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Consistent evaporation formulation for the phase-field lattice Boltzmann method
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A consistent evaporation model is developed for the conservative Allen-Cahn-based phase-field lattice
Boltzmann method that uses an appropriate source term to recover the advection-diffusion equation for the
specific humidity. To evaluate the accuracy of the proposed scheme, simulations are conducted of a steady-state
one-dimensional Stefan flow for a flat interface and a three-dimensional evaporating sessile droplet on a flat
substrate for a curved interface. It is confirmed that the results for the evaporative mass flux of the Stefan flow
agree well with those obtained from the analytical solution within a specific humidity range of 0.8 or less at
the liquid-gas interface. For the sessile droplet case, the results for the dependence of the contact angle on the
evaporative mass flux and its profile show good agreement with those obtained from the model of Hu and Larson
[J. Phys. Chem. B 106, 1334 (2002)].
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I. INTRODUCTION

A droplet that is deposited on a surface evaporates over
time. If this droplet contains a nonvolatile solute, the shape of
the final solute film that is formed depends on a variety of fac-
tors. This phenomenon is applied in inkjet printing, which is
a promising method for controlled deposition of polymers on
paper and functional materials on substrates such as organic
semiconductor materials and transistors [1,2].

Droplet evaporation on a flat surface can occur by three
different scenarios. In the first scenario, the droplet’s contact
line recedes at a constant contact angle. In the second sce-
nario, the droplet’s contact line is pinned and the contact angle
decreases. The third scenario involves a mixture of the first
two.

During evaporation, various flows are induced inside the
droplet by buoyancy and by surface tension differences. Ad-
ditionally, a compensating flow is induced to normalize the
solute concentration if a solute is present in the liquid [3].
These internal flows and evaporation processes are the factors
that govern the resulting film shape. Because the film shape
is crucial for the function of the film, numerous investigations
have been conducted into control of the evaporation process
and the internal flows [4–7].

One of the major factors that controls the film shape is
the evaporation process. The film shape is known to change
from dotlike to ringlike when the evaporation rate is increased
[8]. Cazabat and Guéna [9] also reviewed the evaporation
processes of macroscopic sessile droplets with internal flow.

As mentioned earlier, droplet deposition methods have
been applied widely. The deposition targets range from sim-
ple flat surfaces to more complex fibrous materials. Accurate
prediction of the resulting film shapes on both flat surfaces
and more complex structures requires use of heat and fluid
flow simulation tools that can consider a variety of physical
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properties, including the evaporation process and the tar-
get structures. Numerical simulations of evaporating droplets
have been carried out by many researchers. Schlottke and
Weigand [10] studied the evaporative flux in the volume frac-
tion equation using the piecewise linear interface construction
volume-of-fluid (PLIC-VOF) method. Hu and Larson [11]
modeled the evaporative flux and investigated a shrinking
sessile droplet numerically using the finite-element method
(FEM). They verified that the model results agreed with the
theoretical results presented by Lebedev [12] and by Picknett
and Bexon [13]. Their droplet evaporation model has since
become a standard benchmark.

These previous numerical works were based on use of
the Navier-Stokes equation. Recently, the lattice Boltzmann
method (LBM) has been attracting attention for use as an
alternative computational fluid dynamics solver. The LBM
offers exclusive features that include parallelization and com-
putation on supercomputers and the ability to capture complex
geometries. This method has been extended to enable its use
in multiphase flow solvers such as the color-gradient model
[14], the pseudopotential model (Shan-Chen model) [15], and
the free-energy model [16]. For droplet simulation, however,
spurious velocities presented a major drawback. In addition,
only limited density and viscosity ratios were available for the
multiphase LBM simulations. However, Lee [17] proposed a
phase-field model that used a two-distribution-function LBE
method developed from the pressure evolution equation and
successfully eliminated these drawbacks. To model the droplet
contact line dynamics on partially wetting surfaces, Lee and
Liu [18] used Lee’s method for incompressible binary fluids.
In this work, they used the Cahn-Hilliard equation for the
phase transport equation. Recently, the conservative Allen-
Cahn equation [19,20] has come under the spotlight. While
the Cahn-Hilliard equation includes a fourth-order spatial
derivative in the diffusion term, the diffusion terms of the con-
servative Allen-Cahn equation are second-order derivatives.
Therefore, the conservative Allen-Cahn equation is more
robust than the Cahn-Hilliard equation at high density ratio

2470-0045/2021/103(5)/053307(11) 053307-1 ©2021 American Physical Society

https://orcid.org/0000-0002-8516-7007
https://orcid.org/0000-0002-1222-1260
https://orcid.org/0000-0001-9313-1816
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.053307&domain=pdf&date_stamp=2021-05-18
https://doi.org/10.1021/jp0118322
https://doi.org/10.1103/PhysRevE.103.053307


SUGIMOTO, SAWADA, KANEDA, AND SUGA PHYSICAL REVIEW E 103, 053307 (2021)

simulations [21]. Liang et al. [22] presented stable computa-
tions of the impact of a droplet on a thin liquid film with a
density ratio of 1000. Their model was used in simulations of
a droplet that infiltrates into porous media by Sugimoto et al.
[23].

