θ and z

Our starting point is the well-known observation [9,15,16],
alluded to in the introduction, that the histogram of head-
to-tail distances of the worm is given by the equilibrium
defect-antidefect correlator Cm(
r). In particular, as already
noted in the introduction, the analysis of Ref. [11] demon-
strates that no reweighting of this histogram is needed to make
this connection to the defect-antidefect correlation function;
this is in contrast to the reweighting needed [15] for the
monomer-monomer correlation function. Viewing each step
of the worm construction as a position increment (step) of a
random walker, this translates to the requirement that the walk
has a long-time steady-state distribution of position given by
Cm(
r). In other words, the histogram of positions 
r, accumu-
lated during the walk, must be proportional to Cm(
r). If we
choose a normalization convention whereby this histogram
measures the ratio of the number of times the head to tail
separation is 
r to the number of returns to the origin, i.e., the
number of times the head to tail separation is 
r per worm, then
the mean return time is given as 〈τr〉 = v, with v ≡ ∑


r Cm(
r),
where the sum extends over L2 sites of the finite lattice. If this
sum is dominated by contributions near the upper cutoff in
distance, we expect v ∼ L2−ηm . This is true for all ηm < 2.

Next we note that the average return time can also be
expressed in terms of the probability distribution P(τr ) of first
return time τr of this walker by writing 〈τr〉 = ∑

τr
τrP(τr ).

Assuming that the power-law form P(τr ) ∼ 1/τ θ+1
r persists

up to a system-size-dependent cutoff scale τcutoff(L) ∼ Lz,
where z is the dynamical exponent for the random walk, we
obtain 〈τr〉 ∼ Lz(1−θ ) whenever the sum is dominated by the
contributions near the upper cutoff. This is true for all θ < 1.

Comparing these two predictions for the L dependence
of the mean return time, we arrive at the scaling relation of
Eq. (1) which is valid when ηm < 2 and θ < 1. Thus, the
dynamical exponent z is in general not fixed to the usual
Markovian random walk value of z = 2. This appearance of
a non-Markovian value of z in our description of the worms
should be interpreted in the following way: The underly-

ing worm algorithm is Markovian. The probability table that
guides the choice of the next step in the worm construction
depends only on the current configuration of the system.
However, when one only focuses on the position of the head
relative to the fixed tail of the worm, one is tracing out all
information about the rest of the system, i.e., losing informa-
tion about the power-law correlated background dimer liquid.
This projected process is non-Markovian, in the sense that it
depends in principle on the entire history of previous positions
of the head and may be expected to have a memory that falls
off as a power law in time since the equilibrium power-law
correlations of the spin and bond energy variables also give
rise to correlations between the successive steps taken by
the head of the worm. It is this effectively non-Markovian
dynamics that is being described in terms of a z different
from z = 2.

Note that if z had been fixed at z = 2, as is the case for
the usual Markovian random walk, our scaling relation could
have been used to predict (incorrectly) that θ (ηm) = ηm/2.
This connection between the ansatz θ (ηm) = ηm/2 and the
Markovian value z = 2 is amenable to a simple interpretation
via a toy model of an ordinary random walker in an attractive
logarithmic potential of strength ηm.

In the next section, we outline a different dynamics for
which this toy model of an ordinary random walker in a
central logarithmic potential is expected to yield exact results.
By contrasting the actual worm dynamics with this alter-
nate dynamics, we isolate and pinpoint the precise features
of the worm dynamics responsible for the interesting non-
Markovian behavior observed by us.

B. Alternate dynamics: The “Born-Oppenheimer limit”

Let us imagine that the underlying dimer system has other
ways of equilibrating, and does not rely entirely on the motion
of the worms to reach equilibrium. Indeed, let us consider an
alternate dynamics, in which the dimer system rapidly reaches
equilibrium at each new position of the antidefect during the
motion of the worm (recall that the defect is held fixed at its
initial location and the worm construction involves the motion
of the antidefect). For concreteness, one can imagine this is
achieved by performing a very large number, Nlocal, of local
ring-exchange moves that leave the defect and the antidefect
unchanged but allow the dimer configuration to equilibrate
for these fixed locations of the defect and antidefect. Thus,
in this alternate dynamics, the timescale for equilibrating the
dimer system is much shorter than the timescale over which
the worm head moves. Motivated by the analogy to “slow
nuclei” and “fast electrons” in the Born-Oppenheimer theory
of molecular dynamics, we dub this Nlocal → ∞ limit the
Born-Oppenheimer limit.

Defining a coordinate system in which the static defect is
at the origin, the antidefect in this limit will see a static cen-
tral potential of entropic origin, arising from the dependence
of the equilibrium dimer partition function on the location
of the antidefect. In other words, we may now legitimately
view the power-law form of the equilibrium defect-antidefect
correlation function as being the result of a static attrac-
tive logarithmic interaction V (
r) ≡ − ln(Cm(
r)) = ηm ln(r)
between the head and the tail (recall that the tail is held
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fixed while the head is mobile in this alternate dynamics,
exactly as in the original worm dynamics). Thus, in this Born-
Oppenheimer limit, which we view as a simple toy model
for the motion of the worm, the head executes an ordinary
Markovian random walk in an attractive central logarithmic
potential. This walk starts at a site adjacent to the origin and
ends when it returns to the origin for the first time. The worm
length in this picture is mapped to the time τr of first return
to origin of this random walk. As a result, the worm length
distribution is given by the probability distribution P(τr ) of
return times and is expected to have a power-law form P(τr ) ∼
1/τ θ+1

r , where θ is the persistence exponent.
The Fokker-Planck equation for a Brownian walker in an

attractive logarithmic central potential in dimension d can be
transformed [27,28] using radial coordinates to the equation
for a free Brownian walker in an effective dimension d ′, with

d ′ = d − ηm. (3)

The probability distribution of the first return time τr

of a Markovian random walker in dimension d ′ can be
obtained using the corresponding Green’s function with ab-
sorbing boundary conditions at the origin. This predicts the
large-τr form:

P(τr ) ∼
⎧⎨
⎩

1/τ 2−(d ′/2)
r , for d ′ < 2

1/(τr ln2(τr )), for d ′ = 2
1/τ (d ′/2)

r , for d ′ > 2.

