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Quantitative phase field simulations of polycrystalline solidification using a vector order parameter
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A vector order parameter phase field model derived from a grand potential functional is presented as an
alternative approach for modeling polycrystalline solidification of alloys. In this approach, the grand potential
density is designed to contain a discrete set of finite wells, a feature that naturally allows for the growth and
controlled interaction of multiple grains using a single vector field. We verify that dendritic solidification in
binary alloys follows the well-established quantitative behavior in the thin interface limit. In addition, it is
shown that grain boundary energy and solute back-diffusion are quantitatively consistent with earlier theoretical
work, with grain boundary energy being controlled through a simple solid-solid interaction parameter. Moreover,
when considering polycrystalline aggregates and their coarsening, we show that the kinetics follow the expected
parabolic growth law. Finally, we demonstrate how this vector order parameter model can be used to describe
nucleation in polycrystalline systems via thermal fluctuations of the vector order parameter, a process that cannot
be treated consistently with multiphase or multi-order-parameter based phase field models. The presented vector
order parameter model serves as a practical and efficient computational tool for simulating polycrystalline
materials. We also discuss the extension of the order parameter to higher dimensions as a simple method for
modeling multiple solid phases.
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I. INTRODUCTION

It is well established that the properties of materials and
their performance are ultimately determined by their mi-
crostructure. One of the main hallmarks of “microstructure”
in materials such as metal alloys is their polycrystalline
nature. One of the quintessential goals of materials pro-
cessing is therefore to understand, predict, and control the
polycrystalline structure during the solidification stage of
their materials processing. In the last few decades, this task
has been more and more undertaken using computational
modeling based on so-called multiphase field or multi-order-
parameter models [1–3]. The approaches use a discrete set
of fields to model different orientations of solids in the
liquid, each driven by its own equation of motion that is
coupled to diffusion of solutes and/or heat, and interacting
with other grains in some phenomenological manner designed
into the equations. Such approaches have been very beneficial
in pushing the frontiers of computational modeling. How-
ever, they also suffer from some limitations in theoretical
consistency such as the incorporation of nucleation, ther-
mal fluctuations, orientational invariance, and requiring the
use of a large number of fields to simulate polycrystalline
materials.

For accurate assessment and prediction of polycrystalline
solidification, including nucleation, growth, and grain merg-
ing, it is necessary for a simulation approach to have a
self-consistent description of the magnitude of the growth ki-
netics and crystal anisotropy (capillary and kinetic), as well as

a proper description of solute segregation and diffusion. Upon
merger of grains, when a cohesive solid network has formed,
coarsening ensues, which is dominated by grain boundary mi-
gration determined by grain boundary energetics and mobility.
Various modeling methods have been developed to study so-
lidification, predict polycrystalline structure formation, and
predict the subsequent coarsening.

Cellular automaton and kinetic Monte Carlo methods are
two popular techniques that enable large-scale simulations
of polycrystalline solidification. However, user intervention
is required to properly define the growth kinetics, and these
methods are prone to numerical issues and they have consid-
erable limitations in addressing the simulation of alloys and
diffusion controlled kinetics of solidification.

The phase field (PF) methodology is typically the most
widely used state-of-the-art numerical scheme to describe mi-
crostructural solidification. Various PF approaches exist for
polycrystalline simulations. One family of models, pioneered
by Kobayashi et al. [4], Gránásy et al. [5], and Warren et al.
[6], is characterized by the use of both orientation (θ ) and
order parameter (φ) fields (coined θ − φ models) to model
solidification of any number of crystal orientations. This ap-
proach allows for an efficient representation of a large number
of grain orientations. It successfully describes basic features
of polycrystalline solidification: controllable grain boundary
energy versus misorientation, polycrystalline growth, grain
merger, and coarsening. However, these models are not with-
out their challenges to implement numerically. Moreover,
matched thin interface asymptotics has not been performed for
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this family of models, and it is likely to be challenging due to
the inclusion of singular terms in the model description, e.g.,
the |∇θ | gradient term in the free energy. Additionally, these
models have been shown to exhibit nonphysical topological
defects, that have recently been, at least partially, addressed in
two-dimensional (2D) simulations [7]. Finally, the extension
to three dimensions of this class of models is not immediately
straightforward, although some schemes have been explored
[8].

Another family of PF models is called MPF models [1].
These deviate from traditional PF models in that the phase
field φ represents the volume fraction of a phase, which im-
plies that even the liquid is assigned a phase field. As with
standard PF models, these models compute the energy of
an interface, and anisotropy, by tuning appropriate gradient
energy terms [9]. In addition, interaction energy between solid
grains includes various polynomial interaction terms between
phase fractions. However, MPF models can suffer from non-
physical nonlocal adsorption effects due to a complicated free
energy landscape wherein the sum of the phase fraction fields
must be maintained by a Lagrange multiplier. These need to
be eliminated in a somewhat ad hoc manner by adding higher
order polynomial penalties between phase fraction fields.
Also, it is not clear how to integrate thermal fluctuations into
the distinct phase fraction fields self-consistently. Another
challenge with using MPF models is that, in principle, they
nominally require as many fields as there are crystal grains,
thus requiring significant computing resources to simulate re-
alistic materials domains. To circumvent this problem requires
dynamic grain reassignment algorithms to be implemented
[10].

Yet another family of PF models is called multi-order-
parameter PF models. As the name suggests, in this class of
models, a phase field φ maintains the traditional interpretation
as a physical order parameter that distinguishes between or-
dered and disordered states of a crystal. As with MPF models,
one order parameter is required for each crystal grain. An
earlier approach developed by Ofori-Opoku and Provatas [3]
used a quadratic repulsion energy term between order parame-
ters, which is all that is required since this class of models does
not suffer from nonlocal adsorption effects. This approach of
Ref. [3] allows for a quantitative accounting of solid-liquid
interface kinetics and qualitative description of solid-solid
interfaces in metals. A weakness with this implementation
is that the grain boundary energy cannot be easily tuned,
resulting in grain boundary energies corresponding to high
angle or high energy grain boundaries. As with MPF models,
for multi-order-parameter models the Langevin noise based
nucleation is problematic to implement when multiple order
parameters are fluctuating in the same material point due to
the use of polynomial (here quadratic) repulsive interaction
terms.

