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Solving nonlinear integral equations for laser pulse retrieval with Newton’s method
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We present an algorithm based on numerical techniques that have become standard for solving nonlinear
integral equations: Newton’s method, homotopy continuation, the multilevel method, and random projection to
solve the inversion problem that appears when retrieving the electric field of an ultrashort laser pulse from a
two-dimensional intensity map measured with frequency-resolved optical gating (FROG), dispersion-scan, or
amplitude-swing experiments. Here we apply the solver to FROG and specify the necessary modifications for
similar integrals. Unlike other approaches we transform the integral and work in time domain where the integral
can be discretized as an overdetermined polynomial system and evaluated through list autocorrelations. The
solution curve is partially continues and partially stochastic, consisting of small linked path segments and enables
the computation of optimal solutions in the presents of noise. Interestingly, this is an alternative method to find
real solutions of polynomial systems, which are notoriously difficult to find. We show how to implement adaptive
Tikhonov-type regularization to smooth the solution when dealing with noisy data, and we compare the results
for noisy test data with a least-squares solver and propose the L-curve method to fine-tune the regularization
parameter.
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I. INTRODUCTION

In many areas of modern short pulse spectroscopy, at-
tophysics, and laser optimization knowledge of the precise
duration and shape of ultrashort laser pulses is elementary.
A direct measurement using electrical detectors is impossi-
ble due to their relatively slow response time, and various
pulse retrieval schemes exploiting nonlinear optical effects
have been developed [1,2]. A common self-referenced tech-
nique to measure phase and amplitude of an ultrashort laser
pulse is frequency-resolved optical gating (FROG) [3]. A
pulse to be investigated is split in two replicas, and then a
relative delay is imposed upon the two which are guided into a
nonlinear medium where second harmonic generation (SHG)
takes place. The upconverted light is measured with a spec-
trometer for varying delays. This two-dimensional intensity
map, the trace or spectrogram, encodes all information to
retrieve the enveloping electric field of the investigated pulse.
Other modern self-referenced pulse retrieval schemes vary the
amount of dispersion in the optical path [4] (dispersion scan)
or the relative amplitudes of two pulse replicas [5] (amplitude
swing) instead of the delay to obtain a spectrogram. To invert
the associated autocorrelation-like nonlinear integral the most
successful solvers implement the least-squares method using
generic optimization or search methods [2,6]. Although the
related optimization problem is known to be nonconvex, these
solvers are favorable to approaches inspired by the Gerchberg-
Saxton algorithm [7] like [8–10], which were the first solvers
to be used. They have the tendency to stagnate, in particular,
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in the presence of noise, which has been shown in a recent
comparative study [2].

In this paper we present an algorithm linked to a time-
domain representation of the integral and based on yet
unexplored (for the present problem), to our best knowledge,
numerical methods [11–13] that have been successfully ap-
plied to other difficult to solve nonlinear integral equations in
physics like the Ornstein-Zernike equations [14,15], describ-
ing the direct correlation functions of molecules in liquids,
and the Chandrasekhar H-equation [16] arising in radiative
transfer theory, to name two classical examples. First, this
is Newton’s method. Modern Jacobian-free Newton-Krylov
methods [17], variants of Newton’s method, are the basis of
large-scale nonlinear solvers like KINSOL, NOX, and SNES
[18–20]. Second, homotopy continuation [21–23], a technique
to globalize Newton’s method, has proven to be reliable and
efficient for computing all isolated solutions of polynomial
systems and is the primary computational method for poly-
nomial solvers like Bertini and PHCpack [24,25]. We employ
this method here as there are strong guarantees that a global
solution can be found without stagnation beginning at arbi-
trary initial data—a main obstacle for the above mentioned
solvers which seek the global minimum of a nonconvex opti-
mization problem.

The way in which the continuation method is implemented
here has similarities with techniques in stochastic optimiza-
tion [26–28]. While path tracking towards the solution we
frequently alternate the random matrices, which in any case
would be necessary to reduce the over-determined polynomial
system to square form through random projection. For each
fixed random matrix there is a corresponding homotopy and
continuation path, such that the full solution path is partially
continuous and partially stochastic, consisting of small linked
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path segments on each of which the error decreases monoton-
ically by construction. This is, to our knowledge, a method
for real root finding of polynomial systems [29] that could be
used to find real solutions of similar polynomial systems and
optimal solutions if noise is present.

For the retrieval with realistic noisy experimental data
these methods alone would not be sufficient because New-
ton’s method has certain smoothness assumptions. For that
purpose we chose an integral discretization based on grid cell
(pixel) surface averages and Tikhonov-type regularization.
The Tikhonov factor is adaptively decreased during the solu-
tion process to obtain a near-optimal amount of regularization
at the solution which can be refined using the L-curve method
[30]. The coarsening capability enables fast computations of
low-resolution approximants and noise suppression and on a
hierarchy of finer-pixelization high-accuracy retrievals. Mul-
tilevel approaches for FROG have also been used in [31].

II. NOTATION, INTEGRAL REPRESENTATION,
DISCRETIZATION

The nonlinear integral for SHG-FROG is defined as

I[E ](ω, τ ) :=
∣∣∣∣
∫ +∞

−∞
E (t )E (t − τ )e−iωt dt

∣∣∣∣
2

, (1)

where E (t ) is a complex function, the enveloping electric field
(pulse shape) of the pulse which we assume to be nonzero on
the interval t ∈ [−1, 1] and zero elsewhere,1 with time units
such that this interval has length 2. The outcome of the FROG
experiment is the FROG trace Iexp(ω, τ ) ≈ I[Ein](ω, τ ) of the
pulse to be investigated Ein(t ). We obtain Ein(t ) by solving the
integral equation

I[E ](ω, τ ) − Iexp(ω, τ ) = 0. (2)

We bring (1) into a form better suited for polynomial approx-
imation (removing the explicit t, ω dependence) by Fourier
transform2 ω → σ :

J[E ](τ, σ ) =
∫ +∞

−∞

[∫ +∞

−∞
E (t )E (t − τ )e−iωt dt

×
∫ +∞

−∞
Ē (s)Ē (s − τ )eiωs ds

]
eiωσ dω / (2π ),

J[E ](τ, σ ) =
∫ +∞

−∞
E (t )E (t − τ )Ē (t − σ )Ē (t − τ − σ ) dt .

(3)

In the first line we have split the absolute value in (1) into a
complex integral and its complex conjugate and then applied
the relation

∫ +∞
−∞ eiω[r−(t−σ )] dω = 2πδ[r − (t − σ )], where

we call J[E ](τ, σ ) the double-delay representation of the
SHG-FROG integral and Ē (t ) is the complex conjugate of

1Setting E (t ) on a bounded domain enables clipping of long low-
amplitude wings and zooming to the region of interest on the trace,
saving computational cost. A bounded domain can be used as the
formalism is throughout working in the time domain.

2An analogous formulation for the retrieval in frequency domain is
possible; see Appendix A.