(4)

Thus, for a Markovian random walker

θ =
{

1 − (d ′/2), for d ′ < 2
(d ′/2) − 1, for d ′ > 2.

(5)

Since d = 2 in our case and ηm ∈ (1/2, 9/4), d ′ ≡ 2 − ηm

is always less than 2. Thus, when z = 2, these standard re-
sults for a Brownian walker give θ = ηm/2, valid when ηm ∈
(1/2, 2). This is consistent with the more general scaling rela-
tion between z and θ . For ηm � 2, i.e., close to the ordering
transition at which the power-law spin order gives way to
long range order, d ′ turns negative, and the analysis leading to
Eq. (5) breaks down (in this regime, the more general scaling
relation between θ and z also breaks down).

As emphasized earlier, the actual value of θ (ηm) obtained
from our numerical work deviates significantly from this
Markovian model. The numerical results consistently give a
larger value of θ (ηm) over the entire range of ηm. This ob-
served value of θ is accompanied by a measured dynamical
exponent that is subdiffusive (z > 2) in the entire range stud-
ied. Nevertheless, in the entire range studied, θ and z satisfy
the scaling relation derived in the previous subsection.

C. Decomposition of a worm trace into overlap loops

The trace of a worm, i.e., the trajectory of its head before it
eventually returns to and recombines with the tail, is in general
not a simple loop. Indeed, as will be clear from our numerical
results in the next section, it can intersect itself often, in addi-
tion to backtracking along previously traversed segments. The

question then arises: Can this complicated trace be related in a
useful way to the changes in the dimer configuration produced
as a result of this worm?

To answer this question, let us first consider the zero-
temperature limit on the triangular lattice. In this limit, the
dual configuration space reduces to that of the hard-core
dimer model on the honeycomb lattice. An elegant geometric
characterization of the difference between the final dimer con-
figuration and the initial dimer configuration is now possible
in terms of the overlap loop diagram obtained by superposing
these two dimer configurations. Since each site is covered by
exactly one dimer in both the initial and final dimer con-
figuration, each loop in this diagram is a simple loop. All
these simple loops admit a consistent orientation: One con-
structs each of them by starting with any A sublattice site
on the loop and alternately following the dimers from the
final and initial configurations until one returns to the starting
point.

Since both the final and the initial dimer configurations
are drawn from the equilibrium ensemble corresponding to
the fully packed dimer model (with interactions correspond-
ing to the limiting T → 0 value of J2/T ), long-wavelength
properties of these dimer configurations admit a description
in terms of the coarse-grained height model alluded to earlier.
If the initial and final dimer configurations had been drawn
completely independently from this equilibrium ensemble, so
that one was in effect considering the overlap between two
independent copies of the equilibrium system, it would be pos-
sible to characterize the large-scale properties of the overlap
loop diagram in terms of the statistics of contour lines of equal
height of a fluctuating height field with a Gaussian action (see,
for instance, Ref. [40], where such a characterization was used
as a diagnostic for a novel bilayer Coulomb phase in a bilayer
dimer model).

Much is known about the statistics of contour lines of a
fluctuating Gaussian height field. For instance, the probability
that two points separated by 
r lie on the same contour falls
off as 1/r2x1 ; crucially, the exponent 2x1 = 1 is independent
of the dimensionless stiffness g of the Gaussian height ac-
tion. This is in sharp contrast to the continuously varying
exponent ηm(g) which characterizes the probability that the
head-to-tail displacement is 
r for our worm dynamics. It is
also known that the persistence exponent τ − 1, which char-
acterizes the power-law distribution of size of the contour loop
that passes through a randomly chosen point, and the dynami-
cal exponent zcontour that characterizes the fractal nature of the
contour loops, are both independent of the stiffness g of the
fluctuating Gaussian height field: τ − 1 = 4/3, and zcontour ≡
D f = 3/2 [41].

These values of zcontour, τ − 1, and 2x1 obey a scaling
relation [41] D f = (2 − 2x1)/(3 − τ ) which follows from a
scaling argument entirely analogous to the analysis that led
us to our scaling relation, Eq. (1). Recent work on the statis-
tics of overlap loops obtained from dimer configurations of
two layers of a bilayer system in a novel bilayer Coulomb
phase has found excellent agreement with these values of
D f and τ ; indeed these values were found to control the full
finite-size scaling function of the size of these overlap loops,
independent of the stiffness of the associated coarse-grained
height field [40].
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(a) (b)

FIG. 3. The lattice size L dependence of the defect-antidefect correlation function Cm(êx
L
a ) at separation êx

L
a on a periodic L × L triangular

lattice for the DEP worm algorithm for values of parameters at which the system has power-law three-sublattice order (a) in the T → 0 limit and
(b) at a nonzero T . Line denotes fit to a power-law form Cm(êx

L
a ) ∝ 1/Lηm . Note that any point in the T > 0 power-law three-sublattice ordered

phase has ηm > 1, while smaller values of ηm can be accessed in the T = 0 limit considered here. Corresponding plots for the myopic worm
algorithm on the triangular and kagome lattices are shown in the Supplemental Material [42]. See Secs. V and VI for a detailed discussion.