In this paper, we present an alternative phase field mod-
eling scheme to describe solidification and coarsening of
multiple crystallographic orientations in the context of a
physical order parameter description. We accomplish this by
adopting a two-dimensional vector order parameter model as
in Ref. [11], which is then integrated with a previous quan-
titative modeling scheme for solidification based on a grand
potential energy functional [12]. This main innovations of this

approach are the trivial generation of a Landau free energy
landscape corresponding to any number of discrete orienta-
tions in the context of a single physical order parameter field,
simple control of grain boundary energy, and self-consistent
incorporation of thermal fluctuations into dynamical simula-
tions.

The paper is organized as follows. In Sec. II, we introduce
the vector order parameter model and review its parametriza-
tion. Section III examines the model’s ability to reproduce
some important benchmarks quantitatively. These include free
solidification of a single dendrite, grain boundary energy,
grain merger and back-diffusion, grain growth and coarsen-
ing, grain boundary segregation in polycrystalline growth,
and noise-induced nucleation. Section IV further discusses the
properties of the model and its extensions to multiple phases
and higher dimensions. We conclude in Sec. V.

II. METHODOLOGY

This section develops the formalism of the vector phase
field model. In this paper, the focus is to demonstrate the
properties of this phase field methodology, and so for simplic-
ity we limit ourselves to binary alloys. We will formulate the
model formally in the grand potential ensemble, meaning that
the dependent fields are the order parameter and the chemical
potential. We begin by describing the grand potential energy
functional, highlighting its vectorized Landau landscape. Fol-
lowing this, we discuss the dynamics of the vector order
parameter and the chemical potential. We then highlight the
parameter relations necessary to achieve quantitative corre-
spondence with the sharp interface model of solidification.

A. Grand potential functional

We start by defining a vector order parameter defined as
�φ(�x, t ) = (φX (�x, t ), φY (�x, t )). We also project �φ into polar
coordinates R and θ according to

φX = R cos(θ ), (1)

φY = R sin(θ ), (2)

where R can be interpreted as the “traditional” solid-liquid
order parameter, and θ is an additional degree of freedom that
is used to design a Landau functional the bulk part of which
contains a discrete number of solid wells. This is given by

fLandau(R, θ ) = R2 − 2
1 + b cos (Nwellsθ )

1 + b
R3 + R4, (3)

where Nwells sets the number of discrete solid wells corre-
sponding to unique crystalline orientations, and b controls the
free energy barrier between neighboring solid wells. Equation
(3) is usually referred to as the “double well potential” in
conventional PF models, where there is one solid well and
one liquid well. An example of the Landau landscape is
shown in Fig. 1 with Nwells = 8 and b = 0.05. Our approach
is analogous to Morin et al. [11], who used a different order
polynomial in R to describe the Landau free energy function
(polynomial orders Rn, n = 2, 4, 6). Here, we modify their
approach to a polynomial which is a natural extension of the
single order parameter PF models typically used for solidifi-
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FIG. 1. Landau free energy landscape in the space of a vector
order parameter with Nwells = 8 and a solid-solid interaction strength
parameter b = 0.05. The energy minimum in the center corresponds
to the liquid well, while each of the Nwells correspond to a distinct
solid orientation. In this paper, the dynamics of the order parameter
are written in term of its Cartesian projections φX = R cos(θ ) and
φY = R sin(θ ).

cation, thus adopting polynomial orders of Rn, n = 2, 3, 4. It
is noted that for 2D cubic lattices, the physical crystalline ori-
entation is one fourth of the Landau angle θ . This is illustrated
in Fig. 1. Thus, for example, θ = π (180◦) corresponds to the
maximum crystal misorientation, which for a cubic 2D lattice
is π/4 (45◦).

To the multiwell function in Eq. (3) we add a chemical
energy contribution of the form

ωch(μ, R) = P(R) ωs(μ, T ) + [1 − P(R)] ω�(μ, T ), (4)

where μ = μ(�x, t ) is the chemical potential field; ωs and ω�

are the grand potential densities of the solid and liquid phases,
respectively; and P(R) interpolates the thermodynamic poten-
tials across bulk states. It satisfies P(0) = 0 and P(1) = 1.
Equation (4) provides the chemical driving force for solid-
ification written in terms of the chemical potential, which
is the natural thermodynamic variable of the grand potential
functional.

The last contribution to the grand potential energy com-
prises gradient energy terms required to account for nonlocal
interactions. In terms of the Cartesian representation of the
order parameter, we also define the gradient interaction term
as according to

fint = 1
2W 2

X |∇φX |2 + 1
2W 2

Y |∇φY |2, (5)

where {WX ,WY } can be shown to be proportional to gradi-
ent energy and inversely proportional to the square root of
the nucleation barrier [13]. The coefficients must be made
anisotropic in order to self-consistently reproduce the sym-
metries of crystal growth in solidification. The anisotropy of
these coefficients will be discussed further below.

Combining Eqs. (3), (4), and (5) yields a grand potential
functional of the form

1

H
�[ �φ,μ, T ] =

∫
V

(
1

2
W 2

X |∇φX |2 + 1

2
W 2

Y |∇φY |2

+ R2 − 2
1 + b cos(Nwellsθ )

1 + b
R3 + R4

+ 1

H
P(R)ωs(μ, T )

+ 1

H
[1 − P(R)]ω�(μ, T )

)
dV, (6)

where H is the nucleation barrier, T is the temperature, and
P(R) is a function that interpolates the grand potential be-
tween its bulk solid to liquid values. An explicit form of P(R)
that we use in this paper is the one introduced by Wheeler,
Boettinger, and McFadden [14], namely, P(R) = 10R3 −
15R4 + 6R5, although several other forms are possible.