E (t ). For E (t ) nonzero on t ∈ [−1, 1] the trace J[E ](τ, σ )
is nonzero on τ, σ ∈ [−2, 2]. In the following we consider
only the first quadrant τ, σ ∈ [0, 2], as the others are related
through discrete symmetries. We introduce two functions for
clarity of notation:

Fτ (t ) := E (t )E (t − τ ), Gσ (t ) := E (t )Ē (t − σ ), (4)

now

J[E ](τ, σ ) =
∫ +∞

−∞
Fτ (t )F̄τ (t − σ ) dt

=
∫ +∞

−∞
Gσ (t )Gσ (t − τ ) dt . (5)

For fixed τ = const, the integral J[E ](τ, σ ) appears to be
a one-dimensional autocorrelation of the function Fτ (t ). We
discretize the electric field with a piecewise constant function
(polynomial of degree zero),3 in the context of numerical
integration often called the midpoint rule,

E (t ) =
{

0 t < −1 or 1 < t
Ek t ∈ [tk, tk+1], k = 0, . . . , N − 1 , (6)

on a uniform t-grid tk = −1 + k h, k = 0, . . . , N with N in-
tervals, where h = 2/N is the grid spacing. In the same way
we define the grids along τ and σ : τi, σi = i h, i = 0, . . . , N .
If the delay is equal to an integer multiple of the grid spacing,
thus, τ = τi, the product Fτi (t ) is again piecewise constant [see
Fig. 1 (bottom left)], which we abbreviate as (i)Fk = Fτi (tk ) =
EkEk+i. Then the integrand of J[E ](τi, σ ) [see Fig. 1 (bottom
right)] is also piecewise constant on small parallelograms4 and
integration over t disassembles into two sums of N subinte-
grals for the jth σ interval σ ∈ [σ j, σ j+1] [ jth column in Fig. 1
(bottom right)]:

J[E ](τi, σ ) = h
∫ 1

σ̂−1
dt̂

N∑
k=1

(i)Fk
(i)F̄k+ j + h

∫ σ̂−1

−1
dt̂

×
N∑

k=1

(i)Fk
(i)F̄k+ j+1, σ ∈ [σ j, σ j+1], (7)

J[E ](τi, σ ) = h(2 − σ̂ ) corr((i)Fk,
(i)F̄ k ) j

+ h σ̂ corr((i)Fk,
(i)F̄ k ) j+1, (8)

where σ̂ ∈ [0, 2] and t̂ ∈ [−1, 1] are local coordinates on
the intervals [σ j, σ j+1], [tk, tk+1]. The first sum is collect-
ing all small upper triangles per column in Fig. 1 (bottom
right) and the second the lower triangles. The expression
corr((i)Fk,

(i)F̄k ) j := ∑N
k=1

(i)Fk
(i)F̄k+ j , i = 0, . . . , N − 1 de-

notes the list autocorrelations of (i)Fk that can be computed
with complexity N[N log(N )].5

3It is possible to use piecewise linear or more general polynomials
or splines; see Appendix B.

4The integration boundaries depend on σ̂ ; for the upper and lower
triangles they are

∫ 1
σ̂−1 dt̂/

∫ σ̂−1
−1 dt̂ .

5Alternatively, for the relatively small N considered here, the direct
method to compute the correlation is more efficient for N < 1000
[32] than the FFT-based variant when parallelized on thousands of
cores.
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FIG. 1. Illustrating example: E (t ) discretized with a piecewise constant function on N = 4 intervals (top left). Then the associated products
Fτi (t ) and Fτi (t )Fτi (t − σ ) (bottom) are piecewise constant as well on small parallelograms such that the nonlinear integral J[E ](τ, σ ) (top right)
can be computed via list autocorrelations along all grid segments (red lines). We consider J only in quadrand (+, +), τ, σ ∈ [0, 2] as the other
quadrands are linked through discrete symmetries. J is nonzero only below the diagonal (dashed line) as E (t ) is nonzero on a bounded domain
t ∈ [−1, 1] by definition. E (t ) is generally complex and normalized such that max |J[E ](τ, σ )| = 1.

Equation (7) and the equivalent for Gσ (t ) gives
the nonlinear integral along all grid segments [τi, τi+1],
[σ j, σ j+1], i, j = 0, . . . , N − 1, the red lines in Fig. 1 (top
right). Now N could be chosen such that the τi overlap with
the points of the experimental data, assuming an equally
spaced grid with K points along τ , and the integral equation
be solved similarly to what follows. As a measured trace is
normally noisy, the better way to go is setting up a pixel-
wise instead of a pointwise representation of the equation.
Moreover, on a coarse-graining hierarchy of smaller grids
N1 < N2 < · · · < K the solver is faster and may resolve long-
and short-wavelength components successively.

First, we pixelize the integral J[E ](τ, σ ). For the single
pixel with grid coordinates (τi, σ j ) (lower left corner) we
linearly interpolate the values from the left pixel boundary to
the right boundary

J[E ](τ̂ , σ̂ )left right
i j = J[E ](τi, σ̂ )(1 − τ̂ /2)

+ J[E ](τi+1, σ̂ ) τ̂ /2, (9)

to have the integral approximated inside the pixel. As be-
fore an over-hat denotes local pixel coordinates τ̂ , σ̂ ∈ [0, 2].
Then we integrate J[E ](τ̂ , σ̂ )left right

i j over the pixel surface
normalized by its area to obtain the dimensionless pixel

average

〈J[E ]left right
i j 〉

:=
∫ 2

0

∫ 2

0
J[E ](τ̂ , σ̂ )left right

i j d τ̂ d σ̂

/∫ 2

0

∫ 2

0
d τ̂ d σ̂

= 1

2
h

[
corr((i)F k,

(i)F̄ k ) j + corr((i+1)F k,
(i+1)F̄ k ) j

+ corr((i+1)F k,
(i+1)F̄ k ) j+1 + corr((i)F k,

(i)F̄ k ) j+1
]
.

(10)

The analog can be done for the bottom and top boundary and
the correlation coefficients corr(( j)Gk,

( j)Gk )i improving the
accuracy6 of the approximation. Then the total pixel average
is

〈J[E ]i j〉 := (〈
J[E ]left right

i j

〉 + 〈
J[E ]bottom top

i j

〉)/
2, (11)

6For most applications it is enough to set 〈J[E ]i j〉 := 〈J[E ]left right
i j 〉

speeding up the computations by a factor of two, though sacrificing
some accuracy. Note the swapping of indices for the coefficients of
G.
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FIG. 2. Illustrating example: Synthetic measurement trace with 129 × 129 data points on τ, σ ∈ [0, 2]. Coarse-grained data (only imagi-
nary part shown) on 21 × 21 pixels (40 data points per pixel) enable fast computation of approximants to initialize refined retrievals. Every pixel
of the lower triangular part (21 × (21 + 1)/2) is associated with one equation in (16). If E+ and E− are real roots, then 〈J[E+, E−]i j〉+ and
〈J[E+, E−]i j〉− are real and equivalent to Re[〈J[E+, E−]i j〉], Im[〈J[E+, E−]i j〉]. Note: The exponent 1/4 is convenient for data examination
as (12) constitutes a 4th order polynomial system in the components E+

k , E−
k .

and the pixel average of the nonlinear integral is given by
adding up the list correlation coefficients for each corner
square times 1

2 h/2.
Finally, the pixel averages of the Fourier transformed mea-

surement trace Iexp(ω, τ ) → Jexp(τ, σ ) → 〈Jexp
i j 〉 have to be

computed to set up the polynomial system (12) where these
values constitute the constant part, see Fig. 2. This can be
computed using the trapezoidal rule or simply by averaging
all data points within a pixel.