How does the random geometry of worms studied here re-
late to this statistics of overlap loops? A partial answer comes
from noting that each self-intersection of the worm results in
an overlap loop split off from the rest of the worm. Thus, the
overlap loop diagram obtained by superposing the initial and
final dimer configurations can be viewed as being the result
of “resolving” each self-intersection of the worm to obtain
a collection of simple “daughter loops.” Clearly, the number
of such daughter loops obtained from a completed worm is
itself a random variable, as are the sizes of these daughter
loops. The random geometry of our worms should therefore
be viewed as a convolution of the properties of a variable
number of these daughter loops. While we have not explored
this connection in any detail, we mention it here since it pro-
vides a useful perspective on our results. In particular, since a
single worm is a convolution of a variable number of overlap
loops, and the detailed nature of this convolution depends
continuously on the equilibrium exponent ηm (equivalently
on the stiffness g of the equilibrium Gaussian height action),
this connection provides a rationale for the fact that the worm
exponents θ (ηm) and z(ηm) vary continuously with ηm, while
the corresponding overlap-loop exponents τ − 1 and D f are
independent of the stiffness g.

Finally, we note that this connection becomes somewhat
less direct at a microscopic level in the power-law ordered
phase at nonzero temperature. In this case, the dimer configu-
rations have a nonzero density of dual sites touched by three
dimers instead of one. Therefore, the superposition of two
such dimer configurations does not admit a unique decom-
position into set of nonoverlapping simple loops. Therefore,
it would be useful to perhaps explore alternate microscopic
constructions that attempt to connect our worms to a convo-
lution of some suitably defined simple loops that represent
microscopic realizations of the contour lines of the Gaussian
free field that controls the long-wavelength description of this
nonzero temperature power-law phase. We have not attempted
this here.

V. OBSERVABLES

A. Defect-antidefect correlator

During the worm construction, a defect-antidefect pair is
created on the dual lattice, and the antidefect is then moved
(keeping the defect fixed) through the dual lattice (in a man-
ner satisfying detailed balance in the enlarged configuration
space) until it returns to the location of the defect and an-
nihilates it, producing a legal dimer configuration that can
be mapped back to a spin configuration. As noted earlier,
the defect-antidefect correlator Cm(
r) is proportional to the
histogram of the position 
r of the head relative to the tail of
the worm, which can be accumulated during the worm con-
struction [15]. We choose a normalization convention where
this histogram, when summed over 
r, gives the mean length
of worms constructed by the algorithm (in other words, we
measure the number of times the head to tail separation is 
r
per worm). In the power-law three-sublattice ordered phase,
we expect Cm(
r) ∼ 1/rηm , with ηm = 1/4ηs. During the worm
construction, the worm can wind around the torus defined by
the periodic boundary conditions used in our study. Even if
the worm winds before annihilating, we always record the
shortest geometric separation between the head and tail of the
worm (modulo the lattice size L in each direction).

B. Worm length or return time distribution

The number of dual lattice sites (with multiplicities, if a
site is visited more than once) visited by the head of the worm
during the worm construction defines the length of the worm,
which corresponds in our random walk analogy to the first-
return time of the walk. A histogram of this gives us P(τr ),
the probability distribution of first-return times.

C. Average worm length

As noted earlier, once our defect-antidefect correlator is
normalized to measure the number of times the head to tail
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(a) (b)

FIG. 4. The lattice size L dependence of the average number of dual lattice sites visited per worm, 〈v〉, for the DEP worm algorithm on
a periodic L × L triangular lattice for values of parameters at which the system has power-law three-sublattice order (a) in the T → 0 limit
and (b) at a nonzero T . Since 〈v〉/L2 ∼ 1/Lηm , the power-law fits give us an alternate measurement of ηm. Corresponding plots for the myopic
algorithm are shown in the Supplemental Material [42]. See Secs. V and VI for a detailed discussion.

separtion is 
r per worm, and then 〈τr〉 = 〈v〉 ≡ ∑

r Cm(
r). In

our numerics, we measure 〈v〉, which is expected to scale as
∼ L2−ηm in the power-law phase.

D. Average number of flipped links per worm

When a worm retraces its path, it flips the dimers along
the retraced path again, in effect not flipping them in the first
place. Thus, counting the number of flipped links is equiv-
alent to measuring the perimeter of the closed path defined
by the worm. This closed path is made up of a number of
disconnected components in general. As mentioned earlier,
this is because every intersection of the worm with its own
trace splits off a closed loop of flipped links. We measure the
average number of flipped links per worm 〈p〉 (summed over

FIG. 5. ηm extracted from L dependence of the defect-antidefect
correlators (Fig. 3) plotted as a function of ηs, the exponent of the
power-law spin-spin correlations at the three-sublattice wave vector.
The line denotes the theoretically expected dependence ηpredicted

m =
1/4ηs. See Secs. V and VI for a detailed discussion.

all closed components of that path) as a function of the return
time τr of the worm.

E. Average number of flipped spins per worm

After mapping back to the original spin configuration, we
can measure the average number of spins on the direct lattice
flipped by one worm update. For a simple closed loop, this
would be equivalent to measuring the area enclosed by the
closed path defined by the trace of the worm. Since the worm
is on a torus, this area can be the either be the inner or outer
area with respect to such a simple closed loop. However, since
our worm is not a simple closed loop, we do not attempt to
define areas in this way. Instead, we start with the final dimer
configuration and map it to one of the two spin configurations
corresponding to it (we choose one of them randomly, with
equal probability). With this in hand, we define the corre-
sponding number of flipped spins to be the smaller of the
two numbers for these two choices of final spin configu-
ration. In our measurements, we keep track of the average
number of flipped spins 〈a〉 defined in this way and study
its dependence on the number of flipped links p introduced
earlier.

