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Resolving atomic scale details while capturing long-range elastic deformation is the principal difficulty when
solving contact mechanics problems with computer simulations. Fully atomistic simulations must consider large
blocks of atoms to support long-wavelength deformation modes, meaning that most atoms are far removed from
the region of interest. Building on earlier methods that used elastic surface Green’s functions to compute static
substrate deformation, we present a numerically efficient dynamic Green’s function technique to treat realistic,
time-evolving, elastic solids. Our method solves substrate dynamics in reciprocal space and utilizes precomputed
Green’s functions that exactly reproduce elastic interactions without retaining the atomic degrees of freedom in
the bulk. We invoke physical insights to determine the necessary number of explicit substrate layers required
to capture the attenuation of subsurface waves as a function of surface wave vector. We observe that truncating
substrate dynamics at depths that fall as a power of wave vector allows us to accurately model wave propagation
without implementing arbitrary damping. The framework we have developed substantially accelerates molecular
dynamics simulations of large elastic substrates. We apply the method to single asperity contact, impact, and
sliding friction problems and present our preliminary findings.
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I. INTRODUCTION

Mechanical contacts occur in many technical and biolog-
ical systems, and they determine our experience with our
surroundings through touch or when walking. Contact is gov-
erned by a balance between the energy gained when making
intimate atomic contact and the deformation energy required
for surfaces to conform [1,2]. Sophisticated analytical [3–7]
and computational [8–12] continuum models have been de-
veloped over the last century that accurately describe the
deformation energy and contact in the static limit. Those nu-
merical models typically map the subsurface deformation onto
the surface degrees of freedom (DOF), leading to a boundary-
element formulation [1,13] of the surface’s small-strain elastic
response. Continuum boundary-element formulations have
also been developed for the dynamic (typically viscoelastic)
response of a surface within the last decade [14–17].

While continuum contact models accurately depict defor-
mation of solids above the atomic scale, they break down
where stresses, strains, and densities change rapidly [18]. On
the other hand, molecular dynamics (MD) simulations are
a powerful tool commonly used for studying mechanics at
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atomic scales [19], but can quickly be limited in size and time
by computational costs. Yet in contact mechanics, it is often
necessary to retain an atomic-level description of the sample
while studying long-range elastic deformations [20–22].

The number of DOF in atomic systems of linear dimension
L and correspondingly, the computational time per time step
of brute force MD simulations, scales with the sample volume
L3. Furthermore, the time to relax the longest wavelength
modes grows as L, so the total computational time scales as
L4. Interfacial phenomena such as friction, adhesion, and wear
are strongly sensitive to the atomic nature of the interfacial
region but also depend on strain fields away from the interface.
As a result, a principal challenge for atomic simulations is
to resolve the interface while retaining the correct long-range
response.

One way to bridge scales in contact mechanics simulations
is to couple an atomic treatment of the contact interface where
strains may be large with effective descriptions of the bulk
where the response is linear. Continuum boundary-element
methods exploit the linearity in the small-strain limit to in-
tegrate out all bulk DOF and construct a Green’s function for
the surface’s elastic response. In a similar spirit, bulk DOF
can be integrated out for full molecular models of crystalline
substrates, leading to lattice surface Green’s functions [23,24].
Those formulations have proven successful in quickly and
efficiently determining the elastic deformation induced by
quasistatically applied interfacial forces.

We will here refer to the surface Green’s function formu-
lation of crystalline lattices as the contact Green’s function
(CGF) method [23,24]. In combination with damped dynam-
ics for the relaxation of the system, this method is some-
times termed Green’s function molecular dynamics (GFMD)
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[23,25–27]. In our approach, the CGF is constructed from a
harmonic approximation for lattice vibrations, followed by
integrating out DOF far from the region of interest. The har-
monic assumption is justified provided that nonlinear behavior
is confined to the interfacial domain. CGFs are precomputed
in O(L2 ln L) time [24] and contribute negligibly to the total
simulation run time. The quasistatic response of the system
is sufficient for simulations conducted at rates of motion far
below the sound speed, for which the substrate is always
able to relax before interfacial interactions change. In many
scenarios, however, a full dynamical treatment is necessary
and in these cases the quasistatic CGF method is inadequate.

In this paper we present a dynamic contact Green’s func-
tion (DCGF) method for solving time-dependent contact
mechanics problems in atomistic settings. In a semi-infinite
system, modes with in-plane wave vectors �q are excited at
the surface and propagate into the bulk. Surface modes dis-
perse through phonon-phonon coupling into the continuum of
three-dimensional (3D) wave vectors in the bulk, and do not
return to the surface. Modes are effectively damped as they
move away from the interface. Our approach is motivated by
the simple observation that large q = |�q| modes propagate the
shortest distance into solids, while small-q modes persist over
large ranges and times.

We note that analytic dynamic Green’s functions for semi-
infinite substrates have been derived by Kajita et al. [28–30],
who presented an elegant solution to the time-dependent
contact problem without adding explicit damping [29,30].
Their technique differs from ours in that they use a mem-
ory kernel to capture subsurface DOF (see also [14–17] for
the equivalent continuum formulation). Rather than utiliz-
ing a memory kernel, our approach retains the subsurface
DOF explicitly but cuts them off as a function of the depth
that modes propagate into the solid. To justify this trunca-
tion, we add damping to our dynamical equations to model
the phonon-phonon interaction. We use Kelvin damping, a
momentum-conserving damping scheme similar to dissipa-
tive particle dynamics (DPD) [31–33]. There are numerous
other techniques for adding physically motivated damping to
dynamics [27,28,33–36]. Kelvin damping acts on relative mo-
tions between atoms rather than motion itself, a property that
respects Galilean invariance. This leads to a dynamic scheme
that scales as L2 ln L (rather than L3), or L3 ln L (rather than
L4) if we consider relaxation of the longest wavelength modes.