III. SETTING REAL POLYNOMIAL SYSTEM, REAL
ROOTS, GAUGE CONDITION

The integral equation (2) in double-delay representation is
now discretized,

〈J[E+, E−]i j〉 − 〈
Jexp

i j

〉 = 0, (12)

as a fourth-order polynomial system in the 2N (generally
complex-valued) new variables E+, E− with components
E+

k , E−
k , where we have replaced

E → E+ + i E− and (13)

Ē → E+ − i E− (14)

in (2) to get rid of the operation of complex conjugation.7

Note that the so-created polynomial system has, strictly
speaking, no exact solution as computing the pixel averages of
the nonlinear integral on the one hand and the pixel averages
of the trace come along with numerical and experimental

7This step may appear confusing at first sight, as we double the
number of variables: Newton’s method requires the nonlinear func-
tion to be Lipschitz continuous to guarantee convergence, which
the operations of complex conjugation or taking the absolute value
prevent; see, for example, (1.9.1) in [12]. Similar requirements, often
overlooked, come in hand with the gradient descent method when
applied to least squares.

errors limiting the accuracy. For the polynomial solver in-
troduced in Sec. IV we employ methods from stochastic
optimization to retrieve an optimal solution.

Clearly, if E+, E− are found as real roots of the polyno-
mial system (12), we are dealing with a physical solution.
Then E+ → Re(E ), E− → Im(E ) are nothing but the real and
imaginary parts of the electric field, though, more generally,
complex solutions exist. In the same fashion we create a poly-
nomial system introducing the linear combinations 〈Ji j〉+ =
(〈Ji j〉 + 〈J̄i j〉)/2 and 〈Ji j〉− = (〈Ji j〉 − 〈J̄i j〉)(−i/2):

〈J[E+, E−]i j〉+ − 〈
Jexp

i j

〉+ = 0, (15)

〈J[E+, E−]i j〉− − 〈
Jexp

i j

〉− = 0 (16)

such that the system has real coefficients, and as long as E+
and E− are real, Eq. (15) and (16) are real and imaginary
parts of Eq. (12). The reasons for these rearrangements are the
following: starting with a real initial iterate, Newton’s method
remains real, and we can stick to real arithmetics, which is
about five times faster than using complex variables; more
importantly, we are interested in finding real roots.

For the integral (5) the absolute phase as well as the time
direction of the electric field are not fixed: for any solution
E (t ), the product E (t ) exp(i const) and E (−t ) are also solu-
tions. We fix the rotational symmetry by adding the following
equation to the system (15) and (16):

∫ +∞

−∞
E+(t ) dt −

∫ +∞

−∞
E−(t ) dt = 0

⇒ 2/N
∑N

k=1
(E+

k − E−
k ) = 0, (17)

which we call null gauge condition;8 it fixes the absolute
complex phase but leaves the overall scaling and shape of

8An alternative null gauge condition with the same properties ex-
ists:

∫ +∞
−∞ E+(t ) dt = 0.
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FIG. 3. Solving the polynomial system (18) for a test case on N = 15. Top left: Path tracking the solution curve consisting of small
path segments each corresponding to a single reduced system with fixed random matrix M. Top right: Global distance to target trace of
full (colored) and reduced (gray) system decreases approximately exponentially (on each segment linearly). Bottom left: Local residual after
predictor step (colored) and after corrector step (Newton step) (gray). Bottom right: Relative number of up paths (increasing ‖�C‖) and valid
paths (successful Newton step) when doing trial steps at the end of each segment to find a new path (and new M) along which ‖�C‖ decreases.

E+(t ), E−(t ) free. Moreover, it is a polynomial equation with
real coefficients.

IV. SQUARING THE SYSTEM, NEWTON’S METHOD,
HOMOTOPY CONTINUATION

The systems (12), (15), and (16) consist each of (N +
1)N/2 equations. Only the lower triangular part is nonzero
as E (t ) is zero beyond the domain t ∈ [−1, 1], such that (15)
and (16) contribute (N + 1)N equations. We denote the total
system (15), (16), and (17) with (N + 1)N + 1 equations as

F (X ) − C1 = 0, F (X ) :=
⎛
⎝ F1(X1, . . . , X2N )

...

F(N+1)N+1(X1, . . . , X2N )

⎞
⎠,

(18)

where X = {E+
k , E−

k } is the list of 2N variables and F (X )
is the X -dependent part of the set of equations Fk (X ), k =
1, . . . , (N + 1)N for the lower triangular part of (12) flattened
to a list and, analogously, the constant part of (12) (pixel trace
averages) is flattened to the list C1 k, k = 1, . . . , (N + 1)N .
The last equation F(N+1)N+1(X ) − C1 (N+1)N+1 = 0 is set to be
the gauge condition (17).

The polynomial system (18) is overdetermined. Moreover,
due to numerical and experimental errors, it has no exact
solution. We multiply9 the vector of equations with a random
matrix M, which can be reshuffled, having dimensions such
that the reduced system has as many equations as variables.
Then the Jacobian of the reduced system is well defined and
by alternating random matrices stochastic optimization can be
integrated. Here we choose M with i.i.d. Rademacher random
variables (taking values {−1,+1} with probability 1/2) to
reduce the first (N + 1)N equations to 2N − 1 and attach the
gauge condition as before at the end. We denote the reduced
system as

F M (X ) − CM
1 = 0. (19)

It contains all isolated roots of the original system which
Bertini’s theorem guarantees (see, for example, Sec. 1.1.4 in
[24]) and additional “spurious” roots which do not solve (18)
and which will differ, if M is reshuffled. As shown later, at

9For Rademacher variables this operation is implemented without
any multiplication: 50% of all equations are added up randomly
chosen, and the sum of the remaining equations is subtracted to
obtain one new equation. Moreover, Rademacher variables do not
rescale the noise.
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every step of the solution curve X (S) = {E+
k (S), E−

k (S)} [see
Fig. 3 (top left)] the residual of Eq. (19) will be decreasing.
Simultaneously, at every step it is tested if the residual of
Eq. (18) is decreasing (called the “down path” later), the
matrix M reshuffled otherwise, and the corresponding created
reduced system (19) solved, shown in the colored path seg-
ments in Fig. 3 (top left). Then the solver cannot converge to
spurious roots corresponding to any particular M along X (S).

A standard iterative technique for root finding of nonlinear
equations is Newton’s method. Given an initial iterate Xn=0

10

and a nearby root X ∗ the function (19) is linearized at X0,

F M (X0) + F ′M (X0)�X − CM
1 = 0, (20)

solved for �X , the Newton step, and a step towards the root
is taken:

Xn+1 = Xn + �X. (21)

For a one-dimensional function Xn+1 is the point, where the
tangent at X0 crosses the X axes. For vector-valued functions
the derivative F ′M (X0), the Jacobian, is a square matrix and
Eq. (21) a linear system for the unknown �X . The iteration
(21) is known to converge roughly quadratically towards the
root en+1 ∼ e2

n, if the function is Lipschitz continuous (which
polynomial functions satisfy) and the Jacobian nonsingular;
see, for example, 1.2.1 in [12]. Here en = ‖X ∗ − Xn‖ is the
error of the nth iteration with ‖ · ‖ being the standard Eu-
clidean norm on R2N . The roughly quadratic convergence can
be observed monitoring the norm11 ‖F (Xn) − C1‖ and is often
called residual.

