
PHYSICAL REVIEW E 103, 053303 (2021)

Phase reduction technique on a target region

Makoto Iima*

Graduate School of Integrated Life Sciences, Hiroshima University, 1-7-1, Kagamiyama Higashihiroshima, Hiroshima 739-8521, Japan

(Received 31 January 2021; accepted 15 April 2021; published 10 May 2021)

We propose a phase reduction technique that provides the phase sensitivity function, which is one of the
essential functions in phase reduction theory, on a target region. A system with a large degree of freedom and
global coupling, such as an incompressible fluid system, is emphasized. Such a system poses challenges for the
numerical calculation of the phase sensitivity function, which cannot be resolved using known algorithms such
as the direct method or the adjoint method. A combination of the Jacobian-free algorithm and the Rayleigh-Ritz
procedure is proposed to significantly reduce the computational cost and obtain a good approximation of the
phase sensitivity function in a particular region of interest. In addition, the approximation can be assessed using
the Ritz value. The breathing solution of a reaction-diffusion system and the flow past a flat plate are used to
analyze the proposed methods, and the characteristics of the proposed method are discussed.
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I. INTRODUCTION

Phase reduction theory has been applied to rhythmic
phenomena in a wide range of research fields, such as en-
gineering (mechanical vibrations), chemistry (Brillouin-zone
reactions), ecology (flashing fireflies), and physiology (circa-
dian rhythms); it provides a simple and clear vision of the
essential part of the dynamics. In terms of dynamical systems,
phase reduction theory can be used to analyze the state near
a limit cycle (LC). The state near an LC can be described
by a single variable “phase,” φ, and the dynamics of the
phase describes the response to the perturbation, entrainment
to the external oscillating force, and synchronization among
oscillating objects (oscillators) [1,2].

In many rhythmic phenomena, phase synchronization or
phase entrainment is suggested, although a detailed math-
ematical analysis using phase reduction theory has been
applied to limited cases in which simple model equations are
provided. Even if a mathematical model is available, the appli-
cation of phase reduction theory is not always straightforward
because of the computational cost; a typical example is the
incompressible fluid system.

An essential function of the phase reduction theory is the
phase sensitivity function, which describes the phase shift be-
tween two states in close proximity and is used for analyzing
perturbed systems or synchronization among oscillators. To
calculate the phase sensitivity function, two methods are used
[2]: the direct method, in which the phase shift between a
perturbed and an unperturbed system is directly evaluated by
the long-term evolution of those states until convergence; and
the adjoint method [3], in which the adjoint equation of the
original system is integrated into the inverse time direction
until convergence, where the Jacobian along all the points in
the LC is required.
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Although the adjoint method has been widely used to ana-
lyze many rhythmic phenomena, a computational limitation
may apply when the explicit form of the Jacobian is not
available. A typical case is a spatiotemporal phenomenon with
different time scales; when fast phenomena are included to
slow phenomena as a (quasi-)steady state, the state is ob-
tained by solving a partial differential equation (PDE), such
as the Poisson equation (e.g., pressure in a fluid system or
assembled cells, and thermal or concentration distributions) or
the Helmholtz equation (e.g., standing waves inside structures
or organs). In such cases, it is difficult to apply the adjoint
method because such PDEs must be solved to calculate the
Jacobian and the data must be stored for calculation; this
requires a significant amount of memory particularly when
the number of degrees of freedom of the system is large. For
an incompressible fluid, the Poisson equation must be solved
to determine the pressure. Therefore, phase reduction theory
has been applied to limited cases using the direct method
[4–7]; otherwise, the Hele-Shaw flow [8], or Stokes flow,
which do not require the solution of the Poisson equation, is
used. Recently, Kawamura successfully calculated the phase
sensitivity function of the traveling wave of an incompressible
fluid system with solid boundaries [9]. He derived an algebraic
PDE as an adjoint system and included the solid boundary
condition. However, the boundary conditions for an adjoint
system are generally complicated [10]. The implementation
of various boundary conditions used in more practical systems
remains challenging, and efficient and convenient methods are
desired.

