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patterns with physics-informed neural networks

Thomas Stielow and Stefan Scheel
Institut für Physik, Universität Rostock, D-18059 Rostock, Germany

(Received 22 January 2021; accepted 11 May 2021; published 27 May 2021)

Single-shot wide-angle diffraction imaging is a widely used method to investigate the structure of noncrys-
tallizing objects such as nanoclusters, large proteins, or even viruses. Its main advantage is that information
about the three-dimensional structure of the object is already contained in a single image. This makes it useful
for the reconstruction of fragile and nonreproducible particles without the need for tomographic measurements.
However, currently there is no efficient numerical inversion algorithm available that is capable of determining
the object’s structure in real time. Neural networks, on the other hand, excel in image processing tasks suited for
such purpose. Here we show how a physics-informed deep neural network can be used to reconstruct complete
three-dimensional object models of uniform, convex particles on a voxel grid from single two-dimensional
wide-angle scattering patterns. We demonstrate its universal reconstruction capabilities for silver nanoclusters,
where the network uncovers novel geometric structures that reproduce the experimental scattering data with very
high precision.
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I. INTRODUCTION

The imaging of systems of nanometer size is of great
importance for many branches in biological, chemical, and
physical sciences. The laws of wave optics demand the usage
of wavelengths in the x-ray regime. However, the large energy
carried by each photon rapidly damages such delicate sam-
ples [1]. The deterioration of the sample during the imaging
process can be avoided if the sample image is generated on
a much shorter timescale than that on which the destruction
process, e.g., Coulomb explosion [2], occurs. This require-
ment is fulfilled by imaging using high-intensity ultrashort
femtosecond pulses, as produced by free electron lasers [3,4].
Since the object’s features and the wavelength are compara-
ble, the resulting image is dominated by scattering features
and, in order to reveal the underlying real-space image, further
processing is necessary [3]. To date, improvements in object
reconstruction allowed the investigation of ever smaller un-
supported nanosystems such as viruses [5–7], helium droplets
[8–10], rare-gas clusters [11], or metallic nanoparticles [12].

For very short wavelengths, i.e., hard x rays, the scat-
tering occurs predominantly at small angles. In this case,
the scattering process can be understood in the Fraunhofer
limit, and the scattering field is the two-dimensional Fourier
transform of the projected electron density. A subsequent
iterative phase retrieval then allows to reconstruct this two-
dimensional density projection with high fidelity from a single
scattering pattern [5,13]. Further, individual scattering im-
ages of an ensemble of identical objects can be merged to
obtain the three-dimensional object density [6,7,14]. For non-
reproducible targets, such tomographic techniques cannot be
employed as only a single scattering image is available. In
this situation, three-dimensional information can be extracted

from wide-angle reflexes of the scattering pattern [15], which
require longer wavelengths. Recent theoretical works indicate
in principle the completeness of such three-dimensional in-
formation encoded in wide-angle scattering signals [16–18]
for solid convex objects under narrow assumptions within
the first Born approximation and infinitely many exact mea-
surements. Yet they pose a significantly more complicated
inversion problem compared to the small-angle reconstruction
method [9,12,15]. Further, in reality, the first Born approxima-
tion is usually insufficient, and processes such as absorption
and rescattering have to be included. Moreover, an experiment
always has to manage with a finite number of measurement
data. The nonreproducibility of the particles further hinders
the independent acquisition of additional shape information
using alternative experimental techniques. Hence, the recon-
struction problem of single-shot wide-angle scattering is to
find a particle reproducing the input scattering pattern within
the angular range of the detector, while obeying additional
structural constraints on the object, that may not necessarily
result in a unique solution, given the experimental conditions
[15,19,20]. Thus far, these reconstructions mostly rely on iter-
ative forward fitting methods that are based on simulations of
the scattering process of a suitably parametrized object model
[9,10,12]. While highly successful, the repeated scattering
simulations are computationally expensive and are restricted
to the assumed object model.