Our formulation has the added benefit that it is straight-
forward to include thermal fluctuations. We present the
relevant stochastic differential equation and derive the cor-
responding fluctuation-dissipation theorem. While the CGF
is able to capture equilibrium thermal fluctuations if com-
bined with an appropriate thermostat [23,37], our approach
extends such treatment to dynamical situations. Since we op-
erate in real space, implementation is simple and compatible
with existing massively parallel MD software packages, e.g.,
LAMMPS [38], which we used for the simulations described in
this paper.

II. DAMPING OF EXCITED MODES

Dissipation emerges naturally when coarse-graining a
molecular system [39], e.g., by partitioning it into a region

of interest and a heat-bath region. This dissipation typically
takes the form of viscous damping, which in the simplest
Markovian incarnation of a drag force on each atom is given
by �F d

i = −γ (�vi − �vref ) where �vi is the velocity of atom i
and �vref is a reference velocity that is often set to zero. The
corresponding relaxation timescale is of order m/γ , where
m is the atomic mass, and is independent of the wavelength
of the excitation. Viscous damping assigns a reference frame,
the laboratory rest frame moving at velocity �vref, and therefore
violates conservation of momentum and Galilean invariance.
The eigenmodes of elastic solids are preserved with weak
viscous damping, but all modes are overdamped in the long-
wavelength limit [40].

The lowest order combination of spatial and temporal
derivatives that satisfies Galilean invariance is Kelvin damp-
ing, which adds a force that damps relative velocities between
nearby atoms �F d

i = ∑
j

�Fi j with

�Fi j = −γ (�vi − �v j )θ (|�ri − �r j |), (1)

where θ (|�ri − �r j |) is a weighting factor that depends on the
distance between atoms and is often set to zero outside the
range of atomic interactions. There is no effect on locally
homogeneous motion or uniform translations of the sample.
For fully 3D wave vectors �k, the rate of energy removed by
this type of damping is proportional to k2 as k → 0. This is
most easily seen by writing �vi = ∫

d3k �v(�k) exp(i�k · �ri ), which
transforms �F d

i = ∑
j

�Fi j [using Eq. (1)] into

�F d (�k) = −γ �v(�k)
∑

j

{
1 − exp(−i�k · �ri j )

}
θ (|�ri j |)

≈ −γ �v(�k)
∑

j

{
i�k · �ri j + 1

2
(�k · �ri j )

2
}
θ (|�ri j |) (2)

with �ri j = �ri − �r j . For an isotropic system,∑
j
�k · �ri jθ (|�ri j |) ≈ 0 and the leading order dissipation is

proportional to k2. Note that this corresponds to a discrete
double spatial derivative and is a general consequence of
momentum conservation.

Consequently, long-wavelength modes in solids are always
underdamped while short-wavelength modes can be over- or
underdamped depending on γ [41]. Note that this is similar to
DPD [31–33] which applies the damping force only along the
direction between atoms, rather than in all directions. DPD
damping also conserves angular momentum while Kelvin
damping does not.

In some nonequilibrium MD simulations, it may be desir-
able to have position-dependent damping. An example is the
so-called “stadium damping” technique, wherein the damping
coefficient increases in strength away from the interface. This
technique has been used with viscous damping in fracture sim-
ulations to absorb phonons at the simulation cell boundaries
[34]. It is straightforward to make Kelvin damping position
dependent by varying the prefactor γ with depth.

All damping schemes can be used to run simulations at
finite temperature by implementing suitable random forces as
determined by the fluctuation-dissipation theorem [42]. The
fluctuation-dissipation theorem relates the temperature to the
damping strength and correlations in the random noise. While
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FIG. 1. Decomposition of DCGF method simulations. The top-
most region is the MD region treated explicitly. The boundary region
must be thicker than rc (gray, shaded circle) to account for all inter-
actions with explicit atoms. Below the boundary, the total depth Ntot

is divided into Ndyn layers treated using the DCGF method and Nstat

layers treated using CGF. The precise decomposition of Ntot depends
upon q.

we focus on athermal systems in this paper, the derivation of
a fluctuation-dissipation theorem and the inclusion of finite-
temperature fluctuations for the formulation presented here is
straightforward and similar to DPD (see Sec. III B) [32].

III. THE DYNAMIC CONTACT GREEN’S FUNCTION
METHOD

The DCGF method seeks to alleviate the computational
costs of simulating bulk elastic solids in dynamic contact
mechanics simulations. Similar to the earlier CGF method
[24], this is accomplished by splitting the physical system
into a region that is treated exactly and an elastic substrate
handled using the harmonic approximation. The simulation is
decomposed into three domains as illustrated in the schematic
shown in Fig. 1. Each domain is discussed separately below.
Note that in all the discussion here, the physical system is a
crystal with a free surface.