VI. RESULTS

All our measurements are performed on lattice sizes of up
to 600 × 600 lattice sites for the triangular lattice antiferro-
magnet and up to 288 × 288 unit cells (with three sites per
unit cell) for the kagome lattice antiferromagnet. For studying
the statistics of worms, we perform one worm update per
Monte Carlo step (MCS) and measure all histograms and
averages during the worm construction. If the final dimer con-
figuration obtained after the worm construction is not physical
from the point of view of the spin model (as explained in
Sec. III), we discard the measurements made during the con-
struction of that particular worm. All our data is averaged over
1 × 108 MCS.
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(a) (b)

FIG. 6. Probability distribution P(τr ) of the worm length τr , i.e., the number of sites τr of the dual lattice visited by a worm of the DEP
worm algorithm on a periodic L × L triangular lattice for values of parameters at which the system has power-law three-sublattice order (a) in
the T → 0 limit and (b) at a nonzero T . Lines denote fits to a power-law form P(τr ) ∝ 1/τr

1+θmeasured . Corresponding plots for the myopic worm
algorithm on the triangular and kagome lattice are shown in the Supplemental Material [42]. Note that the value of θmeasured for T = 4.3 is at
the edge of validity of the scaling relation of Eq. (1). See Secs. V and VI for a detailed discussion.

We have performed such measurements in all five cases
mentioned in Sec. III: In the T → 0 limit on the triangular
lattice, we study both the DEP and myopic algorithms at
three values of J2/T (0.00, 0.05, and 0.10), all of which are
in the power-law three-sublattice ordered phase. To access
the T > 0 power-law three-sublattice ordered phase, we set
J1 = 1 and J2 = +1. On the triangular lattice, we study both
the algorithms in this critical phase at T = 4.3, 4.5, and 4.6.
On the kagome lattice, we study the myopic algorithm in this
critical phase at T = 1.24, 1.30, and 1.36 (all temperatures are
measured in units of J1 = 1).

The defect-antidefect correlator Cm(êx
L
s ) is measured at

separation 
r = êx
L
s (with s = 2 for the zero-temperature

FIG. 7. Probability distribution P(τr ) of the worm length τr , i.e.,
the number of sites τr on a periodic L × L × L cubic lattice which
are visited by a nonwinding worm of the dimer worm algorithm for
the fully packed dimer model on a L = 72 cubic lattice. Line denotes
fit to a power-law form P(τr ) ∝ 1/τr

1+θmeasured . See Secs. V and VI for
a detailed discussion.

measurements and s = 24 for the nonzero-temperature mea-
surements) on periodic L × L lattices as a function of lattice
size L for L = 288, 360, 420, and 600 on the triangular lattice
and L = 96, 144, 216, and 288 on the kagome lattice (êx is
one of the Bravais lattice vectors). Figures 3(a) and 3(b) show
this correlator in the T → 0 limit and at finite T respectively
for the DEP worm algorithm on the triangular lattice. The
corresponding plots for the myopic worm algorithm on the
triangular and kagome lattices are shown in the Supplemental
Material [42]. In all the above cases, we extract ηm by fitting
a power law to the L dependence of this correlator. We also
extract ηm from the lattice size L dependence of the average
number of dual sites visited per worm (as defined in Sec. V)
using the relation v/L2 ∼ 1/Lηm . Figures 4(a) and 4(b) show
the power-law fits in the T → 0 limit and finite T respectively
for the DEP worm algorithm on the triangular lattice. The
corresponding plots for the myopic worm algorithm are shown
in the Supplemental Material [42]. The value of ηm obtained
from fits of the mean number of visits matches within error
bars with the value of ηm extracted from the defect-antidefect
correlator as seen in Fig. 3. In the noninteracting dimer
model limit of the dual dimer model (T → 0 and J2/T =
0), it is well known that ηm = 1

2 . Consistent with this, we
find Cm(êx

L
s ) ∼ 1/L0.51(1)and 〈v〉/L2 ∼ 1/L0.52(2). However,

we note that a previous study of a worm algorithm for the
square ice model in the free dimer limit [43] concluded that
〈v〉 ∼ L1.665(2), which is at odds with what one would expect
when ηm = 1/2 (the values of ηm and ηd are the same for the
noninteracting dimer model on the honeycomb and the square
lattice). Figure 5 plots the best-fit ηm obtained from Fig. 3 as
a function of the spin correlation exponent ηs (this exponent
is measured by fitting the equilibrium spin correlator at the
three-sublattice wave vector to a power-law form) for each of
these cases. As can be seen, the data agree very well with the
theoretical prediction of η

predicted
m = 1/4ηs for the T → 0 case.

We note that for T > 0 cases, the agreement is less impressive
but still reasonable.
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(a) (b)

FIG. 8. The persistence exponent θ [extracted from fits to P(τr )] displayed as a function of (ηpredicted
m )/2 ≡ 1/(8ηs ) in simulations

employing the DEP and myopic worm algorithms for values of parameters at which the system has power-law three-sublattice order (a) at a
nonzero T and (b) in the T → 0 limit. The line corresponds to the Markovian random walk value of ηm/2 ≡ 1/8ηs. See Secs. V and VI for a
detailed discussion.