B. Phase field dynamics

The dynamical evolution for the vector order parameter
is governed by dissipative relaxation dynamics in each com-
ponent field, while solute evolution follows the usual mass
conservation dynamics. The explicit dynamical equations for
these fields are given by

∂φK

∂t
= − ∂�

∂φK
+ ηK , K = {X,Y }, (7)

∂c

∂t
= ∇ · [M( �φ, c)∇μ], (8)

where K = {X,Y } denote the two components of �φ, ηK are
noise sources in each component (discussed further below),
while c(�x, t ) is the solute concentration field of a binary alloy,
which in the grand potential ensemble is determined via the
chemical potential field μ(�x, t ) according to the relation

c = −δ�

δμ
= P(R)cs(μ) + [1 − P(R)]c�(μ), (9)

where cs =∂ωs/∂μ and c� =∂ω�/∂μ. Equation (9) can be
seen as a constraint between c and μ. Combining Eq. (9)
with Eq. (8) yields the following evolution equation for μ(�x, t )
directly:

χ (μ)
∂μ

∂t
= ∇ · [M( �φ, c)∇μ] − P′(R)[cs(μ) − c�(μ)]

∂R

∂t
,

(10)

where the susceptibility field χ [μ(�x, t )] is given by

χ = P(R)
∂cs(μ)

∂μ
+ [1 − P(R)]

∂c�(μ)

∂μ
. (11)

Either Eq. (10) or Eq. (8) can be coupled to the order parame-
ter component dynamics of Eq. (7).

In what follows, we will be focusing on examining the ef-
ficiencies and self-consistencies afforded when using a vector
order parameter in favor of multiple scalar order parameters or
phase fractions in phase field modeling. As a result, we will
limit the system studied to a dilute binary alloy. We will simu-
late phase field dynamics using Eqs. (8) and (7). Furthermore,
in order to achieve quantitative solidification results in the
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limit of a diffuse interface, we will incorporate an antitrapping
flux in Eq. (8), the role of which is to suppress spurious kinetic
behavior caused by the use of a diffuse interface [15,16]. It is
noted that the dynamical evolution equation for mass transport
no longer follows a variational formulation when antitrapping
is used.

Taking into account the above considerations, we proceed
as follows to arrive at an evolution equation for the vector
order parameter components of our model: first we substitute
the grand potential densities for the solid and liquid phases
of an ideal binary alloy into Eq. (6); secondly, we carry out
the variational derivatives as specified in the first of Eqs. (7);
thirdly, we simplify the chemical driving force analogously to
Ref. [12]. This yields

τK
∂φK

∂t
= ∇ ·

(
∂ fint

∂ (∇φK )

)
− ∂ fint

∂φK
+ (2 + 3R − 4R2)φK

+ 6
b( cos(Nwellsθ ) − 1)

1 + b
RφK

+ 2bNwells
sin(Nwellsθ )

1 + b
R

∂θ

∂φK

− λ

1 − ke

(
eu − 1 − T� − T∣∣me

�

∣∣c0

)
(1 − R)2φK

+ ηK for K ∈ {X,Y }, (12)

where u is a dimensionless chemical potential difference
relative to the equilibrium chemical potential for a bi-
nary alloy, expressed in terms of concentration as u =
ln (c/{c0[1 − (1 − ke)R]}) [13]. The first two terms on the
right-hand side of Eq. (12) represent the interface energy
penalty, the expressions of which are rather lengthy, and
are thus shown in the Appendix. The parameter τK is the
anisotropic time constant; λ is the coupling constant, which is
used to control the model’s convergence onto the key results of
the sharp interface model; and ke is the equilibrium partition
coefficient. We have also tacitly appended into the chemical
driving force of Eq. (12) a temperature component, where T� is
the liquidus temperature, T is the local temperature, me

� is the
liquidus slope, and c0 is a reference alloy concentration. The
last term in Eq. (12), ηK , is thermal noise, discussed further
below.

The concentration evolution follows from Eq. (8) and maps
identically onto the dilute binary alloy model of Refs. [15,16],
with R replacing the solid-liquid order parameter, but where R
is scaled here to the limits [0,1]. Explicitly, the concentration
equation becomes

∂c

∂t
= ∇ ·

[
{h(R) Dske + D�[1 − h(R)]} ∇eu

+W0 at c0(1 − ke)eu ∂R

∂t

∇R

|∇R|
]
, (13)

where h(R) = R is an interpolation function, DS (DL) is the
solute diffusion coefficient in solid (liquid), and at is the
antitrapping current prefactor. Its value is listed in Table I and
is determined by conducting a matched asymptotic analysis
using the methods in Refs. [13,16].

A key feature of quantitative phase field modeling is the
use of matched interface asymptotic analysis to determine

TABLE I. Phase field model parameters for Al–4.5 at. % Cu.

Partition coefficient ke 0.15
Liquidus slope me

� −5.3 K/wt %
Alloy concentration c0 4.5 at. %
Gibbs-Thomson coefficient � 2.41× 10−7 K m
Solutal capillary length d0 12.17 nm
Liquid free energy curvature g�

c,c 9.05 × 109 J/m3 a

Liquid diffusion coefficient D� 4.4 ×10−9 m2/s
Solid diffusion coefficient Ds 0 or 4.4 × 10−11 m2/s b

Kinetic coefficient β 0.0 s/m
Capillary anisotropy strength εc 0.02
Interface width W0 d0/0.277
Asymptotics constant a1 7.07107
Asymptotics constant a2 0.078337
Asymptotics constant at 1/

√
2

Mesh spacing �x 0.1W0, 0.2W0, and 0.6 W0
c

Time step size �t 0.8 �x2/(6D�)

aValue from the Thermo-Calc TCAL database.
bDs is nonzero only for back-diffusion analysis in Fig. 5.
cWe use different �x depending on the sections: �x = 0.6W0 for
the single crystal solidification benchmark (Sec. III B), �x = 0.1W0

for one-dimensional grain boundary analyses (Sec. III C), and �x =
0.2W0 for polycrystalline simulations (Secs. III D and III E).

the parameter relations that allow the model to emulate the
interfacial kinetics of the classical sharp interface model of so-
lidification. There have been several important works on this
topic for models using a scalar order parameter [13,16–18].
The outcomes are similar; they lead to relationships between
microscopic phase field parameters (τ0, W0, and λ) and the
macroscopic material parameters of the sharp interface model,
namely, the capillary length (d0) and kinetic coefficient (β).