A. Explicit atoms

The uppermost region in Fig. 1 contains atoms that are ex-
plicitly represented in the simulation cell. The explicit atoms
domain is composed of the MD region (blue) and the bound-
ary layer (green), which lies on top of the substrate. Atoms in
the MD region contribute to the potential energy via arbitrary
interactions within the MD region and with atoms in the
boundary layer. Interactions between atoms in the MD region

with the boundary layer must have a cutoff rc (shaded gray
circle), beyond which the Hessian vanishes. The boundary
layer must be larger than rc to prevent direct interactions with
the substrate. Note that for the pair potentials used here, rc is
the cut-off radius of the pair interactions, but for many-body
potentials, rc is generally larger than the cutoff used for the
construction of the neighbor list.

The boundary layer bridges the divide between the lin-
ear elastic crystalline substrate and any atoms located above.
Atoms in the boundary layer are also coupled together by lin-
ear elasticity, and interactions between them and the substrate
are governed by the harmonic approximation as described
below. The dynamics of all atoms in the explicit domain are
computed in real space and real time using traditional MD
techniques.

B. Harmonic approximation

The substrate is composed of Ntot + 1 crystalline layers,
including the boundary layer. Each layer is labeled with
index α � Ntot; the boundary layer is α = 0. With the ex-
ception of the boundary layer, atoms in the substrate are not
represented explicitly in the simulation cell—as such, they
cannot interact directly with atoms above the boundary layer.
Rather, substrate atoms are coupled via linearized interac-
tions that facilitate accelerated computation of their dynamics.
We additionally choose layers to be thick enough that direct
interactions only couple adjacent layers. This simplifies the
analytical expressions considerably.

Following the notation of Ref. [24], we invoke the har-
monic approximation within the substrate and expand the
energy to second order about its equilibrium state. The corre-
sponding dynamical equation of a damped harmonic solid is

m
∂2�uiα

∂t2
+

∑
jβ

{
Diα jβ + Giα jβ

∂

∂t

}
�u jβ

= δ0α

( �fi0 + �f exp
i0

)
, (3)

where �uiα is the displacement of an atom from its equilibrium
position. In Eq. (3), m is diagonal and contains atomic masses,
Diα jβ is the force-constant matrix that couples atom i in layer
α with atom j in layer β, and Giα jβ is a matrix that allows for
coupled damping between the same atom pairs. The forces on
the boundary layer (α = 0) from the substrate �fi0 and from
the explicit MD domain �f exp

i0 do not vanish in general. Note
that �fi0 is a constant while �f exp

i0 is a function of the positions
of the atoms in the explicit atoms domain (see Fig. 1).

Note that Eq. (3) can be turned into a Langevin equation
simply by adding a fluctuating random force

�f R
iα =

∑
jβ

Siα jβ �ξ jβ (4)

to the right-hand side of that equation. Here �ξ jβ is a vec-
tor of independent white-noise variables and Siα jβ is the
noise-amplitude matrix. The noise amplitude is related to
the dissipation Giα jβ by the fluctuation-dissipation theorem
[32,42,43] ∑

kγ

Siαkγ ST
jβkγ = 2kBT Giα jβ, (5)

where T is the temperature and kB is Boltzmann’s constant.
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To simplify the problem, the system is transformed into
Fourier space by using the set of in-plane reciprocal lattice
vectors �q while keeping a real-space representation of the
dimension perpendicular to the substrate’s surface. This con-
struction decouples the dynamics of the harmonic system for
each �q in the first surface Brillouin zone (BZ). For each wave
vector �q, one must solve the dynamics of a chain with Ntot + 1
nodes, where each node corresponds to a substrate layer with
index α.

To frame this more concretely, we now construct the
Fourier transform. The real-space lattice vectors that connect
unit cells in the boundary layer are �Ri0, so that unit cells in
lower layers are given by �Riα = �Ri0 + α�a, where �a is the basis
vector between unit cells in neighboring layers. The forward
and reverse Fourier transforms of the displacement are as
follows:

�uα (�q, t ) =
∑

j

�u jα (t )e−i �q· �Rj0 , (6)

�u jα (t ) =
∫

BZ

d2q

ABZ
�uα (�q, t )ei �q· �Rj0 . (7)

The sum in the first equation runs over all the unit cells in the
boundary layer, while the integral in the second equation is
evaluated over the BZ, with area ABZ. Because unit cells are
equivalent due to translational invariance, the force-constant
and damping matrices only depend on distances between unit
cells, given by �Ri0 − �Rj0 and β − α. The Fourier transforms
of the matrices are

Dβ−α (�q) =
∑

k

D jαkβe−i �q·( �Rj0− �Rk0 ), (8)

Gβ−α (�q) =
∑

k

G jαkβe−i �q·( �Rj0− �Rk0 ), (9)

Sβ−α (�q) =
∑

k

S jαkβe−i �q·( �Rj0− �Rk0 ). (10)

All matrix elements with |β − α| > 1 are zero because the
coupling extends only to neighboring layers. The index j
vanishes because of in-plane translational invariance. In what
follows, we use the shorthand notation Dαβ = Dβ−α .

