
PHYSICAL REVIEW E 103, 053311 (2021)

Simplified method for simulation of incompressible viscous flows
inspired by the lattice Boltzmann method

Jun-Jie Huang *

Department of Engineering Mechanics, College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
and Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing 400044, China

(Received 7 December 2020; revised 31 March 2021; accepted 7 May 2021; published 25 May 2021)

The lattice Boltzmann method (LBM) has gained increasing popularity in incompressible viscous flow
simulations, but it uses many distribution functions (far more than the flow variables) and is often memory
demanding. This disadvantage was overcome by a recent approach that solves the more actual macroscopic
equations obtained through Taylor series expansion analysis of the lattice Boltzmann equations [Lu et al., J.
Comput. Phys. 415, 109546 (2020)]. The key is to keep some small additional terms (SATs) to stabilize the
numerical solution of the weakly compressible Navier-Stokes equations. However, there are many SATs that
complicate the implementation of their method. Based on some analyses and numerous tests, we ultimately
pinpoint two essential ingredients for stable simulations: (1) suitable density (pressure) diffusion added to
the continuity equation and (2) proper numerical dissipation related to the velocity divergence added to the
momentum equations. Then we propose a simplified method that is not only easier to implement but noticeably
faster than the original method and the LBM. It contains much simpler SATs that only involve the density
(pressure) derivatives, and it requires no intermediate steps or variables. As well, it is extended for thermal flows
with small temperature variations and for two-phase flows with uniform density and viscosity. Several test cases,
including some two-phase problems under two-dimensional, axisymmetric, and three-dimensional geometries,
are presented to demonstrate its capability. This work may help pave the way for the simplest simulation of
incompressible viscous flows on collocated grids based on the artificial compressibility methodology.
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I. INTRODUCTION

An important and essential step in the numerical simulation
of incompressible viscous flows is to find the pressure field,
often by the solution of a Poisson equation [1]. It is well
known that this step is rather time consuming and makes
parallel computing more difficult. Over the past few decades,
the lattice Boltzmann method (LBM) has become popular for
incompressible flow simulation as it does not need to solve
the Poisson equation [2]. LBM may be viewed as one type
of artificial compressibility method (ACM) [3–5] because
the flow simulated by LBM is actually weakly compress-
ible and the incompressibility condition is just approximately
satisfied when the Mach number (Ma) is low enough. Due
to its explicit nature, LBM is relatively easy to implement
and parallelize. However, because of its kinetic origin, LBM
has to use many particle distribution functions (PDFs), much
more than the number of macroscopic variables, thus con-
suming more memory resources. From certain perspective,
LBM can be considered as a special finite difference method
to solve the incompressible Navier-Stokes equations (NSEs)
[6,7]. However, the analyses in Refs. [6,7] involved the mo-
ments of the PDFs and the scheme proposed in Ref. [6]
used semi-implicit temporal discretization (still need to solve
an elliptic problem). Is it possible to circumvent the PDFs
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and the related moments and directly evolve the weakly
compressible NSEs explicitly? The answer has been given
recently in Ref. [8], which proposed an alternative method
constructed upon the more actual macroscopic equations
(MAMEs) found by Taylor series expansion analysis of the
lattice Boltzmann equations (LBEs). It was shown that direct
discretization of the weakly compressible NSEs obtained by
the usual Chapman-Enskog analysis are not stable; in contrast,
the MAMEs contain small additional terms (SATs) pivotal to
stabilize the simulation [8]. The SATs in the MAMEs are
rather complex because they contain many terms involving
the density (pressure), different velocity components and their
derivatives in both space and time. The numerical solution
of the MAMEs introduces intermediate variables and uses
a predictor-corrector procedure. Besides, proper boundary
conditions must be supplied for some additional derivatives
(which are not present in the original NSEs). One may be
curious on whether the MAMEs can be simplified with some
nonessential terms discarded. In this paper, we demonstrate
that this can indeed be realized.

By making full use of the low-Ma characteristics of the
LBM, we further simplify the temporally discretized equa-
tions by discarding some terms of O(Ma2) and keeping only
derivatives of the density (pressure). Our method is based on
the observation that the additional terms are already small and
vanish as the time step δt → 0 (that is why the MAMEs can
converge to the incompressible NSEs). The essential role of
the SATs is to stabilize the computation. There may be some
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room to adjust them as long as their magnitude is maintained
at the same order without compromising the simulation (i.e.,
the stabilizing effects are still kept). From the design point
of view, one tends to make them as simple as possible and
this can be optimally achieved by leaving only one scalar
variable. For incompressible flows, the pressure is the only
choice (note that in ACM the pressure is tied to the density
through an equation of state). Numerical tests indeed showed
that under many situations it suffices to just keep the pressure
terms. Such simplifications make the method much easier
to implement: the predictor and corrector steps in Ref. [8]
are now combined into one single step and the intermediate
variables are no longer necessary. The issue of boundary
conditions for additional derivatives is resolved at the same
time. As a result, the simulation needs even less memory and
runs even faster. The proposed simplified method is verified
through several canonical tests for single-phase flows. What
is more, it effectiveness is also proven for thermal flows with
Boussinesq approximation (coupled with the heat conduc-
tion equation) and for two-phase flows with uniform density
and viscosity (coupled with a phase field modeling of the
interface dynamics).

In addition to the LBM, there are some other approaches
for incompressible flow simulations based on the idea of
AC, for instance, the kinetically reduced local Navier-Stokes
(KRLNS) [9–11], the ACM with added dissipation [4]
(denoted as suppressing checkerboard instability (SCI) in
Ref. [12]), the linkwise ACM [13], the methods of the entrop-
ically damped form of artificial compressibility (EDAC) [14],
and the general pressure equation (GPE) [12]. The KRLNS
uses a grand potential in the governing equations with an
important term missing. It was later corrected by the EDAC
which abandons the grand potential and uses common thermo-
dynamic variables [14]. The governing equations in the EDAC
method resemble the compressible NSEs except that the con-
tinuity equation for the density is replaced by an evolution
equation for the pressure containing dissipative terms and the
bulk viscosity component is neglected in the viscous stress
tensor [14]. In actual implementation, the EDAC method usu-
ally employs a collocated grid and various schemes can be
used for spatial and temporal discretizations, for instance,
the second-order MacCormack scheme using a predictor-
corrector sequence and the second-order central scheme with
high-order Runge-Kutta (RK) schemes for time marching
[14–16]. The GPE method is quite similar to the EDAC
method in terms of the governing equations, but it uses a stag-
gered grid. For time marching, the third-order RK schemes
are commonly used for GPE-based simulations [12,17,18]. In
general, its implementation is more complicated than those
on collocated grids and the simulation speed is slower than
other one- or two-step methods. The second-order version of
the ACM with added dissipation also uses a collocated grid

and intermediate variables for the pressure and velocity [4],
thus it may be viewed as a two-step method. The link-wise
ACM resembles the LBM to a significant degree, but it may
circumvent the use of the PDFs [13]. It also uses a collocated
grid and is a one-step method. However, the optimized imple-
mentation of the linkwise ACM without any PDFs involves
many formulas that are quite complicated, especially in three
dimensions. Within the general ACM framework, the present
method seems to be the simplest and easiest to implement: it
uses a collocated grid, the second-order schemes to discretize
the spatial derivatives, and one-step time marching.

This paper is organized as follows. Section II first in-
troduces the MAMEs, its relation with the LBEs, and then
presents the simplified MAMEs and its implementation. Next,
the extension to thermal and two-phase flows is briefly de-
scribed. Section III provides the study of several common
validation cases, including both single- and two-phase prob-
lems, by the proposed method and compares the numerical
results with other reference ones. Section IV concludes this
paper with discussion on future work.

II. NUMERICAL MODEL AND METHODS

In this part, we first briefly review the LBEs and the
MAMEs, and then describe how to obtain the simplified for-
mulation of the MAMEs by analyzing the order of magnitude
and using the known macroscopic equations. After that, we
introduce its extension to thermal and two-phase problems
through the coupling with additional evolution equations for
the temperature and the order parameter. Last, we make some
comparisons with some other methods in detail.

A. LBEs and MAMEs

The standard LBEs using single relaxation time read

fi(x + eiδt , t + δt ) − fi(x, t ) = − 1

τ f

[
fi(x, t ) − f eq

i (x, t )
]
,

(1)
where ei = c(kxex + kyey + kzez ) is the discrete velocity (c
is the magnitude of lattice velocity, kx, ky, and kz are non-
negative integers), fi is the PDF along ei and f eq

i is the
corresponding equilibrium PDF, δt is the time step (the grid
size δx = cδt ), and the dimensionless relaxation parameter τ f

is related to the kinematic viscosity as τ f = 0.5 + ν/(c2
s δt )

with cs being the sound speed in LBM (usually cs = c/
√

3).
The macroscopic variables, including the density ρ and the
momentum ρu, are found from the PDFs as ρ = ∑

i fi and
ρu = ∑

i fiei. The pressure is tied to the density as p = ρc2
s .