We measured the probability distribution of worm lengths
τr (return times in the random walk language), P(τr ), as
a function of τr for L = 600 on the triangular lattice and
L = 288 on the kagome lattice. Figures 6(a) and 6(b) show
the return time distribution in the T → 0 limit and at finite
T respectively for the DEP worm algorithm on the triangular
lattice. The corresponding plots for myopic worm algorithm
on the triangular and kagome lattices are shown in the Supple-
mental Material [42]. In all these cases, we extract θmeasured by
fitting the probability distribution of return times to a power-
law form with exponent 1 + θ . In these fits, we leave out the
finite-size effects encountered at large τr .

By way of comparison with a more well-known
example of worm constructions, we also studied the return
time distribution of the worm algorithm for the fully packed
dimer model [16] on the three-dimensional cubic lattice. In
this case, the worm creates a monomer-antimonomer pair
and propagates the antimonomer through the lattice until

it recombines with the monomer at the starting site. The
monomer-antimonomer correlator on the cubic lattice is con-
trolled by the emergent Coulomb interaction between the
monomer and antimonomer. Since this is a power-law poten-
tial rather than a logarithmic potential, the effective dimension
d ′ in this case is equal to the spatial dimension: d ′ = d = 3. If
the dynamical exponent were to take on the usual Markovian
random walk value of z = 2, the return time statistics would
be expected to be identical to that of the usual random walk
in three dimensions [27]. Figure 7 displays a power-law be-
havior of P(τr ) as a function of τr in this case. The best-fit
value θ = 0.48 ± 0.03 agrees within errors with the exact
value of 1/2 predicted by Eq. (5) for d ′ = 3 and z = 2. This
value of θ is also consistent with the results for the worm
length distributions in Ref. [26] for a worm algorithm on the
pyrochlore lattice. Thus, in this case, the worm length distribu-
tions suggest that correlations between the spatial increments
of the random walk renormalize to zero in the long-time

(a) (b)

FIG. 9. The L dependence of the cutoff scale τcutoff which cuts off the power-law scaling of P(τr ) of the worm length distribution for the
DEP algorithm on a periodic L × L triangular lattice for values of parameters at which the system has power-law three-sublattice order (a) in
the T → 0 limit on a periodic L × L triangular lattice for (a) J2/T = 0 and (b) J2/T = 0.1. Fit to a power-law form τcutoff ∼ Lz provides a
direct measurement of the dynamical exponent z (inset). See Secs. V and VI for a detailed discussion.
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FIG. 10. Dynamical exponent z = (2 − ηm )/(1 − θ ) extracted
from ηm (of Fig. 3) and θmeasured (of Fig. 6) as a function of ηs for
all the cases studied here. Also shown (downward triangles) are the
values of z extracted from the finite-size dependence of the cutoff
scale τcutoff (inset of Fig. 9) for the DEP algorithm in the T → 0 limit.
Note that the scaling relation is not used to extract z when ηm > 2.
See Secs. V and VI for a detailed discussion.

limit, yielding a conventional value of z = 2 for the dynamical
exponent.

If the dynamical exponent z were to take on the
value z = 2, then our scaling argument would predict that
θ = ηm/2 ≡ 1/8ηs. We highlight the deviations of the mea-
sured value of θ from this value by plotting θmeasured as a
function of η

predicted
m /2 ≡ 1/(8ηs) for the finite T and T → 0

cases in Figs. 8(a) and 8(b) respectively. These deviations are
evidence that z 
= 2. Using the scaling relation of Eq. (1), our
results for θ can be used to obtain the corresponding values of
z. Independent of this, the value of z can also be determined
by a direct measurement of the scale τcutoff (L) at which the
power-law form of P(τr ) is cut off by finite-size effects. This
has been illustrated for the DEP algorithm on the triangular
lattice in the T → 0 limit at J2/T = 0 and J2/T = 0.1 in
Figs. 9(a) and 9(a) respectively.

These values of z are seen to match within error bars
with the value of z extracted (using the scaling relation) from
θmeasured. This is shown in Fig. 10, which plots the values of z
extracted in various ways for both algorithms in all the cases
studied. From the figure, we see that the value of z appears,
within errors, to be determined solely (i.e., independent of
microscopic details like the precise form of the Hamiltonian
and the worm construction rules) by the power-law exponent
ηs that characterizes the long-distance behavior of the equilib-
rium spin correlations. As is clear from this figure, z decreases
monotonically with increasing ηs and appears to approach the
value of z = 2 in the limit of large ηs. However, since the
largest value of ηs accessed in our work is the free-dimer value
of ηs = 2, z > 2 in the entire regime studied here.

Thus, the worms constructed by these algorithms constitute
a particular realization of fractional Brownian motion with a
nontrivial subdiffusive dynamical exponent z > 2 that is uni-
versally determined by the power-law spin correlations of the
equilibrium problem. A particular feature of this realization of

fractional Brownian motion is the fact that this process has a
long-time steady state characterized by the Gibbs distribution
for a particle in a logarithmic central potential whose strength
is universally determined in terms of the equilibrium defect-
antidefect correlation exponent.

We also measured the average number of flipped dual links
per worm, 〈p〉, as a function of the worm length τr for L = 600
on the triangular lattice and L = 288 on the kagome lattice.
Figures 11(a) and 11(b) show this functional dependence in
the T → 0 limit and in the nonzero temperature power-law
ordered phase respectively for the DEP worm algorithm on
the triangular lattice. The corresponding plots for the myopic
worm algorithm on the triangular and kagome lattices are
shown the Supplemental Material [42]. In all the cases, we
find that 〈p〉 has a power-law dependence on τr : 〈p〉 ∼ τ ζ

r .
The power-law exponent ζ is shown in Fig. 12 as a function of
η

predicted
m ≡ 1/4ηs for each of these five cases. Though we do

not have a theoretical prediction for this dependence, we note
that all the measured data points seem to fall on a single curve,
as would be expected if the geometric properties of the worms
were universally determined by the long-distance behavior
of equilibrium correlations. Since this universal dependence
appears approximately linear in the range studied, we fit it to
a straight line, obtaining ζ ≈ 0.9 − 0.15ηm.