Phase-field LBMs have also been proposed to simulate
evaporation phenomena. Ledesma-Aguilar et al. [24] focused
on the fact that the diffusion term of the Cahn-Hilliard equa-
tion reduces to Fick’s law in the limit of weak deviations from
equilibrium. They simulated the evaporation of a planar film
and a spherical droplet by manipulating the order parameter
at the boundary to give a chemical potential gradient. Safari
et al. [25] developed a model based on the Cahn-Hilliard
phase-field LBM proposed by Lee [17] that considered the
phase change with the temperature gradient used as a source
term. Their model was applied to condensation in a cryogenic
tube by Hatani et al. [26], and two-phase flow inside hot
porous media by Latifiyan et al. [27]. Safari et al. [28] ex-
tended their previous model to apply to arbitrary temperature
fields by including the gradient of the specific humidity at the
liquid-gas interface as the driving force for evaporation. Their
model has been applied to bubble growth during pool boiling
by Sadeghi et al. [29]. However, Safari et al. [28] reported that
the phase transfer in the steady-state one-dimensional Stefan
flow simulation became less accurate when discretized using
the LBM rather than the finite-difference method (FDM). In
addition, these works all used the Cahn-Hilliard equation for
the phase transport.

As Safari et al. [28] suggested, the source term for the
phase transport equation should be reflected appropriately in
the lattice Boltzmann equation (LBE) to improve the evapora-
tion flux. They introduced the effect of evaporation by using
a continuity equation that includes the effect of the phase
change at the diffuse interface instead of a continuity equation
for incompressible fluids. In their model, vapor production
at the liquid-gas interface is given by the Dirichlet boundary
condition with constant specific humidity. Therefore, it is
suggested that the effect of evaporation at the diffuse interface
must be removed from the advection-diffusion equation for
the specific humidity. However, they have not completely
eliminated this effect in their formulation of the LBE. This
inconsistency between the governing equation and the LBE
causes the overestimation of the evaporative mass flux at
the liquid-gas interface. Therefore, in this study, a consistent
evaporation formulation for the LBE is developed by using
an appropriate source term to recover the advection-diffusion
equation for the specific humidity. Additionally, to provide
stable computation at the high density ratio mentioned pre-
viously by Liang et al. [22], the conservative Allen-Cahn
equation is used as the phase transport equation in this study.
Following a detailed formulation of the model, the developed
model is validated further by applying it to an analysis of
steady-state one-dimensional Stefan flow for a flat interface
and a three-dimensional evaporating sessile droplet on a flat
substrate for a curved interface.

II. GOVERNING EQUATIONS

In this section, the evaporation effect is introduced into the
conservative Allen-Cahn-based phase-field model proposed

by Liang et al. [22]. In the current phase-field model, the
liquid and gas phases are distinguished using the order pa-
rameter φ, which is defined as a local liquid volume fraction.
Therefore, φ takes values of 0 and 1 for the gas and liquid
phases, respectively. The region where 0 < φ < 1 denotes a
diffuse interface with finite thickness W . The local densities
of the two phases are represented by

ρ̃l = φρl, ρ̃g = (1 − φ)ρg, (1)

where the subscripts l and g denote the liquid phase and the
gas phase including vapor, respectively. In addition, ρl and
ρg denote the bulk densities of these two phases, respectively.
The gas density ρg is computed using the sum of the dry air
density ρa and the vapor density (volumetric humidity) ρv as
follows:

ρg = ρa + ρv = ρa

1 − Yv
, (2)

where Yv is the specific humidity (vapor mass fraction). The
local averaged density is given by

ρ = φρl + (1 − φ)ρg. (3)

The continuity equations for the liquid and gas phases,
which include the contribution of the evaporative mass flow
rate per unit volume across the liquid-gas interface ṁ′′′, are
given by [25,30]

∂ρ̃l

∂t
+ ∇ · (ρ̃lu) = ∇ · (ρljl ) − ṁ′′′, (4)

∂ρ̃g

∂t
+ ∇ · (ρ̃gu) = ∇ · (ρgjg) + ṁ′′′, (5)

where j = jl = −jg represents the flux density, which can
be divided into the diffusive flux density jD and the phase
separation flux density jS as follows [20]:

j = jD + jS, (6)

jD = Mφ∇φ, jS = −Mφλn, (7)

where Mφ is the mobility, λ = 4φ(1 − φ)/W , and n =
∇φ/|∇φ| is the unit vector oriented normal to the liquid-gas
interface. By substituting Eqs. (6) and (7) into Eq. (4), the
conservative Allen-Cahn equation that includes consideration
of evaporation is derived as follows:

∂φ

∂t
+ ∇ · (φu) = ∇ · [Mφ (∇φ − λn)] − ṁ′′′

ρl
. (8)

In the diffuse interface, by assuming that the gas density ρg

is constant, Eq. (5) can be recast as

−∂φ

∂t
+ ∇ · [(1 − φ)u] = ∇ · jg + ṁ′′′

ρg,I
, (9)

where ρg,I is the gas density at the liquid-gas interface, which
is a constant. Summation of Eqs. (8) and (9) allows the new
continuity equation that considers evaporation to be obtained
as follows:

∇ · u = ṁ′′′
(

1

ρg,I
− 1

ρl

)
. (10)
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The evaporative mass flow rate per unit volume ṁ′′′ is calcu-
lated using the following equation [28]:

ṁ′′′ = ρg,ID

1 − Yv
∇Yv · ∇φ, (11)

where D is the vapor diffusion coefficient in the gas phase.
Note that in the region located away from the diffuse inter-
face, the continuity equation given as Eq. (10) approaches the
continuity equation for incompressible flows, ∇ · u = 0.