By applying the Chapman-Enskog expansion analysis, one
can find that the LBEs recover the following macroscopic
equations (up to the second order in the Knudsen number) [8]:

∂tρ = −∂α (ρuα ), (2)

∂t (ρuα ) = −∂β (ρuαuβ + pδαβ ) + ν∂β∂β (ρuα )+ ν

c2
s

∂β∂t (ρuαuβ + pδαβ ) + 2ν∂α[∂γ (ρuγ )]. (3)
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If Taylor series expansion analysis is applied to the LBEs, the equations to update the density and momentum read [8]

ρ(x, t + δt ) = ρ(x, t ) − δt∂α (ρuα )+1

2
δ2

t ∂α∂β (ρuαuβ + pδαβ ) + O
(
δ3

t

)
, (4)

ρuα (x, t + δt ) = ρuα (x, t ) − δt∂β (ρuαuβ + pδαβ ) + νδt∂β∂β (ρuα )

+
(

ν

c2
s

− 0.5δt

)
δt∂t∂β (ρuαuβ + pδαβ ) + 2νδt∂α[∂γ (ρuγ )] + O

(
δ3

t

)
. (5)

These equations were claimed to be more actual and reasonable [8]. When compared with the weakly compressible NSEs, the
underlined terms are SATs that help stabilize the simulation. Note that Eqs. (4) and (5) are partially discrete in time and a
predictor-corrector procedure was applied to handle the time derivative on the right-hand side (r.h.s.) of Eq. (5). Specifically, the
predictor step includes

ρ∗ = ρn − δt∂α (ρuα )n + 0.5δ2
t ∂α∂β (ρuαuβ + pδαβ )n, (6)

(ρuα )∗ = (ρuα )n − δt∂β (ρuαuβ + pδαβ )n + νδt∂β∂β (ρuα )n + 2νδt∂α[∂γ (ρuγ )n], (7)

and the corrector step includes

ρn+1 = ρ∗, (8)

(ρuα )n+1 = (ρuα )∗ +
(

ν

c2
s

− 0.5δt

)
[∂β (ρuαuβ + pδαβ )∗ − ∂β (ρuαuβ + pδαβ )n]. (9)

Since ρn+1 = ρ∗ and p = ρc2
s , the density and pressure are

not modified in the corrector step and only the velocity
changes. This predictor-corrector approach needs to compute
and store the intermediate velocity u∗

α and also has to cal-
culate some derivatives of the intermediate variables [e.g.,
∂β (ρuαuβ )∗]. It is noted that Eqs. (2) and (3) were unstable,
whereas Eqs. (4) and (5) were stable when they are solved
numerically by the same predictor-corrector procedure [8].

B. Simplified MAMEs and its extension to thermal
and two-phase flows

In general, when one solves the weakly compressible
NSEs, the additional terms are error terms that should be
sufficiently small so that they do not affect the accuracy of the
numerical solutions. Unlike the original terms in the NSEs
(which have certain physical meanings and must be strictly
followed in the numerical solution), the SATs have no real
physical meanings and their specific forms could possibly be
adjusted. Of course, the adjustments must satisfy two require-
ments:

(1) The magnitude of the additional terms is small enough
(thus not altering the true solution) and converges towards
zero as δx → 0 and δt → 0

(2) Their stabilizing effect must be kept in the simulations
with finite δx and δt .

In LBM simulation of incompressible flows (assuming
c2

s = c2/3), one has

∂β (ρuαuβ + pδαβ ) = c2[∂β (ρuαuβ/c2) + ∂αρ/3],

where the two terms in the square brackets are both of
O(Ma2). When ∂β (ρuαuβ + pδαβ ) appears in the SATs, it
serves only to stabilize the computation and has no other roles.
Thus, provided that both terms are of the same order, one may
keep only one of them without changing the order of magni-
tude of the SATs (as a whole). From these arguments, one may

neglect ∂β (ρuαuβ ) in the additional terms while satisfying the
first requirement above. It seems difficult to prove that the
omittance of ∂β (ρuαuβ ) also satisfies the second requirement.
Nevertheless, a number of tests, including both steady and
unsteady, two-dimensional (2D) and three-dimensional (3D)
problems, showed that the stabilizing effect was indeed still
there. After neglecting ∂β (ρuαuβ ), the correction in Eq. (9)
becomes(
1/c2

s

)(
ν − 0.5c2

s δt
)
∂α (p∗−pn) = (

ν−0.5c2
s δt

)
(∂αρ∗−∂αρn).

Besides, the additional term 2νδt∂α (∂γ (ρuγ )) in Eq. (7) can
be approximated as

2νδt∂α (−∂tρ) = −2ν∂α (δt∂tρ) ≈ −2ν(∂αρn+1 − ∂αρn),

by using the continuity equation. Using all these approxi-
mations and combining the predictor and corrector steps, we
propose the following semidiscrete equations for the weakly
compressible NSEs with p = ρc2

s :

ρn+1 = ρn − δt∂α (ρuα )n+0.5c2
s δ

2
t ∂ααρn, (10)

(ρuα )n+1 = (ρuα )n − δt∂β

(
ρuαuβ+ρc2

s δαβ

)n+νδt∂β∂β (ρuα )n

× −(
ν + 0.5c2

s δt
)
(∂αρn+1 − ∂αρn). (11)

The remaining spatial derivatives are discretized by the
second-order centered schemes, for example, in two dimen-
sions:

∂xρ|i, j = (ρi+1, j − ρi−1, j )/(2δx ), (12)

(∂x∂xρ + ∂y∂yρ)|i, j = (ρi+1, j + ρi−1, j + ρi, j+1

+ ρi, j−1 − 4ρi, j )/δ
2
x . (13)

The underlined terms in Eqs. (10) and (11) are the simpli-
fied SATs to stabilize the simulation, which involve only the
derivatives of the density. Since ρn+1 in Eq. (11) is directly

053311-3



JUN-JIE HUANG PHYSICAL REVIEW E 103, 053311 (2021)

TABLE I. Comparisons between the LBEs, original MAMEs, and simplified MAMEs for incompressible flow simulations (assuming
p = ρc2

s ). In the original MAMEs, the corrector step does not alter the density obtained in the predictor step (i.e., ρn+1 = ρ∗), and they are
regarded as one variable. For the LBEs, D2Q9 and D3Q19 velocity models are assumed for 2D and 3D cases, respectively. When counting
the stabilizing terms, the Laplacian is treated separately (e.g., in two dimensions ∂ααρ = ∂xxρ + ∂yyρ has two terms). In the LBEs, no explicit
stabilizing terms are added.

Method LBEs MAMEs SMAMEs

Variables (2D) ρ, u, v, fi (i = 0, 1, . . . , 8) ρ, u, v, u∗, v∗ ρ, u, v

No. of variables (2D) 12 5 3
No. of evolution eqs. (2D) 9 (D2Q9) 5 3
No. of small stabilizing terms (2D) N.A. 5 + (2 + 6) × 2 = 21 2 + 2 × 2 = 6
Variables (3D) ρ, u, v, w, fi (i = 0, 1, . . . , 18) ρ, u, v, w, u∗, v∗, w∗ ρ, u, v, w

No. of variables (3D) 23 7 4
No. of evolution eqs. (3D) 19 (D3Q19) 7 4
No. of small stabilizing terms (3D) N.A. 9 + (3 + 8) × 3 = 42 3 + 2 × 3 = 9

found from Eq. (10), it is fully explicit and does not need
intermediate variables. It is noted that the SATs in Eq. (10)
resemble that in the pressure evolution equation in Ref. [4]
(the coefficient before ∂α∂αρn differs). It was mentioned in
Ref. [4] that such an additional term was added to overcome
the checkerboard instability for the pressure. We note that
Eq. (10) also resembles the pressure equation in the EDAC
[14] and the GPE in Refs. [12,19], both of which contain an
dissipation term proportional to the Laplacian of the pressure.
The SATs in Eq. (11) stabilize the simulation most likely in a
way similar to the dissipation due to the bulk viscosity [13,20]
though it looks to be somewhat different. We argue that this
particular form may be better as it involves only the density
(pressure) gradient, which is already calculated for Eq. (11)
(in contrast, the other forms require the gradient of velocity
divergence). When there is a body force gα along the xα

direction, one only has to add a term δtρ
n+1gα on the r.h.s. of

Eq. (11). Like the LBM, our method also uses the collocated
arrangement of discrete variables in space. Table I compares
the LBEs, the MAMEs [8], and the present SMAMEs (for
simplified MAMEs).

In addition to the above simplifications, we also extend
the proposed method to thermal flows with small temperature
variations that allow the use of Boussinesq approximation as
well as to two-phase flows with uniform density and viscosity.
For the thermal flows (only 2D problems are considered), a
forcing term ρ0gβ(T − T0) is added to the momentum equa-
tion in the y direction to account for the buoyancy effect where
ρ0 is the reference density, g is the gravitational acceleration,
T0 is the average temperature, and β is the thermal expansion
coefficient [21]. Another evolution equation for the temper-
ature is solved to provide T to calculate the forcing term
[22,23],

∂t T + uα∂αT = (ν/Pr)∂α∂αT, (14)

where Pr is the Prandtl number. On a solid wall with a unit
normal vector nw the no flux condition ∂nw

T = 0 is applied
if the wall is adiabatic and the Dirichlet condition T = Tw is
applied if the wall temperature is fixed at Tw. For two-phase
flows, both fluids have the same density ρ0 and kinematic
viscosity ν. A phase field model is employed to deal with
the interfaces and surface tension forces [24,25]. The two
immiscible fluids are distinguished by an order parameter φ.