Recently, Iima proposed a Jacobian-free algorithm to re-
solve these problems [11]. This method can reduce the
computational cost compared with known methods, and the
entire algorithm can be constructed without an adjoint system;
only the time evolution algorithm of the system is required.
The proposed method was used to analyze von Kármán’s
vortex street [12] to determine the spatial distribution of the
phase sensitivity function [11,13].
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However, for more practical problems with large degrees
of freedom, further reductions are required. In particular, the
demand to obtain the phase sensitivity function on only a
target region is critical because we are often interested in
information in a limited region instead of in the entire com-
putational domain, which is typically set sufficiently large to
reduce the effects of the domain boundary.

Herein, we propose a technique for calculating the phase
sensitivity function. This technique, which is used in combi-
nation with the Jacobian-free method [11], further reduces the
computational cost by focusing on the target region during
analysis. Moreover, this technique can be applied to problems
in which the known methods cannot be analyzed owing to the
complexity of the system.

The remainder of this paper is organized as follows. In
Sec. II, the theoretical background of the proposed method
is discussed based on summarizing the method in Ref. [11].
In Sec. III, the property of the proposed method is discussed
based on an application to a reaction-diffusion system and
incompressible fluid system. In Sec. IV, the results are sum-
marized.

II. THEORY

A. The Jacobian-free algorithm for calculation of the phase
sensitivity function

We provide a short summary of the definitions and no-
tations of the phase reduction theory and Jacobian-free
algorithm to calculate the phase sensitivity function, which
will be combined with the method proposed herein. Studies
that involve the phase reduction theory abound, including
Refs. [1,2]. For the Jacobian-free algorithm, Ref. [11] pro-
vides more detailed information.

Let us consider the n-dimensional autonomous dynamical
systems expressed as

dx
dt

= f (x), (1)

where x = t (x1, · · · , xn) ∈ Rn and f (x) = t ( f1(x),
· · · , fn(x)) : Rn �→ Rn, respectively. It is assumed that
Eq. (1) has a stable LC solution x(t ) = p(t ), where
p(t + T ) = p(t ) for all t , and T is the natural period.

In the phase reduction theory, the (asymptotic) phase
φ of the state x is defined as follows [2]: The phase of
the state on the LC is defined by the time measured from
the origin: φ(t ) = ωt (mod 2π ), where ω = 2π/T . We denote
the solution to Eq. (1) with x(0) = x0 by x(t ; x0). Subse-
quently, the phase of the state x0 near the LC, �(x0), is defined
by �(x0) = φ0, where φ0 is determined using the equation
limt→∞[x(t ; x0) − p(t + φ0/ω)] = 0. Hence, the phase vari-
able �(x) ∈ [0, 2π ) is defined near the LC, in which the phase
of the perturbed state can be discussed based on the LC. By
introducing the phase variable φ, Eq. (1) is reduced to the
phase equation, dφ/dt = ω.

An essential function of the phase reduction theory is the
phase sensitivity function, Z(φ). This function describes the
phase shift between two near-LC states in close proximity,
��, in the following form:

�� = �(x + �x) − �(x) = Z(φ) · �x + O(|�x|2), (2)

where Z(φ) is defined as follows:

Z(φ) = ∂�(x)

∂x

∣∣∣∣
�(x)=φ

. (3)

The phase sensitivity function is used to calculate the phase
equation of the perturbed system in Eq. (1); if we consider
the perturbed equation dx/dt = f (x) + εg(t, x), where ε is
a small parameter, then the phase equation now becomes
dφ/dt = ω + εZ(φ) · g(t, p(φ/ω)). These applications are
discussed in Refs. [1,2].

In the adjoint method, Z(φ) is obtained using the periodic
solution of the following adjoint equation:

dZ̃
dt

= −t J[p(t )]Z̃, (4)

where J is the Jacobian matrix of the dynamical system
(1); its (i, j) component Ji j is Ji j = ∂ fi/∂x j [3], and Z̃(t ) =
(1/ω)Z(ωt ) under normalization Z̃(t ) · f [p(t )] = 1.