The Navier-Stokes equation can be written as

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · [μ(∇u + ∇uT)] + F,

(12)

where F denotes the total force term, which can be di-
vided into the surface tension force Fs and the possible body
force Fb:

F = Fs + Fb. (13)

In this study, the following potential form is used for the
surface tension force:

Fs = μφ∇φ, (14)

where μφ is the chemical potential, which is defined as [31]

μφ = 4βφ(φ − 1)
(
φ − 1

2

) − κ∇2φ, (15)

where β and κ are the physical parameters below, which are
dependent on both the interfacial thickness W and the surface
tension σ :

β = 12σ

W
, κ = 3

2
σW. (16)

In the scheme proposed in this work, to enable calculation
of the evaporative mass flow rate per unit volume described
by Eq. (11), the advection-diffusion of the vapor is only sim-
ulated in the gas phase. The advection-diffusion equation for
the specific humidity can be written as [28]

∂Yv

∂t
+ ∇ · (Yvu) = ∇ · (D∇Yv). (17)

In this study, the specific humidity Yv is only defined in
the gas phase (φ � 0.5), and the specific humidity Yv at
the physical liquid-gas interface (φ = 0.5) is fixed using the
Dirichlet boundary condition. Because the vapor generation
at the liquid-gas interface is only represented by the boundary
condition, it is necessary to eliminate the effect of evaporation
at the diffuse interface from the advection-diffusion equation.
Therefore, in this study, the continuity equation for incom-
pressible flows, ∇ · u = 0, is substituted into the advection
term of Eq. (17) rather than Eq. (10), and Eq. (17) can then
be recast as [28]

∂Yv

∂t
+ u · ∇Yv = ∇ · (D∇Yv). (18)

III. NUMERICAL SCHEMES

A. Lattice Boltzmann method

In this section, the governing equations are converted into
LBEs. The consistency between the governing equations and

these LBEs is discussed in detail in Appendix. The conser-
vative Allen-Cahn equation, the Navier-Stokes equation, and
the advection-diffusion equation for the specific humidity are
converted into the following LBEs, respectively:

fi(x + eiδt , t + δt ) − fi(x, t ) = 

f
i (x, t ) + δt R

f
i (x, t ),

(19)

gi(x + eiδt , t + δt ) − gi(x, t ) = 

g
i (x, t ) + δt R

g
i (x, t ),

(20)

hi(x + eiδt , t + δt ) − hi(x, t ) = 
h
i (x, t ) + δt R

h
i (x, t ),

(21)

where fi, gi, and hi are the distribution functions of the order
parameter φ, the velocity u, and the specific humidity Yv,
respectively. 


f
i , 


g
i , and 
h

i are the collision operators. R f
i

and Rh
i are the source terms, and Rg

i is the force term. The
subscript i indicates the discrete direction, ei is the discrete
velocity, and δt is the time step.

In this study, the single-relaxation-time (SRT) model [32]
is used for the LBE of the specific humidity distribution func-
tion hi, and the weighted multiple-relaxation-time (WMRT)
model [33] is used to form the LBEs of the order parameter
and the velocity distribution functions fi and gi, which all
require higher numerical stability. Therefore, the collision
operators 


f
i , 


g
i , and 
h

i are described using the following
equations:

� f = −M−1S f M(f − feq ), (22)

�g = −M−1SgM(g − geq ), (23)

�h = − 1

τh
(h − heq ), (24)

where the superscript “eq” denotes the local equilibrium dis-
tribution function, and M denotes the transformation matrix of
the WMRT model [33]. S f and Sg are the diagonal collision
matrices and are given as follows [33]:

S f = diag(1, s f , s f , s f︸ ︷︷ ︸
d

, 1, 1, . . . , 1︸ ︷︷ ︸
q−d−1

), (25)

Sg = diag(1, 1, 1, 1︸ ︷︷ ︸
d+1

, sg, sg, sg, sg, sg︸ ︷︷ ︸
(d+2)(d−1)/2

, 1, 1, . . . , 1︸ ︷︷ ︸
q−d (d+3)/2

), (26)

where s f = 1/τ f and sg = 1/τg. d and q denote the dimension
of the discrete velocity model and the number of discrete
directions, respectively. The relaxation times τ f , τg, and τh

have the following relationships with the mobility Mφ , the
kinematic viscosity ν, and the vapor diffusion coefficient D,
respectively:

Mφ = c2
s

(
τ f − 1

2

)
δt , (27)

ν = c2
s

(
τg − 1

2

)
δt , (28)

D = c2
s

(
τh − 1

2

)
δt , (29)

where cs denotes the speed of sound.
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The local equilibrium distribution functions f eq
i and heq

i are
obtained as follows using the first-order term of the Maxwell
distribution:

f eq
i = wiφ

(
1 + ei · u

c2
s

)
, (30)

heq
i = wiYv

(
1 + ei · u

c2
s

)
. (31)

The local equilibrium distribution function geq
i is written as

[22,34]

geq
i =

{ p
c2

s
(wi − 1) + ρsi(u) (i = 0),

p
c2

s
wi + ρsi(u) (i �= 0),

(32)

where wi is the weight coefficient and i = 0 is the discrete
direction in which ei = 0. si is the following function:

si(u) = wi

[
ei · u

c2
s

+ (ei · u)2

2c4
s

− u · u
2c2

s

]
. (33)

The source terms R f
i and Rh

i and the force term Rg
i are

required to recover the governing equations from the LBEs
and are expressed as follows [21,33]:

R f = M−1

(
I − S f

2

)
MR

f
, (34)

Rg = M−1

(
I − Sg

2

)
MR

g
, (35)