It turns out that we can directly apply the aforementioned
matched asymptotic analysis methods, developed for scalar
order parameter PF models, in order to inter-relate the pa-
rameters τK , WK , and λ in our model. The rationale in doing
so is as follows: if we ignore anisotropy (as is done in the
above-referenced approaches) and only consider single indi-
vidual order parameter profiles going from the liquid well
into any of the solid wells of our model (see Fig. 1), we can
map τK → τ0 and WK → W0. Further, in this situation, the
Landau angle variable becomes a constant everywhere, equal
to θ = m 2π/Nwells where m is an integer. This guarantees the
elimination of the cubic terms in the Landau contribution to
the energy. This reduces Eq. (12) identically to the traditional
form of the scalar order parameter evolution equation in both
order parameter components, φK , K = X,Y . As a result, the
matched interface asymptotics in Refs. [13,16,18] is exactly
applicable. It should be noted that this assumes that the order
parameter profile can “ride the rails” along a line between the
liquid well to any of the solid wells. This is easily satisfied,
and any error is negligible in our single crystal benchmark
tests presented in the Sec. III B. These considerations lead to
the following relations:

d0 = a1
W0

λ
, (14)

β = a1
τ0

λW0

[
1 − a2

λW 2
0

τ0D�

]
, (15)
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where a1 and a2 are asymptotic analysis constants listed in
Table I, where it is notable that solid-liquid ordering is in the
interval [0,1], while perhaps a more common practice is to
scale the order parameter for the interval [−1, 1].

To make the model anisotropic, the phase field parameters
WK and τK are appended with an anisotropy correction accord-
ing to WK = W0aK (φX , φY ), and assuming that β = 0, τK =
τ0aK (φX , φY )2 (assuming β = 0), where ak is an anisotropy
function. For 2D cubic crystals, ak is defined by

aK (φX , φY ) = 1 + εc cos (4θ∇φK − θ ), K ∈ {X,Y }, (16)

where εc is the anisotropy strength. It should be noted that in
Eq. (16) the Landau angle θ is not multiplied by 4 to achieve
the correct rotation for a cubic 2D lattice, as visualized in
Fig. 1. Here, θ∇φK is the local solid-liquid interface normal
angle for vector order parameter component φK (K ∈ {X,Y },
given by

θ∇φK = arctan

(
∂yφK

∂xφK

)
, K ∈ {X,Y } (17)

where θ sets the reference Landau angle, i.e.,

θ = arctan

(
φY

φX

)
. (18)

The last term, ηK for K ∈ {X,Y }, represents thermal fluctu-
ations, which must satisfy the fluctuation-dissipation theorem
in order to assure convergence of the phase field equations to
thermodynamics equilibrium. We follow the approach given
in Ref. [19] to scale these noise sources quantitatively, which
yields

〈ηK , ηK〉 = 2kBT
1

Hτ0
δ(x − x′)δ(t − t ′)

= 2kBT
1

τ0

a1W0

Jd0

1

c2
0 g�

c,c

1

�x3

1

�t
, (19)

where kB is Boltzmann’s constant. On the second line we
approximate the delta functions by �x and �t following
Ref. [19]. Furthermore, in the second line of Eq. (19), we
substituted H with an expression from the matched interface
asymptotics for dilute binary alloys [13,16], where J = 1/30
is a scaling factor (specific to the interpolation function we
use for the driving force), and g�

c,c is the liquid free energy
curvature. In addition, the noise term in Eq. (19) is filtered in
space and time so that the fluctuations occur approximately
in the length scale of W0 and time scale τ0, as these can be
considered as the smallest physical scales in solidification
that the current phase field model can resolve. More details
about this filtering scheme can be found in the Supplemental
Material [20].

C. Alternate gradient formulation

Following Morin et al. [11], we chose a gradient energy
penalty in Eq. (5) that is a sum of the contributing com-
ponents, but our coefficients are made anisotropic to satisfy
a crucial criterion required for solidification of metals. An-
other perhaps more consistent choice would be to represent
the energy penalty in terms of polar coordinates R and θ ,

in the form
1
2W 2|∇R|2 + 1

2W 2R2|∇θ |2. (20)

While this form reproduces some features of solidification
and coarsening qualitatively, this R − θ representation suffers
from lattice pinning due to topological defects, analogous to
those seen in the orientation PF models [7]. Furthermore, it
is unclear how to implement thermodynamically consistent
noise for the θ field in our vector order parameter model. As
such this alternate formulation is not considered further in this
paper and will be pursued in future work.

III. MODEL BENCHMARKS

In this section we demonstrate that our vector order param-
eter model reproduces certain established benchmark results
of solidification and solid-state coarsening phenomena. In par-
ticular, we first analyze single crystal dendrite growth kinetics.
We then conduct an analysis of grain boundary profiles, their
energies, and their coalescence. Following this, we verify that
the polycrystalline coarsening for model A dynamics (i.e., no
concentration diffusion) is consistent with theoretical expec-
tations. Finally, we demonstrate nucleation and growth of a
polycrystalline alloy system using thermal noise fluctuations
of the vector order parameter.

A. Numerical implementation

All phase field simulations we present are performed us-
ing the computational platform presented in Ref. [21], which
contains adaptive mesh refinement and distributed memory
parallelization based on MPI.

Concentration evolution in Eq. (13) was implemented us-
ing a finite volume method, as well as the divergence terms
in the order parameter equations of Eq. (12). Other gradient
terms were expressed via simple five stencil finite differ-
encing. Neumann, i.e., zero flux, boundary conditions were
applied, unless otherwise stated. We use forward Euler time
integration, where it noted that the forward Euler time step of
the stochastic noise term ηK in Eqs. (12) and (19) is propor-
tional to

√
�t .