It can be shown that Z(φ) is proportional to the vector
function zp(t ) ∈ Rn that satisfies

t zp(t )[Gp(t + T ) − Gp(t )] = 0, (5)

where n × n matrix Gp(t ) is the fundamental solution matrix
of the following linear equation of y:

dy
dt

= J[p(t )]y. (6)

Equation (5) can be derived through both the adjoint equation
[11] and the direct method [14].

Iima [11] proposed an efficient method for calculating
Z(φ) as follows. It is noteworthy that Gp(t ) can be estimated
without differentiation using the following formula,

x(t0 + T ; p(t0) + y0) − x(t0; p(t0) + y0)

� [Gp(t0 + T ) − Gp(t0)]y0, (7)

for small y0. Using Eq. (7), we can obtain the column vectors
of Gp(t + T ) − Gp(t ), whereby zp(t ) can be constructed by
applying the Gram-Schmidt orthogonalization.

As shown above, this method does not require an explicit
expression of the Jacobian; therefore, memory is not required
to store the Jacobian data over one period. In addition, this
method requires only a one-period time evolution per one
column vector of Gp(t + T ) − Gp(t ) and does not require
time evolution calculations until convergence; hence, com-
putation time is reduced compared with the direct method.
However, we require the periodic solution data p(t ) be-
fore calculating zp(t ), which can be obtained by using the
Newton-Raphson method [15]. Further discussions regarding
the characteristics of this method and a comparison with other
methods are available in Refs. [11,14].

B. Redundancy and efficiency

Under some practical problems, the calculation algorithm
may be modified because all of the degrees of freedom are not
always significant for the major part of the phase sensitivity
function. We discuss the typical cases below.

The first case is related to a large computational domain.
Many PDE problems, including incompressible fluids, corre-
spond to this case. In this case, a large computational domain
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must be prepared such that the domain boundary will not
affect the quantities of interest, such as the lift or drag co-
efficients. However, the response to the perturbation at a point
far from the region of interest will be small and may not be
significant. Therefore, a method that focuses on such a target
region will be highly beneficial.

The second case occurs when the variables are not inde-
pendent, e.g., a two-dimensional incompressible fluid. The
incompressible Navier-Stokes equations contain three vari-
ables, u, v, and p, which are the x and y components of
velocity and pressure, respectively. The variables u and v are
not independent because they satisfy the continuity equation
∂u/∂x + ∂v/∂y = 0. In addition, p can be calculated using the
Poisson equation based on the source term determined using
u and v alone. In some cases, these variables can be reduced
by introducing other variables such as the stream functions
[16]. However, when applying the phase reduction theory to
practical problems, the phase response to the perturbation
to controllable variables must be determined, e.g., velocities
and pressure. Therefore, variable reduction may not be the
ultimate solution in all cases, despite the apparent increase
in the number of degrees of freedom to compensate for the
computational cost.

The third case involves the time-integration algorithm. In
some multistep algorithms, we use the step information at one
or more steps prior to the current time step to evaluate the
future state. In such a case, the number of degrees of freedom
in the discretized system is enhanced. A comprehensive case
is the time discretization by the Adams-Bashforth method,
which discretizes Eq. (1) as

xk+1 = xk + 3
2 h f (xk ) − 1

2 h f (xk−1), (8)

where xk = x(kh) and h is the time step. This algorithm is a
map from (xk, xk−1) to (xk+1, xk ) and 2n degrees of freedom
are required to describe the time evolution by the algorithm.
In fact, we must solve the 2n dynamical system to obtain the
periodic solution using the Newton-Raphson method using
this algorithm.

In summary, the target region is not intended for only
the spatial region of interest, but also for the information of
interest for the system. In the next subsection, we propose a
method.