For an arbitrarily chosen initial iterate X0 there is, in gen-
eral, no close enough root for the iteration (21) to converge,
so then additional tricks are required to globalize Newton’s
method. The primary computational method for that purpose,
polynomial system solvers like Bertini and PHCpack [24,25],
employ the continuation method, where a homotopy is assem-
bled,

HM (X, s) := [
F M (X ) − CM

0

]
(1 − s) + [

F M (X ) − CM
1

]
s,

with HM (X (s = 0), 0) = 0, (22)

which is connecting two polynomial systems and all roots of
them via smooth curves X (s), the start system (first term) at
s = 0 and the target system (second term) at s = 1, where s
is the continuation parameter, and, in general, a curve in the
complex plane, in the following real s ∈ [0, 1].

An X (s = 0) is chosen freely (normally a Gaussian) to
compute C0 := F (X (s = 0)) in the forward direction. It is
guaranteed that beginning at the solution X (s = 0) of the
so-created start system and following the curve X (s) to arrive
at a solution of the target system, if H ′M (X (s), s) is nonsin-
gular and s an arbitrary complex curve beginning at s = 0
and ending at s = 1. Though, here, we move along real paths

10Abuse of notation; this is a variable vector of length 2N . Here the
index n = 0 denotes the zeroth Newton iteration.

11In the ultrafast optics community instead of the Euclidean norm,
typically the rms error is used, often called FROG error or trace error.

where a finite number of singular points12 exist, as an arbitrary
complex path would render the homotopy to have complex
coefficients and the continuation path would, in general, end
at an undesirable complex root of the target system.

Starting at s = sm with HM (X (sm), sm) = 0 and taking a
step sm+1 = sm + �s with �s small enough along the X (s)
curve, we can guarantee to be close enough to a solution of
HM (X, sm+1) = 0 when using the initial iterate X (sm). This
path tracking [see Fig. 3 (top left)] is usually done in a
predictor-corrector scheme with adaptive step size control.
We use step size parameters as in PHCpack [25], a predictor
given by the local tangent, and one Newton step as a corrector
(reusing the Jacobian to compute the new local tangent).

For any particular M we track the path X (s), hold the
tracker, and reshuffle M at a break point s = sb:

HM (X, sb) = F M (X (sb)) − CM
b = 0,

where CM
b = CM

0 − sb(CM
0 − CM

1 ), (23)

whenever close to a singular point or if the residual of the full
system (18) ‖�C(s)‖ = ‖F (s) − C1‖ increases, also called
momentary distance to the target trace. For the randomly
reduced system we use the intermediate solution X (sb) as an
initial iterate for the corresponding homotopy beginning at
s = 0. In this manner, we get a collection of path segments
{sbi}i=1,... where S = sb1 + sb2 + · · · is the total continuation
time [see Fig. 3 (top left, colored segments)] with decreasing
‖�C(S)‖ (top right, colored).

The error of the reduced system (momentary distance
to the reduced target trace) (top right, gray) ‖�CM (S)‖ =
‖F M (S) − CM

1 ‖ = ‖CM
bi

− CM
1 ‖ decreases linearly for each

path segment:
∥∥CM

bi
− CM

1

∥∥ >
∥∥CM

bi+1
− CM

1

∥∥ = (1 − sbi )
∥∥CM

bi
− CM

1

∥∥ (24)

⇒ ‖�CM (S)‖ ≈ − d

dS
‖�CM (S)‖

⇒ ‖�CM (S)‖ ≈ ‖�CM (S = 0)‖e−S, (25)

12The structure of singular points for real homotopies like (22)
has been fully characterized [33]: These singularities are quadratic
turning points or simple folds, where two real and two complex
conjugated solution branches meet, rotated by π/2 in the complex
plan and toughening at their turning points, the simple fold. Both
branches smoothly transit the turning point, if an arc-length parame-
ter is used instead of s or a pseudo-arc-length continuation [34]. Then
it is possible to follow the real curve through the bifurcation point or,
alternatively, jump onto the complex solution branch. Following the
real branch we simply return to a new real root of the start system;
continuing the complex branch we either end up on a complex root
(or its complex conjugate) of the target system or eventually flow
into another simple fold where a transition to another real branch
is possible. We implemented a pseudo-arc-length continuation. Un-
fortunately, after passing a simple fold along the complex branch it
is unlikely that it touches another simple fold and rather ends up
on an undesired complex solution of the target system. The same
phenomenon has been observed in [35] in the attempt to bypass these
singular points towards real roots.
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and as the length of each path segment is relatively small sb 
S, globally, the total error decrease appears like an exponential
decay in S.

Initially, the distance ‖�C(S)‖ is decreasing approxi-
mately linearly as well on each segment. We are moving along
smooth curves, stepping along any newly created path with
decreasing ‖�C(S)‖, which we call down paths as opposed
to up paths; it is likely that the next step is also decreasing.
The number of steps before reaching a break point (‖�C(S)‖
increases) is getting smaller as X (S) is getting closer to the
optimum, until no significant reduction of the error is possible
when reaching the accuracy limit set by numerical errors or
noise floor.

At every break point trial predictor-corrector steps are
computed for created randomized systems until a down path
has been found. If the trail step succeeds (Newton’s method
converges), the path is called a valid path,13 which can be
either an up or down path. Clearly, the probability of finding
an up path from the list of all valid paths is an important
quantity, which we denote as pup.14 We found that almost
every valid path is a down path before reaching the accuracy
limit for noisy systems. Then pup rises steeply [see Fig. 3 (bot-
tom right)]. This intrinsic quantity is, thus, most practical and
sensitive to stop the solver by setting a threshold pstop

up > pup

at pstop
up = 50%–90%, for example.

V. ADAPTIVE REGULARIZATION FOR NOISY TRACES

In this section we show how to make the algorithm work
for pulse retrieval of noisy experimental data.

One effect of computing the integral (1) in the forward
direction given E is smoothing as we are dealing with an
autocorrelation-like nonlinear integral. Contrary, the inverse
mapping acts as a high-pass filter with the undesirable ten-
dency of noise amplification, which is rather problematic
when using Newton’s method. We resolve this phenomenon
by adding a regularization term to the equations. Tikhonov
regularization or ridge regression, when solving an ill-posed
least-squares problem, has a long history in statistics; see, for
example, [36].

The pixelwise smoothing of the trace (11) is providing
noise reduction and thereby implicit regularization. As the
pixelization is refined, steep local gradients arise when sam-
pling a set of continuation paths, causing the path tracker
to reduce the step size to very small and leading to smaller
and smaller path segments, until the smoothness assumptions

13This automatically excludes all continuation paths for which the
conditioning of the local Jacobian is bad and those with high veloci-
ties or curvature. In practice, we first compute the full Jacobian and
then try several random projections. In this way we have the cost
of computing the full Jacobian at the beginning of every new path
segment only once.

14An efficient and still accurate enough method to estimate this
quantity is, rather than computing many trail steps for every path
segment, to keep a running list of the last, say, 20 trials of the
preceding path segments. The step size for computing trial steps for
each path segment over the whole path has to be the same to make
this quantity comparable.

coming with Newton’s method do not apply. Then more direct
countermeasures are required.