In one fluid, φ = 1, and in the other, φ = −1. A thin transition
region of width W exists between the two fluids. The contour
lines (or isosurfaces) for φ = 0 are taken as the interfaces.
Another term δt FST,α = −δtφ∂αμ is added on the r.h.s. of
Eq. (11) to account for the surface tension effect. Here

μ = 4aφ(φ2 − 1) − κ∂α∂αφ (15)

is the chemical potential and the evolution of φ is governed by
the Cahn-Hilliard equation (CHE) [24,26],

∂tφ + uα∂αφ = M∂α∂αμ. (16)

Here M is the mobility, and a and κ are two constants related
to the surface tension σ and interface width W as

a = 3σ/(4W ), κ = 3σW/8. (17)

On a solid wall with a contact angle θ , the no flux condition
∂nw

μ = 0 is applied for the chemical potential and the wetting
boundary condition

∂nw
φ = −(2/W ) cos θ

(
1 − φ2

w

)
(18)

is applied for the order parameter (φw is the order parameter
at the wall) [27]. The spatial derivatives in Eqs. (14) and (16)
are discretized by the second-order isotropic schemes and the
time marching uses the second-order RK scheme. Specifically,
the isotropic schemes to compute the spatial derivatives are
given by [28]

∂αφ = 3

cδx

b∑
i=1

wieiαφ(x + eiδt ), (19)

∇2φ = 6

δ2
x

[
b∑

i=1

wiφ(x + eiδt ) − (1 − w0)φ(x)

]
, (20)

where the lattice velocity (magnitude) c is c = δx/δt = √
3cs,

ei (i = 0, 1, . . . , b) is the lattice velocity (vector) (e.g., b = 8
for the D2Q9 velocity model and b = 18 for D3Q19), and wi

is the weight for different lattice velocities. It should be noted
that for two-phase flows the real fluid density ρ0 is a constant
(set to 1), whereas ρ = p/c2

s has small variations around its
initial value (also set to 1).
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TABLE II. Comparisons between the MAMEs, SMAMEs, KRLNS, EDAC, and GPE. Abbreviations used: eqs., equations; artif. dissip.,
artificial dissipation; FD, finite difference; pred.-corr., predictor-corrector; FE, forward Euler. Note that (1) in the KRLNS “pressure diffusion”
is replaced by the grand potential diffusion; (2) the MacCormack scheme ties the spatial and temporal discretizations together, and the time
stepping is similar to a predictor-corrector procedure.

Method MAMEs SMAMEs KRLNS EDAC GPE

Governing eqs. Discrete in time Continuous in space and time
Pressure diffusion Numerical Physical
Form of diffusion ∂β∂β p + ∂α∂β (ρuαuβ ) ∂β∂β p ∂β∂βG ∂β∂β p
Diffusion coefficient 0.5c2

s δt (Re-independent) ν (1/Re)
Origin of diffusion term LBEs Energy eq. of compressible NSEs
Bulk viscosity terms Kept in momentum eqs. Neglected in momentum eqs.
Form of artif. dissip. Explicit Hidden in numerical schemes
Origin of artif. dissip. LBEs Discretization schemes
Spatial discretization centered FD MacCormack [11,14] Centered FD (staggered)
Time stepping pred.-corr. FE-like MacCormack [11,14] RK

C. Comparison with the KRLNS, EDAC and GPE

As noted in Sec. I, there exist some other methods in the
ACM framework such as the KRLNS, EDAC, and GPE. Al-
though belonging to the general ACM category, the MAMEs
and SMAMEs differ from them in a few aspects (see Table II
for an overview).

First, the MAMEs are a set of semidiscrete equations
[Eqs. (4) and (5)] derived from the LBEs that specify the
rule to update the local density and momentum [i.e., ρ(t ) →
ρ(t + δt ), ρuα (t ) → ρuα (t + δt )]. To carry out a simulation,
one has to perform only spatial discretizations in principle
(though a predictor-corrector procedure was used to handle
the time derivatives in the SATs in the original MAMEs). The
present SMAMEs inherits this feature [see Eqs. (10) and (11)]
and avoids the predictor-corrector procedure. The KRLNS,
EDAC and GPE are all continuum methods using continuous
governing equations. To use them, one has to perform both
spatial and temporal discretizations.

Second, the diffusion in the pressure equation is different.
To facilitate the comparison, we first multiply Eqs. (6) [to-
gether with Eq. (8)] and (10) with c2

s (ρc2
s = p) and obtain the

pressure evolution equations for the MAMEs and SMAMEs
as

pn+1 = pn − δt∂α (puα )n + 0.5c2
s δ

2
t ∂α∂β (ρuαuβ + pδαβ )n,

(21)

pn+1 = pn − δt∂α (puα )n + 0.5c2
s δ

2
t ∂αα pn. (22)

The last term on the r.h.s. of Eq. (21) is the diffusion term
obtained from the Taylor series expansion of the LBEs [8],
and that in Eq. (22) is simplified from Eq. (21) by dropping
the velocity-related terms. In the KRLNS, EDAC, and GPE,
the evolution equations for the pressure or grand potential are
derived from the energy equation under low Mach numbers
[9,14,19]. With some assumptions, the simplified governing
equations in dimensionless form in the KRLNS are [11]

∂tG = − 1

M2
a

∂αuα + 1

Re
∂β∂βG , (23a)

∂t uα = −∂β (uαuβ ) − ∂α p + 1

Re
∂β∂βuα, (23b)

where G = p − uαuα/2 is the grand potential (the density is
taken as 1) and Re is the Reynolds number. The EDAC differs
from the KRLNS with Eq. (23a) for the grand potential G
replaced by another evolution equation for the pressure p [14]:

∂t p + uα∂α p = − 1

M2
a

∂αuα + 1

Re
∂β∂β p. (24)

The GPE differs from the KRLNS by using another pressure
evolution equation (assuming that the Prandtl number and
specific heat ratio are both 1) [12],

∂t p = − 1

M2
a

∂αuα + 1

Re
∂β∂β p, (25)

which lacks the convection term uα∂α p on the left-hand side
as compared with the EDAC. Although all five methods have
some diffusion included in the evolution equation for the pres-
sure (or grand potential), the form of the diffusion term and
the diffusion coefficient in the MAMEs differ from those in
the KRLNS, EDAC, and GPE. The SMAMEs lies somewhere
in between the MAMEs and the other three methods: it has a
simple form of diffusion (like the KRLNS, EDAC, and GPE)
and uses the same diffusion coefficient as the MAMEs. In the
MAMEs and SMAMEs, the diffusion coefficient is 0.5c2

s δt =
(1/6)(δ2

x /δt ) [assuming cs = c/
√

3 = δx/(
√

3δt )], whereas in
the KRLNS, EDAC, and GPE the diffusion coefficient is 1/Re
(in dimensional form it is the kinematic viscosity ν). In ACM
simulations of incompressible flows, the time step usually
should satisfy δt ∼ O(δ2

x ). Therefore, the diffusion coefficient
in the MAMEs and SMAMEs is (1/6)(δ2

x /δt ) ∼ O(1) and
independent of the Reynolds number. The differences in the
diffusion term are ultimately connected with the different ori-
gins. As noted before, in the continuum methods the pressure
evolution equation is derived from the (continuum) energy
equation [9,14,19], whereas in the MAMEs it is found through
Taylor series analysis of the (discrete) LBEs [8]. Thus, in the
continuum methods the diffusion has more physical mean-
ings, but in the MAMEs and SMAMEs it has no physical
meanings and is purely numerical.

Third, in the KRLNS, EDAC, and GPE, the bulk viscosity
terms are neglected in the momentum equations [10–12,14].
Unlike them, the MAMEs keeps such terms (appearing as
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FIG. 1. Evolutions of (a) the error in the horizontal velocity component Eru, (b) the error in the pressure Erp, (c) the total kinetic energy
Ek , and (d) the total enstrophy � in the simulation of the 2D Taylor-Green vortex. The Reynolds number is Re = 20 and the shared simulation
parameters are NL = 50 and Nt = 1000 (c = 20). The solid line is by the present method, the dashed line is by the original MAMEs and the
dash-dot-dot line is by the LBM using MRT. In (c), (d) the insets give the plots of the same data with the axis for Ek and � in log scale, and
the analytical predictions are given by the line with filled squares.

SATs) with the specific forms derived from the LBEs and
the SMAMEs also retains similar terms but with certain sim-
plifications. As will be shown in Sec. III A, the SATs in the
momentum equations are crucial to stabilize the simulation
if the spatial derivatives are discretized by simple centered
schemes and the variables are updated in time in the simplest
explicit way. Without any SATs in the momentum equations,
the success of KRLNS, EDAC and GPE relies on other nu-
merical components. For instance, the MacCormack scheme
is commonly used in the KRLNS and EDAC [11,14], and
this scheme itself has certain numerical dissipation to stabi-
lize the computation. There may be some other choices of
the schemes, for example, the KRLNS in Ref. [10] used the
spectral element method with mixed explicit-implicit operator
splitting for time integration to stabilize the computation. The
GPE uses staggered grid together with a RK time stepping to
avoid the unstable problem [12]. In other words, the MAMEs
and SMAMEs have the artificial dissipation terms explicitly
expressed in the semidiscrete momentum equations and then
discretize them by simple centered schemes, whereas in the
other three continuum methods the artificial dissipation is hid-
den in more complicated numerical schemes to discretize the
continuum equations in both space and time. It is noted that in

some numerical methods to solve the compressible NSEs the
artificial dissipation terms may also be explicitly given (e.g.,
the Jameson-Schmidt-Turkel scheme [29]), and they can be
used in the ACM for incompressible flow simulations as well
(e.g., see [30]).