Rh =
(

1 − 1

2τh

)
R

h
, (36)

where

R
f
i = wi

[
ei · {

∂t (φu) + c2
s λn

}
c2

s

− ṁ′′′

ρl

]
, (37)

R
g
i = wi

[
ei · F + (ei · u)(ei · ∇ρ )

c2
s

+ ρṁ′′′
(

1

ρg,I
− 1

ρl

)]
,

(38)

R
h
i = wi

[
ei · {∂t (Yvu)}

c2
s

+ Yvṁ′′′
(

1

ρg,I
− 1

ρl

)]
, (39)

where the second term on the right-hand side of Eq. (39) is
an additional term used to eliminate the effect of evaporation
from the diffuse interface. In this study, the time derivative
terms in Eqs. (37) and (39) above are computed using the
following explicit Euler scheme [22]:

∂t (ϕu) = ϕ(t )u(t ) − ϕ(t − δt )u(t − δt )

δt
, (40)

where ϕ = φ, and Yv is a placeholder.
The macroscopic variables, comprising the order parame-

ter φ, the velocity u, the specific humidity Yv, and the pressure
p, are computed using the zeroth or first moments of the

distribution functions as follows:

φ =
∑

i

fi − δt

2

ṁ′′′

ρl
, (41)

u = 1

ρ

[∑
i

eigi + δt

2
F

]
, (42)

Yv =
[

1 − δt

2
ṁ′′′

(
1

ρg,I
− 1

ρl

)]−1 ∑
i

hi, (43)

p = c2
s

1 − w0

[∑
i �=0

gi + ρs0(u) + δt

2

{
u · ∇ρ

+ (1 − w0)ρṁ′′′
(

1

ρg,I
− 1

ρl

)}]
. (44)

Furthermore, the kinematic viscosity ν is interpolated using
the order parameter as follows:

ν = φνl + (1 − φ)νg, (45)

where νl and νg are the kinematic viscosities of the liquid
and the gas, respectively. In this study, νg is assumed to
remain constant, regardless of the humidity. Equations (41)
and (43) indicate that the evaporative mass flow rate per unit
volume ṁ′′′ is required to calculate the macroscopic variables.
However, the order parameter φ and the specific humidity Yv

are required to calculate ṁ′′′ using Eq. (11), thus meaning
that an implicit method is required to calculate Eqs. (41) and
(43) strictly. In this study, because steady flow simulations
are performed, the need for an implicit method is avoided by
using ṁ′′′ from the previous time step to calculate Eqs. (41)
and (43).

In this study, the D3Q19 and D3Q27 discrete velocity
models are used for the specific humidity distribution function
and the other distribution functions, respectively. Table I lists
the speed of sound cs, the discrete velocity ei, and the weight
coefficient wi in these models; additionally, c = δx/δt , where
δx is the lattice spacing.

B. Refilling of the specific humidity distribution function

Because the advection-diffusion of the specific humidity
Yv is only simulated in the gas phase (φ � 0.5), refilling of
the specific humidity distribution function hi is required at the
grid points where the phase changes from liquid to the gas
phase when the order parameter φ is updated. In this study,
the specific humidity distribution function hi is refilled using
the following equation [35]:

hi(x) = heq
i (x;Yv, uI ) + hneq

i (x + enδt ), (46)

where Yv is the average specific humidity at the adjacent
fluid nodes before refilling, uI is the velocity at the liquid-gas
interface, and en denotes the discrete velocity ei, which has a
minimum value of ei · n. In addition, hneq

i = hi − heq
i denotes

the nonequilibrium distribution function.
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TABLE I. Parameters of the discrete velocity models.

Model cs/c ei/c wi

D3Q19 1/
√

3 (0, 0, 0) 1/3(i = 0)
(±1, 0, 0), (0, ±1, 0), (0, 0, ±1) 1/18(i = 1, . . . , 6)
(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1) 1/36(i = 7, . . . , 18)

D3Q27 1/
√

3 (0, 0, 0) 8/27(i = 0)
(±1, 0, 0), (0, ±1, 0), (0, 0, ±1) 2/27(i = 1, . . . , 6)
(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1) 1/54(i = 7, . . . , 18)
(±1, ±1, ±1) 1/216(i = 19, . . . , 26)

IV. RESULTS AND DISCUSSION

A. Steady-state one-dimensional Stefan flows

To validate the evaporative mass flux at flat liquid-gas in-
terfaces, simulations of a steady-state one-dimensional Stefan
flow [28] are performed. Figure 1 shows the computational
domain used for the simulations of the Stefan flow. These are
the only simulations in which the motion of the liquid-gas
interface is not computed using the conservative Allen-Cahn
equation, and the order parameter profile is fixed using the
following equation:

φ(x) = 1

2

[
1 + tanh

2(xI − x)

W

]
, (47)

where xI is the x-coordinate of the liquid-gas interface
(φ = 0.5). In these simulations, the Dirichlet conditions
[36,37], where p = p∞ and Yv = Yv,∞ = 0 at the x-direction
boundaries and Yv = Yv,I at the liquid-gas interface, are
imposed by the half-way bounce-back (HWBB) scheme. Fur-
thermore, periodic boundary conditions are used at the y- and
z-direction boundaries. The computational domain size is set
at (2L(x), 0.02L(y), 0.02L(z)) and the x-direction length of
the gas phase is set at L = 200δx. The parameters used for the
simulations are the density ratio ρl/ρa = 856, the viscosity
ratio μl/μg = 55, and the Schmidt number of the vapor Sc =
νg/D = 0.6. The specific humidity at the liquid-gas interface
is varied over the 0.1 � Yv,I � 0.8 range.