Analogously to Tikhonov regularization we add a penalty
term K (X, λ) with components Kl (X, λ), l = 1, . . . , N (N +
1) to the first N (N + 1) equations of the original system (18),
which gives preference to solutions with smaller norms, also
known as L2 regularization:15

F (X ) + K (X, λ) − C1 = 0, K (X, λ) := λ Mi
reg∂i‖X‖2,

(26)

where λ is the Tikhonov factor to scale the penalty term and
Mi

reg a shuffle matrix which remains constant through out the
path tracking and can be used for validation purposes via
reshuffling and repeating the tracking.

For piecewise constant approximants (6) to E (t ) we get

∂l‖X‖2 = ∂l

2N−1∑
i=0

(Xi+1 − Xi )
2 = 0,

l = 0, . . . , 2N − 1 (27)

= (Xl−1 − 2Xl + Xl+1)

= 0, and (optional boundary condition), (28)

which is nothing but the second-order finite difference of X
on a three-point stencil (up to a factor), which means Eq. (26)
gives preference to solutions with small mean curvature and
implements the desired smoothing effect. An optional bound-
ary condition can be added, for example, E+/−

k=−1 = 0 and

E+/−
k=N = 0, where we added two extra intervals on each end

of the grid.
The penalty term alters the solution because as little regu-

larization as necessary is wanted at the target solution, though,
while path tracking, λ, can be larger, and this is actually
beneficial from a numerical point of view as it improves
the conditioning of the Jacobian, and smoother intermediate
solutions enable longer path segments and larger steps. By
slowly decreasing16 λ [see Fig. 4 (top right)], we can ensure
that smooth initial data are connected by a series of smooth
intermediate solutions to the smooth target [Fig. 4 (bottom
right)].

Moving along any path segment and the related homotopy
of (26), where we hold λ constant, F is deformed slightly
towards an improved match with the target trace C1 for a
class of curves with similar mean curvature. Therefore, the
difference ‖F + K − C1‖ − ‖F − C1‖ is growing along each
segment, while, of course, both are decreasing simultaneously
[see Fig. 4 (top left)], until, to improve the match further, the
amount of smoothness must be reduced by decreasing λ (top
right). Finally, the match cannot be significantly improved by
allowing rougher curves. Even further reducing λ would cause
matching F to the noise and the afore-mentioned shortening

15For Tikhonov regularization the penalty term which is ‖X‖ is
added to the least-squares problem. Roots of the first derivative of
this sum w.r.t. X correspond to regularized minima.

16On the other hand, throttling λ too slowly during the path tracking
may cause an undesired prolongation of the path.
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FIG. 4. Solving the polynomial system including a Tikhonov-type penalty term. Top right: The size of λ is constant along each path
segment (see Fig. 3) and adaptively decreased at the end of each segment, if a threshold on the relative size of the regularization term is
crossed δ

regul
�C < 20% [Eq. (29)] for three different noise levels 0% (green), 1% (yellow), 2% (blue). Bottom left: The relative size of the penalty

term K on each segment is growing and globally adaptively reduced. Top left: The distances to the target trace with (opaque colored) and
without (full colored) penalty term are simultaneously decreasing along each path segment, while their difference is increasing because F is
deformed slightly towards an improved match with the target trace C1 for a class of curves with similar mean curvature. Then in the noiseless
case (green) [noisy case (yellow, blue)], δ

regul
�C vanishes [settles] where λ is near optimal. Bottom right: Beginning at a zero phase Gaussian

E (s = 0), connected by a series of smooth intermediate solutions the path tracker continues towards the target pulse (dashed gray, only first
200 iterations shown).

of path segments and step size due to steeper local gradients—
wasted computational cost. The relative difference

δ
regul
�C := (‖F + K − C1‖ − ‖F − C1‖) / ‖F + K − C1‖

(29)

is, thus, an ideal candidate for setting a threshold to lower
λ from one path segment to the other. Moreover, δ

regul
�C is

inert to details of the solution and noise model and vanishes
if no noise is present. For Fig. 4 the threshold was set at
δ

regul
�C < 20%.

When starting from very smooth initial data, like an initial
Gaussian, in the coarse initial phase (first 100 iteration) the
size of the penalty term can grow undesirably [Fig. 4 (bottom
left)] before the above mechanism can set in because the
intermediate solutions attain flection. (For the same reason
the relative size of the penalty term grows along each path
segment.) This is prevented by adding another threshold for
decreasing λ, if ‖K‖ / ‖F + K‖ rises above, say, 30%. Of
course, if informed initial data are at hand, like a solution from
a coarser grid, this is not necessary.

As shown in the following section this adaptation mech-
anism is steering λ near optimality or close enough for

fine-tuning, for example, using the L-curve method or some
other tool.

VI. APPLICATION EXAMPLES, CONVERGENCE,
PRACTICAL CONCERNS

We implemented the algorithm as a hybrid code in
Mathematica (prototyping, pre- and post-processing) and in
Fortran90 (core routine path tracker). All simulations were
performed on an Intel Core i7-4790 CPU3.6GHz with four
cores on 8 GB RAM, Linux OS, and using OpenMP paral-
lelization and the Intel compiler.

As test cases we selected the pulse with index 42 (TBP2)
from the database of 101 randomly generated pulses with
time-bandwidth product (TBP) equal to 2, which were used in
[2] to profile their least-squares solver, another less intricate
test pulse (TBP1) using the same generator with TBP = 1
and a third test case (A2908). For other test cases we found
the same universal convergence behavior as shown in the
following. For every run a different seed is used to initialize
the Xorshift random number generator “xoshiro256+” [37]
for computing the random matrices M.
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To show the applicability to realistic defective traces Gaus-
sian noise is added with σnoise = 1%, 2%, 3% to the synthetic
trace Iexp(ω, τ ) = I[Ein](ω, τ ) + noise before17 Fourier trans-
forming it to Jexp(τ, σ ). We study the effect of varying
[see Eq. (29)], the regularization reduction threshold δ

regul
�C =

5%, 25%, 40% (controlling the decrease of λ while path
tracking; see Sec. V), as well as the effect of varying the ter-
mination criterion to stop the solver pstop

up = 50%, 70%, 90%
on the error convergence while fine-graining the pixelization,
increasing N . Here we measure the retrieval accuracy or pulse
error ε as

ε = ‖E − Ein‖ /
√

N / max(|E |) (30)

instead of using the relative error norm ‖E − Ein‖/‖E‖ to
make results comparable with the literature, in particular, [2].
The scaling behavior with N is the same for both metrics.
To measure the (pixelwise) trace error we use the relative
Euclidean distance to the target trace ‖�C‖ / ‖C‖ as before. In
the literature on ultrafast nonlinear optics often the rms error,
also called FROG error, is used.

A. Initialization, first example

As a first example, already discussed above, the retrieval of
test pulse A2908 (dashed curves) is shown in Fig. 4 (bottom
right) for N = 25 with σnoise = 1%, δ

regul
�C = 25%, pstop

up =
90%. Initial data were set to a Gaussian bell curve with zero
phase, where the initial width of the Gaussian is set to min-
imize the polynomial system including penalty term (26) for
some large enough initial value of λ.

The synthetic measurement trace with 129 × 129 points
was coarse grained to N × N = 25 × 25 pixels. In Fig. 4
(top left) the convergence of the trace error while it-
erating along the solution path is shown, already dis-
cussed in a previous section. When averaging over 100
retrievals we get mean trace error/evolution time/within
iterations: 0.04/1 s/200, 0.02/2 s/400, 0.019/2.5 s/500;
compare with Fig. 4 (top left).