III. RESULTS AND DISCUSSION

In this section, we present the results of several test cases
obtained by using our method and make comparisons with
those in the literature and by other methods under the same
simulation settings (i.e., same δx and δt ). Note that the LBM
simulations below use the D2Q9 and D3Q19 velocity models
for 2D and 3D problems, respectively, and the multiple re-
laxation time (MRT) [31] or the weighted MRT model [32]
for the collision step. Uniform mesh and time step are used
in all problems. For each problem, a characteristic length L
and characteristic velocity Uc are chosen. The characteristic
time Tc = L/Uc is divided into Nt segments (δt = Tc/Nt ) and
the characteristic length L is discretized into NL segments
(δx = L/NL).
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FIG. 2. Stable and unstable regions in the NL-c plane for different
methods to simulate the Taylor-Green vortex problem at Re = 20.
Note the grid size δx = 1/NL and the time step δt = 1/Nt = 1/(cNL ).
The three lines approximately represent the critical conditions for
the present method (solid), the original MAMEs (dashed) and the
LBM using MRT (dash-dot-dot). The stable regions are above the
respective lines, and the unstable regions are below them. The filled
circles represent the stable cases, and the empty circles represent the
unstable cases for the present method (for clarity, the specific data for
the other two methods are not plotted). The tests were performed for
0 � t � 4. In the stable runs the errors do not increase abruptly. For
the LBM runs, the MRT parameters follow those in Fig. 1 of [31],
and the errors are quite large when c is too small (even though the
runs do not blow up).

A. Taylor-Green vortex in two and three dimensions

The first case is the Taylor-Green vortex (TGV) in two and
three dimensions. First, we consider the 2D TGV. The analyti-
cal solutions for this problem in the domain [−1, 1] × [−1, 1]

(i.e., the characteristic length L = 1) with a characteristic
velocity u0 (set to 1) are given by [8]

uanalytical(x, y, t )=−u0 cos(πx/L) sin(πy/L)

× exp(−2π2t/Re), (26a)

vanalytical(x, y, t )=u0 sin(πx/L) cos(πy/L) exp(−2π2t/Re),

(26b)

panalytical(x, y, t )= p0 − 0.25ρ0u2
0[cos(2πx/L)+ cos(2πy/L)]

× exp[−4π2u0t/(ReL)]. (26c)

where Re = u0L/ν is the Reynolds number, ρ0 is the density
(set to 1), and p0 is the reference pressure (set to p0 = ρ0c2

s ).
From Eqs. (26a) and (26b), the analytical solution for the
vorticity ω = ∂xv − ∂yu can be derived,

ωanalytical(x, y, t ) = 2(π/L)u0 cos(πx/L) cos(πy/L)

× exp(−2π2t/Re). (27)

This problem is periodic in both the x and y directions. The
initial fields are set according to Eqs. (26a)–(26c) with t = 0.
The case at Re = 20 (same as [8]) is studied.

We mainly focus on the error in the numerical solutions
of the velocity component u and the pressure p defined as
follows:

Eru(t )=
√∑

i, j[unumerical(xi, j, yi, j, t )−uanalytical(xi, j, yi, j, t )]2√∑
i, j u2

analytical(xi, j, yi, j, t )
,

(28)

Erp(t )=
√∑

i, j[pnumerical(xi, j, yi, j, t )−panalytical(xi, j, yi, j, t )]2√∑
i, j p2

analytical(xi, j, yi, j, t )
,

(29)

where the summation is for all nodes in the simulation do-
main. Note the error Erv (t ) is the same as Eru(t ) due to the

FIG. 3. Evolutions of (a) the total kinetic energy Ek (b) the error in the horizontal velocity component Eru. The solid line was obtained with
both the SATs in Eqs. (10) and (11), the dashed line was obtained with the SATs in the momentum equations [Eq. (11)] only, the dash-dot-dotted
line was obtained with the SAT in the continuity equation [Eq. (11)] only, and the long-dashed line was obtained without any SAT. The shared
simulation parameters are NL = 50 and Nt = 1000 (c = 20).
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FIG. 4. Contour plots of (a), (c) the pressure field and (b), (d) the vorticity field at t = 2.0 in the simulation of the 2D Taylor-Green vortex
at Re = 20. The simulation parameters are NL = 50 and Nt = 1000 (c = 20). The black solid line is by the present method, and the red dashed
line is the analytical solution. The results in (a), (b) were obtained with the SATs added in both the continuity and momentum equations,
whereas those in (c), (d) were obtained with the SATs in the momentum equations only.

symmetry of this problem. Besides, the total kinetic energy Ek

and enstrophy � were also monitored during the simulation,
and they are calculated as

Ek = 1

2S

∫
S
(u2 + v2) dS ≈ 1

2S

∑
i, j

(
u2

i, j + v2
i, j

)
dSi, j,

� = 1

2S

∫
S
ω2 dS ≈ 1

2S

∑
i, j

ω2
i, j dSi, j, (30)

where S is the total area of the domain, dSi, j is the area of
the cell labeled by the indices (i, j), ui, j , vi, j , and ωi, j are the
x-velocity and y-velocity components and vorticity at the node
(i, j), respectively, and the summation is performed over all
the nodes within the domain. From the analytical solution, one
can find that Ek and � depend on t as

Ek (t ) = u2
0 exp(−4π2t/Re),

�(t ) = 1

2
π2 u2

0

L2
exp(−4π2t/Re). (31)

Figure 1 shows the evolutions of Eru, Erp, Ek , and � over a
relatively long period of time (0 � t � 8) by using the present
method (SMAMEs), the original MAMEs in Ref. [8] and the
LBM (using MRT [31]). For the LBM, the model parameters
for MRT follow those in Fig. 1 of [31]. It is seen that for all
three methods the deviations in u remain small (around 10−3)
in the early stage (t < 1), but after some time the deviations
grow with time. At the end of simulation (t = 8), the present
method and LBM can still have reasonably good accuracy
[O(10−3)] whereas the original MAMEs give less satisfactory
results [O(10−2)]. For the pressure field, the deviations always
remain to be small (less than 10−4) for all three methods,
and both the SMAMEs and MAMEs can make Erp keep de-
creasing to as low as about 10−12. The predictions of the total
kinetic energy Ek and enstrophy � by the three methods are
all very close to the analytical results, as seen from Figs. 1(c)
and 1(d). With the same simulation parameters (NL = 50
and c = 20), the computation times are 18.0 s, 23.3 s and
34.2 s for the present SMAMEs, the original MAMEs, and the
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FIG. 5. Evolutions of the rate of energy dissipation ε(t ) at (a) Re = 100 and (b) Re = 200 for the 3D Taylor-Green vortex. The solid line
is by the present SMAMEs simulation, the dashed line is by the original MAMEs, and the dash-dot-dot line is by the 3D LBM (D3Q19) using
the weighted MRT collision model [32]. The filled circles are by the spectral methods from [36]. The shared simulation parameters for the
SMAMEs, MAMEs, and LBM are NL ≈ 20.372 (1283 grid points) and Nt ≈ 407.437 (c = 20).

MRT-LBM, respectively. That is, the present method saves
about 25% of the time compared to the original MAMEs, and
it saves nearly one half of the time compared to the MRT-
LBM. At the same time, it is as accurate as the MRT-LBM
and more accurate than the original MAMEs. It is noted that
the velocity magnitude at t = 8 has decreased by three orders
of magnitude (compared to its initial value), and it may be
more difficult to closely follow the analytical solutions.

Figure 2 shows the stability diagram in the NL-c plane for
three methods (SMAMEs, MAMEs, and LBM) for the same
case at Re = 20. It is seen that the stable region of the present
method is larger on this map than that of the original method
using the MAMEs. In other words, under the same grid size,
the present method can use a larger time step than the original
method in Ref. [8]. The difference in the minimal c (or the
maximal δt ) for a stable computation between the two meth-
ods increases as NL increases (i.e., the grid size δx decreases).
Among the three methods being compared, the LBM is the
most stable and the minimal c (to keep the simulation stable)
is almost constant when the mesh is refined. However, it does
not mean that the LBM can give reliable results irrespective of
the lattice velocity c. In fact, the LBM for incompressible flow
simulations should follow the diffusive scaling [δx ∼ O(ε)
and δt ∼ O(ε2)] [6,33,34]. That means the lattice velocity c
should satisfy c ∼ O(1/ε) ∼ O(NL ). Thus, even though LBM
remains stable when c ∼ O(1), it does not satisfy the require-
ment for the simulation of incompressible flows. Overall, in
terms of the stability performance, the present method is in
between the original MAMEs and the LBM according to
Fig. 2.

Next, the effects of the SATs in Eqs. (10) and (11) are
investigated. Figure 3 compares the evolutions of Ek and Eru

for a typical case at Re = 20 as obtained by using four dif-
ferent simulation settings (1) both the SATs in the continuity
and momentum equations are included (2) only the SATs in
the momentum equations are included (3) only the SATs in
the continuity equation is included (4) no SATs are included.
When the SATs are absent from Eqs. (10) and (11), both
the kinetic energy and the error in u quickly become very

large. When the SAT in the continuity equation is added,
the situation improves slightly but the simulation still goes
unstable (Ek increases sharply) after some time. This indi-
cates that the SATs in the momentum equations are crucial
to maintain the stability. With the SATs only added in the
momentum equations, the computation remains stable and the
total kinetic energy follows the analytical prediction, but the
error in u shows significant fluctuations. The reason may be
that the SAT in the continuity equation, which is dissipative
in nature, helps to damp out the oscillations in the density
(pressure) field. In contrast to the above three situations, when
the SATs in the continuity and momentum equations are both
added, the simulation is not only stable but also shows the
least fluctuations in Eru. In addition, the contour plots of
the pressure p and vorticity ω at t = 2.0 for the two stable
simulations under settings (1) and (2) are shown in Fig. 4,
together with the analytical predictions by Eqs. (26c) and (27).
It is seen that the numerical solutions by the SMAMEs agree
well with the analytical solutions when the SATs are added
in both the continuity and momentum equations. When the
SATs are added only in the momentum equations (but not
in the continuity equation), the vorticity field still seems to
follow the analytical solution whereas the difference in the
pressure field becomes noticeable. As noted earlier, the SATs
in Eqs. (10) and (11) are much simplified compared with the
original MAMEs in Ref. [8]. Yet they are sufficient to keep the
computation stable and provide accurate results. This will be
further demonstrated through other tests below. It seems that
it is difficult to further simplify the SATs.