Recent years have seen rapid development in image
processing and reconstruction techniques based on deep learn-
ing methods [21–23]. These concepts have already found
broad applications in statistical physics, particle and ac-
celerator physics [24–28], material sciences [24,29–31], as
well as for approximating solutions to differential equations
[32,33]. In diffractive imaging, deep learning techniques have
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been explored for the efficient reconstruction of both small-
angle and wide-angle images. Phase retrieval and subsequent
Fourier inversion with convolutional neural networks has been
demonstrated for simulated small-angle scattering patterns
[34] and have been expanded to three dimensions for the
reconstruction of object densities from complete Fourier vol-
umes [35]. On the experimental side, the preselection of
automatically recorded scattering patterns into various cat-
egories has been implemented as a classification task [10],
and generative learning helped to reveal common features in
patterns connected to object classes and imaging artifacts [36].
Recently, shape and orientation of icosahedral silver nan-
oclusters were reconstructed from experimental wide-angle
scattering patterns using a neural network trained solely on
simulated training data [37]. This was achieved by utilizing a
convolutional neural network that, combined with data aug-
mentation techniques, is capable of processing experimental
images that suffer from a variety of physically relevant arti-
facts and defects.

In this article, we present a neural network approach for
reconstructing shape and orientation of arbitrary nanoclusters
from single-shot wide-angle scattering images that does not
depend on the parametrization of the object model. Instead,
we use a voxel model of the object density similar to that used
in small-angle scattering [35]. For that, an encoder-decoder
architecture is employed that realizes the transition from the
two-dimensional image to the three-dimensional object space.
The interpolation beyond the underlying training data set
is improved by implementing physics-informed learning, in
which the theoretical scattering model itself is included in the
loss function.

The article is organized as follows. In Sec. II, we briefly
review the scattering simulation method that is based on
the multislice Fourier transform (MSFT) algorithm, and we
introduce the construction of the basis set and its augmen-
tations. The design of the neural network including the
physics-informed training scheme is presented in Sec. III.
Its capabilities and limits are discussed in Sec. IV, followed
by the evaluation of experimental data in Sec. V and some
concluding remarks in Sec. VI.

II. MODELLING AND SIMULATING SCATTERING
OF SILVER NANOCLUSTERS

Scattering experiments with light in the x-ray regime are
known to reveal structure information such as geometric
shapes, spatial orientation and size of nanoparticles, in some
cases also their internal structure [6,38]. Here, we focus on
the reconstruction of silver nanoparticles that had been il-
luminated with soft x rays from a free electron laser with
wavelength λ = 13.5 nm. At this wavelength, scattering off
these clusters with sizes between 50 and 400 nm can then
be regarded as in the wide-angle limit. The nanoparticles are
produced by a magnetron sputtering source in a cluster beam
machine. The generated stream of nanoclusters shows a wide
range of shapes and sizes, meaning that the particle shapes
occur to a certain extent randomly. Moreover, each individ-
ual experiment is nonreproducible as the Coulomb explosion
prevents multiple illumination. It is also known that the par-
ticles emerging from the source have not yet relaxed to an

equilibrium state at the time of illumination, hence geometric
structures such as icosahedra have been found [12,37] that are
not expected to be stable for large particle sizes.

Due to the lack of a direct inversion algorithm for the
reconstruction of geometric information from a single-shot
wide-angle scattering image, comparative methods such as
forward fitting have been employed [10,12,39]. The theoreti-
cal scattering patterns are generated using an MSFT algorithm
that takes absorption into account but neglects multiple scat-
tering events as well as momentum transfer to the nanopar-
ticle. Because of the short absorption length of 12.5 nm in
silver, this algorithm gives very accurate results. Most impor-
tantly, it can be represented as a linear tensor operation which
makes it suitable for efficient parallel computation.

For an efficient implementation of a reconstruction al-
gorithm, a suitable parametrization of the object is needed.
Typically, this means a restriction of the class of object shapes
to a finite set of highly symmetric base solids with relatively
few degrees of freedom. For nanoparticles out of equilibrium,
however, transient shapes need not necessarily be highly sym-
metric. This in turn implies a trade-off between reconstruction
accuracy and numerical efficiency. Already in the case of
only few parameters, neural networks outperform conven-
tional forward fitting based on Monte Carlo simplex methods
[37], which is expected to become even more prominent with
increasing number of degrees of freedom. The limiting case
is to represent the object on a discrete three-dimensional grid;
such representations are commonly used for the reconstruc-
tion of real-space objects from a series of images using deep
neural networks [40]. In the realm of scattering physics, this
representation has been employed for the reconstruction of a
reproducible nanoparticle from a three-dimensional scattering
pattern that has been compiled from a series of small-angle
scattering images [35]. We show here that the discretized
three-dimensional object can be reconstructed from a single
wide-angle scattering pattern using deep neural networks.