For test pulses without gaps (points or regions with zero
amplitude) like TPB1 and A2908 we found no cases of
stagnation independent of the noise level, for the retrieval
probabilities with noise of the most common solvers (see
Fig. 7 [2]). For test pulse TBP2 about 2% of all runs stagnate.
In the gap region E+ and E− are restricted to be zero, and
configurations18 appear that cannot be freely deformed into
one another under the constraint of moving along real “down

17The noise is chosen to have zero mean; if this is not the case,
either a background subtraction of Iexp(ω, τ ) has to be done, or
equivalently the zero mode after Fourier transform has to be removed
and interpolated for Jexp(τ, σ ), which we consider the cleaner choice.
The trace Jexp(τ, σ ) ≈ J[Ein](τ, σ ) is initially normalized to have
its absolute value maximum equal to one. Then every initial data
E should be scaled for the integral J[E ](τ, σ ) to have the same
property.

18Taking as an example a double pulse (two pulses separated by
a gap) with quadratic phase we found that two false configurations
appear which have a small trace error and the correct quadratic phase
along each of the two pulses but a phase jump of +π or −π at the

FIG. 5. Performance overview: Retrieval time vs N with 1%
additive noise and three different values for the termination criterion
pstop

up and the resulting retrieval accuracy, number of iterations, and
retrieval accuracy after applying additional refinement steps all aver-
aged over 10 runs. Initial data for one level is the interpolated result
from the next coarser level. The plot implies choosing as smaller pstop

up

while cascading towards the final grid and do refined retrievals there.

paths.” Introducing a lifted electrical field by adding a large
enough constant E → E + c as a new variable which has by
construction no gap resolves the problem, which we study in
more detail in [38].

At the moment the following practical work-around can
be used: first, compute k trial runs (k ≈ 5) with a zero phase
initial Gaussian, zero phase on a coarse grid N = 15 to N =
25, which takes about 0.3 s to 1 s per run. Then the correct
initialization for a fine grid retrieval using this result as initial
data has chances 1–0.10k if the coarse grid retrievals fail in,
for example, 10% of the cases.

B. Retrieval timing, computational cost

A more detailed overview of the timing, number of iter-
ations, and the influence of the termination criterion of the
implemented algorithm is shown in Fig. 5. Every data point
corresponds to an average over 10 runs. As a test case we
used the pulse TBP1 with σnoise = 1%. Initial data for one
level are the interpolated result from the next coarser level.
Then the number of iterations before termination decreases
approximately linearly with N for noisy traces and is constant
for noiseless cases (not shown here). As mentioned before, a
speedup by a factor of two is possible, as any of the summands
in Eq. (11) suffice to approximated the total pixel average.
Here we use both terms.

A larger value of pstop
up results in higher accuracy, but the

additional costs usually do not justify the small improvement
on ε at every intermediate level. Figure 5 suggests using
pstop

up = 50% on coarser grids before reaching the target level
and doing refinement there, if required. If speed is a con-
cern, the number of intermediate levels can be optimized. For
our purposes a single initial coarse grid and one fine grid

gap. For larger gaps we found a greater likelihood to run into these
configurations in numerical experiments.
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FIG. 6. Error convergence vs N : Average (full colored points) final pulse error ε (a, c, d) and trace error ‖�C‖/‖C‖ (b) on 14 pixelizations
for the test cases TBP1 and TBP2 with and without noise. Two examples of the retrieved electric field on a coarse (e) and medium (f) pixelized
grid for TBP1. (g) vs (h): Comparison of our solver with the result of a least-squares solver without regularization. For more details see
Sec. VI C. Note: Here more intermediate grids then necessary are used. Normally, a cascade like N → 20 → 40 → 65 is sufficient.

was enough. As an example Ninitial = 15, Ntarget = 51, we got
εtarget ≈ 0.015, iterations ≈600, retrieval time ≈30 s.

Another practical concern is, if the investigated pulse has
large low-amplitude wings, a large part of the computational
domain and cost are spent on this low-amplitude region, and
a clipping or zoom of the experimental data to the region of
interest is suggestive, setting the wings to zero at first. Then, in
a follow-up retrieval a larger domain could be included using
the result as initial data, if required.

C. Convergence, scaling behavior, comparison

In Figs. 6(a)–6(d) the convergence of pulse and trace er-
ror are studied on 14 grid levels N = 15, 18, . . . , 53 with
six retrievals per N (opaque colored points) and their aver-
ages (full colored points) for test pulses TBP1 and TBP2. In
Figs. 6(e)–6(g) the input pulse shapes are shown (solid lines)
and a retrieval result (points) on N = 15 [Fig. 6(e)], N = 30
[Fig. 6(f)], N = 51 [Fig. 6(g)]. We set pstop

up = 90% and do an
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FIG. 7. Left: Applying the L-curve method for nine different values of λ, 10 retrievals each (opaque colored), mean value (full colored).
Noisy oscillations begin to increase the length of the pulse ‖X‖ when decreasing λ; the trace error ‖�C‖ improves through overfitting. Too
smooth solutions (too large λ) show deviations from the original solution and have larger trace errors. The optimal amount of λ is within the
corner of the L-curve where the pulse error ε is small. Right: 15 randomly offset retrievals of pulse TBP2 (gray lines) on N = 65 intervals. As
the position of the pulse is not fixed relative to the numerical grid; sampling on arbitrary intergrid locations is possible.

additional centering and two refinement steps at every level;
see Sec.VI D.

The retrieval accuracy ε without noise (gray dots and stars)
[Fig. 6(a)] as well as the trace error converge with ∼1/N2

(gray dots and stars) [Fig. 6(b)] as the dominant numerical
error is stemming from the interpolating of J[E ](τ, σ ) from
boundary values to the pixel interior (9), which is of the order
O(h2). This scaling behavior is overlayed with a ∼N increase
of the (pixelwise) relative trace error for noisy traces Jexp,
as the noise suppression scales with ∼1/

√
N2 when averag-

ing over less data points per pixel area for larger N . Still
ε may decrease while ‖�C‖ is increasing as more details
of the pulse are being resolved when increasing N , until ε

becomes approximately constant at the accuracy limit [see
Fig. 6(c)] for TBP1 with 1% noise (solid circles) at about ε =
10−2, N = 50 for TBP2 with 1% (empty circles) at about ε =
10−1.9, N = 65. Resolving more details beyond this point is
possible, if fewer noisy traces are input. The dependence of
the accuracy limit on the noise level is apparent in Fig. 6(a)
(blue, yellow, green). Analogously, for larger enough N the
minimal trace error should depend only on the amount of
noise and not the particular pulse. This is apparent in Fig. 6(b)
[empty (filled) gray and blue points].

To make the numerical integration error apparent when
computing pixel surface averages from the trace Jexp(τ, σ ) →
〈Jexp

i j 〉 we chose two different resolutions 129 × 129 points
(gray dots) versus 257 × 257 (gray stars) in Figs. 6(a) and
6(b). The integration19 error is relevant only if the noise level
is low enough to reach this high accuracy.

An interesting effect becomes apparent when varying the
amount of regularization by varying the threshold δ

regul
�C =

5%, 25%, 40% (pink, violet, blue) [zoom into Fig. 6(b)].