We also simulated the 3D TGV problem. The domain
is a cubic box of side length LB = 2π , [0, 2π ] × [0, 2π ] ×
[0, 2π ] [i.e., the characteristic length is L = LB/(2π )]. Peri-
odic boundary conditions are applied in all three directions.
The initial condition for the velociy u = uex + vey + wez is
given by [35]

u(x, y, z, 0) = u0 cos(x) sin(y) cos(z), (32a)

v(x, y, z, 0) = −u0 sin(x) cos(y) cos(z), (32b)

w(x, y, z, 0) = 0, (32c)
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FIG. 6. Contour plots of the velocity components (a), (c) u and (b), (d) w at t = 3.5 and Re = 100 in the plane z = π/4 for the 3D
Taylor-Green vortex. The results by the SMAMEs are in the upper row whereas those by the original MAMEs are in the lower row. The shared
simulation parameters for the SMAMEs and MAMEs are NL ≈ 20.372 (1283 grid points) and Nt ≈ 407.437 (c = 20).

where u0 = 1 (i.e., the characteristic velocity is chosen as u0).
The initial pressure field is

p(x, y, z, 0) = p0+ 1
16ρ0u2

0[cos(2z)+2][cos(2x) + cos(2y)],
(33)

where ρ0 = 1 and p0 = ρ0c2
s . In the 3D TGV, we focus on the

rate of energy dissipation ε(t ) defined by

ε(t ) = 1

Re
|ω|2 = 1

Re

1

(2π )3

∫ 2π

0

∫ 2π

0

∫ 2π

0
ω · ω dx dy dz.

(34)
where Re = u0L/ν = 1/ν is the Reynolds number, ω = ∇ ×
u is the vorticity and |ω|2 is the mean-square vorticity [35].
Two cases at Re = 100 and 200 were simulated with NL ≈
20.372 (1283 grid points) and c = 20 by using the SMAMEs,
MAMEs, and LBM. Note that LBM simulations use the
D3Q19 velocity model and the weighted MRT collision model
[32].

Figure 5 shows the evolutions of the rate of energy dissipa-
tion ε(t ) for 0 � t � 10 at the two Re numbers. Previously,
this problem was also simulated by the spectral method in
Ref. [35] (with a resolution 323) and in Ref. [36] (with a
resolution up to 2563). The results from [36] are also plotted
in Fig. 5 for comparison. It is seen that the present results by
the SMAMEs are almost the same as those by the MAMEs,
and are very close to the LBM results for both Re = 100
and Re = 200. All three sets of results by current simulations
at Re = 100 are close to those in Ref. [36]. The differences
between the present results and the reference ones in Ref. [36]
are slightly larger at Re = 200, but still remain to be small.
The possible reason may be that, as Re increases, more com-
plex flow structures develop as time goes on and that requires
better resolution. This deficiency (with respect to the spectral
method) is inherent to all second-order methods, and a similar
trend is observed for other methods with an order of accuracy
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FIG. 7. Velocity profiles along the centerlines (a) u(y) at x = 0.5 and (b) v(x) at y = 0.5 for the 2D cases; (c) u(z) at x = 0.5 and (d) w(x)
at z = 0.5 in the plane y = 0.5 for the 3D cases. The reference data for the 2D cases are from [38], and those for the 3D cases are from [39].

higher than two (e.g., see Fig. 4 of [37]). In addition to ε(t ),
the velocity components u and w in the plane at z = π/4 at
t = 3.5 for the case at Re = 100 were extracted, and their
contour lines are shown in Fig. 6 (for the simulations by the
SMAMEs and MAMEs). One can easily see from Fig. 6 that
the two sets of results agree well with each other. It was also
found that the present results resemble those by the spectral
method from [35] (see Figs. 4 and 5 therein). Note that both
u and w in Fig. 6 should be multiplied by 100 for comparison
with [35]. Overall, the present SMAMEs results are as accu-
rate as those by the MAMEs and LBM. For a typical 3D TGV
case using the above simulation parameters (1283, c = 20),
the computation times cost by the SMAMEs, MAMEs and
LBM (D3Q19, weighted MRT) are about 1093 s, 2641 s, and
2943 s (all using four nodes with the same domain decomposi-
tion on the same computer). It means that the present method
is more than two times faster as compared to the MAMEs,
and it is almost three times faster as compared to the LBM.
As compared to the 2D cases, the saving of computation time
by the SMAMEs is even more significant.

B. Lid-driven cavity flow in two
and three dimensions

The second case is the lid-driven cavity flow. Both 2D
and 3D situations were studied. In two dimensions the

domain is a square [0, 1] × [0, 1] enclosed by four solid walls
(i.e., the side length L is chosen as the characteristic length).
The top wall at y = 1 is moving with a constant velocity
(Ulid, 0) = (1, 0) (i.e., the lid velocity is chosen to be the
characteristic velocity). In three dimensions the domain is
a cube [0, 1] × [0, 1] × [0, 1], and the top wall at z = 1 is
moving with a constant velocity (Ulid, 0, 0) = (1, 0, 0). All
other walls are stationary. The Reynolds number is given by
Re = UlidL/ν. The initial fields are set to be u = v(= w) = 0
and ρ = ρ0 = 1. The criterion max ||u|n+1 − |u|n| < 10−8 is
used to determine whether the steady state is reached (i.e.,
the change in the velocity magnitude between two consecutive
steps is less than 10−8 everywhere). Several cases commonly
used for benchmark studies were investigated, including Re =
100, 400, 1000, and 5000 in two dimensions and Re = 100,
400, and 1000 in three dimensions. Here we present only
the results of four cases at high Re numbers (Re = 1000 and
5000 in two dimensions, and Re = 400 and 1000 in three
dimensions). For the 2D cases, the numerical parameters are
NL = 256, c = 50 for both Re = 1000 and Re = 5000. For
the 3D cases they are NL = 64, c = 20 for Re = 400 and
NL = 96, c = 20 for Re = 1000. Figure 7 gives the velocity
profiles along selected centerlines for the four cases. The
data from [38,39] are also plotted for comparison. The data
from [38] were obtained by solving the incompressible NSEs
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FIG. 8. Contour plots of the stream function � (a), (d), the vorticity −ω (b), (e) and the pressure deviation �p (c), (f) at steady state for the
2D driven cavity at Re = 1000 (upper row) and 5000 (lower row) obtained by the present SMAMEs simulations with NL = 256 and c = 50.
The blue lines represent the wall boundaries.

using the vorticity-stream function formulation and have been
widely used for benchmarking purposes. The data from [39]
were obtained by a special formulation of the LBM using
nonuniform meshes. It is seen that the present results are in
good agreement with both reference results. The results for
other low Re cases also agree well with the reference ones,
but for conciseness they are not shown here.

In addition to the one-dimensional velocity profiles at the
centerlines, we also looked into the 2D fields of the stream
function �, the vorticity ω, and the pressure deviation �p
for the 2D cases. In two dimensions, the velocity is related
to the stream function as u = ∂yψ and v = −∂xψ . Once the
velocity field is known, � can be found through integration.
As the pressure field was not given in Ref. [38], we also

FIG. 9. Evolutions of (a) the total enstrophy and (b) the total kinetic energy for the doubly periodic shear layer at Re = 10 000. The present
simulation parameters are NL = 320, Nt = 16 000 (c = 50). For the EDAC results from [14], NL = 512 and Nt = 5120 (c = 10). Note that
”Pspect” denotes the results obtained by a pseudospectral solve on a 768 × 768 grid [14,41].
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FIG. 10. The vorticity at t = 1.0 for the doubly periodic shear layer at Re = 10 000 (a) by the present simulation using SMAMEs and
(b) by using the original MAMEs. The simulation parameters are NL = 320, Nt = 16 000 (c = 50).

examined another study of the 2D driven cavity by the LBM
[40]. To compare the pressure deviation with those in Fig. 5
of [40], �p is calculated as �p = 10(p − p0)/(ρ ′

rU
2
lid,LU )

where ρ ′
r = 1/2.7 is the reference density used in Ref. [40],

Ulid,LU = Ulid/c = 1/c is the lid velocity in lattice unit, and
p0 = ρ0c2

s ≈ 0.333333 is the present initial pressure. Figure 8
gives the contour lines of �, −ω and �p when the flow be-
comes steady at Re = 1000 and Re = 5000. The values for �

are −0.11745, −0.115, −0.11, −0.1, −0.09, −0.07, −0.05,
−0.03, −0.01, −10−4, 10−5, 5 × 10−5, 10−4, 5 × 10−4, 10−3,
1.5 × 10−3, and 3 × 10−3, which were also used in Fig. 3 of
[38] (except that −0.11745 was replaced by −0.1175 therein).
The values for −ω are −3, −2, −1, −0.5, 0, 0.5, 1, 2, 3, 4,
and 5 (same as those used in Fig. 4 of [38]). Note that there is
a sign change in the vorticity when compared to [38]. The
values for the pressure deviation �p are 5.0, 3.0, 1.0, 0.7,
0.3, 0, −0.3, −0.6, −1.0, −1.5 in Fig. 8(c) for Re = 1000,
and 5.0, 2.5, 1.4, 1.2, 0.958, 0.7, 0.3, 0, −0.3, −0.6, −1.0,

−1.5 in Fig. 8(f) for Re = 5000 which are the same as those
labeled in Fig. 5 of [40] (except that 0.958 was replaced by
1.0 for Re = 5000 therein). One can find that the present
results are quite similar to Fig. 3 and 4 of [38] (for � and
−ω) and Figs. 1, 4, and 5 of [40] (for �, −ω, and �p) at
both Re = 1000 and 5000. At Re = 5000, the three eddies
at the left-upper, left-lower, and right-lower corners are all
well captured by the present simulation. This demonstrates
the capability of the proposed SMAMEs to reproduce accurate
results over the whole domain.