B. Convergence analysis for dendritic solidification

Since our vector order parameter model relies on the same
diffuse interface analysis as Refs. [15,16], we verified that its
dynamics reproduces the dendritic solidification results pre-
dicted by the classical sharp interface model of solidification.
To do so, we initialized a seed with radius 22d0 in a uni-
form supersaturation � = c/{c0[1 − (1 − ke)R]} = 0.55. We
then performed a reference simulation using the scalar order
parameter model presented in Ref. [15] and compared it to
a simulation conducted with our model with Nwells = 8 and
a solid-solid interaction barrier parameter b = 4.0. We set
W0 = d0/0.277 and �x = 0.6W0 in our simulations.

The solid seed is initialized into the second well of our
Landau energy landscape (well 2 in Fig. 1), which corre-
sponds to a crystalline rotation of 11.25◦ relative to the x axis.
We applied the same lattice rotation to the standard phase
field model of Karma [15]. The resulting dendrite morphol-
ogy and centerline concentration through to the dendrite tip
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FIG. 2. Binary alloy dendrite growth benchmark and centerline
concentration computed with the scalar PF model of Ref. [15]
(dashed line) compared to the corresponding result from the vector
order parameter model with Nwells = 8 and b = 4.0 (solid line). In
both cases, the grain is rotated 11.25◦, W0 = d0/0.277, the initial
seed radius is 22d0 and the initial supersaturation � = 0.55. Bottom
right inset: Dendrite solute contours. The profiles are recorded at time
t = 480τ0.

are shown in Fig. 2 at a time t = 480 τ0. The results show
excellent agreement between the standard scalar order param-
eter alloy model and our vector order parameter model. It
is noted that these results do not change with a decrease of
the solid-solid barrier parameter to b = 0.1. We also verified
that the tip speeds are indistinguishable from the benchmark
data (not shown here). It is noted that an excessively large
interaction parameter b leads to unphysical oscillations in-
side the solid. These can be suppressed by decreasing �t .
Thus, for Nwells = 8, simulations with b = 0.1 are stable for
�t = 0.8�x2/(6D�), while, for b = 4.0, �t = 0.4�x2/(6D�)
is required to maintain stability.

C. One-dimensional grain boundary analysis

This subsection analyzes grain boundaries and their en-
ergy in the context of the vector order parameter model. We
perform simulations in one spatial dimensional to model a
one-dimensional (1D) grain boundary analysis using so-called
model A dynamics, i.e., only the vector order parameter
evolution of Eq. (12) is considered, while the concentration
dynamics in Eq. (13) is switched off.

We applied a fixed value boundary condition so that the far
ends of the 1D grain boundary geometry satisfy φ2

X + φ2
Y =

1, and such that θ = arctan(φY /φX ) corresponds to the ap-
propriate crystal orientations. The grid spacing was set to
�x = 0.1W0, even though �x = 0.2W0 also yields conver-
gent results. It was noted that the use of larger grid spacing,
such as �x = 0.5W0, may lead to lattice pinning in the mul-
tidimensional polycrystal coarsening simulations, which are
discussed in Sec. III D. Grain boundary equilibration was con-
ducted by initializing two 1D “solid blocks” corresponding to
two different solid wells, with hyperbolic tangent tails over-
lapping at R = 0.5. Approximately 20 000 time steps were
required to equilibrate the profiles into a static grain boundary.

The final equilibrium profiles were found to be independent of
the details of the profile initialization.

The resulting profiles are shown in Fig. 3 for a solid-solid
barrier parameter b = 4.0 and 0.1, along with the correspond-
ing vector order parameter trajectories defining each grain
boundary in the Landau free energy landscape (superimposed
as a black solid line). For each choice of b, the driving force
was set to either zero, i.e., � := (Tl − T )/[(1 − ke)|me

l |c0] =
0, or � = 0.55. In all cases, solid-liquid ordering, represented
by R, develops a typical cusplike morphology in the grain
boundary region consistent with earlier polycrystalline PF
models, such as in orientation field models [7]. Moreover, the
solid-solid grain boundary ordering decreases as the misorien-
tation increases, approaching a “wet” grain boundary at high
misorientation, as expected. The use of a smaller solid-solid
barrier parameter b = 0.1 increases the ordering at the grain
boundary, which is consistent with a smaller energy barrier
between the solid wells. Finally, applying a driving force (� =
0.55) increases the ordering at the grain boundary as expected.

In Fig. 3(d), one can see slight oscillations in the solid-
liquid ordering across the grain boundaries GB1,3 and GB1,6.
This is expected for the small solid-solid barrier coefficient
(b = 0.1) and large quench (� = 0.55), as it is energeti-
cally favorable for the order parameter profile to approach
the intermediate solid well, as shown in the grain boundary
trajectories (black lines) in Fig. 3(d). Curiously, this type of
solid-liquid ordering oscillation is also found in phase field
crystal simulations of Mellenthin et al. [22]. However, we
expect that these solid-liquid ordering oscillations are uncom-
mon for metals and should be generally avoided by setting
the solid-solid barrier to a sufficiently large value, especially
when the computational interface width W0 is increased to thin
interface conditions.

We next evaluated grain boundary energies, the results of
which are shown in Fig. 4. The grain boundary energy is
defined as the excess energy at the interface, which for 1D
systems can be shown to have the form

γGB =
∫ ∞

∞

{
1

2
ε2

0

[(
∂

∂x
φX

)2

+
(

∂

∂x
φY

)2]

+ H

(
R2 − 1 + b cos(Nwellsθφ )

1 + b
R3 + R4

)

+ P(R)�

}
dx, (21)

where

1

H
= a1

W0

d0

1

c2
0g�

c,c

,

ε0 = W0

√
H ,

� = Tl − T

(1 − ke)
∣∣me

l

∣∣c0
. (22)

For an ideal amorphous grain boundary, an estimate of the
energy can be derived analytically; the details are provided
in the Supplemental Material [20]. An ideal amorphous grain
boundary assumes that the Landau angle θ is constant except
at the center of the grain boundary, where the ordering goes
to zero. Without a driving force (� = 0), this energy has a
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FIG. 3. Grain boundary profiles and vector order parameter trajectories in Landau landscapes with zero driving force � = 0 (a, b) and
a relatively large driving force � = 0.55 (c, d). Two different solid-solid barrier heights are considered (b = 0.1 and 0.4). Concentration
dynamics are not considered here.

closed-form expression that is twice the solid-liquid interface
energy given by

γ
amorph
GB = 2γSL = W0H√

3
≈ 0.44 J/m2, (23)

where parameters are taken from Table I. When an undercool-
ing (here � = 0.55) is applied, the grain boundary energy
needs to be numerically computed, yielding γ

amorph
GB (� =

0.55) ≈ 1.31 J/m2 (see the Supplemental Material [20]
for more details). These estimated grain boundary energies

(γ amorph
GB ) provide ideal limits for comparison and are shown as

horizontal lines in Fig. 4. These energies are compared for the
model A equilibrated grain boundary profiles shown in Fig. 3,
where the excess grain boundary energies are calculated by
numerically evaluating Eq. (21), and the resulting energies are
shown by the scatter data in Fig. 4.