19We use the trapezoidal rule for numerical integration and first-
order interpolation, if the pixel boundaries do not automatically lie on
data grid. First-order interpolation was used to preserve the additive
nature of the noise. For realistic traces, where other sources of error
dominate, higher order interpolation could be used.

However, the trace error is larger for larger λ (violet, blue
vs pink), and the corresponding pulse error, as shown in
Fig. 6(d), is smaller (does not apply to even larger λ).
This is a reminder that retrieval techniques or optimization
codes that aim only at minimizing the trace error without
regularization are prone to fitting the noise; the right balance
between overfitting and oversmoothing has to be found. Con-
sider this when comparing a retrieval of our algorithm with
the result of the least-squares solver (no regularization)20 used
in [2] [see Fig. 6(g) versus Fig. 6(h)].21 As this effect on
the trace error is relatively small, one could also express it
differently: there are many possible pulse shapes of varying
smoothness which have approximately the same trace error
but a rather different pulse error. Through regularization and
coarse graining an optimal pulse shape can be computed.

Due to Tikhonov regularization the presented solver pro-
vides a smoother and more accurate solution in the pulse tails
as well as a smaller total retrieval error22 [see Fig. 6(g) versus
Fig. 6(h), or Fig. 7(right) versus Fig. 6(h)] in comparison
with the least-squares solver of [2]; the computational time
compares to ≈30 s versus ≈10 s. This solver had the lowest
retrieval error for noisy data in comparison with the most
common existing solvers; see Fig. 7 in [2]. Another advantage
of the presented solver is that the retrieval probability does not

20An unpublished version (private repository) of this solver includ-
ing regularization is available by now.

21More grid points (parameters) do not necessarily imply higher
resolution and accuracy. An increase beyond the number of sig-
nificant parameters (effective DOF) for least squares can cause
overfitting. In Fig. 6(g) for TBP2 with 1% noise the pulse error did
improve beyond N = 65, ε = 0.013, and similar to TBP1 with 1%
[see Fig. 6(c)], the accuracy limit is in both cases at about 10−2. As
the position of the pulse relative to the grid is not fixed, the result can
be sampled on arbitrary intergrid locations; see next section.

22The relatively larger error of the presented solver at the pulse’s
peak near t = 0 disappears when refining the resolution.
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depend on the noise level and that the cases of stagnation can
be fully resolved; see Sec. VI A and [38].

D. Optimal λ, refined solution, oversampled solution

The most natural choice to test and fine tune the amount
of regularization for optimality in the presents of additive
noise would be a chi-square test while varying λ because
the pulse error is not available a priori. Considering mod-
ern measurement devices and pulse retrieval setups (see, for
example, [39]), for the problem at hand, where (difficult to
quantify) systematical errors and multiplicative noise are the
most relevant sources of error, a goodness-of-fit test of this
type does not seem applicable yet to a measured trace. A
popular practical solution that we recommend in this case is
the so-called L-curve method [30] until more sophisticated
techniques are required.

An application of the L-curve method for test case TBP1
with σnoise = 2%, N = 36 is shown in Fig. 7, where for fixed
λ (adaptive decrease of λ turned off) 10 retrievals (opaque col-
ored points) and the average (full colored points) are shown.
For smallest λ the retrieved pulses have smallest trace error
(overfitting region), but they do not have the smallest pulse
error. The length ‖X‖ of each pulse is extended by noisy
wiggling about some smoother solution, which is reached for
increasing λ. In the L’s corner, the amount of regularization is
optimal, and the pulse error is minimal.

Note that the overfitted solutions also reveal themselves
by having the smallest spread (opaque colored points) in the
trace error as they differ only by a new random sample of the
reverse amplified noise, all samples having on average about
the same length.

The implemented mechanism to adaptively decrease λ

while path tracking (see Sec. V) steers λ towards optimality.
Here are two examples: log10 λfinal = −1.8 for δ

regul
�C = 5%

and for δ
regul
�C = 25% log10 λfinal = −1.3, which is optimal.

As the ratio of up paths relative to all valid paths pup is
estimated from a finite sample, the number of iterations before
crossing the threshold set by pstop

up differ slightly. To ensure
the solver cannot improve the solution within this threshold
we perturb the solution sightly by shifting it one (or more)
grid points to the left or right and use it as initial data for a
new retrieval. This refinement step does not improve ε much
if the threshold was already set high, pstop

up ≈ 90%, as shown in
Sec. VI B (Fig. 5) but yields a small improvement otherwise.

There is a translational symmetry which has not been
discussed yet: E (t ) → E (t + δt ). This symmetry is, strictly
speaking, broken as the E (t ) is defined on a bounded domain
t ∈ [−1, 1] and zero elsewhere. But as we are dealing with
finite accuracy solutions and as E (t ) models a physical light
pulse with low-amplitude wings, there are actually infinitely
many similar solutions within a given error bound which
differ only by a small shift δt of the pulse relative to the
numerical grid. As a consequence, in particular on coarser
grids any solution should be centered on the numerical grid
before transferring the result. As a benefit, on finer grids, if
we reprocess a solution shifted by some small random inter-
grid distance δt < h via interpolation, the result is a shifted
solution, sampled on slightly different points E (t + δt ). With
this technique the pulse can be sampled on arbitrary intergrid

locations, as shown in Fig. 7 (right), where the above proce-
dure was applied for N = 65 for TBP2 with 1% noise. To be
more precise, “the” oversampled solution is rather an error
band as for noisy traces a spread of near-optimal solutions
within some error bound exists. A small deviation from the
original pulse is apparent when looking at its peak value,
which is caused by the discretization error of E (t ) on N = 65
intervals that should disappear as the grid is refined. We did
the same as above for the pulse TBP2 but with λ = 10−1.7

(not shown). The average pulse error and oscillations in the
error band were slightly less, though small deviations of the
mean curve through the error band from the original pulse
are visible in some regions. This implies that care has to be
taken when fine-tuning λ at the corner of the L-curve, rather,
choosing solutions with slightly less λ, slightly bigger ‖X‖
and averaging to obtain a mean curve. This phenomenon is
also apparent in Fig. 7 (left, compare green, red, violet, brown)
were all four points have small nearby errors; the smallest for
brown, though, is not the optimal choice.

VII. CONCLUSION AND OUTLOOK

An algorithm has been developed having in mind the
applicability to real experimental data for common pulse
retrieval schemes in ultrafast nonlinear optics like FROG,
d-scan, or amplitude swing [3–5]. The employed numerical
techniques have been successfully applied in other fields of
physics, where nonlinear integral equations of similar type
appear, techniques used in polynomial system solvers and
stochastic optimization. It has been shown how to implement
Tikhonov-type regularization into the polynomial equations,
how to adaptively decrease it while path tracking the solution,
and how to fine-tune λ at the solution when dealing with
noisy, defective experimental data. The integral equation was
discretized to a polynomial system such that each equation
corresponds to a grid cell (pixel) surface average of the orig-
inal integral equation, rather than a pointwise representation.
This coarsening capability enables fast computations of ap-
proximants, noise suppression, and high-accuracy retrievals
on fine pixelizations.