In Fourier space, the dynamical equations for each �q are
decoupled and thus block diagonal

∑
β

{
m

∂2

∂t2
δαβ + Dαβ (�q) + Gαβ (�q)

∂

∂t

}
�uβ (�q, t )

=
∑

β

Sαβ (�q)�ξβ (�q) + δα0 �ftot(�q, t ). (11)

Here, �ftot is the net force acting on the boundary layer from
the substrate and from explicit atoms and �ξβ (�q) are white-
noise variables. The fluctuation-dissipation theorem becomes

∑
γ

Sαγ (�q)S†
βγ (�q) = 2kBT Gαβ (�q). (12)

The elements of Dαβ and Gαβ (and thereby Sαβ ) depend
upon lattice structure, but only a few elements are unique. The
(Ntot + 1) × (Ntot + 1) force-constant matrix Dαβ is given in

Eq. (10) of Ref. [24] and is reproduced here:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

U′
0 V 0 · · · 0 0

V† U′ V · · · 0 0
0 V† U′ · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · U′ V
0 0 0 · · · V† U′

Ntot

⎤
⎥⎥⎥⎥⎥⎥⎦

. (13)

The damping matrix Gαβ has a similar tridiagonal form

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

G′
0 H 0 · · · 0 0

H† G′ H · · · 0 0
0 H† G′ · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · G′ H
0 0 0 · · · H† G′

Ntot

⎤
⎥⎥⎥⎥⎥⎥⎦

. (14)

Diagonal elements Dαα and Gαα represent the intralayer cou-
pling of layer α. The boundary layer α = 0 has missing
neighbors relative to the α > 0 layers, and the intralayer cou-
pling elements U′

0 and G′
0 reflect this. Off-diagonal elements

V and V†, and H and H† represent interlayer coupling of layer
α to layers α + 1 and α − 1, respectively. All other elements
of D and G are zero because atoms are only coupled within
and between adjacent layers.

The final diagonal elements U′
Ntot

and G′
Ntot

depend on the
choice of boundary conditions at the bottom of the substrate.
Free (zero force) boundary conditions correspond to U′

Ntot
=

U′
0 and G′

Ntot
= G′

0, while the rigid (zero displacement) bound-
ary condition is given by U′

Ntot
= U′ and G′

Ntot
= G′.

C. Reduction of the dynamic degrees of freedom

The equations above fully describe the dynamics of the
substrate in the harmonic approximation. The dynamical
equation is propagated forward in time for each �q indepen-
dently. For each �q, the dynamics is that of a chain with Ntot + 1
nodes that are free to move in all directions. Solving the
full dynamical problem for a cubic box therefore involves
∝ (Ntot + 1)3 ∝ L3 DOF.

Three-dimensional contact mechanics simulations often
seek to work in the limit of semi-infinite solids. This limit
is typically approximated by using a finite but large Ntot to
mitigate boundary effects, such as the reflection of pressure
waves at boundaries. Computations become prohibitive for
large Ntot because of the cubic scaling discussed above. We
now propose a scheme to reduce the total number of DOF for
the dynamical contact problem.

In order to understand the dynamics of excited modes in
this system, we consider an infinitely extended 3D crystal.
Carrying out the Fourier transform [see Eqs. (8) and (9)] in
all three Cartesian directions gives the dynamical equation

{−mω2 + D(�k) − iωG(�k)}�u(�k, ω) = 0, (15)

where we have also transformed the time dependency into
the Fourier domain. Equation (15) describes a collection of
coupled damped harmonic oscillators for each (3D) bulk wave
vector �k. We now assume that we can simultaneously diago-
nalize D(�k) and G(�k) with eigenvalues d (�k) and g(�k). (For
the specific forms for D and G discussed below this is not
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possible, but the general discussion still holds.) By virtue of
momentum conservation, the asymptotic behavior is given by
d (�k) = κ (ka)2 and g(�k) = γ (ka)2 for small k where a is some
lattice constant. The admissible values for the wave vectors
are therefore

(ka)2 = mω2

κ − iωγ
. (16)

For a surface excitation with in-plane wave vector �q and
frequency ω, this yields

(kza)2 = mω2

κ − iωγ
− (qa)2 (17)

for the admissible kz traveling into the bulk. For static loading
(ω → 0), we obtain kz = iq. This is an evanescent field that
decays exponentially in the bulk with a characteristic length
λ = 2πq−1. This tells us that deformation can only extend
to a depth proportional to the wavelength, a result known as
Saint-Venant’s principle in the contact mechanics literature
[13,44,45].

For dynamic loading at q > 0, the imaginary part of kz(ω)
has a minimum near the frequency that corresponds to the
phase velocity of propagating waves, ω = cq, where c is the
speed of sound. This minimum describes the wave that decays
slowest and hence determines the maximum depth a wave will
travel. With κ (q) = minω Im[kz(q, ω)], we find κ (q) ∝ q for
large q. This means Saint-Venant’s principle holds even in the
dynamic limit.

The observations above suggest that keeping a full descrip-
tion of the Ntot substrate layers is unnecessary for all q. If
all DOF are retained, Ndyn(q) = Ntot, and the DCGF method
reduces to the brute force approach. However, since the defor-
mation travels at most down to a depth of order q−1, we can
limit the number of layers that we need to explicitly model
for each q to a value Ndyn(q) � Ntot. In particular, we can
choose Ndyn(q) � Ntot for q � 2π/L without substantially
altering the dynamics of the boundary layer. The dynamics
of the Ntot − Ndyn(q) nodes at the bottom of the solid are
simply discarded (see Fig. 1 for a visual representation of this
decomposition). This procedure is only possible because all q
chains are independent in the harmonic approximation.

When terminating the q chains, we benefit from the fact
that the vast majority of wave vectors are concentrated near
the BZ boundary while only a handful of wave vectors are
close to q = 0. Thus, the lengths of chains for large-q modes
comprising the bulk of the substrate DOF can be significantly
reduced, while the handful of small-q modes whose dynam-
ics are sensitive to the substrate depth are handled without
approximation. The only bookkeeping required is that the
minimum number of layers cannot be less than unity, and that
the maximum number of layers for q → 0 must be capped.
In the simulations for L × L surfaces discussed below, we
use Ndyn(q > 0) = max[Ntot(2π/L)/q, Nmin], where Nmin � 2
is the smallest allowed number of substrate layers. For sim-
plicity, in most cases we choose Ntot = L/dz using the layer
spacing dz.