The grain boundary energies obtained from our model
are in good agreement with previous phase field crystal
simulations of Mellenthin et al. [22], which are characterized
by three main features. First, without a driving force (filled
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FIG. 4. Grain boundary energy vs grain boundary misorienta-
tions for the case of Nwells = 8. Grain boundaries were grown with
model A dynamics (no concentration dynamics) for two values of
undercooling, � = 0 or 0.55. For each, two values of the solid-solid
barrier parameter were used, b = 0.1 or 4.0. Analytical grain bound-
ary energies, γ

amorph
GB (�), are shown as horizontal lines, where the

solid line corresponds to � = 0 and the dashed line corresponds to
� = 0.55.

markers in Fig. 4), the smallest misorientations (up to
misorientation ≈11.25◦), produce slightly attractive grain
boundaries. Second, large misorientations up to the symmetry
point for cubic crystals lead to grain boundary energies
identical to the ideal grain boundary energy, corresponding to
zero applied driving force [γ amorph

GB (� = 0)]. Third, adding a
driving force of � = 0.55 (hollow markers in Fig. 4) increases
the grain boundary energy in a gradual manner as a function
of misorientation. Overall, this vector order parameter model
produces low-angle (attractive) and high-angle (repulsive)
grain boundaries which are in good agreement with phase
field crystal simulations of Mellenthin et al. in terms
of grain boundary energy versus misorientation versus
undercooling.

As expected, an increase in solid-solid barrier parameter b
leads to a corresponding increase in grain boundary energy for
all cases, except for those cases where the energy has already
saturated to its limiting value, i.e., when the grain boundary
has saturated to a large misorientation (for � = 0 this corre-
sponds to misorientations 22.50–45◦ and their corresponding
crystalline symmetric values, while for � = 0.55 a similar
saturation is not found).

When we consider a thermodynamic driving force applied
to the grain boundary, the simulated model A energies at
the maximum misorientation are smaller than our analytical
estimate (dashed horizontal line in Fig. 4). This discrepancy
is due to the fact that in the analytical estimate we assume that
solid-liquid order is zero in the grain boundary region, and
that θ varies only at zero ordering, neither of which is well
satisfied (nor to be expected) for � = 0.55, particularly for
small b (b = 0.1), which, as discussed above, leads to small
interfacial oscillations within the interface.

Grain boundary back-diffusion

This subsection demonstrates that solute evolution lead-
ing to the development of cohesive solid networks and grain
boundaries follows behavior consistent with the seminal work
of Rappaz et al. [23]. For this part of the paper, we activate
the concentration dynamics of Eq. (13), and apply a constant
cooling rate 2 × 105 K/s. In addition, we allow for enhanced
back-diffusion by assuming that the solid diffusion coefficient
is Ds = D�/100. Here, the two solid regions were initialized
with a thick liquid layer in between them to emulate, in one
dimension, the conditions of grain-grain merger during solid-
ification.

Back-diffusion was simulated in this grain boundary sys-
tem having the smallest misorientation allowed by our model
(labeled GB 1,2 in Fig. 4), corresponding to a misorientation
of 11.25◦. The data were collected at two solid-solid barrier
parameters, b = 0.1 and 4.0. The snapshots of the phase
field profiles and the corresponding concentration profiles are
shown in Fig. 5(a), where time increases from top to bottom.
Figure 5(b) plots the peak grain boundary concentration as
a function of time superimposed on the dilute Al-Cu phase
diagram. At early times, when the tails of the two grains are
not in contact, the concentration follows the liquidus line. As
the two grains begin to “feel” one another through their order
parameter tails, and start to interact, the concentration starts to
drop towards the solidus concentration. Due to back-diffusion,
they asymptotically start to approach the average alloy con-
centration (vertical dashed line). This behavior is consistent
with the back-diffusion results reported by Rappaz et al. [23]
and Ofori-Opoku and Provatas [3]. Using a large solid-solid
barrier parameter, b = 4.0 [red circles in Fig. 5(b)], decreases
the solid-solid ordering around the grain boundary for a given
undercooling, and thereby increases the concentration peak,
as expected.

Overall, the above 1D grain boundary back-diffusion study
shows the expected behavior in terms of solid-solid ordering,
grain boundary energy behavior, grain boundary merger, and
solute distribution at the grain boundary. It is also notewor-
thy that the properties reproduced by the proposed vector
order parameter model have also all been exhibited by the
more fundamental phase field crystal model, as documented
in Ref. [22], as well as in more traditional phase field models
[3,23].

D. Polycrystalline grain coarsening

In this subsection, we verify that the model A dynamics
of the proposed vector order parameter model satisfies the
theoretically established ≈ t1/2 coarsening kinetics. For this
paper, we set the grid size �x = 0.2W0 as we found that a
larger value of mesh size (e.g., �x = 0.5W0) can lead to lattice
pinning, especially when a large driving force is applied. Sim-
ulations were performed using a driving force � = 0.55 and
an interaction barrier strength of b = 4.0, and we applied zero
gradient boundary conditions. For this study, we initialized the
simulation domain with a random Voronoi tessellation with
full ordering R = φ2

X + φ2
Y = 1 within the bulk of each grain,

as shown in the first column of Fig. 6(a). The other columns of
Fig. 6(a) show the time evolution and grain coarsening in the
polycrystalline system, where each row highlights different
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FIG. 5. Grain boundary coalescence for a cooling rate 106 K/s, showing the evolution of the corresponding order parameter and
concentration profiles. (a) Solid-liquid ordering and concentration at three time steps for b = 4.0, where concentration (C) is in units of
the average composition c0 = 4.5 at. % Cu. (b) Grain boundary peak concentration at various time steps for b = 0.1 and 4.0.

measures of the vector order parameter. It is noteworthy that
the regions corresponding to high-angle grain boundaries lead
to the emergence of solid-liquid ordering.