C. Proposed algorithm: Projection method

In this section, we propose an algorithm that approxi-
mates the solution of Eq. (5). We begin with the transposition
of Eq. (5):

Azp(t ) = 0, A = t [Gp(t + T ) − Gp(t )] ∈ Rn×n, (9)

which is regarded as a zero-eigenvalue problem herein.
The Rayleigh-Ritz procedure [17] can be applied to an

approximate subspace of the invariant subspace F of the linear
mapping determined using A. Suppose that the eigenvector
z of A associated with the eigenvalue λ, i.e., Az = λz, sat-
isfies z ∈ F . Let m = dimF and the orthonormal basis of F
be v1, · · · , vm (m � n) for defining the n × m matrix V =
[v1, · · · , vm]. Subsequently, z is represented as z = V y (y ∈
Rm); therefore,

By = λy, B = tVAV ∈ Rm×m. (10)

In this case, we can obtain the eigenvalue and eigenvectors
of the matrix A by solving an eigenvalue problem using the
m × m matrix B, which is of a smaller size. In practical
applications, we prepare a subspace F ′, which is an approx-
imate of F . Subsequently, a similar relationship z = V ′y′,
where V ′ = [v′

1, · · · , v′
m′ ] (m′ = dimF ) is an n × m′ matrix

and v′
1, · · · , v′

m′ is the orthonormal basis of F ′, is established
to provide an approximation of F . Therefore, the correspond-
ing equation is

B′y′ = λ′y′, B′ = tV ′AV ′ ∈ Rm′×m′
, (11)

which is expected to provide a good approximation of the
set of the eigenvalues and the eigenvectors of the original
eigenvalue problem. Such a reduction technique, i.e., the
Rayleigh-Ritz procedure [17], has been applied to many prob-
lems involving large degrees of freedom. The approximated
eigenvalue λ′ is referred to as “Ritz value” hereafter.

For the current problem, we must calculate the eigenvector
associated with the zero eigenvalue of A. However, the corre-
sponding eigenvalue of B′ may not be exactly zero because
F ′ is not identical to F and because of numerical errors.
Therefore, we assume that B′ has a small absolute eigenvalue
but is invertible to solve Eq. (11) for the absolute minimum
eigenvalue, λmin, instead of the zero-eigenvalue problem. Fur-
thermore, we regarded the corresponding eigenvector y′

min as
an approximation of the eigenvector of the original problem.

To calculate y′
min, the inverse power method can be used.

Consider a sequence y0, y1, · · · determined using

yk+1 = B′−1xk, xk = yk

|yk|
. (12)

For almost any y0, the sequence converges rapidly to y′
min

if |λmin| is sufficiently small [17]. If λ1 is the eigenvalue of
B′, the absolute value of which is next closest to zero, then
the convergence factor is expressed as |λmin|/|λ1|, which is
expected to be small if F ′ approximates F well.

It is noteworthy that the value of λmin reflects the proximity
of F ′ to F , i.e., it is equivalent to a relative residue of the
original eigenvalue problem, Az = λz where λ = 0. In fact,
the residue r = Az′ − λz′ = Az′ satisfies

|r|
|z′| = |λmin|, (13)

where z′ = V ′y′
min. Hence, the value of |λmin| is a measure of

the validity of the solution z′.
Once y′

min is obtained, the eigenvector, x′
min, is expressed as

x′
min = V ′y′

min, and the phase sensitivity function is estimated
by the procedure detailed in Sec. II A of Ref. [11]. Hereinafter,
the proposed method is known as “the projection method,”
and the estimated phase sensitivity function is known as the
“projected phase sensitivity function.”

D. Phase sensitivity function for the reduced system

In this section, we estimate the error of the projected
phase sensitivity function. We consider a dynamic system
expressed as

du
dt

= f (u), (14)
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which is the same as that in Eq. (1) but the variables are
changed to u, as a spatially discretized system of a PDE. For
simplicity, we consider the one-dimensional PDE of a single
component u(x, t ) in the domain (x, t ) ∈ [0, L] × [0,∞] (L is
the spatial length scale):

∂u

∂t
= F ({u(x, t )}), (15)

where F is a function of u. It is assumed that Eq. (15) has an
LC and the state near the LC is considered.