A. Object classes for training the neural network

The training of a neural network requires a suitably cho-
sen set of training data. Due to the large number of atoms
in a nanocluster (typically on the order of 109), the silver
nanoparticles can be assumed to be macroscopic dielectric
bodies that are well described by a binary permittivity func-
tion εr (r) = εsilver for r ∈ Vobject and εr = 1 otherwise [12].
Additionally, we demand all objects to be convex, as this a
necessary condition for the existence of a unique solution in
the ideal scenario of informationally complete measurements
[17]. In order to account for a large variety of (convex) object
shapes that still contain some symmetry, we choose a basis
set that contains all Platonic solids, all Archimedean solids
(except the snub dodecahedron), the decahedron and truncated
twinned tetrahedron, as well as spheres and convex polyhedra
with fully random vertices. This set is depicted in Fig. 1. Fur-
ther, these base solids have been stretched and squashed along
one of their symmetry axes and have been randomly scaled
and rotated for maximum flexibility. Despite the still finite
number of objects, it is expected that a large enough portion of
object space is covered, and that the neural network is capable
of interpolating efficiently between them. Note, however, that
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FIG. 1. The basis set of 21 shapes contains all Platonic and Archimedean solids (except for the snub dodecahedron) and, additionally, the
decahedron, the truncated twinned tetrahedron, spheres, and polyhedra with fully randomized vertices, defined by enclosing 50 random space
points.

some of the included objects (such as the tetrahedron) are
highly unlikely to ever occur in an experiment but are included
nonetheless.

B. Scattering simulation

The training data are obtained numerically by employing
the MSFT scattering framework. All objects have been raster-
ized on a three-dimensional grid of 192 × 192 × 192 points
and are stored as flattened png images. For each object, the
corresponding scattering intensity pattern is calculated using
the MSFT algorithm. The lateral dimensions of the object are
padded to 512 × 512 pixels on simulation, and the resulting
real transfer momentum space covers 128 × 128 pixels. As
the transverse intensity decreases exponentially away from the
image center, the intensity values are scaled logarithmically in
order to preserve important scattering features at large transfer
momenta. In addition, in order to simulate detector dark noise,
a random constant offset is being applied before scaling. Each
image is then normalized and stored as a png image. As the
object rasterization as well as the MSFT scattering calcula-
tions require considerable computation times, a data set of
140 000 objects has been pregenerated and stored.

C. Simulating experimental artifacts by image augmentation

The theoretical training data contain the maximal
amount of information regarding the light scattering off a
nanoparticle allowed by scattering and detection physics.
However, in experimental situations, technical limitations

often obscure some of the information necessary to, e.g., iden-
tify the shape of a particle. For example, all images contain
a central hole that protects the detector from the central un-
scattered beam. This is such a prominent artifact that a neural
network is very likely to regard this as the most important fea-
ture, whereas the information about the shape of the particle
resides in the outer fringes of the scattering pattern. Therefore,
such defects have to be included in the training of the network
from the outset.

In Ref. [37] it was demonstrated that data augmentation
techniques can be used to simulate these measurement arti-
facts and to train a neural network that is robust against such
effects. We extend this augmentation approach by introducing
additional filters and on-the-fly augmentation. Rather than
pregenerating a set of augmented images, here we apply ran-
dom augmentations at each training step. Hence, every time
the network is presented with the same data point, a random
augmentation filter is being selected, which helps to prevent
overfitting.

Examples of all used augmentation filters are shown in
Fig. 2. The augmentation functions uniform noise, salt &
pepper noise, shift, central hole and blind spot have been
implemented as described in Ref. [37]. The cropping filter
has been modified to simultaneously apply rectangular and
circular cropping masks with random sizes. The Poissonian
noise filter has been implemented by adding a random matrix
sampled from a Poissonian distribution with variance λ = 1.0
to the normalized scattering pattern, while the shot noise filter
multiplies the scattering pattern with a random Poissonian
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simulation simulated
experiment

uniform noise Poissonian noise salt &
pepper noise

shot noise shift central hole

cropping detector
saturation blind spot

FIG. 2. Image augmentation is used to feed the neural network
scattering patterns with various defects to increase its prediction
robustness. Each simulated scattering pattern (top left) is modified
with one of the nine fundamental filters (bottom 3 × 3 square) or a
combination of them (top right) to mimic experimentally obtained
scattering patterns.

matrix with variance λ = 10r+1 where r is an uniform random
number from the interval [0,1]. These filters account for the
Poissonian background counts as well as the discrete nature
of photons in the low-intensity limit. The simulated experi-
ment filter is implemented by a consecutive application of the
shot noise, shift, blind spot, detector saturation, central hole,
cropping, and shift filters.