The response to a homogeneous load is determined by
Ndyn(q = 0). If Ndyn(0) diverges, the stiffness resisting uni-
form translations vanishes [10,24]. A practical choice that we

opt for is to set Ndyn(0) to the value for the smallest nonzero
in-plane wave vector, i.e., Ndyn(0) = Ntot. This fixes the sub-
strate reference frame and prevents unbounded translations
that would otherwise result from net forces on the (periodic)
boundary layer. It effectively models a system with a finite
depth of Ntot layers.

Care must be taken to ensure that the long-time substrate
response is correct. Choosing Ndyn(q) ∝ q−1 essentially guar-
antees that all modes have the correct zero-frequency stiffness
by Saint-Venant’s principle. For completeness, we replace the
Nstat(q) = Ntot − Ndyn(q) discarded layers with appropriate ef-
fective stiffness matrices �(�q) obtained by integrating over
Nstat(q) layers using the CGF method [24]. (This corresponds
to the GF domain in Fig. 1.) Stiffness matrices are computed
once at the beginning of the simulation in O(L2 ln L) time, re-
sulting in a negligible increase in total run time. The stiffness
matrix �(�q) replaces U′

Ntot
as the final entry of D in Eq. (13)

and stitches the two substrate domains together.
The dynamics of the Ndyn(q) layers are computed in re-

ciprocal space but in real time for each �q using a velocity
Verlet algorithm [46]. The DGF domain contributes to the
total kinetic energy and to the potential energy within the
harmonic approximation. The GF domain only contributes to
the potential energy.

D. Kelvin damping

Our choice of Ndyn(q) for each chain is justified if reflec-
tions from the ends of shortened chains are negligible. As
described above, this is ensured by using Kelvin damping for
the dissipation of the energy. Kelvin damping mimics cou-
pling of vibrational modes and thereby thermalization of the
system. We can also simply regard it as a means of eliminating
reflection from the bottom boundary. As a consequence of
Galilean invariance, Kelvin damping acts preferentially on
large-q modes without significantly affecting small-q modes.

We include the elements of the damping matrix for nearest-
neighbor-coupled fcc lattices. The fcc crystal is oriented with
the (110), (11̄0), and (001) directions along the x, y, and z
axes, respectively. (The surface normal is along the z axis.)
The basis vector connecting unit cells in adjacent layers is
then �a = dnn(1/2, 1/2,−1/

√
2), where dnn is the nearest-

neighbor spacing. We find

G′ = γ [12 − 2(cx + cy)]I, (18)

G′
0 = γ [8 − 2(cx + cy)]I, (19)

H = −4γ cx/2cy/2 exp
{

i
(qx + qy

2

)
dnn

}
I (20)

with cx = cos(qxdnn), cx/2 = cos( qxdnn

2 ), and I is the 3 × 3
identity matrix. The elements of the force-constant matrix
for this lattice structure with atoms interacting via nearest-
neighbor springs with spring constant kb were derived in
Ref. [24] and are reproduced for completeness here:

U′(�q) = kb

⎛
⎝4 − 2cx 0 0

0 4 − 2cy 0
0 0 4

⎞
⎠, (21)
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U′
0(�q) = kb

⎛
⎝3 − 2cx 0 0

0 3 − 2cy 0
0 0 2

⎞
⎠, (22)

V′(�q) = kbv(�q) exp
{

i
(qx + qy

2

)
dnn

}
, with

v(�q) =
⎛
⎝ −cx/2cy/2 sx/2sy/2 i

√
2sx/2cy/2

sx/2sy/2 −cx/2cy/2 i
√

2cx/2sy/2

i
√

2sx/2cy/2 i
√

2cx/2sy/2 −2cx/2cy/2

⎞
⎠. (23)

It is straightforward but tedious to derive G for other crys-
talline structures. (See Ref. [24] for expressions for D for
other crystalline structures.) In principle, it is possible to allow
γ to vary with depth as in stadium damping [34].

E. Parallel scaling and time complexity

Typically, MD simulations are made parallel by decompos-
ing the simulation cell into a grid, with each process owning
one piece of the grid [38]. Short-range interactions facilitate
the decomposition because atoms on each processor only in-
teract with atoms on processors owning adjacent grid sections.
This procedure fails for dynamics in reciprocal space because
the Fourier representation couples atomic dynamics over all
length scales.

Because Fourier components are decoupled in our simula-
tions, each process can handle a subset of �q independent of
other processes. Communication costs in the DCGF method
are primarily associated with collecting all wave vectors to
take fast Fourier transforms (FFTs). The forward FFT of the
velocities and displacements of the boundary layer and the
reverse FFT of the forces on the boundary layer must be
calculated each time step, but the time for each calculation is
only ∼L2 ln L. Our implementation carries out parallelization
through domain decomposition using a Cartesian decomposi-
tion of the surface with equal areas for each domain. The same
decomposition is used for the BZ. Improved parallel scaling
can be obtained by balancing the number of substrate DOF
belonging to each processor for the velocity Verlet integration
because more DOF are associated with small q than with large
q. This is analogous to load balancing in MD simulations with
traditional domain decomposition where the density varies in
space.