C. Doubly periodic shear layer

The third case is the doubly periodic shear layer in two di-
mensions. The domain is a square [0, 1] × [0, 1] with periodic
boundary conditions in both the x and y directions. The initial

FIG. 11. The pressure at t = 1.0 for the doubly periodic shear layer at Re = 10 000 (a) by the present simulation using SMAMEs and
(b) by using the original MAMEs. The simulation parameters are the same as in Fig. 10.
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TABLE III. Comparison of the average Nusselt numbers, the maximum u and its location in the y direction along the vertical centerline
x = 0.5Lx , and the maximum v and its location in the x direction along the horizontal centerline y = 0.5Ly in steady state by the present
SMAMEs simulations with those from [21,43] (in parentheses).

Ra 103 104 105 106

Nu 1.118 (1.118) 2.245 (2.245) 4.528 (4.523) 8.851 (8.835)
umax/Vdiff 3.644 (3.649) 16.185 (16.176) 34.907 (34.741) 65.065 (64.841)
ymax 0.815 (0.815) 0.823 (0.826) 0.857 (0.855) 0.853 (0.852)
vmax/Vdiff 3.701 (3.698) 19.643 (19.624) 68.600 (68.619) 220.908 (220.438)
xmax 0.175 (0.180) 0.117 (0.120) 0.063 (0.067) 0.037 (0.039)

density and velocity fields are given by

d (x, y, 0) = 1.0, (35a)

u(x, y, 0) =
{

tanh[δw(y − 0.25)] if y � 0.5,

tanh[δw(0.75 − y)] if y > 0.5,
(35b)

v(x, y, 0) = δp sin[2π (x + 0.25)], (35c)

where δw = 80 and δp = 0.05 are two parameters related to
the width of the shear layer and the initial perturbation am-
plitude. The Reynolds number is taken to be Re = 10 000.

The simulation is performed from t = 0 to 1 by using the
present SMAMEs and also the original MAMEs in Ref. [8].
Figure 9 shows the evolutions of the total enstrophy and
kinetic energy [see Eq. (30) for their calculation] by using
the SMAMEs, the MAMEs and some reference results from
[14,41] (using the EDAC and pseudospectral methods, respec-
tively). Overall, the present results on a 320 × 320 grid are in
good agreement with the pseudospectral results obtained on
a much finer (768 × 768) grid. For the enstrophy, both the
results by the SMAMEs and MAMEs agree very well with
the pseudospectral results (one can hardly see any differences

FIG. 12. Contour plots of the stream function for the 2D natural convection in a square cavity in steady state at different Rayleigh numbers:
(a) Ra = 103, (b) Ra = 104, (c) Ra = 105, (d) Ra = 106, and Pr = 0.71. The shared parameter is c = 20 and other simulation parameters are
NL = 100 for Ra = 103, NL = 150 for Ra = 104 and 105, and NL = 200 for Ra = 106. The blue lines represent the wall boundaries.
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FIG. 13. Contour plots of the temperature for the 2D natural convection in a square cavity in steady state at different Rayleigh numbers:
(a) Ra = 103, (b) Ra = 104, (c) Ra = 105, (d) Ra = 106, and Pr = 0.71. The simulation parameters are the same as in Fig. 12.

between them from Fig. 9) For the kinetic energy, the evolu-
tion by the MAMEs match the pseudospectral results slightly
better than that by the SMAMEs. In addition, Figs. 10 and 11
show the contours of the vorticity and the pressure at t = 1 by
the present simulation and by the MAMEs. One can see that
the two sets of results look similar to each other, and that the
curled shear layers still look smooth and there are no spurious
vortices. Due to the simplified formulation and implementa-
tion, the present simulation only takes about 258.6 s, whereas
that using the original MAMEs takes 365.5 s on the same
computer under the same settings. That means the present
method saves about 30% computation time compared with the
original method using the MAMEs. It is noted that the present
simulation is unstable when the mesh is too coarse. Even
on a 256 × 256 grid the simulation blew up (the simulation
using the MAMEs was not stable either). Previously, it was
found that some more robust upwind methods can keep the
simulation at such a high Re stable on a coarse grid. However,
they often produce spurious vorticities under such situations
[41]. The present method using the SMAMEs has low tol-
erance to the underresolved situations. On the other hand,
it is less likely to produce spurious vortices and unphysical
results.

D. Natural convection in a square cavity in two dimensions

The next problem is the 2D natural convection in a square
cavity which involves heat conduction. This is a canonical
benchmark problem for incompressible thermal flows and has
been investigated by various numerical methods (including
the LBM) [21–23,42,43]. The domain is a rectangle [0, Lx] ×
[0, Ly] enclosed by four stationary solid walls. Both the width
Lx and height Ly of the cavity are equal to H , which is chosen
as the characteristic length. The velocities at the four wall
boundaries are all zero (u = v = 0). The left wall is main-
tained at a high temperature Th and the right wall is kept at
a low temperature Tl , giving a temperature difference �T =
Th − Tl . The upper and lower walls are both adiabatic (i.e.,
have zero normal heat flux or ∂yT = 0). The characteristic
velocity is chosen as Ur = √

β�T gH . The Rayleigh number
is given by Ra = gβ�T H3/(ν2/Pr). The Reynolds number
is given by Re = UrH/ν and related to Ra as Re = √

Ra/Pr.
Without loss of generality, we use Th = 1 and Tl = 0, thus
the temperature difference is �T = 1 and the average tem-
perature is T0 = 0.5. The initial fields are set to be u = v = 0,
ρ = 1 and T = 0. After certain time, the flow and temper-
ature fields inside the cavity achieve a steady state which
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FIG. 14. Evolutions of the (scaled) interface displacement at the left boundary for the capillary wave at Re = 1000. In both (a) and (b) the
dashed line is the analytical prediction by Eq. (39). In (a) the solid line is by the present method, and the dash-dotted line is by the MRT-LBM.
In (b) the solid line is obtained at NL = 64, and the dash-dotted line, NL = 128. The shared simulation parameters in (a) are NL = 64, Nt = 384
(c = 6), Cn = 0.0625, Pe = 2 × 104. For the fine mesh solution in (b), Nt = 3072 (c = 24), Cn = 0.03125, Pe = 2 × 104.

is determined by the criteria max ||u|n+1 − |u|n|/Ur < 10−8

and max |T n+1 − T n|/�T < 10−8 (i.e., the scaled changes
in the velocity magnitude and the temperature between two
consecutive steps are both less than 10−8 everywhere). For
this problem, the average Nusselt number is computed as
Nu = Q/Qc where

Q =
∫ Lx

0

∫ Ly

0
qx(x, y) dy dx, (36)

is the actual heat flux across the cavity and

Qc = (ρ0ν/Pr)[(Th − Tl )/Lx]Ly, (37)

is the heat flux if there was only pure conduction [21]. The
local heat flux in the x direction qx is calculated as [23]

qx(x, y) = uT (x, y) − (ν/Pr)∂xT (x, y). (38)

In addition to Nu, the maximum u along the vertical centerline
x = 0.5Lx and the maximum v along the horizontal centerline
y = 0.5Ly were also extracted.

Four cases at Ra = 103, 104, 105, and 106 were simulated
by the present SMAMEs coupled with the temperature evolu-
tion equation, Eq. (14). The Prandtl number is fixed at Pr =
0.71. The common numerical parameter is c = 20 and other
simulation parameters are NL = 100 for Ra = 103, NL = 150
for Ra = 104 and 105, and NL = 200 for Ra = 106. Table III
shows the average Nusselt numbers and the maximum ve-
locities and their locations along the centerlines in steady

TABLE IV. Comparisons of the oscillation period for the capil-
lary wave at Re = 1000 and 4000. The shared simulation parameter
is Pe = 2 × 104. The Cahn numbers are Cn = 0.0625 for NL = 64
and Cn = 0.03125 for NL = 128.

Reynolds number 1000 4000

Period (analytical) 20.071 38.751
Period | Error (NL = 64, c = 6) 20.669 | 2.98% 40.089 | 3.45%
Period | Error (NL = 128, c = 24) 20.265 | 0.97% 39.293 | 1.40%

state for the four cases obtained by the present simulations
using the SMAMEs, together with the reference results from
[21,43]. Note that the reference values in the brackets are from
Table III (a, b, d, finest grid) of [21] (for Ra = 104, 105 and
106) and from Table 1 (two-layer approach, finest grid) of [43]
(for Ra = 103). To facilitate the comparison with previous
studies, umax and vmax in Table III are scaled by the diffusion
velocity Vdiff = ν/(PrLx ) (instead of Ur). It is seen that the
present results are in good agreement with the reference ones
for all cases. Figures 12 and 13 show the streamlines and the
isotherms inside the cavity for the four cases, respectively. All
of them are quite similar to previous results by other methods
(e.g., see Fig. 9 of [21] and Figs. 3 and 4 of [42]).