Let us discretize the space by n grid points, e.g.,
uk (t ) = u(xk, t ), where xk = (k − 1/2)�x and �x = L/n
(k = 1, 2, · · · , n) to define u = (u1, · · · , un).

When n is changed, Gp(t ) is scaled as 1/n for the following
reason. First, we denote the dimension of u, as well as each
element of u, as [U]. The dimension of F is [UT−1], where
T is the time unit. Subsequently, the Jacobian of F , J , has
the dimension [UT−1L−1], where L is the spatial length unit.
Under the change in n, the components of u are invariant,
but the components of J are scaled as 1/n because the mag-
nitude of the right-hand side of the linearized equation (6)
does not depend on n when n is large. Hence, Gp(t ) is also
scaled to 1/n.

For the following analysis, the phase space (Rn) is seg-
mented into two subspaces, W1 and W2, both of which are
the linear spaces. Here, W1 (dim W1 = m) corresponds to the
target region where the phase sensitivity function assumes
significant values, and W2 = Rn \ W1 is the region outside the
target region where the magnitude of the phase sensitivity
function is not significant.

Further, we assume that Rn is represented by the direct sum
of W1 and W2: Rn = W1

⊕
W2, where W1 = span{v1, · · · , vm}

and W2 = span{vm+1, · · · , vn}, where v1, · · · , vm and
vm+1, · · · , vn are the orthonormal bases of W1 and W2,
respectively. We define the matrices, V1 = [v1, · · · , vm]
(∈ Rn×m), V2 = [vm+1, · · · , vn] (∈ Rn×(n−m)), and V =
[v1, · · · , vn] = [V1 V2](∈ Rn×n), which is an orthonormal
matrix.

Next, the matrix representation of the linear mapping by
Gp(T ) in the base v1, · · · , vn, M, is expressed as

Gp(T )V = [v′
1, · · · , v′

n] = V M, (16)

M =
[

M11 m12

m21 m22

]
, (17)

where M11, m12, m21, and m22 are the m × m, m ×
(n − m), (n − m) × m, and (n − m) × (n − m) matrices,
respectively.

The assumption above results in the magnitude of the com-
ponents of these matrices, as follows: A small parameter ε is
introduced to evaluate the dependency of the magnitude on
n and ε. We assume that the components of M11 are scaled
by O(1)/n, whereas the components of m12, m21, and m22 are
scaled by O(ε)/n. These assumptions imply that the linear
mapping Gp(T ) is significant within W1 alone.

By multiplying t z̃ from the left side of Eq. (16), we obtain

t z̃V = t z̃V M, (18)

because t z̃Gp(T ) = t z̃ using Eq. (5). Subsequently, t z̃V is de-
composed as

t z̃V = [t z̃V1,
t z̃V2] = [t z1,

t z2], (19)

where z1 and z2, which are the m- and (n − m)-dimensional
vectors, respectively, are introduced.

Equation (18) is now rewritten as

t z1 = t z1M11 + t z2m21, (20)

t z2 = t z1m12 + t z2m22. (21)

Let us assume that the components of z1 and z2 are assumed
to be O(1) and O(εa) (a is a non-negative integer), respec-
tively. Subsequently, the order-balance equation derived from
Eq. (21) is

O(εa) = m

n
O(ε) + n − m

n
O(εa+1). (22)

When m/n = O(εb), we obtain a = b + 1 and z2 = O(εb+1).
Therefore, the second term on the right-hand side of Eq. (20)
is O(εb+2):

t z1 = t z1M11 + O(εb+2). (23)

Based on this analysis, we applied perturbation analysis to
Eq. (23). We divide t z1 into two parts as

t z1 = t z1 + t z′
1, (24)

where t z1 is the eigenvector associated with the absolute min-
imum eigenvalue of M11 − Im, i.e.,

t z1(M11 − Im) = λmin
t z1. (25)

Subsequently, t z′
1 = O(max(εb+2), |λmin|) . Equation (25) is

equivalent to Eq. (11) when W1 is selected as F ′. This analysis
suggests that the error of t z1, z′

1, is O(εb+2) if λmin is smaller
than O(εb+2) terms, whereas the components of the omitted
part of the matrix M are O(ε); in this regard, the phase sen-
sitivity function in a target region yielded by the projection
method approximates the original phase sensitivity function
well in this sense.