The total number of DOF after truncating the chains
scales as L2 ln L, a marked reduction from the O(L3) DOF
in the atomic solid. The associated scaling of the computa-
tional time is shown in Fig. 2. The time required to relax
the longest wavelengths adds an additional scaling factor
of L to the computational time, so that the DCGF method
scales as L3 ln L compared to L4 scaling for its fully atomic
counterpart.

The scaling is essentially unchanged for more aggressive
choices of Ndyn(�q), which motivates our choice of ∼q−1.
Systems with more than 106 lattice sites in the boundary
layer are easily accessible on just a few processors using the
DCGF method, whereas the largest fully atomic simulations
are usually limited to much smaller sizes.

In cases where the linear response assumed by the DCGF
method is insufficient, it is easy to stack additional lattice
planes on top of the boundary region as part of the explicit
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FIG. 2. Comparison of DCGF method and atomic computational
time per time step for systems with L × L atoms in the boundary
layer. The fully atomic system contains L3 atoms and the computa-
tional time per time step scales similarly as L3 (dashed line). DCGF
method systems contain L2 (DCGF+0) and 9L2 (DCGF+8) atoms
in the MD domain. The corresponding computational time per time
step scales as L2 ln L (solid line).

atoms domain. Atoms in these planes are not governed by
the harmonic approximation and can respond nonlinearly.
Figure 2 demonstrates that the scaling of the computational
time is unaffected provided that the number of added layers
is much smaller than Ntot. We demonstrate the utility of this
approach in later sections.

IV. EFFECT OF DAMPING PARAMETER ON WAVE
PROPAGATION

We have noted that the strength of Kelvin damping de-
pends on wave vector, with long-wavelength modes being
essentially undamped. In the absence of other energy scales,
the damping parameter can be freely chosen to control the
attenuation depth of large q. To illustrate this effect, we show
the subsurface attenuation of surface waves with different
�q = (2π/λ, 0) for an atomic fcc substrate with harmonic
bonds. The waves are excited by turning on and then off (puls-
ing) a small-amplitude force Fz = f0 sin(2πx/λ), where f0 ∝
[1 − cos(2πt/T )]. The force is applied over a single period
T ∼ dnn/c so that the precursor wave propagating with speed
c only penetrates one to two layers before the pulse turns off.
The amplitude of waves propagating in the solid as a function
of depth is calculated by computing |vz(q, t )|2 for each layer
during the time interval prior to the first reflection off the
bottom boundary. Then, we identify the depth zatt where the
maximum amplitude drops below e−3 ≈ 0.05 of the initial
value |vz(q, 0)|2 at the surface. The attenuation depth trend
was similar for other thresholds, but we found that the re-
sults had greater uncertainty for larger thresholds and smaller
thresholds required significantly deeper atomic substrates.

Figure 3 illustrates the attenuation of surface waves with
increasing wavelength λ = 2π/q for different damping pa-
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FIG. 3. Depth of the first layer where the kinetic energy of a
pulsed surface wave drops below e−3 ≈ 0.05 of the initial surface
value as a function of wavelength λ and damping coefficients in-
dicated in the legend. The substrate is fully atomic with Kelvin
damping between neighboring atoms, and the boundary layer con-
tains at least (λ/dnn) × (λ/dnn) lattice sites. The solid line indicates
attenuation depth equal to wavelength corresponding to Saint-
Venant’s principle (see text).

rameters. The attenuation depth scales linearly for small λ

irrespective of γ or threshold, although the absolute depth
shifts with both. For large γ and λ, the depth saturates at a
value much smaller than λ, suggesting that the relative motion
between layers is responsible for the rapid attenuation. Note
that surface modes attenuate even in the absence of damping
due to dispersion into phonons in the full 3D space.

Saint-Venant’s principle says that the zero-frequency de-
formation for wave vectors with magnitude q scales as
exp(−qz). Based on our choice of threshold, zatt is the depth
where qzatt = 3, or zatt/dnn = 3λ/(2πdnn). This is the solid
line drawn in Fig. 3, and it is reasonable to consider the
regimes above and below the line as the under- and over-
damped limits, respectively.

V. COMPARISON WITH ATOMIC SIMULATIONS

In order to demonstrate the efficacy of the DCGF method,
we conducted several simulations to directly compare fully
atomic calculations with DCGF method calculations. Figure 4
shows results from an example simulation in which a dense,
rigid, atomically rough sphere under light load presses into
the substrate after starting just out of contact. Atoms in the
sphere interact with the substrate using a repulsive truncated
Lennard-Jones potential

V (r) = 4ε
[(σ

r

)12
−

(σ

r

)6]
, r � 6

√
2σ. (24)

In this system, the atomic substrate has 128 × 128 × 130 lat-
tice sites and the sphere has a nominal radius of 50σ . The
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FIG. 4. Center of mass displacement of a rigid disordered sphere
under fixed load as a function of time for different DCGF and
atomic systems. The reference system is fully atomic (black) with
128 × 128 × 129 mobile lattice sites. zi is fixed across all simulations
and z f is defined based on the fully atomic system. The denomi-
nator z f − zi = −0.54σ under an applied load of magnitude 5ε/σ .
A truncated atomic system (gray) with 128 × 128 × 33 mobile lat-
tice sites is included to emphasize the importance of depth on both
dynamic and static properties. Agreement with the atomic result
is incrementally improved by stacking additional lattice planes on
top of the DCGF boundary layer. DCGF method systems contain
128 × 128 lattice sites in the boundary layer with the number of
additional lattice planes indicated in the legend.