In addition, we measured the average number of flipped
spins per worm on the direct lattice 〈a〉 as a function of p, the
number of flipped dual links, for L = 600 on the triangular
lattice and L = 288 on the kagome lattice. In measuring this
quantity, we exploit the fact that the final dimer configuration
obtained after the construction of one worm corresponds to
two spin configurations related by a global spin flip. Keeping
this in mind, we compare the number of flipped spins corre-
sponding to both these final spin configurations, and record
the smaller of these two numbers. Figures 13(a) and 13(b)
show the distribution in the T → 0 limit and at finite T
for the DEP worm algorithm on the triangular lattice. The
corresponding plots for myopic worm algorithm on the tri-
angular and kagome lattice are shown in the Supplemental
Material [42]. In all the above cases, we extract the exponent
D by fitting this functional dependence to a power-law form.
For worms that do not intersect themselves before closing, this
would amount to plotting the enclosed area as a function of
perimeter of the worm. However, we caution that the exponent
D is not the fractal dimension of the cluster constructed by the
worm, since this would involve the radius of gyration rather
than the perimeter. When we perform the fits, we find that
the measured exponent D ≈ 1 in all five cases studied. To
understand this better, we have looked at the actual traces
of the worms in all cases and found that the worms defined
by these algorithms intersect themselves very often. The spin
cluster being flipped thus consists of many small components,
which correspond roughly to the “interiors” of each of the
daughter loops discussed in Sec. IV, and the area of these
individual components does not scale with the measured total
perimeter. For such worms, it is quite natural that the total
perimeter and the total number of flipped spins scale in the
same way, i.e., D ≈ 1. Additionally, although we have not
tried to quantify this aspect of the random geometry of our
worms, we note that ramified fractal clusters can also quite
generically have a perimeter that scales as the area [44].
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(a) (b)

FIG. 11. Average number of dual links 〈p〉 flipped by worms of length τr for the DEP worm algorithm on a L × L triangular lattice for
values of parameters at which the system has power-law three-sublattice order (a) in the T → 0 limit, and (b) at a nonzero T . Lines denote
fits to a power-law form 〈p〉 ∝ τr

ζ . Corresponding plots for the myopic worm algorithm on the trinagular and kagome lattice are shown in the
Supplemental Material [42]. See Secs. V and VI for a detailed discussion.

VII. OUTLOOK

Our results imply that the worms studied here define
a discrete-time realization of a fractional Brownian motion
which has a conventional steady state given by the equilibrium
Gibbs distribution of a particle in a logarithmic central attrac-
tive potential. The dynamics of these worms is non-Markovian
because time steps are correlated with each other via their
dependence on the power-law correlated background dimer
liquid. Stochastic equations related to such non-Markovian
processes with correlated steps have been studied for some
time now. Ageing and steady-state behavior of solutions to
such equations, particularly in the presence of a confining

FIG. 12. ζ extracted from the τr dependence of the average
number of flipped dual links 〈p〉 (Fig. 11), plotted as a function
ηpredicted

m = 1/4ηs, where ηs is the exponent of the power-law spin-
spin correlations at the three-sublattice wave vector. Note that all
the points seem to fall on a single trend line, suggesting that ζ

depends in a universal way on ηm. The dotted line is a linear fit to
this dependence, with equation ζ = 0.9 − 0.15ηpredicted

m . See Secs. V
and VI for a detailed discussion.

potential, have also been of interest [45,46]. It would therefore
be interesting to ask if a continuous-time stochastic equation
of this type emerges as the correct description of some scaling
limit of the worm construction process studied here. In this
regard, a promising line of investigation would be to use
the well-understood continuum effective field theory formu-
lation of the noninteracting honeycomb lattice dimer model to
formulate an appropriate stochastic differential equation that
captures the large-distance long-time properties of the worm
construction.

In our work, we focused on the properties of the worms.
As already emphasized in Sec. IV, one can also study the
properties of the overlap loops formed by superposing the
updated dimer configuration on the original dimer configu-
ration. These are closely related to the individual components
of the trace of the worm (since each self-intersection splits off
a component). In future work, it would be interesting to study
the statistics of these daughter loops obtained from a single
worm and compare these statistical properties with the known
properties of the ensemble of overlap loops obtained by super-
posing two dimer configurations drawn independently of each
other from the equilibrium dimer ensemble. Finally, a similar
picture for the worm-length distribution is possible in other
applications of worm algorithms to two-dimensional critical
points and/or phases, and it would be interesting to study the
values of dynamical exponent z and persistence exponent θ

associated with these worm constructions.
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FIG. 13. Average number of spins 〈a〉 flipped by worms that flip p dual links for the DEP worm algorithm on a L × L triangular lattice
for values of parameters at which the system has power-law three-sublattice order (a) in the T → 0 limit and (b) at a nonzero T . Lines denote
fits to a power-law form 〈a〉 ∝ pD. Corresponding plots for the myopic worm algorithm on the triangular and kagome lattices are shown in the
Supplemental Material [42]. See Secs. V and VI for a detailed discussion.

fellowship at the Okinawa Institute of Science and
Technology during the completion of this work. A
major portion of the results reported here first appeared
in the Ph.D. thesis of G.R. submitted to the TIFR
Deemed University. The work of D.D. was supported in
part by a J. C. Bose Fellowship of SERB, DST, India

(Grant No. DST-SR-S2/JCB-24/2005). The work of K.D.
at TIFR was supported by DAE India, and in part by a
J. C. Bose Fellowship of SERB, DST, India (Grant No.
JCB/2020/000047) and the Infosys Foundation under the
aegis of the Infosys-Chandrasekharan Random Geometry
Center.