E. Capillary wave in 2D

Next, we study some more complicated two-phase flows
using the CHE for interface capturing. Besides, the surface
tension effects are taken into account in the momentum equa-
tions. For such problems, there are additional parameters:
(1) the Cahn number Cn = W/Lc (i.e., the interface thickness
measured by the characteristic length) and (2) the Peclet num-
ber Pe = UcL2

c/(Mσ ) (reflecting the relative importance of
convection over diffusion in the CHE). For two-phase flows
one can derive a velocity scale from the surface tension and
viscosity as σ/(ρ0ν), and it is chosen to be the default char-
acteristic velocity Uc. From Uc one can derive a characteristic
time as Tc = Lc/Uc. For two-phase problems, the above Uc

and Tc are used to scale the velocity and time (unless specified
otherwise).

The first two-phase problem is the 2D capillary wave.
The domain is a square [0, 1] × [0, 1] (Lc is set to the side
length L = Lx = Ly). The left and right boundaries are peri-
odic, and the top and bottom boundaries are no-slip walls.
The upper half domain is filled with the “red” fluid where
φ = 1 and the lower is filled with the “blue” fluid where
φ = −1 (note that the two fluids have the same density and
viscosity, thus are completely symmetric; for convenience
we denote them as “red” and “blue”). The initial interface
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FIG. 15. Evolutions of (a) the centroid velocity Udrop in the axial direction and (b) the aspect ratio αdrop of the drop at Eo = 144 and
Oh = 0.0466 for the falling drop problem by the present method, by the axisymmetric LBM in Ref. [28] and by the finite difference solution of
the NSEs and the front-tracking method [46]. The present simulation parameters are NL = 50, Nt = 4000 (c = 80), Cn = 0.06, and Pe = 1000.

is slightly perturbed with the interface position varying with
x as h(x) = heq + Ap cos[k(x + 0.5)], where heq = 0.5 is the
equilibrium interface position, Ap = 0.01 is the amplitude of
disturbance and k = 2π/λ is the wave number (λ = Lx = 1
is the wavelength). The initial order parameter field is set
to φ(x, y, 0) = tanh{2[y − h(x)]/Cn}. The interface position
h0(t ) at x = 0 was monitored during the simulation. The
Reynolds number is defined as Re = UcLc/ν = σLc/(ρ0ν

2).
The case at Re = 1000 was first investigated. For this prob-
lem, there exists a basic frequency ω0 =

√
σk3/(2ρ0). When

both the liquid and gas have the same the kinematic viscosity
(ν) and the perturbation is small (Ap 	 1), one can obtain the
analytical solution for this problem [44,45],

h̃(t ) = heq − h0(t )

Ap
=

4∑
i=1

ziω
2
0

Zi
(
z2

i − ε̄ω0
)

× exp

[(
z2

i − ε̄ω0
)
t ′

ω0

]
erfc

(
zi

√
t ′

ω0

)
, (39)

where t ′ = ω0t and ε̄ = νk2/ω0 are the scaled time
and dimensionless viscosity, zi are the four roots of
the algebraic equation z4 − √

ε̄ω0z3 − ε̄ω0z2 + (ε̄ω0)
3
2 z +

ω2
0 = 0 and Z1 = (z2 − z1)(z3 − z1)(z4 − z1), Z2 = (z3 −

z2)(z4 − z2)(z1 − z2), Z3 = (z4 − z3)(z1 − z3)(z2 − z3), Z4 =
(z1 − z4)(z2 − z4)(z3 − z4). Figure 14(a) shows the evolutions
of h̃ over 0 � t � 40 by the present method and the MRT-
LBM using the same numerical parameters NL = 64, Nt =
384 (c = 6). It is seen that the present numerical results are
very close to (almost overlap) that by the MRT-LBM. Both
numerical solutions agree with the analytical one in the early
stage and the deviations increase gradually with time. After
about two oscillation periods, the deviations remain to be
small and can actually be reduced by increasing the resolution
in space and time. This is observed from Fig. 14(b) which also
shows the results obtained by the present method using a finer
mesh with NL = 128, Nt = 3072 (c = 24). Besides, another
case at an even higher Re(=4000) was studied. Table IV
compares the oscillation periods obtained by the present

FIG. 16. Snapshots of the drop interfaces (red lines) and the stream traces around the drop (in the frame moving with the drop) at three
selected times with an interval �t/T ′

c = 3.873 (a) t/T ′
c = 3.873, (b) t/T ′

c = 7.746, (c) t/T ′
c = 11.619 at Eo = 144, Oh = 0.0466, rρ = 1.15,

and rη = 1. The dash-dotted line is the z axis. The simulation parameters are as in Fig. 15.
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FIG. 17. Evolutions of (a) the droplet height Hd (b) the maximum velocity magnitude |u|max during the drop dewetting/spreading computed
by three different methods. The solid lines are by the present 3D simulations, the filled circles are by the present axisymmetric simulations, the
dash-dot-dot lines are by the 3D LBM using the weighted MRT collision model [32] and the dashed lines are by the axisymmetric simulation
using the VS formulation [47]. The shared simulation parameters are NL = 32, Nt = 320 (c = 10), Cn = 0.1, and Pe = 8000.

simulations using two sets of meshes with the analytical pe-
riods for the two cases. It is seen that under all situations the
deviations in the period are small (less than 5%), and as the
grid is refined (NL is changed from 64 to 128) the deviations
decrease quickly to around 1%. Finally, it is noted that differ-
ent values of Nt (c) were tested for the case at Re = 1000 with
Cn = 0.0625 and Pe = 2 × 104. When c further increases (to
10 and 20), the results are almost the same as that obtained
with c = 6. When c decreases to 5, the simulation becomes
unstable no matter whether the present SMAMEs or the LBM
is used. The reason is likely to be that for two-phase flows
the CHE for interface evolution may impose an even more
stringent condition on the time step. Under such situations, the
present method should be as robust as the LBM with regard
to the stability issue. At the same time, it is much easier to
implement and performs faster. Therefore, overall the present
method can be more competitive than the LBM for two-phase
flows.

F. Falling drop

The second two-phase problem is a falling drop under
the action of a body force. This problem is symmetric about
the z axis and can be simplified to an axisymmetric prob-
lem. Previously, it was studied by an axisymmetric LBM in
Ref. [28] and by a finite difference front tracking method in
Ref. [46] that solves the incompressible NSEs. In this prob-
lem, a drop is surrounded by the ambient gas. The drop/gas
density ratio is rρ = ρL/ρG = 1.15 (ρL and ρG are the den-
sities of the liquid and gas) and the dynamic viscosity ratio
is rη = ηL/ηG = 1 (ηL and ηG are the dynamic viscosities
of the liquid and gas). The drop radius R is chosen as the
characteristic length (Lc = R). The domain is a rectangle
[0, 24] × [0, 8] (Lz = 24 and Lr = 8). Symmetric boundary
conditions are applied on the boundary r = 0 and no slip wall
boundary conditions are used for the other three boundaries.
The initial drop center is located at (zc, rc) = (2, 0). The order
parameter field is initialized to be φ(z, r, 0) = − tanh[2(rdc −
R)/Cn] where rdc =

√
(z − zc)2 + (r − rc)2. The body force

of magnitude g is applied along the z direction. Note that
with some manipulation of the pressure, the body force may
be applied only on the drop [1]. Two main dimensionless
parameters are the Eotvos number and Ohnesorge number
defined as

Eo = g(ρL − ρG)D2

σ
, Oh = ηL√

ρLDσ
, (40)

where D = 2R is the drop diameter. They are set to Eo = 144
and Oh = 0.0466 (same as in Refs. [28,46]). To facilitate the
comparison with previous results, we scale the velocity and
time using U ′

c = √
gD and T ′

c = √
D/g. Because the density

ratio is small, the Boussinesq approximation is used here (as
in Ref. [28]), and the physical density is assumed to be unity
for both fluids. To account for the density difference, one
needs to multiply the body force acting on the drop by a
factor (ρL − ρG)/[(ρL + ρG)/2] = 2(rρ − 1)/(rρ + 1) where
(ρL + ρG)/2 is the (real) average density of the two flu-
ids (see the Appendix of [28]). During the simulation, we
monitor the centroid velocity Udrop along the axial direction,
the drop thickness (in the axial direction) Thdrop and the
drop width (in the radial direction) Whdrop. From the latter
two, we calculate the aspect ratio of the drop as αdrop =
Thdrop/Whdrop. The centroid velocity Udrop is calculated by
Udrop = ∫

A|φ>0
ru(r, z) dr dz/

∫
A|φ>0

r dr dz where A|φ>0 repre-
sents the region where φ > 0. Figure 15 shows the evolutions
of the centroid velocity Udrop and the aspect ratio αdrop of
the drop obtained by the present method together with those
from [28,46]. It is found that the present result follows the
prediction by the axisymmetric LBM very well, and both
of them are close to that by the front tracking method in
Ref. [46] till t/T ′

c ≈ 12. After that, the front tracking method
still predicts a nonzero drop thickness whereas the simula-
tions using the phase field model (both the present and [28])
predict drop breakup. This is an inherent difference between
the two types of methods. Besides the drop velocity and as-
pect ratio, we also examined the drop interface and the flow
around the drop, as shown in Fig. 16. All of them are close
to those by the axisymmetric LBM simulation (see Fig. 11
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FIG. 18. Contour plots of the velocity components along the z axis and along the radial direction, uz and ur , at t = 10 for axisymmetric drop
dewetting on a hydrophobic wall. The physical parameters are Re = 100 (Oh = 0.1) and θ = 135◦. The red lines represent the drop interfaces.
The shared simulation parameters are NL = 32, Nt = 320 (c = 10), Cn = 0.1, and Pe = 8000. The upper row (a), (b) are the present results
using the SMAMEs. The lower row (c), (d) are by the axisymmetric VS simulation in Ref. [47].

of [28]). The deformations of the drop at the three selected
times are also in agreement with the front tracking results
(see Fig. 2 of [46]).