magnitude of the load applied to the sphere is 5ε/σ . Kelvin
damping acts opposite to relative velocities between bonded
nearest neighbors. The damping coefficient is γ = 1

√
mε/σ

to hasten the approach of the sphere to its resting position.
Comparison of the methods is most easily accomplished by

showing the evolution of a single coordinate that encapsulates
the state of the system. Plotted in Fig. 4 is the change in
height z(t ) − zi of the center of mass (COM) of the sphere,
where zi is the initial height, normalized by the final change
in height z f − zi, where z f is the (mean) resting height of the
sphere in the atomic system. Note that results for the DCGF
method are also normalized by the height change in the atomic
system. The time axis has been shifted to the first crossing
point of the resting position to exclude the initial accelera-
tion period before contact, which is identical for all systems.
While the sphere COM passes the resting position early on,
it oscillates about the final result for an extended duration
because long-wavelength modes are excited in the substrate.
The fluctuations of long-wavelength modes are unavoidable
with Kelvin damping but do not influence time-averaged dy-
namics. They are absent for quasistatic loading. To highlight
the importance of resolving long-wavelength modes, we also
include a truncated atomic system with 128 × 128 × 34 lat-
tice sites.

The DCGF method computes the dynamics of the bound-
ary layer assuming linear response, but surface displacements
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are usually significant in contact simulations. In order to better
capture nonlinear behavior at the surface, we can treat more
layers of the crystal explicitly. These additional layers are
coupled to each other and the boundary layer using the same
bonding and damping schemes as the fully atomic system.
The number of layers in the harmonic region is reduced by
the same number of layers. While the bare DCGF method
(DCGF+0) captures the features of the sphere dynamics,
Fig. 4 shows that simulating more layers explicitly progres-
sively improves the DCGF result. There is a similar shift in
the accuracy of the resting position. Careful consideration is
needed to weigh the additional computational costs of simu-
lating more lattice planes against the accuracy of the nonlinear
response.

VI. DEMONSTRATION OF ERROR

Quantifying error between the DCGF method and atomic
computation is challenging because the set of dynamical vari-
ables is large. Even in a nominally deterministic system like
the bouncing sphere discussed above, there are deviations
between simulations that decorrelate over time. To circumvent
this issue, we present a slight variant of the test above to
illustrate how additional lattice planes reduce the deviations
of the DCGF method from atomic calculations. In this system,
the unloaded sphere travels with a prescribed initial velocity
�v = −vi ẑ into contact, after which it rebounds to infinity. The
initial speed vi is varied to control the dynamics of the impact.
All other interactions are the same as described above for the
bouncing sphere.

The substrate imposes a force �F on the COM of the sphere
that acts to slow it down and reverse its momentum. The im-
pulse responsible for the change in momentum is dominated
by the perpendicular force component Fz, which is always
positive and has a pulselike shape during the collision. The
final speed of the sphere is v f = √

�v f · �v f and the coefficient
of restitution is defined as CR = v f /vi. In-plane force com-
ponents and resulting in-plane velocities are small so that
v f ≈ vz, f . In a perfectly elastic collision, CR = 1, but our
simulations treat viscoelastic solids with internal damping that
dissipates some of the initial total energy.

To provide an estimate of the reliability of the DCGF
method, we computed the maximum change in bond length
found in the fully atomic system, which gives a sense of the
peak strain during the collision. The largest change in bond
length always coincided with the most compressed bond and
grew with the initial speed. The relative error of CR versus
maximum bond length change is plotted in Fig. 5. The figure
shows that even the DCGF+0 system performs well when
bonds are compressed only a few percent but the error grows
substantially with greater changes in bond length. Error is
reduced by introducing additional lattice planes—from about
2% to close to 0.05% in the low strain regime by adding
up to 32 planes—and can be made arbitrarily small with
more lattice planes. When the maximum bond length change
approached 9% for an impact depth ∼0.12R, the similarity
in the errors for the DCGF+8, DCGF+16, and DCGF+32
systems suggests that even 32 additional lattice planes are
insufficient to fully capture nonlinearities. Nonetheless, the er-
ror only reached ∼1% despite the large strain imposed during
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10-1

FIG. 5. Fractional error in the coefficient of restitution for the
DCGF method compared to a fully atomic system with 128 × 128 ×
129 mobile lattice sites. DCGF method systems contain 128 × 128
lattice sites in the boundary layer with the number of additional
lattice planes indicated in the legend. The system is a rigid disordered
sphere with variable initial velocity perpendicular to the boundary.
The sphere rebounds away after contact. Bond length changes are
measured in the atomic system, and always corresponded to the most
compressed bond.

the collision, demonstrating the efficacy of the DCGF method
outside the light load limit.

VII. APPLICATION TO SLIDING FRICTION

Static friction is the lateral force required to initiate sliding
between objects, while kinetic friction refers to the time-
averaged force required for steady sliding. The CGF method
and related techniques have been applied to the problem of
the static friction and quasistatic sliding of nanoscale contacts
[21,22,27,47]. Here, we focus on kinetic friction and in par-
ticular, viscous friction. Viscous friction is a friction law that
relates the kinetic friction force to sliding velocity as Fk ∝ v,
such that Fk vanishes at zero velocity, i.e., there is no static
friction [48–50].