[1] H. G. Evertz, The loop algorithm, Adv. Phys. 52, 1 (2003).
[2] N. Prokofev and B. Svistunov, Worm Algorithms for Classical

Statistical Models, Phys. Rev. Lett. 87, 160601 (2001).
[3] F. Alet and E. S. Sørensen, Cluster Monte Carlo algorithm for

the quantum rotor model, Phys. Rev. E 67, 015701(R) (2003).
[4] F. Alet and E. S. Sørensen, Directed geometrical worm

algorithm applied to the quantum rotor model, Phys. Rev. E 68,
026702 (2003).

[5] M. Wallin, E. S. Sørensen, S. M. Girvin, and A. P. Young,
Superconductor-insulator transition in two-dimensional dirty
boson systems, Phys. Rev. B 49, 12115 (1994).

[6] M. Suzuki, Relationship between d-dimensional quantal spin
systems and (d + 1)-dimensional Ising systems: Equivalence,
critical exponents, and systematic approximants of the partition
function and spin correlations, Prog. Theor. Phys. 56, 1454
(1976).

[7] J. E. Hirsch, R. L. Sugar, D. J. Scalapino, and R. Blankenbecler,
Monte Carlo simulations of one-dimensional fermion systems,
Phys. Rev. B 26, 5033 (1982).

[8] A. W. Sandvik, Stochastic series expansion method with
operator-loop update, Phys. Rev. B 59, R14157 (1999).

[9] A. Dorneich and M. Troyer, Accessing the dynamics of large
many-particle systems using the stochastic series expansion,
Phys. Rev. E 64, 066701 (2001).

[10] P. Hitchcock, E. S. Sørensen, and F. Alet, Dual geometric worm
algorithm for two-dimensional discrete classical lattice models,
Phys. Rev. E 70, 016702 (2004).

[11] G. Rakala and K. Damle, Cluster algorithms for frustrated
two-dimensional Ising antiferromagnets via dual worm con-
structions, Phys. Rev. E 96, 023304 (2017).

[12] R. H. Swendsen and J.-S. Wang, Nonuniversal Critical Dynam-
ics in Monte Carlo Simulation, Phys. Rev. Lett. 58, 86 (1987).

[13] U. Wolff, Lattice Field Theory as a Percolation Process, Phys.
Rev. Lett. 60, 1461 (1988).

[14] P. W. Leung and C. L. Henley, Percolation properties of the
Wolff clusters in planar triangular spin models, Phys. Rev. B
43, 752 (1991).

[15] F. Alet, Y. Ikhlef, J. L. Jacobsen, G. Misguich, and V. Pasquier,
Classical dimers with aligning interactions on the square lattice,
Phys. Rev. E 74, 041124 (2006).

[16] A. W. Sandvik and R. Moessner, Correlations and confinement
in nonplanar two-dimensional dimer models, Phys. Rev. B 73,
144504 (2006).

[17] W. Janke, T. Neuhaus, and A. M. J. Schakel, Critical loop gases
and the worm algorithm, Nucl. Phys. B 829, 573 (2010).

[18] W. Janke and A. M. J. Schakel, Fractal structure of spin clusters
and domain walls in the two-dimensional Ising model, Phys.
Rev. E 71, 036703 (2005).

[19] A. L. Stella and C. Vanderzande, Scaling and Fractal Dimension
of Ising Clusters at the d = 2 Critical Point, Phys. Rev. Lett. 62,
1067 (1989).

[20] H. Saleur and B. Duplantier, Exact Determination of the Perco-
lation Hull Exponent in Two Dimensions, Phys. Rev. Lett. 58,
2325 (1987).

[21] H. E. Stanley, Cluster shapes at the percolation threshold and
effective cluster dimensionality and its connection with critical-
point exponents, J. Phys. A 10, L211 (1977).

[22] C. Vanderzande and A. L. Stella, Bulk, surface, and hull fractal
dimension of critical Ising clusters in d = 2, J. Phys. A 22,
L445 (1989).

062101-14

https://doi.org/10.1080/0001873021000049195
https://doi.org/10.1103/PhysRevLett.87.160601
https://doi.org/10.1103/PhysRevE.67.015701
https://doi.org/10.1103/PhysRevE.68.026702
https://doi.org/10.1103/PhysRevB.49.12115
https://doi.org/10.1143/PTP.56.1454
https://doi.org/10.1103/PhysRevB.26.5033
https://doi.org/10.1103/PhysRevB.59.R14157
https://doi.org/10.1103/PhysRevE.64.066701
https://doi.org/10.1103/PhysRevE.70.016702
https://doi.org/10.1103/PhysRevE.96.023304
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.60.1461
https://doi.org/10.1103/PhysRevB.43.752
https://doi.org/10.1103/PhysRevE.74.041124
https://doi.org/10.1103/PhysRevB.73.144504
https://doi.org/10.1016/j.nuclphysb.2009.12.024
https://doi.org/10.1103/PhysRevE.71.036703
https://doi.org/10.1103/PhysRevLett.62.1067
https://doi.org/10.1103/PhysRevLett.58.2325
https://doi.org/10.1088/0305-4470/10/11/008
https://doi.org/10.1088/0305-4470/22/10/005


FRACTIONAL BROWNIAN MOTION OF WORMS IN WORM … PHYSICAL REVIEW E 103, 062101 (2021)

[23] B. Duplantier, Conformally Invariant Fractals and Potential
Theory, Phys. Rev. Lett. 84, 1363 (2000).