G. Drop spreading and dewetting on a wall

The third two-phase problem is on the motion of a drop
on a wall with a contact angle θ . Initially, the drop is a
hemisphere with a radius R = 1 (i.e., the characteristic length
Lc = R) and its center at (0,0,0). The Ohnesorge number
is given by Oh = ρ0ν/

√
ρ0Rσ = 1/

√
Re. Two cases with

θ = 135◦ and 60◦ at Re = 100 (Oh = 0.1) were investigated.
On the hydrophobic wall with θ = 135◦ the drop dewets
from the wall whereas on the hydrophilic wall with θ =
60◦ the drop spreads on the wall. The domain size is a
cube [−3, 3] × [−3, 3] × [0, 3]. Due to symmetry, the actual
simulation domain was [0, 3] × [0, 3] × [0, 3]. Symmetric
boundary conditions were applied on four side boundaries
(x = 0, 3 and y = 0, 3), and no slip boundary conditions were
used on the top and bottom boundaries (z = 0, 3). This prob-

lem is actually symmetric about the z axis and may be also
handled under the axisymmetric geometry. In the axisymmet-
ric simulations using the SMAMEs, the domain is [0, 3] ×
[0, 3] (Lz = 3 and Lr = 3). For the LBM simulations, the
D3Q19 velocity model is used and the collision model is the
weighted MRT [32]. Besides, axisymmetric simulations using
the vorticity stream function (VS) formulation [47] were also
performed. Unlike the artificial compressibility methods (e.g.,
LBM, MAMEs, or SMAMEs), the VS formulation solves the
incompressible NSEs without any compressibility errors (it
has to solve the Poisson-like equations). Two main quantities
were monitored: the drop height (in the z direction) Hd and
the maximum velocity magnitude |u|max in the whole domain.
Figure 17 shows the results by the four sets of simulations (the
3D and axisymmetric SMAMEs, 3D LBM and axisymmetric
VS) for this problem using the same δx and δt . It is seen that
for both cases at θ = 135◦ and 60◦ all the methods predict the
evolutions of Hd and |u|max to be quite close to each other.
More careful examinations reveal that the present results by
the SMAMEs are closer to those by the VS-based solver.
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FIG. 19. Contour plots of the velocity components uz and ur at t = 10 for axisymmetric drop spreading on a hydrophilic wall. The physical
parameters are Re = 100 (Oh = 0.1) and θ = 60◦. The red lines represent the drop interfaces. The simulation parameters are the same as those
in Fig. 18. The upper row (a), (b) are the present results using the SMAMEs. The lower row (c), (d) are by the axisymmetric VS simulation in
Ref. [47].

This could be attributed to the simplifications made in the
present method which probably reduce the overall magnitude
of the error terms. Besides the drop height and maximum
velocity magnitude, we also examined the drop interface and
the contour plots of the velocity components around the drop.
Figure 18 shows the contour lines of the velocity components
along the z axis (uz) and along the radial direction (ur) at t =
10 in the axisymmetric simulation of drop dewetting by the
SMAMEs and by axisymmetric VS formulation in Ref. [47].
Similar plots for axisymmetric drop spreading are given in
Fig. 19. It is seen that the present results by the SMAMEs are
quite similar to those by the axisymmetric VS simulations for
both drop dewetting and spreading.

H. Coalescence induced drop jumping on a nonwetting
wall in three dimensions

The last problem is on the coalescence induced drop jump-
ing on a nonwetting wall (contact angle θ = 180◦) in three

FIG. 20. Evolutions of the z component of the centroid velocity
of the drop at Oh = 0.037 and 0.119. The shared simulation param-
eters are NL = 40, Nt = 400 (c = 10), Cn = 0.1, Pe = 8 × 103.
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FIG. 21. Snapshots of the drop shapes (in red solid lines) and the contour plots of the velocity component u (in the middle x-z plane) and
v (in the middle y-z plane) at t = 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 [(a)–(f) by the present SMAMEs simulation and (g)–(l) by the 3D MRT-LBM
simulation] at Oh = 0.037 for the coalescence induced drop jumping on a nonwetting wall. In each panel, the left part shows the middle y-z
plane at x = 0 and the right shows the middle x-z plane at y = 0. The shared simulation parameters are as in Fig. 20.

dimensions. The domain is a box [−3, 3] × [−3, 3] × [0, 5].
Initially there are two spherical drops having the same radius
R (chosen as the characteristic length Lc) and their centers
are at (±1, 0, 1). They start to coalesce with each other and

interact with the nonwetting wall at the same time. Under
certain conditions, the drop after coalescence may jump away
from the wall [48]. Due to symmetry, the actual simulation
domain was [0, 3] × [0, 3] × [0, 5] (Lx = Ly = 3 and Lz = 5).
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FIG. 22. Snapshots of the drop shapes (in red solid lines) and the contour plots of the velocity component w in the middle y-z and x-z planes
at t = 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 [(a)–(f) by the present SMAMEs simulation and (g)–(l) by the 3D MRT-LBM simulation) at Oh = 0.037
for the coalescence induced drop jumping on a nonwetting wall. In each panel, the left part shows the middle y-z plane at x = 0 and the right
shows the middle x-z plane at y = 0. The shared simulation parameters are as in Fig. 20.

Because the two fluids have the same density and viscosity,
they are better viewed as two liquid phases. Under such con-
ditions, the coalesced drop experiences larger drag forces and
gains less momentum to jump than water drops in air (as in

the experiments [48]). On the other hand, it was reported that
coalescence induced drop jumping can also occur when the
ambient fluid is another liquid [49] (if it is on a hydrophobic
fiber and the viscosity is moderate). Here our main purpose
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is not to investigate the physical problem in detail. We only
intend to simulate typical cases of this interesting problem
by using the proposed method to evaluate its accuracy and
efficiency.

For this problem, the capillary-inertial velocity and time,
Uci = √

σ/(ρ0R) and Tci = Lc/Uci, are used to scale the ve-
locity and time quantities. Two cases at Oh = 0.037 (Re =
730.46) and Oh = 0.119 (Re = 70.616) were simulated. Fig-
ure 20 shows the evolutions of the centroid velocity of the
drop in the z direction Wdrop computed by the present method
and by the 3D LBM (same as that in Sec. III G) using
the same numerical parameters (NL = 40, c = 10, Cn = 0.1,
Pe = 8 × 103). The grid size is 120 × 120 × 200. It can be
found that the present results are in very good agreement
with the LBM results for both Oh = 0.037 and 0.119. In
addition, to illustrate the coalescence and jumping process at
Oh = 0.037 and to better gauge the quality of simulation, we
also examined the interfaces and the velocity components u,
v and w in two planes of symmetry at several selected times.
Figure 21 shows the drop shapes and the contour plots of the
velocity component u (in the middle x-z plane) and v (in the
middle y-z plane) at t = 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 for
the case at Oh = 0.037. Besides, Fig. 22 gives the contour
plots of the velocity component w in these two planes at the
same times. It was found that the drop jumped off the wall
after some time when Oh = 0.037 (e.g., see the snapshots
at t = 6.0 in Fig. 21) and the drop always stayed on the
wall when Oh = 0.119 (not shown here). It is observed from
Figs. 21 and 22 that both the drop shapes and the velocity
contours by the present method resemble the LBM results
to a large extent. This indicates that the present SMAMEs
simulation can reproduce not only the average quantities (e.g.,
Wdrop) but also the interface and flow details reasonably close
to the LBM for complex two-phase flow problems. It is noted
that the simulation time using the present SMAMEs is much
shorter than that using the LBM. For example, to run 40 steps
using four computational nodes on the same computer, the
present method takes about 26 s, whereas the LBM (D3Q19)
takes about 70 s. Here the LBM is parallelized by the MPI
with the domain decomposed into four parts in the x direction
and the SMAMEs is implemented in the AMReX framework

[50] with its default domain decomposition method (the so-
lution of the CHE is similar in both solvers). One can see
that the present method is nearly three times faster than the
LBM in the simulation of 3D two-phase flows. Note that the
present method was also implemented using the same domain
decomposition and parallelization as the LBM. In that case, it
is about two times faster than the LBM for this 3D two-phase
problem.

IV. CONCLUDING REMARKS

To summarize, inspired by the MAMEs and LBM, we have
proposed a simplified numerical method to simulate incom-
pressible viscous flows. It was verified through a number of
tests of single-phase, thermal, and two-phase flows in 2D,
axisymmetric, and 3D geometries. The results of all cases
are as accurate as the LBM/MAMEs results and/or in good
agreement with other reference results from analytical solu-
tions or directly solving the incompressible NSEs. At the same
time, its implementation is much easier and the simulations
using this method cost much less memory and time than the
corresponding LBM simulations. Some issues associated with
the MAMEs, such as the use of intermediate variables and
predictor-corrector step and the boundary conditions for addi-
tional derivatives, are no longer present in our method. Unlike
the situation in the LBM, the inclusion of external forces is
straightforward since the macroscopic governing equations
are handled directly. For two-phase flows, a limitation of
the present method is that it can only deal with flows with
constant viscosity and density (at most, with small density
ratios). In future, it will be further extended for flows with
larger density and viscosity contrasts. That may require more
in-depth analyses of the LBEs for such problems.
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