III. DESIGN AND TRAINING OF THE SCATTERING
RECONSTRUCTION NETWORK

In classical image processing, the task of creating a three-
dimensional model from one or more two-dimensional images

is a well-known problem that can be efficiently tackled
using neural networks [40,41]. The reconstruction of a dis-
cretized three-dimensional object from a two-dimensional
single-channel image requires a dimension conversion, which
is commonly solved with encoder-decoder architectures. In
this case, the input image is projected into a latent space
from which the conversion into the output space is per-
formed. When implementing multiview reconstructions of
macroscopic objects from photographic images, additional
recurrent elements within the latent space are required [40].

The architecture we developed for single-shot scattering
reconstructions is depicted in Fig. 3. The encoder section of
the network in the left column is constructed as a residual con-
volutional lateral compressor. An initial pickup layer with 7 ×
7 convolution kernels and stride 2, followed by Max pooling
operations, is used to rapidly convert the input tensor size from
128 × 128 × 1 to 32 × 32 × 64 elements. Following that is a
sequence of five residual blocks, each halving the lateral size
further while doubling the number of filters. Every residual
block consists of two consecutive convolution layers as well
as an identity shortcut which are combined by a summation
layer [42]. Each convolution layer has a kernel size of 3 × 3
and is activated by the leaky ReLU function

lReLU(x) =
{

x if x > 0
0.01x otherwise, (1)

after regularization by batch normalization and dropout.
Within the latent space, an additional fully connected layer
with 2048 neurons is employed. The decoder (right column of
Fig. 3) is designed in reverse with upsampling layers instead
of pooling and three-dimensional convolution layers. Unlike
the encoder, the decoder does not employ residual operations
and is instead of linear structure, as residual connections
were found to offer no improvement in the prediction qual-
ity while increasing the training time significantly. The final
compression of the filter dimension into the output tensor of
size 64 × 64 × 64 × 1 is performed by a three-dimensional
convolution operation with a 1 × 1 × 1 kernel and sigmoid
activation, as the output tensor is of binary character. The full
network has now approximately 200 million free parameters.

A. Physics-informed learning

Classical supervised learning consists of comparing the
predictions p made by the neural network on the training
inputs x to the corresponding ground-truth targets y, and cal-
culating a loss score as illustrated in Fig. 4(a). However, a
straightforward implementation of this idea is unfeasible in
our situation. Silver has a rather short absorption length of
12.5 nm at the relevant photon energies, which is much shorter
than the cluster diameters that range from 63 to 320 nm. As
a result, the incoming radiation does not penetrate the entire
nanoparticle and, in particular, has no access to those parts of
the scattering object that are furthest away from the radiation
source. This is turn means that a significant part of the object
does not contribute to the scattering image. However, the
penalizing loss function forces the neural network to attempt
to reconstruct those regions for which very little information
is contained in the input image. Hence, the neural net-
work is either forced to complete the object from symmetric
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FIG. 3. Neural network with encoder-decoder structure. The en-
coder (left column) consists of five residual blocks each containing
two consecutive two-dimensional convolution layers with 3 × 3 ker-
nels. The filter size is doubled with each residual block, while the
lateral dimensions are reduced by pooling layers. The latent space
(bottom) is one dimensional and is further connected by a dense
layer. After reshaping, the decoder (right column) applies 2 × 2 × 2
upsampling operations followed by two three-dimensional convo-
lution layers each. All convolution layers are regularized with a
dropout ratio of 0.2 and batch normalization is applied before the
leaky ReLU activation.

projections (which is indeed observed to some degree), or is
driven into significant overfitting. This in return leads to poor
generalization capabilities on shapes outside the training data
set, an example of which is provided in the Appendix.