The full solution path is a collection of small linked con-
tinuation paths, along each the error decreases monotonically
by construction, where these path segments are associated
with different random projections of the full polynomials sys-
tem. This constitutes an alternative method for path tracking
real solutions of similar overdetermined polynomial systems
through these partially continuous and stochastic solution
paths. Each movement along a single path segment causes a
deformation of the momentary solution in parts in the direc-
tion of the global solution and in parts towards some random
perturbation. These perturbations appear to cancel when path
tracking over a collection of many path segments. Similarly,
perturbations due to added noise seem to compensate each
other, and an optimal solution can be computed. A link to
the theoretical framework developed for the Newton-sketch
method [26,27], or in randomized numerical linear algebra
[28,40], or in other areas of stochastic optimization seems
plausible. The main difference is that the continuation method
is implemented here. This may also be advantageous when
computing the global minimum of nonconvex optimization
problems.
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If speed is a concern, there are two ways to accelerate the
solver: The most immediate solution is parallelizing the list
autocorrelations in (9) on GPUs. Second, it stands to reason
trying Jacobian-free Newton-Krylov methods [17] or other
quasi-Newton methods [12,41] to replace Newton’s method
in the algorithm, which could accelerate the computations by
a factor of N . Third, when reducing the full system to random
linear combinations the Hadamard transform is the method
of choice for dimensional reduction [42,43] for many other
applications in stochastic optimization.

For realistic FROG or d-scan traces additional frequency
dependent functions can be introduced to the nonlinear inte-
gral, which model frequency-dependent systematical errors in
the nonlinear medium and the experimental setup which are
otherwise neglected. These functions could be added to the
list of unknowns and retrieved with the presented algorithm,
similar to [44].

For refining a retrieved pulse further the pointwise repre-
sentation of the integral equation could be used as well [see
Eq. (7)] if the quality of the measured data admits this. Then
the numerical integration errors could be avoided with a small
gain in accuracy.

Finally, there are other similar phase retrieval problems in
science and engineering [45,46] and in optics and nonlinear
optics [47–50] where an application of this algorithm seems
plausible.
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APPENDIX A: MODIFICATIONS FOR SIMILAR
INTEGRALS

The algorithm is applicable to other similar pulse re-
trieval schemes when replacing the nonlinearity in the
integral (2), E (t )E (t − τ ) → E (t )H (t − τ ). For example, for
polarization-gate FROG or third-harmonic-generation FROG
we have

H (t ) = E (t )Ē (t ), E (t )2,

and the integral (3) becomes

J[E , Ē ](τ, σ ) =
∫ +∞

−∞
E (t )H (t − τ )Ē (t − σ )

× H̄ (t − τ − σ ) dt,

Fτ (t ) := E (t )H (t − τ ),

Gσ (t ) := E (t )H̄ (t − σ ).

For the pulse retrieval scheme d-scan [4], again applying the
convolution theorem, we get

I[E ](z, ω) =
∣∣∣∣
∫ +∞

−∞
Fz(t )2e−iωt dt

∣∣∣∣
2

→ J[E ](z, σ ) =
∫ +∞

−∞
Fz(t )2F̄z(t − σ )2 dt,

Fz(t ) :=
∫ +∞

−∞
Ê (ω)φ̂(ω, z)eiωt dω

→ Fz(t ) =
∫ +∞

−∞
E (t )φ(s − t, z) ds, (A1)

where the function φ̂(ω, z) := ei z k(ω) 23 is known and given
by z the thickness of the material in the beam path, k(ω)
the dispersion of the material, and Ê (ω) and φ̂(ω, z) are
the Fourier transforms of E (t ) and φ(t, z). As before [see
Eq. (5)], along lines of constant z the integral J[E ](z, σ ) is
a one-dimensional autocorrelation of the function Fz(t )2, and
the pixel average can be computed with (11). To compute Fz(t )
an additional complex convolution with the material function
φ(s, z) has to be evaluated instead of a multiplication. When
using piecewise-constant approximants for E (t ) and φ(s, z)
the corresponding list convolution can be computed as before
with Eq. (7).

Another useful formula is given by an equivalent form of
the nonlinear integral (1) using the frequency domain repre-
sentation Ê (ω) of the enveloping electric field

I[E ](ω, τ ) :=
∣∣∣∣
∫ +∞

−∞
Ê (ω − �)Ê (�)ei�τ d�

∣∣∣∣
2

; (A2)

applying a Fourier transform as before but in the variable
τ → ρ and with an opposite sign, the frequency domain
representation of the integral Ĵ[E ](ρ, ω) appears to be an
autoconvolution instead of an autocorrelation in the auxiliary
variable F̂ω(�)

Ĵ[E ](ρ, ω) =
∫ +∞

−∞
F̂ω(�) ¯̂Fω(ρ − �) d�,

F̂ω(�) := Ê (�)Ê (ω − �). (A3)

Therefore, instead of retrieving E (t ) the whole formalism can
be rephrased to retrieve Ê (ω). The same applies to the other
pulse retrieval schemes from above.

APPENDIX B: HIGHER ORDER POLYNOMIALS, SPLINES

It is possible to use polynomials of higher order, like
splines in each interval; compare with Eq. (6):

E (t ) =
{

0 t < −1 or 1 < t∑p
A=0 EA

k t̂A t ∈ [tk, tk+1], k = 0, . . . , N − 1

23For the pulse retrieval scheme amplitude-swing φ̂ := φ̂(ω, θ ) is
a function of ω and the angle θ , the relative orientation of a rotating
birefringent material and a linear polarizer [5].

053306-13



MICHAEL JASIULEK PHYSICAL REVIEW E 103, 053306 (2021)

with polynomial order p and t̂ is again the local interval coordinate. Then the function Fτ (t )
(i)Fk (t̂ ) = E0

k E0
k+i + (E0

k E1
k+i + E0

k E1
k+i )t̂ + · · · ,

(i)Fk (t̂ ) = (i)C0
k + (i)C1

k t̂ + · · · + (i)C2p
k t̂2p,

(i)F̄k (t̂ ) = (i)D0
k + (i)D1

k t̂ + · · · + (i)D2p
k t̂2p

discretizes into a polynomial of order 2p for which the integration in Eq. (7) becomes

J[E ](τi, σ ) = h
(2p+1)2∑

m=0

∫ 1

σ̂−1
t̂ A(m)(t̂ − σ̂ )B(m)dt̂

N∑
k=1

(i)CA(m)
k

(i)DB(m)
k+ j + · · · , (B1)

where we use an index vector (A(m), B(m)) in degree lexicographical order with lowest order first:

〈
J[E ]left right

i j

〉 = h

4

(2p+1)2∑
m=0

vm
(
corr((i)CA(m)

k,
(i)DB(m)

k ) j + corr((i+1)CA(m)
k,

(i+1)DB(m)
k ) j

)

+ h

4

(2p+1)2∑
m=0

wm
(
corr((i)CA(m)

k,
(i)DB(m)

k ) j+1 + corr((i+1)CA(m)
k,

(i+1)DB(m)
k ) j+1

)
.

As an example, consider a polynomial chain p = 1, then (i)CA
k , A = 0, . . . , 2 and (2p + 1)2 = 9 list correlations

that have to be computed on every interval as compared to 1 for p = 0. The index vector is (A(m), B(m)) =
((0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (1, 2), (2, 1), (2, 2)). The canonical integrals over t̂ in Eq. (B1) turn into a list of
integers when integrating over t̂ and σ̂ :

vm = (2, −2/3, +2/3, 2/3, 0, 2/3, +2/15, −2/15, 2/9),

wm = (2, +2/3, −2/3, 2/3, 0, 2/3, −2/15, +2/15, 2/9).
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