In this section, the evaporative mass flux that occurs at the
liquid-gas interface ṁ′′

I is compared with the analytical solu-
tion for this flux. The evaporative mass flux ṁ′′ is computed
using the following equation [28]:

ṁ′′ = ρg,ID

1 − Yv
∇Yv · n. (48)

From the continuity equation at the steady-state condition
d (ρu)/dx = 0, the following equation is obtained:

ṁ′′(x) = ρu = const. (49)

FIG. 1. Computational domain used for the simulations of the
Stefan flows.

The conservation of the vapor mass in the gas phase can be
written as [28]

ṁ′′
I = Yvṁ′′

I − ρg,ID
dYv

dx
. (50)

By integrating Eq. (50) with the assumption of ρg,ID = const
and applying two boundary conditions as

Yv|x=xI=L = Yv,I, Yv|x=2L = Yv,∞, (51)

one can derive the analytical solution as follows [28]:

ṁ′′
I = ρg,ID

L
ln

(
1 − Yv,∞
1 − Yv,I

)
. (52)

Figure 2 shows the nondimensional evaporative mass flux
ṁ′′

I /(ρg,ID/L) varying with the specific humidity at the liquid-
gas interface Yv,I. In this section, ṁ′′

I /(ρg,ID/L) is calculated
via linear extrapolation because the liquid-gas interface is
placed at the midpoint of the grid points. The solid line rep-
resents the analytical solution determined using Eq. (52). The
red circles and green triangles show the results produced using
the proposed scheme and the conventional scheme that was
presented by Safari et al. [28], respectively. The blue squares
show the results determined using the scheme in which the
source terms that contain ṁ′′′ in Eqs. (39) and (43) are not
introduced, i.e., the scheme in which the LBE of hi is used to
recover Eq. (17). Figure 2 confirms that the scheme without
the source terms (blue squares) overestimates the evaporative
mass flux in a manner similar to the scheme developed by
Safari et al. [28] (green triangles). In contrast, because the
appropriate source terms were used in the LBE of hi to re-
cover Eq. (18), the proposed scheme reproduced the analytical
solution with greater accuracy.

FIG. 2. Nondimensional evaporative mass flux in the simulations
of the Stefan flows.
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FIG. 3. Schematic of the computational domain used for the
simulations of the evaporating droplet on the flat substrate.

B. Evaporation of a droplet on a flat substrate

To validate the evaporative mass flux obtained at the
droplet surface, simulations of a three-dimensional evaporat-
ing droplet on a flat substrate are performed. Figure 3 shows
a schematic drawing of the computational domain. In these
simulations, a droplet with an initial diameter D0 = 40δx is
deposited at the center of a flat substrate at an initial contact
angle of θ0 = 90◦. The computational domain size is set to
(15D0(x), 15D0(y), 7.5D0(z)). On the substrate, the nonslip
condition for the velocity and the no-flux conditions for the
order parameter and the specific humidity are imposed via
the HWBB scheme. Furthermore, the cubic boundary con-
dition [38] is used to reproduce the substrate’s wettability.
At the computational domain boundaries, except for those on
the substrate, the no-flux condition for the order parameter
and the Dirichlet conditions [36,37] p = p∞ and Yv = Yv,∞
are also imposed via the HWBB scheme. Furthermore, at
the liquid-gas interface, the Dirichlet condition Yv = Yv,I is
imposed via the interpolated bounce-back (IPBB) scheme.
The parameters used in the simulations are the density ra-
tio ρl/ρa = 856, the viscosity ratio μl/μg = 55, the Schmidt
number of the vapor Sc = 0.6, the Ohnesorge number Oh =
μl/

√
ρlσD0 = 3.4 × 10−3, and the specific humidity values

Yv,∞ = 0 and Yv,I = 0.2. In this section, the droplet is assumed
to evaporate with a constant contact angle, and the three con-
tact angles θ = 30◦, 60◦, 90◦ are simulated.

Figure 4 shows the snapshots of the specific humidity field
around the droplet obtained in the simulations. The solid lines
in Fig. 4 show the contour lines of the specific humidity
Yv. Figure 4 confirms that the contour lines of the specific
humidity approach the hemispherical shape as the distance
from the droplet increases due to the boundary condition of
the bottom wall. For the evaluation of the spurious velocities
in the uniform evaporation rate case, the velocity field inside
the droplet at θ = 90◦ is shown in Fig. 5. It can be confirmed
that the spurious velocity is well suppressed in terms of the
velocity magnitude.

Additionally, the evaporative mass flux at the liquid-gas
interface ṁ′′

I is compared with the following model equation
that was proposed by Hu and Larson [11]:

ṁ′′
I (r)

ṁ′′
I (0)

=
[

1 −
(

r

R

)2]θ/π−0.5

, (53)

where r is the distance from the central axis of the droplet
and R is the wetting radius. ṁ′′

I (0) is the evaporative mass

FIG. 4. Specific humidity field around the droplet obtained in the
simulations of a droplet on a flat substrate at different contact angles:
(a) θ = 30◦, (b) θ = 60◦, and (c) θ = 90◦.