[24] D. Kandel, R. Ben-Av, and E. Domany, Cluster Dynamics for
Fully Frustrated Systems, Phys. Rev. Lett. 65, 941 (1990).

[25] G. Franzese, Cluster analysis for percolation on a two-
dimensional fully frustrated system, J. Phys. A 29, 7367 (1996).

[26] L. D. C. Jaubert, M. Haque, and R. Moessner, Analysis of
a Fully Packed Loop Model Arising in a Magnetic Coulomb
Phase, Phys. Rev. Lett. 107, 177202 (2011).

[27] A. J. Bray, Random walks in logarithmic and power-law po-
tentials, nonuniversal persistence, and vortex dynamics in the
two-dimensional XY model, Phys. Rev. E 62, 103 (2000).

[28] S. Redner, A Guide to First-Passage Processes (Cambridge
University Press, Cambridge, UK, 2001).

[29] G. H. Wannier, Antiferromagnetism: The triangular Ising net,
Phys. Rev. 79, 357 (1950).

[30] K. Kano and S. Naya, Antiferromagnetism: The kagome Ising
net, Prog. Theor. Phys. 10, 158 (1953).

[31] J. Stephenson, Ising model spin correlations on the triangular
lattice, J. Math. Phys. 5, 1009 (1964).

[32] H. W. J. Blote and H. J. Hilborst, Roughening transitions and
the zero-temperature triangular Ising antiferromagnet, J. Phys.
A: Math. Gen. 15, L631 (1982).

[33] B. Nienhuis, H. J. Hilhorst, and H. W. J. Blote, Triangular SOS
models and cubic-crystal shapes, J. Phys. A: Math. Gen. 17,
3559 (1984).

[34] S. Papanikolaou, E. Luijten, and E. Fradkin, Quantum crit-
icality, lines of fixed points, and phase separation in doped
two-dimensional quantum dimer models, Phys. Rev. B 76,
134514 (2007).

[35] K. Damle, Melting of Three-Sublattice Order in Easy-Axis An-
tiferromagnets on Triangular and Kagome Lattices, Phys. Rev.
Lett. 115, 127204 (2015).

[36] G. Chern and O. Tchernyshyov, Magnetic charge and ordering
in kagome spin ice, Philos. Trans. R. Soc. London A 370, 5718
(2012).

[37] J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,
Renormalization, vortices, and symmetry-breaking perturba-
tions in the two-dimensional planar model, Phys. Rev. B 16,
1217 (1977).

[38] D. P. Landau, Critical and multicritical behavior in a triangular-
lattice-gas Ising model: Repulsive nearest-neighbor and attrac-
tive next-nearest-neighbor coupling, Phys. Rev. B 27, 5604
(1983).

[39] M. Wolf and K. D. Schotte, Ising model with competing next-
nearest-neighbor interactions on the kagome lattice, J. Phys. A:
Math. Gen. 21, 2195 (1988).

[40] N. Desai, S. Pujari, and K. Damle, Bilayer Coulomb phase of
two-dimensional dimer models: Absence of power-law colum-
nar order, Phys. Rev. E 103, 042136 (2021).

[41] J. Kondev and C. L. Henley, Geometrical Exponents of Contour
Loops on Random Gaussian Surfaces, Phys. Rev. Lett. 74, 4580
(1995).

[42] See Material at, providing additional results and supporting ev-
idence, is available at http://link.aps.org/supplemental/10.1103/
PhysRevE.103.062101.

[43] G. T. Barkema and M. E. J. Newman, Monte Carlo simulation
of ice models, Phys. Rev. E 57, 1155 (1998).

[44] P. L. Leath, Cluster size and boundary distribution near perco-
lation threshold, Phys. Rev. B 14, 5046 (1976).

[45] J. Kursawe, J. Schulz, and R. Metzler, Transient aging in frac-
tional Brownian and Langevin-equation motion, Phys. Rev. E
88, 062124 (2013).

[46] L. Li, J. Liu, and J. Lu, Fractional stochastic differential equa-
tions satisfying fluctuation-dissipation theorem, J. Stat. Phys.
169, 316 (2017).

062101-15

https://doi.org/10.1103/PhysRevLett.84.1363
https://doi.org/10.1103/PhysRevLett.65.941
https://doi.org/10.1088/0305-4470/29/23/007
https://doi.org/10.1103/PhysRevLett.107.177202
https://doi.org/10.1103/PhysRevE.62.103
https://doi.org/10.1103/PhysRev.79.357
https://doi.org/10.1143/ptp/10.2.158
https://doi.org/10.1063/1.1704202
https://doi.org/10.1088/0305-4470/15/11/011
https://doi.org/10.1088/0305-4470/17/18/025
https://doi.org/10.1103/PhysRevB.76.134514
https://doi.org/10.1103/PhysRevLett.115.127204
https://doi.org/10.1098/rsta.2011.0388
https://doi.org/10.1103/PhysRevB.16.1217
https://doi.org/10.1103/PhysRevB.27.5604
https://doi.org/10.1088/0305-4470/21/9/032
https://doi.org/10.1103/PhysRevE.103.042136
https://doi.org/10.1103/PhysRevLett.74.4580
http://link.aps.org/supplemental/10.1103/PhysRevE.103.062101
https://doi.org/10.1103/PhysRevE.57.1155
https://doi.org/10.1103/PhysRevB.14.5046
https://doi.org/10.1103/PhysRevE.88.062124
https://doi.org/10.1007/s10955-017-1866-z