In order to ensure that the neural network learns only from
physically relevant information, we propose the calculation of
a loss score in scattered space, which is shown in Fig. 4(b).
Instead of comparing the prediction p with the target y directly

by the mean binary crossentropy

H (y, p) = 1

N3

N∑
i, j,k=1

[yi, j,k log(pi, j,k )

+ (1 − yi, j,k ) log(1 − pi, j,k )], (2)

both p and y are used as inputs for the MSFT algorithm, and
the loss is calculated by the mean-squared distance of the
resulting scattering patterns, scaled logarithmically. This so
called scatter loss can be expressed as

Ls(y, p) = 1

M2

M∑
i, j=1

[log(|EMSFT(y)i, j |2 + ε)

− log(|EMSFT(p)i, j |2 + ε)]2, (3)

with some chosen noise level ε, and where EMSFT is the
normalized electric-field distribution obtained by the MSFT
algorithm. In this way, the training goal of the neural network
is moved from predicting the real-space shape of an object to
generating an object volume that reproduces the input scatter-
ing pattern.

Although the terminal layer of the neural network is sig-
moid activated, this activation does not enforce the binary
nature of our particle model. Therefore, we introduce an addi-
tional regularization term to the loss function (3) by penalizing
nonbinary object voxels with the binary loss function

Lb(y, p) = 1

N3

N∑
i, j,k=1

(pi, j,k )2 (1 − pi, j,k )2. (4)

The binary loss function (4) is weighted by a factor 0.1 com-
pared to the scatter loss (3) to ensure optimal convergence.
This is an instance of physics-informed learning [32,33]
where physical laws are incorporated in the training function.

B. Network training

The neural network was implemented and trained within
the TensorFlow 2.3.1 Keras framework and Python 3.6.6.
The binary loss regularization and scatter loss were both
implemented as TensorFlow functions, thereby enabling back-
propagation on GPU devices during training. We have chosen
the adaptive moments (ADAM) gradient descent optimizer for
optimal convergence. The training dataset was pregenerated,
and scattering patterns were stored as png images, while ob-
ject densities were rescaled and saved as 64 × 64 × 64 numpy
arrays to minimize hardware access and processing times.
The data set contains 140 000 samples in total and has been
split into a training and a validation set with a ratio 5:1. The
training set was reshuffled before each epoch, and data was
read from the hard drive and randomly augmented on-the-fly.
The validation data was not augmented in order to monitor the
peak reconstruction capability. Training was performed on a
dedicated GPU server with two Intel Xeon Silver 4126 CPUs
and four Nvidia RTX2080ti GPUs. Distribution of each train-
ing batch over all four GPUs allowed a maximum batch size
of 32. We found the optimal training duration to be 50 epochs
for sufficient convergence. The corresponding learning curve
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(a) Classical Supervised Learning

(b) Physical Loss Learning

FIG. 4. In classical supervised learning (a), the loss score is determined by the binary crossentropy between the network prediction and
the target entry of each data pair. In the physical learning scheme (b), the loss score is calculated within the scatter space rather than the
object space. This is done by simulating the scattering pattern of both the network prediction as well as the target object, and calculating their
mean-squared difference (scatter loss). To enforce the binary nature of the object model, an additional regularization function (binary loss) is
applied to the prediction.

of the network used throughout this manuscript is shown in
Fig. 5. The total training time accumulated to 63 h.

A consistent result over different training runs from in-
dependent random initializations could only be achieved by
applying regularization in every layer. Batch normalization
counteracts the tendency to no-object predictions. Simulta-
neously, dropout regularization prevents the neural network
from converging to nonphysical predictions, which may pro-
duce similar scattering patterns but are nonbinary point clouds

training

validation

0 20 40 60 80 100
0.000
0.001
0.002
0.003
0.004
0.005
0.006

epoch

lo
ss

FIG. 5. The training loss of the neural network converges within
50 full cycles of the training set to a near halt. The loss on the
validation set follows a similar trajectory, but is consistently smaller
than the training loss, due to the absence of augmentations and
regularization.

in object space that do not correspond to solid convex (or at
least star-shaped) bodies. The combined effect of these regu-
larization is that the training loss in Fig. 5 shows no overfitting
compared to the validation loss. However, this cannot rule out
the possibility of overfitting to either the underlying set of
solids or the augmentations used.

IV. PREDICTION CAPABILITY OF THE NEURAL
NETWORK

During training of the neural network, we benchmarked
its prediction capabilities on the validation set which was
generated from the same object space as the training set. In
order to test its interpolating power, we created an additional
test set of object data unknown to the network. These bodies
were created by truncating the previously scaled and stretched
object classes along random symmetry axes, thus breaking
some of the symmetries and creating new shapes. In this way,
a total of 1000 new objects were created.