To verify that the grain coarsening follows the well-known
results of linear (parabolic) growth with area (radius) versus
time, we evaluated the average grain size using the so-called
intercept method, which is typically used in experimental set-
tings to determine grain sizes. In this method, a line is drawn
randomly across the microstructure and the size of the grains
intercepting this line is measured. A sufficiently large num-
ber of these line-based measurements, at various orientations
through the microstructure data, leads to a good estimate of
the grain size dgrain. We converted the so-calculated average
grain size to an equivalent circle via π (dgrain/2)2. The grain
area versus time is shown in Fig. 6(b). Mean-field arguments,
stating that grains grow by mean curvature, dictate that the
grains should coarsen such that the average grain area in-
creases linearly with time. This linear coarsening regime can
be seen in Fig. 6(b), where a dashed line is drawn as a guide
for the eye for the linear regime. As the grain size approaches
the system size, the mean field assumption breaks down and
the scaling relation no longer holds.

E. Nucleation and polycrystalline solidification in an alloy

This subsection demonstrates noise-induced nucleation
and polycrystalline solidification in a binary alloy using the
proposed vector order parameter model. The aim here is to
highlight the robustness of the model and the self-consistency
of applying thermal noise acting on the vector order parameter
defined everywhere. To prevent interference with the evo-
lution of existing ordered crystals, we threshold the noise
terms such that it is only active in the vicinity where R =

√
φ2

X + φ2
Y < 0.9. We additionally filter the noise in space and

time, so that the fluctuations occur roughly over a length scale
of W0 (not �x), and over the time scale τ0 (not �t). The details
of these filtering procedures are given in the Supplemental
Material [20]. These filtering procedures were necessary to
ensure the numerical stability of the system, and since fluctu-
ations below the length and time scales (W0 and τ0) have no
clear physical meaning in coarse grained field theories. For the
simulations shown in this section we used periodic boundary
conditions and a cooling rate of 1.5 × 105 K/s, and initialized
the system as a uniform liquid.

Figure 7 shows the nucleation and subsequent time evolu-
tion of a polycrystalline network of grains in a binary alloy,
starting from a liquid state and with thermal fluctuations
applied over time. Time goes from left to right as the cor-
responding undercooling (�) grows. The rows display the
concentration field and different measures of the vector order
parameter. The data show that the thermal fluctuations grow
over time as the driving force increases, leading to homo-
geneous nucleation of globular structures, i.e., the nuclei, as
shown in the first column of Fig. 7. The nuclei then start
to merge and coalesce into a polycrystalline network, which
starts to coarsen over time. The grain boundaries in this set of
simulations appear jagged and noisy due to thermal fluctua-
tions, but eventually do smooth out (coarsen) due to surface
energy minimization at later times.

It should be noted that there is some ambiguity about how
to interpret the effect of using an artificially stretched com-
putational interface width (here W0 = d0/0.277 ≈ 44 nm) on
nucleation events in any phase field simulation. A working
interpretation is that for a W0 that is artificially stretched
the phase field “nuclei” that emerge represent, loosely, a
crystal “mass” that is actually the collective fusion of many
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FIG. 6. Polycrystalline coarsening using the proposed vector order parameter model, constrained to model A (no solute dynamics), with
an undercooling of � = 0.55 and solid-solid barrier b = 4.0. (a) Time evolution of the polycrystalline grain network, where time increases
from left to right. The rows show different measures of the order parameter. (b) Solid fraction vs time, with the linear scaling regime shown by
the dashed line as a guide for the eye.

nanometer-scale nuclei formed over the coarse-grained vol-
ume W d

0 and over the coarse-grained time scale τ0. In
other words, if we imagine coarse-graining solidification mi-
crostructure on length and time scales much larger than W0

and τ0, respectively, such a “supernucleus” can be then seen
as what emerges from the spatial and temporal coarse graining
of the microscopic nucleation process.

IV. DISCUSSION

In the proposed vector order parameter phase field model,
the number of solid wells, i.e., the number of unique grains,
can be practically limited to a number of order Nwells ∼ 10 due
to numerical resolution issues. This is in contrast to the phase
field models that use a continuous orientation field [4–6],
where the possible crystal orientations are not restricted to
discrete values, although numerical resolution will ultimately
limit the total number of orientations that even such models
can practically realize in simulations. However, the number
of solid wells (unique orientations) can be increased easily if
the grid spacing �x is decreased. A more practical and simple

technique for increasing the number of grains that avoids the
excessive computational cost associated with decreasing �x
would be to increase the vector order parameter dimensional-
ity from d = 2 (φX and φY ) to, e.g., d = 3 or 4 (φK , K = 1,...,
d).

The solid wells in the energy landscape defined by the
vector order parameter can also be used to represent multiple
thermodynamically distinct solid phases. Here, the afore-
mentioned increase of vector order parameter dimensionality
could be used to assign different solid wells to different
phases. In our preliminary tests using the local supersatura-
tion approximation [12,24], the number of solid wells (Nwells)
needs to be rather small to describe phases with notably dif-
ferent solubilities, such as an α fcc aluminium phase and an
intermetallic Al2Cu phase.

In order to reduce computational costs associated with the
use of multiple order parameters to represent distinct phases,
multiphase field model or multi-order-parameter phase field
models can use so-called reindexing algorithms as a way
to reassign grains to avoid artificial melding of neighboring
grains [10]. This reindexing might not be possible for the
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FIG. 7. Thermally induced homogeneous nucleation, polycrystalline solidification, and coarsening in a binary alloy simulated with the
proposed vector order parameter phase field model. Model parameters are taken from Table I (�x = 0.2W0). The cooling rate is set to 1.5 × 105

K/s. Time flows from left to right as the corresponding undercooling increases. The rows indicate the fields of the model.

current vector order parameter model, as the order parameters
of neighboring grains are directly interacting with each other
and relax to profiles such as those shown in Fig. 3. However,
the use of higher dimensional vector order parameter fields,
coupled with adaptive mesh refinement, should be able to
provide ample degrees of freedom to simulate polycrystalline
networks relatively efficiently in the context of a single phys-
ical order parameter.