We seek to study the kinetic friction on a one-dimensional
(1D) sinusoidal potential sliding over an elastic fcc solid with
nearest-neighbor coupling kb using the DCGF method. The
sliding potential imposes a lateral force Fx = f0 sin[2π/λ(x −
vt )] to the L × L DCGF boundary layer. Note that the force
acts in the direction of sliding. As a result, the force on each
substrate atom is homogeneous across the y axis. We report
the kinetic friction force Fk normalized by the total mass of the
surface layer M = m(L/dnn)2, where m is the mass of an atom.
The substrate side length L is always a multiple of λ, and λ �
4dnn. The typical atomic displacements � ≡ f0/kb � dnn, so
linear response is valid here.
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FIG. 6. Kinetic friction per unit length imposed by the 1D sinu-
soidal potential moving along x̂ as a function of wavelength. The
friction is normalized by the damping parameter and sliding speed.
(a) Kinetic friction on 3D substrates with sliding speeds indicated
in the legend. The solid line indicates Fk ∝ λ−1. (b) Kinetic friction
on effectively 2D substrates with sliding speed v = 0.01dnn/τ . The
solid line indicates Fk ∝ λ−2.

A stationary wave with v = 0 exerts zero total force on the
substrate when atoms are located at their equilibrium posi-
tions. For v > 0, instantaneous atomic displacements lead to
a net force on the boundary layer. The kinetic friction force
is the negative of the total force imposed on the boundary
layer. We compute Fk by calculating the mean force after long
sliding times, well after the initial transient period.

To test the effect of substrate depth on the kinetic friction,
we ran simulations with large depth (L/dnn = 1024, Ntot =
1024) and small depth (L/dnn = 4096, Ntot = 4), representa-
tive of bulk and quasi-2D substrates, respectively. Simulation
results are shown for different v and λ in Fig. 6(a) (bulk)
and 6(b) (quasi-2D). For any given set of parameters, we
found viscous friction when the sliding velocity was smaller
than about 0.1c, resulting in a universal curve for Fk/γ v. As
expected from linear response theory, Fk was proportional to
�2 [49,50].

Perhaps the most interesting dependence shown in Fig. 6 is
the scaling with wavelength λ. There is relatively little depen-
dence on wavelength for small λ, but both deep and shallow
substrates show power-law decays in Fk for wavelengths
larger than about 20dnn. We observed that the crossover be-
havior shifted to larger λ with increasing γ . Kelvin damping
yields Fk ∝ q2 ∼ λ−2 for large λ, but we instead find that
Fk ∝ λ−1 for deep substrates. For thin substrates, all atoms
contribute to Kelvin damping down to a constant (small) depth
for all λ, yielding the expected λ−2 dependence. However, for
deep substrates the deformation extends down to distances
of order λ. For sufficiently small velocities, the deformation
simply translates along with the surface excitation and there is
no emission of waves into the bulk [51]. This means that the
volume from which dissipation emerges is proportional to λ

for deep substrates while it is constant for shallow substrates.
Thus, the kinetic friction force for deep substrates rises by
the same factor compared to shallow ones. This argument
also holds for shallow substrates when λ is smaller than
the depth, explaining the similarity of Fk for panels (a) and
(b) for λ � 8.

VIII. CONCLUSIONS

In this paper, we have outlined the DCGF method for
accelerating simulations of elastic solids. Using a 2D Fourier
decomposition of the top plane of a crystalline solid and a
real-space representation of the perpendicular direction, we
compute the dynamics of a linear elastic substrate in real
time. In the harmonic approximation, the dynamics of each
surface wave vector �q are decoupled and may be solved
as a chain of nodes corresponding to layers in the sub-
strate. By leveraging the fact that large-q modes disperse
rapidly in solids, we demonstrated that q chains can be
terminated at successively smaller depths with increasing
q without significantly altering the dynamics at the sur-
face. To that end, we incorporated Kelvin damping in our
methodology as a model for phonon-phonon coupling which
prevents reflections for large-q modes with foreshortened q
chains. We presented the associated damping matrices for
Kelvin damping of an fcc (001) surface with nearest-neighbor
coupling. We also discussed how finite temperature calcula-
tions are possible within the present scheme and derived the
fluctuation-dissipation theorem for the underlying Langevin
equation.

As a result of the chain-termination procedure, the total
number of degrees of freedom and resultant computational
time per time step are O(L2 ln L) rather than O(L3), mean-
ing that the DCGF method allows for the simulation of
much larger substrates than conventional brute force MD
simulations. This also implies a similar acceleration fac-
tor for the computational time to relax long-wavelength
modes compared to brute force MD [O(L4) reduces
to O(L3 ln L)].

In cases where linear response is inadequate to study in-
terfacial dynamics, we showed that nonlinear behavior can
still be captured by stacking additional lattice planes on top of
the DCGF boundary layer. In particular, this procedure allows
for the study of surface plasticity provided that the plastic
zone is confined to the explicitly represented lattice planes.
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We provided guidelines for the attenuation of surface modes
away from the interface based on Kelvin damping strength
and gave examples of error compared to atomic simulations
based on the maximum change in bond length. Finally, we
demonstrated that Kelvin damping leads naturally to a viscous
friction law for a sliding sinusoidal potential in the unpinned
limit. For shallow substrates, the kinetic friction force exhib-
ited the expected q2 scaling resulting from Kelvin damping.
For deep substrates, the kinetic friction instead scaled as q
as a result of the extra volume available to dissipate energy
within the bulk, leading to higher friction forces compared to
the shallow substrate.
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