In the majority of cases, the neural network is capable
of detecting the new deformations. An example is shown in
Fig. 6(a), corresponding to a heavily truncated rhombicosi-
dodecahedron. The object prediction of the neural network
(bottom right) closely resembles the ground truth of the object
(bottom left), while their scattering patterns are nearly indis-
tinguishable [top row in Fig. 6(a)]. This implies that, due to its
physics-informed training, the neural network does not merely
interpolate between known shapes, but rather composes an
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(a) input pattern simulation

ground truth prediction

(b) input pattern simulation

ground truth prediction

FIG. 6. Scattering patterns and real-space object shapes are re-
produced by the neural network for most objects of the test set,
such as the rhombicosidodecahedron (a). For some examples, the
predicted object is reconstructed without the far side or sports a
shallow dome in the beam direction (b), both of which have no
significant impact on the scattering pattern.

hitherto unknown object from facets associated with distinct
reflexes in the scattering pattern.

Conversely, this also implies that objects are only con-
structed from real-space features that impact the scattering
pattern. An example is shown in Fig. 6(b), where two signifi-
cant effects can be observed. First, the far side of the predicted
object (bottom right) is featureless. This was expected because
of the strong absorption of the incoming radiation which pre-
vents a significant contribution from the scattering off these

FIG. 7. The scattered intensity signals of a truncated triangle
with a footprint of 212.5 nm and of the same object equipped with a
shallow tip of 25% of its height are almost identical.

regions. The same effect was also observed on the validation
set and even the training set. The neural network then either
cuts off the far side completely, or replaces it with a smooth
droplet shape. Second, the flat front facet of the input object
(bottom left) is being converted into a shallow dome. Surfaces
oriented close to perpendicular with respect to the incoming
beam are particularly difficult to reconstruct, as the strongest
associated reflexes appear in the backscattering direction.
These reflexes would only be observable in a 4π detector
configuration, for which the MSFT algorithm does not give
reliable results. A simplified two-dimensional model of this

crop. input prediction pred. scatter

FIG. 8. Shrinking the angular span of the detection range (left
column) leads to the loss of high-frequency information in the scat-
tering pattern. Thus, the neural network predictions (central column)
appear less crisp, and corners and edges are rounded, while the
corresponding scatter simulation (right column) still matches the
input pattern within the input region (framed by gray mask).
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FIG. 9. The neural network is tested with the first half of the experimental scattering patterns from Ref. [12] (left top row, permitted by
Creative Commons CC-BY 4.0 license, see Ref. [44]) and the corresponding shape candidates obtained by forward fitting (second row, green
solids). The neural network predictions are shown in gray in the third row. The simulated scattering patterns (bottom row) show excellent
agreement with the input pattern inside the available region (confined by the gray masks).

effect is shown in Fig. 7, where a triangular shaped dome (or-
ange object) is being added to a flat facet of a trapezoidal base
(black object). The corresponding one-dimensional scattering
intensity profiles are almost indistinguishable, in particular
given a finite detector resolution.

Delicate features of the real-space object appear at large
transverse transfer momentum, that is, at large detection an-
gles. During augmentation, this region is quite often cropped,
giving the neural network the incentive to gather its infor-
mation from the inner regions of small transfer momentum.
This restriction is motivated by the limited detection angle
of typical experiments. In order to understand the effect of
cropping, we show in Fig. 8 the reconstructed images from
the same input data pair for a series of ever smaller detection
angles. As expected, with smaller available transfer momenta,
the reconstruction quality decreases because information on
sharp features is lost. As a consequence, edges and corners
appear smoothed, while the facets are still recognizable.

V. NEURAL NETWORK RECONSTRUCTION
OF EXPERIMENTAL DATA

So far, the neural network has been tested on synthetic
data that capture the relevant scattering physics, and that have

been augmented in order to mimic expected experimental
artifacts. The trained network is now being used to recon-
struct experimental single-shot wide-angle scattering data of
silver nanoclusters [12]. Our choice has been informed by
the existence of classical reconstructions using forward fitting
methods with parametrized polyhedra, which provides the
opportunity for direct comparison between the methods.