FIG. 5. Velocity field inside the droplet obtained in the simula-
tion of a droplet on a flat substrate at θ = 90◦.
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FIG. 6. Nondimensional evaporative mass flux profiles obtained
in the simulations of a droplet on a flat substrate at different contact
angles: (a) θ = 30◦, (b) θ = 60◦, and (c) θ = 90◦.

flux at the top of the droplet. In this section, ṁ′′
I is calculated

via linear extrapolation at the bases of the perpendicular lines
from the gas nodes adjacent to the liquid-gas interface to the
interface itself. The results for the nondimensional evaporative
mass flux ṁ′′

I (r)/ṁ′′
I (0) are shown in Fig. 6. Figure 6 confirms

that the proposed scheme can reproduce the nondimensional
evaporative mass flux profiles produced by Hu and Larson
[11] with high accuracy over a broad range of contact angles.

Additionally, the absolute value of ṁ′′
I (0) is compared with

the value obtained using the model equation proposed by Hu
and Larson [11], which is expressed as follows:

ṁ′′
I,model(0) = D(ρv,I − ρv,∞)

R
(0.27θ2 + 1.30)

×
[

0.6381 − 0.2239

(
θ − π

4

)2]
, (54)

FIG. 7. Relative error of the evaporative mass flux at the top of
the droplet from the model proposed by Hu and Larson [11].

where ρv,I and ρv,∞ are the vapor densities at the liquid-gas
interface and in the ambient gas, respectively. Figure 7 shows
the relative error of the evaporative mass flux at the top of the
droplet obtained from the model of Hu and Larson [11], where
E denotes the following relative error:

E = ṁ′′
I (0) − ṁ′′

I,model(0)

ṁ′′
I,model(0)

. (55)

Figure 7 suggests that the proposed scheme estimates the
evaporative mass flux to be more than 20% higher than the
model. These relative errors are considered to be caused by
the fact that Hu and Larson’s simulations are only based on
the diffusion equation of the vapor mass concentration [11],
while the proposed scheme considers the advection-diffusion
of the vapor in the gas phase. Indeed, in Fig. 8, the normal
velocity is the highest at the droplet apex (d/D0

∼= 0), which
supports the contribution of the advection. In the present sim-
ulations, therefore, the evaporation is enhanced by the Stefan
flow near the liquid-gas interface, which results in the higher
evaporation mass flux.

V. CONCLUSION

The effect of evaporation is introduced into the phase-field
LBM based on the conservative Allen-Cahn equation. By
adding an appropriate source term to the LBE, the problem

FIG. 8. Normal velocity profile from the droplet apex along the
z-direction, where d denotes the distance from the droplet apex.
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of overestimation of the evaporative mass flux that occurs in
the conventional scheme [28] is solved. The proposed scheme
is validated via simulations of a steady-state one-dimensional
Stefan flow and an evaporating droplet on a flat substrate. The
simulations of the steady-state one-dimensional Stefan flow
confirmed that the evaporative mass flux can be reproduced
using the proposed scheme with greater accuracy than the
conventional scheme [28] in the region where Yv,I � 0.8. The
simulations of the evaporating droplet on the flat substrate
confirmed that the model equation for the nondimensional
evaporative mass flux proposed by Hu and Larson [11] can
be reproduced with high accuracy over a wide contact an-
gle range, while the proposed scheme estimates the absolute
value of the evaporative mass flux at the top of the droplet to
be more than 20% higher than the value obtained using the
model. However, this is because Hu and Larson’s simulations
are only based on the diffusion equation of the vapor mass
concentration [11], while the proposed scheme considers the
advection-diffusion of the vapor in the gas phase.

For a diffuse-interface model such as the phase-field
model, the representation of the contact angle as super-
lyophilic and super-lyophobic becomes less accurate due to
its thickened interface at the contact line. Although the rea-
sonable computational parameter range is limited, the LBM
enables computation in a complex physical structure, such as
ink evaporation on paper and fabric, a wick in heat pipes, etc.

In this study, we focused on verifying the accuracy of the
evaporative mass flux in the proposed scheme. In future work,
we plan to introduce the thermal field and its effects on the
evaporative mass flux and the surface tension.
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APPENDIX: CHAPMAN-ENSKOG ANALYSIS

The Chapman-Enskog analysis is performed to confirm
consistency between the LBEs and the governing equations.
For simplicity, the SRT collision operators are used here. The
distribution functions, the time and spatial derivatives, the unit
vector normal to the liquid-gas interface, the evaporative mass
flow rate per unit volume, and the total force are expanded in
consecutive scales of ε as follows:

fi = f (0)
i + ε f (1)

i + ε2 f (2)
i + · · · , (A1a)

gi = g(0)
i + εg(1)

i + ε2g(2)
i + · · · , (A1b)

hi = h(0)
i + εh(1)

i + ε2h(2)
i + · · · , (A1c)

∂t = ε∂t1 + ε2∂t2 , ∂α = ε∂1α, (A1d)

nα = εn(1)
α , ṁ′′′ = εṁ′′′(1), Fα = εF (1)

α , (A1e)

where ε is a small expansion parameter.