The anisotropy of grain boundaries can be an important
feature in polycrystalline coarsening, characterized in three
dimensions by three misorientation angles and two incli-
nation angles [25]—in a 2D system by two misorientation
angles and a single inclination angle. In its current form, the
present model depends mostly on the misorientation, i.e., on
which solid wells are in contact. There is a minor inclina-
tion dependence through the anisotropic solid-liquid interface
energy. We expect that the inclination dependence can be
increased by, for example, adding an anisotropic energy term
proportional to |θ |2 for the energy expression in Eq. (6),
analogously to how it is done for the solid-liquid interface
energy.

Physically, grain boundaries move significantly slower
than the solid-liquid interface. As grain boundaries are nec-
essarily associated with a change in orientation, the mobility
decrease could be implemented by adding an orientation gra-
dient |∇θ |2 dependence to the phase field time scale, for
example in the form τK → [1 − exp(−A|∇θ |2)]τK , where

A controls how strongly the mobility decays around grain
boundaries.

Numerically, the present vector order parameter model
requires a somewhat denser grid than traditional phase field
models, with roughly �x ∼ 0.2W0 (compared to �x ∼ 0.4W0

used typically), in order to resolve the grain boundary profiles
and to avoid mesh pinning. This becomes more arduous when
the driving force or undercooling is increased since this leads
to steeper profiles, a feature, however, that is also present to
some extent in all phase field models. This requires further
investigation to find possible numerical remedies. It is noted,
however, that the necessity for a relatively dense grid is coun-
terbalanced by the fact that this vector order parameter model
requires only a small number of equations to describe the or-
der parameter evolution, in contrast to multi-order-parameter
models [3] or multiphase field models [1], which require
10–20 evolution equations. Rigorous analysis comparing the
numerical efficiency of this vector order parameter model to
other polycrystalline phase field models is a topic that should
be investigated in the future.

In closing, it is noted that the vector order parameter model
can be more elegantly formulated in polar coordinates R and θ

(see Fig. 1). However, in our tests, the system is prone to mesh
pinning due to topological defects analogous to those seen
by Korbuly et al. [7] for the orientation phase field model.
For those readers interested in pursuing this formulation, Ko-
rbuly et al. present techniques and remedies to address these
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issues that are expected to also be applicable to the present
model.

V. CONCLUSION

The vector order parameter phase field model presented
in this paper is introduced as a practical tool for the study
of microstructure evolution in polycrystalline solidification,
and which reproduces key benchmarks quantitatively. The
specific benchmarks that were demonstrated in this paper are
dendrite solidification [15,16], grain boundary energy versus
misorientation and undercooling, coalescence and segregation
associated with back-diffusion, and nucleation-induced solid-
ification and coarsening in binary alloys.

Future work with this vector order parameter phase field
model will explore the addition of higher dimensional vector
order parameter fields in order to increase the efficiency in-
creasing the number of unique grains, and to introduce new
thermodynamically distinct phases, thus making possible the
efficient simulation of multiphase solidification, such as for
example the simulation of intermetallic phases in the Al-Cu
system.
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APPENDIX: VARIATIONAL DERIVATIVE OF THE
INTERFACE ENERGY TERM

This section shows the explicit expression for the interface
energy term for the vector order parameter model, Eq. (5).
Let us first separate the anisotropy function from interface
width as WK = W0 aK . Then the gradient penalty free energy
contribution for the order parameter model is∫

V
fintdV =

∫
V

∑
K=X,Y

W 2
0

1

2
|aK (θ∇φK , θ )∇φK |2dV, (A1)

where

aK (φX , φY ,∇φK ) = 1 + εc cos (4θ∇φK − θ ), (A2)

where the local interface normal angle is

θ∇φK = arctan

(
∂yφK

∂xφK

)
, (A3)

and the reference angle of order parameter vector �φ =
(φX , φY ) is

θ = arctan

(
φY

φX

)
. (A4)

For order parameter vector components K ∈ {X,Y }, the total
variational derivative of this term is then

δ

δφK

( ∑
K ′=X,Y

1

2
|aK ′∇φK ′ |2

)

=
(

∂

∂φK
− ∇ × ∂

∂∇φK

)( ∑
K ′=X,Y

1

2
|aK ′∇φK ′ |2

)

= aX
∂aX

∂φK
|∇φX |2 + aY

∂aY

∂φK
|∇φY |2

− ∇
(

a2
K∇φK + aK |∇φK |2 ∂aK

∂∇φK

)
, (A5)

where ∂
∂∇φK

:= ∑x,y,z
i êi

∂
∂i (∂φK ) , and the following identities

are used:

∂θ

∂φX
= − φY

|φ|2 ,
∂θ

∂φY
= φX

|φ|2 , (A6)

∂θ∇φK

∂ (∂xφK )
= − ∂yφK

|∇φK |,2 ,
∂θ∇φK

∂ (∂xφK )
= ∂xφK

|∇φK |2 , (A7)

a′
K (θ∇φK , θ ) = −4εc sin(4θ∇φK − θ ), (A8)

∂aK

∂ (∂xφK )
= a′

K (θ∇φK , θ )
∂θ∇φK

∂ (∂xφK )

= −a′
K (θ∇φK , θ )

∂yφK

|∇φK |2 , (A9)

∂aK

∂ (∂yφK )
= a′

K (θ∇φK , θ )
∂θ∇φK

∂ (∂yφK )

= a′
K (θ∇φK , θ )

∂xφK

|∇φK |2 , (A10)

∂aK

∂φK
= εc sin (4θ∇φK − θ )

∂θ

∂φK

= −1

4
a′

K (θ∇φK , θ )
∂θ

∂φK
. (A11)
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