In Figs. 9 and 10, we compare the reconstructed nanoclus-
ters from both the forward fitting (green objects in central
column) and the neural network (gray objects in central col-
umn). The left column contains the experimental data from
Ref. [12], whereas the right column depicts the simulated
scattering profiles of the neural network predictions. We have
explicitly shown the detection area to indicate the region
which the neural network aims to reproduce. As discussed
above, due to the lack of available large transfer momenta,
the reconstructed objects by the neural network have smoother
edges and corners. In comparison, the forward fit assumes the
existence of sharp features which is unsupported given only
the available information. Also, as expected from the above
discussion, the far sides of the reconstructed objects are either
missing or being replaced by a smooth droplet, and shallow
domes appear on their fronts.
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FIG. 10. The neural network is tested with the second half of the experimental scattering patterns from Ref. [12] (left top row, permitted by
Creative Commons CC-BY 4.0 license, see Ref. [44]) and the corresponding shape candidates obtained by forward fitting (second row, green
solids). The neural network predictions are shown in gray in the third row. The simulated scattering patterns (bottom row) show excellent
agreement with the input pattern inside the available region (confined by the gray masks).

Notwithstanding, the main facets are being reconstructed
reliably, resulting in structures with globally similar features.
However, the neural network predicts more elongated bod-
ies which reproduce the softer interference patterns in the
scattering reflexes. Moreover, the reconstructed bodies are no
longer perfectly symmetric as assumed in the parametrized
model, but show local defects that break certain symmetries.
Note that the experimental scattering patterns show distinct
asymmetries which can only be explained be relaxing the
requirement of symmetric bodies. As a result, the scattering
patterns simulated from the neural network predictions match
the experimentally obtained patterns almost perfectly.

A particularly striking result is the star-shaped pattern with
5-fold symmetry (first column in Fig. 10). Previously, this has
been attributed to an icosahedron (see left panel in Fig. 11),
as this was the only shape in the parametrized model with
the correct symmetry. Instead, the neural network predicts an
object with a front face resembling an elongated decahedron
of similar size (central panel in Fig. 11). A regular decahedron
would produce a scattering pattern with 10-fold symmetry.
However, the elongation of a decahedron breaks that sym-
metry in the wide-angle scattering pattern, resulting in two
distinct sets of five reflexes each with different intensities
(right panel in Fig. 11). The reproduction quality of the input

scattering pattern can be judged similar to the scatter loss
during training. Within the available detector region, outlined
by the gray mask in Fig. 11, the mean-squared difference
between the simulated scattering patterns of the prediction
candidates and the input scattering pattern is calculated. The
reference value is the scatter loss of the icosahedron (left
panel in Fig. 11, forward fitted in Ref. [12]) with a benchmark
value of 7.10 × 10−3. The physics-informed neural network
achieves a much closer fit with a mean error value of just
4.63 × 10−3. Starting from the neural network prediction, a
decahedron, elongated by a factor of 1.6 along the 5-fold
symmetry axis, was fitted to the input scattering pattern. In
this case, a reproduction error of 4.74 × 10−3 was achieved,
which is slightly worse than the neural network candidate but
much closer than the icosahedron.

From the three object candidates shown in Fig. 11, the neu-
ral network prediction achieves the best reproduction of the
input pattern. The scattering patterns of all three candidates
differ strongly outside the detector region. This indicates that
the reconstruction quality is mostly limited by the available
detector range which implies that further progress can only be
made be enlarging the angular range of the detector.

The physics-informed neural network, however, achieves
a much closer fit than the parametrized forward fits by
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experiment

icosahedron neural network
prediction

elongated
decahedron

FIG. 11. The quality of different prediction candidates (bottom
row) can be judged by comparing the corresponding scattering pat-
terns (center row) to the experimental input scattering pattern (top
panel, taken from Ref. [12], permitted by Creative Commons CC-BY
4.0 license, see Ref. [44]).

successful interpolation between the object classes learned
during training. The predicted structure, similar to a deformed
elongated decahedron, is a novel observation for silver nan-
oclusters of the given size, to the best of our knowledge. This
result shows that the neural network reconstruction can help
in detecting shapes of nanoparticles that would not have been
expected from equilibrium cluster physics.

VI. SUMMARY

We have developed a neural network that is capable of
reconstructing three-dimensional object densities of silver
nanoclusters from single-shot wide-angle scattering patterns.
By including the scattering physics into the penalty function,
overfitting to features not represented within the scattering
patterns is suppressed. This leads to convergence of the net-
work weights toward a configuration that allows a better
interpolation between the object classes of the training set.
It is thus able to predict transient nanocluster structures that
would not be expected from equilibrium cluster formation
theory. Our method is not restricted to the example of silver
nanoclusters discussed here. The same network structure can
be used for any system for which the scattering properties
(such as absorption lengths) are known, and a numerical al-
gorithm to generate training data exists. Combined with the
fast evaluation times in the μs range, this paves the way to
a fully automated reconstruction of the complete structure of

nanoparticles from single-shot wide-angle scattering images
in real time.