1. Conservative Allen-Cahn equation

Using the moments of the equilibrium distribution function
and the source term, one can derive the following:∑

i

f eq
i = φ, (A2a)

∑
i

eiα f eq
i = φuα, (A2b)

∑
i

eiαeiβ f eq
i = φc2

s δαβ, (A2c)

∑
i

R
f
i = − ṁ′′′

ρl
, (A3a)

∑
i

eiαR
f
i = ∂t (φuα ) + c2

s λnα, (A3b)

where δαβ is the Kronecker delta. By applying the Taylor
expansion to Eq. (19) and substituting Eqs. (A1a), (A1d), and
(A1e) into this equation, the following multiscale equations
can be derived:

ε0 : f (0)
i = f eq

i , (A4a)

ε1 : D1i f (0)
i = − 1

τ f δt
f (1)
i +

(
1 − 1

2τ f

)
R

f (1)
i , (A4b)

ε2 : ∂t2 f (0)
i + D1i f (1)

i + δt

2
D2

1i f (0)
i

= − 1

τ f δt
f (2)
i +

(
1 − 1

2τ f

)
R

f (2)
i , (A4c)

where D1i := ∂t1 + eiα∂1α . By substituting Eq. (A4b) into
Eq. (A4c), one can then derive

∂t2 f (0)
i + D1i

[(
1 − 1

2τ f

)(
f (1)
i + δt

2
R

f (1)
i

)]

= − 1

τ f δt
f (2)
i +

(
1 − 1

2τ f

)
R

f (2)
i . (A5)

In a manner similar to Liang et al. [34], to remove the implic-
itness of the LBE, the order parameter distribution function
fi is defined using the form that includes the source term.
Therefore, the zeroth moment of fi can be derived as follows:∑

i

fi =
∑

i

f eq
i − δt

2

∑
i

R
f
i = φ + δt

2

ṁ′′′

ρl
. (A6)

Equation (41) can easily be obtained from Eq. (A6), and by
applying a multiscale expansion to Eq. (A6), the following
equations can be obtained:∑

i

f (1)
i = δt

2

ṁ′′′(1)

ρl
, (A7a)

∑
i

f (n)
i = 0 (n � 2). (A7b)

By summing Eqs. (A4b) and (A5) over i, the following
equations can be recovered, respectively:

∂t1φ + ∂1α (φuα ) = − ṁ′′′(1)

ρl
, (A8)
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∂t2φ + ∂1α

[(
1 − 1

2τ f

)(∑
i

eiα f (1)
i + δt

2

∑
i

eiαR
f (1)
i

)]
=0.

(A9)

Use of Eq. (A4b) allows the summation terms in Eq. (A9) to
be recast as∑

i

eiα f (1)
i + δt

2

∑
i

eiαR
f (1)
i

= −τ f δt

[∑
i

D1ieiα f (0)
i −

(
1 − 1

2τ f

)∑
i

eiαR
f (1)
i

]

+ δt

2

∑
i

eiαR
f (1)
i

= −c2
s τ f δt

(
∂1αφ − λn(1)

α

)
. (A10)

Substitution of Eq. (A10) into Eq. (A9) allows one to derive

∂t2φ = ∂1α

[
c2

s

(
τ f − 1

2

)
δt

(
∂1αφ − λn(1)

α

)]
. (A11)

By combining Eqs. (A8) and (A11) at the ε and ε2 scales and
substituting Eq. (27) into this equation, one can then derive
the conservative Allen-Cahn equation with consideration of
the evaporation, which is given as Eq. (8).

2. Continuity equation and Navier-Stokes equation

Using the moments of the equilibrium distribution function
and the force term, one can derive the following:∑

i

geq
i = 0, (A12a)

∑
i

eiαgeq
i = ρuα, (A12b)

∑
i

eiαeiβgeq
i = ρuαuβ + pδαβ, (A12c)

∑
i

eiαeiβeiγ geq
i = ρc2

s �αβγ ζ uζ , (A12d)

∑
i

R
g
i = uγ ∂γ ρ + ρṁ′′′

(
1

ρg,I
− 1

ρl

)
,

(A13a)∑
i

eiαR
g
i = Fα, (A13b)

�αβ :=
∑

i

eiαeiβR
g
i = c2

s

[
uα∂βρ + uβ∂αρ +

{
uγ ∂γ ρ

+ ρṁ′′′
(

1

ρg,I
− 1

ρl

)}
δαβ

]
, (A13c)

where �αβγ ζ := δαβδγ ζ + δαγ δβζ + δαζ δβγ . By applying the
Taylor expansion to Eq. (20) and substituting Eqs. (A1b),
(A1d), and (A1e) into this equation, the following multiscale

equations can be derived:

ε0 : g(0)
i = geq

i , (A14a)

ε1 : D1ig
(0)
i = − 1

τgδt
g(1)

i +
(

1 − 1

2τg

)
R

g(1)
i , (A14b)

ε2 : ∂t2 g(0)
i + D1ig

(1)
i + δt

2
D2

1ig
(0)
i = − 1

τgδt
g(2)

i . (A14c)

By substituting Eq. (A14b) into Eq. (A14c), one can derive

∂t2 g(0)
i + D1i

[(
1 − 1

2τg

)(
g(1)

i + δt

2
R

g(1)
i

)]
= − 1

τgδt
g(2)

i .