VII. DATA AND CODE AVAILABILITY

The source code supporting the findings of this manuscript
is deposited with a sample portion of each datatset within
the repository [43]. The full dataset is available from the
corresponding author on request.
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APPENDIX: COMPARING SUPERVISED AND PHYSICS
INFORMED LEARNING

The investigation of transient free flying silver nanoclusters
with FEL x-ray sources has led to the discovery of shapes
which were not expected from equilibrium cluster theory.
When training a neural network, the space of expected struc-
tures is determined by the basis of the training dataset. The
set of basic shapes presented in Fig. 1 consists mostly of
highly symmetric objects. This choice was motivated by the
fact that the absorption length of silver with aabs = 12.5 nm
is much shorter than the considered cluster diameters between
63 and 320 nm. Subsequently, the far side of the object has no
discernible impact on the scattering pattern. By training the
neural network mostly on symmetric objects, it is expected
that the predictions of the networks may be completed by
symmetric extension from the regions were direct structure
information is available.

A key test for the reconstruction network is the general-
ization capability, meaning the predictive capacity for objects
which are not covered by the basis of the training set. For
this we created a test set of new objects of deformed base
solids by applying cuts perpendicular to random symmetry
axes. An example can be seen in the top row of Fig. 12 with
an elongated decahedron, cut perpendicular to the fivefold
symmetry axis at half distance from the center to the outer
vertex. As long as ideal simulated scattering patterns are used,
the neural network is capable of reliably reconstructing the
objects, independent of the training scheme. This dramatically
changes as soon as image defects are introduced. An example
of this is shown in the second row of Fig. 12, where the
predictions of a neural network trained by supervised learning
are shown. In this approach we used the binary crossentropy
as the loss function within the object space. The dark areas of
the object prediction represent regions in which the predicted
density takes neither the binary value 0 (no object) nor 1 (ob-
ject), but rather some intermediate value. The reconstructed
object differs significantly from the ground truth, and the
corresponding scattering pattern bears little resemblance to
the input scattering pattern.
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FIG. 12. The sugmented scattering pattern (top right panel) of an
elongated decahedron, cut at half distance along the fivefold symme-
try axis (top left panel) is used to test the generalization capabilities
of neural networks tested in different training schemes. The left
panels show the object predictions made from the test pattern, while
the right panels illustrate the corresponding scattering pattterns.

Initially, the scatter loss described in Sec. III A was de-
veloped as an auxillary loss that is added during supervised
training in order to improve the reproduction quality of the
input scattering patterns. The result of this modification is
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FIG. 13. Scatter loss recorded over the training of a reconstruc-
tion neural network by binary crossentropy (blue, dotted), hybrid
loss (green, dashed), and physics-informed training (red, solid). The
regular curves mark the training set performance over each iteration
of the training set, while the desaturated curves correspond to the
validation set.

depicted in Fig. 13 where the scatter loss recorded during the
training of the neural network is shown for both the classical
supervised training (blue dotted curves) as well as hybrid
training with auxiliary scatter loss (green dashed curves).
However, the object predictions are distorted by artifacts, like
the ring-structure that can be seen in the third row of Fig. 13,
which are incompatible with the object model. Balancing
the weights between object-space loss and scatter loss in the
hybrid loss function toward the latter further improves the
reproduction quality of the scattering pattern during training.
This ultimately led us to the implementation of the purely
physics-informed training (red solid curve in Fig. 13) de-
scribed in Sec. III A.

The prediction of a neural network trained purely in a
physics-informed manner is shown in the bottom row in
Fig. 12. The predicted object does not correctly reproduce the
cut applied to the original object but adds a rounded tip, which
is a known issue, as the associated information within the
scattering pattern is easily obfuscated by noise (see Sec. IV for
further details). In contrast to the predictions resulting from
supervised learning, the general structure and footprint of the
object are correctly reproduced, and the corresponding scat-
tering pattern is a good match to the input pattern. These tests
were the decisive criterion in choosing the purely physics-
informed training over supervised or hybrid approaches.
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