(A15)

The zeroth and first moments of gi can be derived as [34]

∑
i

gi =
∑

i

geq
i − δt

2

∑
i

R
g
i

= −δt

2

[
uγ ∂γ ρ + ρṁ′′′

(
1

ρg,I
− 1

ρl

)]
, (A16)

∑
i

eiαgi =
∑

i

eiαgeq
i − δt

2

∑
i

eiαR
g
i = ρuα − δt

2
Fα.

(A17)

Equations (42) and (44) can easily be obtained from
Eqs. (A16) and (A17), and by applying the multiscale expan-
sion to Eqs. (A16) and (A17), the following equations can be
obtained:

∑
i

g(1)
i = −δt

2

[
uγ ∂1γ ρ + ρṁ′′′(1)

(
1

ρg,I
− 1

ρl

)]
,

(A18a)∑
i

g(n)
i = 0, (n � 2), (A18b)

∑
i

eiαg(1)
i = −δt

2
F (1)

α , (A18c)

∑
i

eiαg(n)
i = 0, (n � 2). (A18d)

Summation of Eq. (A14b), Eq. (A14b)×eiβ , and
Eq. (A15)×eiβ over i allows the following equations to
be recovered, respectively:

∂1αuα = ṁ′′′(1)

(
1

ρg,I
− 1

ρl

)
, (A19)

∂t1 (ρuβ ) + ∂1α (ρuαuβ + pδαβ ) = F (1)
β , (A20)

∂t2 (ρuβ ) + ∂1α

[(
1 − 1

2τg

)(∑
i

eiαeiβg(1)
i +δt

2
�

(1)
αβ

)]
=0.

(A21)

By substituting Eq. (A19) into Eq. (A13c), one can then obtain

�
(1)
αβ = c2

s [uα∂1βρ + uβ∂1αρ + ∂1γ (ρuγ )δαβ]. (A22)
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Using Eqs. (A14b) and (A22), the summation terms in
Eq. (A21) can be recast as∑

i

eiαeiβg(1)
i + δt

2
�

(1)
αβ

= −τgδt

[∑
i

D1ieiαeiβg(0)
i −

(
1 − 1

2τg

)
�

(1)
αβ

]

+ δt

2
�

(1)
αβ = −ρc2

s τgδt (∂1αuβ + ∂1βuα ), (A23)

where the terms for O(δt Ma2) have been neglected under
the incompressible limit [22]. Substitution of Eq. (A23) into
Eq. (A21) allows one to derive the following:

∂t2 (ρuβ ) = ∂1α

[
ρc2

s

(
τg − 1

2

)
δt (∂1αuβ + ∂1βuα )

]
. (A24)

Multiplication of Eq. (A19) by ε enables one to derive the
continuity equation with consideration of evaporation that is
given as Eq. (10). Additionally, by combining Eqs. (A20) and
(A24) at the ε and ε2 scales and substituting Eq. (28) into
this equation, one can then derive the Navier-Stokes equation
given as Eq. (12).

3. Advection-diffusion equation for the specific humidity

Using the moments of the equilibrium distribution function
and the source term, one can derive the following:∑

i

heq
i = Yv, (A25a)

∑
i

eiαheq
i = Yvuα, (A25b)

∑
i

eiαeiβheq
i = Yvc2

s δαβ, (A25c)

∑
i

R
h
i = Yvṁ′′′

(
1

ρg,I
− 1

ρl

)
, (A26a)

∑
i

eiαR
h
i = ∂t (Yvuα ). (A26b)

By applying the Taylor expansion to Eq. (21) and substituting
Eqs. (A1c), (A1d), and (A1e) into this equation, the following
multiscale equations can be derived:

ε0 : h(0)
i = heq

i , (A27a)

ε1 : D1ih
(0)
i = − 1

τhδt
h(1)

i +
(

1 − 1

2τh

)
R

h(1)
i , (A27b)

ε2 : ∂t2 h(0)
i + D1ih

(1)
i + δt

2
D2

1ih
(0)
i

= − 1

τhδt
h(2)

i +
(

1 − 1

2τh

)
R

h(2)
i . (A27c)

By substituting Eq. (A27b) into Eq. (A27c), one can then
derive

∂t2 h(0)
i + D1i

[(
1 − 1

2τh

)(
h(1)

i + δt

2
R

h(1)
i

)]

= − 1

τhδt
h(2)

i +
(

1 − 1

2τh

)
R

h(2)
i . (A28)

The zeroth moment of hi can be derived as [34]∑
i

hi =
∑

i

heq
i − δt

2

∑
i

R
h
i = Yv

[
1 − δt

2
ṁ′′′

(
1

ρg,I
− 1

ρl

)]
.

(A29)

Equation (43) can easily be obtained from Eq. (A29), and by
applying the multiscale expansion to Eq. (A29), the following
equations can be obtained:∑

i

h(1)
i = −δt

2
Yvṁ′′′(1)

(
1

ρg,I
− 1

ρl

)
, (A30a)

∑
i

h(n)
i = 0, (n � 2). (A30b)

By summing Eqs. (A27b) and (A28) over i, the following
equations can be recovered:

∂t1Yv + ∂1α (Yvuα ) = Yvṁ′′′(1)

(
1

ρg,I
− 1

ρl

)
, (A31)

∂t2Yv + ∂1α

[(
1− 1

2τh

)(∑
i

eiαh(1)
i +δt

2

∑
i

eiαR
h(1)
i

)]
= 0.

(A32)

Using Eq. (A27b), the summation terms in Eq. (A32) can be
recast as∑

i

eiαh(1)
i + δt

2

∑
i

eiαR
h(1)
i

= −τhδt

[∑
i

D1ieiαh(0)
i −

(
1 − 1

2τh

) ∑
i

eiαR
h(1)
i

]

+δt

2

∑
i

eiαR
h(1)
i

= −c2
s τhδt∂1αYv. (A33)

By substituting Eq. (A33) into Eq. (A32), one can derive the
following:

∂t2Yv = ∂1α

[
c2

s

(
τh − 1

2

)
δt∂1αYv

]
. (A34)

By combining Eqs. (A31) and (A34) at the ε and ε2 scales
and substituting Eqs. (29) and (10) into this equation, one can
then derive the advection-diffusion equation for the specific
humidity given as Eq. (18).
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