In summary, the projection method is equivalent to omit-
ting the O(εb+2) terms in Eq. (23) if λmin is sufficiently
small and to approximating the solution z as t [t z1, 0]. Because
b � 0, the omitted terms are O(ε2) or smaller. The ratio m/n
corresponds approximately to the ratio of the target region
to the entire computational domain if all the computational
grid distances are equal. Typically, the entire computational
domain is designed to be sufficiently large such that the effect
of the domain boundary is damped. In this case, the response
to the perturbation is expected to be small near the boundary.
In the next section, we demonstrate the projection method
using the oscillatory motion of the spatially localized solution
(breathing solution) and the flow past the flat plate.
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FIG. 1. (a) Snapshot of (w, v) for phase zero in the entire do-
main. Variables w and v are represented by the solid line and broken
lines, respectively. (b) Eight snapshots obtained from solutions dur-
ing one cycle in the domain [5.0, L].

III. NUMERICAL EXAMPLES

A. Analysis of the breathing solution
of a reaction-diffusion system

1. Breathing solution

In this subsection, we validate the projection method by
analyzing the breathing solution of a one-dimensional, two-
component, reaction-diffusion system [18–20]. This solution
contains an interface, which is the region where the variable
changes rapidly and oscillates within a confined region.

The governing equations are as follows:

ετ
∂u

∂t
= F (u, v) + ε2 ∂2u

∂x2
, (26)

∂v

∂t
= G(u, v) + ∂2v

∂x2
, (27)

F (u, v) = u(1 − u2) − v, G(u, v) = u + d − 8v, (28)

where u(x, t ) and v(x, t ) are independent variables of x and t ,
respectively, and ε, τ , and d are the constants. For the prac-
tical application, we change the variable u(x, t ) to w(x, t ) =
ku(x, t ), where k is a constant, to set the orders of two in-
dependent variables and the phase sensitivity functions to be
the same. Hereinafter w(x, t ) and v(x, t ) will be used as the
independent variables. This change in the variables is impor-
tant for discussing the phase sensitivity function outside the
target region. We remark that the change in variables does not
change to the system described by Eqs. (26)–(28).

The computational domain is [0, L], and the Neumann
boundary condition is applied at both ends of the domain:
∂u/∂x = ∂v/∂x = 0 at x = 0, L. The parameters were set as
ε = 0.05, τ = 0.04, d = −0.1 following Ref. [21], and we set

FIG. 2. (a) Phase sensitivity vector for w, shown in the domain
[4, L]. (b) Same as (a), but for v.

L = 2π and k = 10. The computational domain was divided
by N equal widths where N = 400. The time evolution was
performed by the fourth order Runge-Kutta method.

The periodic solutions of Eqs. (26)–(28), known as “the
breathing solution” [21], are obtained via the Newton-
Raphson method for the periodic solution [11,15]. The relative
error of the residue to the amplitude was less than 10−12.
The natural period of the breathing solution, T , was T =
1.073 300 when one period was segmented into 20 000 equal
time steps.

Figure 1 shows a snapshot of the breathing solution at a
timing where the zero-crossing point of w is minimum, which
is defined as the origin of the phase (phase zero). In Fig. 1(a),
fields of (w, v) are shown in the entire domain. The significant
value change only occurs within a confined region to the left.
Owing to the change in variables, the orders of magnitudes
of w and v are the same, implying that the magnitude of u is

FIG. 3. Components of the phase sensitivity vectors, Qw and Qv .
(a) Phase zero. (b) Phase 2. (c) Phase 4. (d) Phase 6.

053303-5



MAKOTO IIMA PHYSICAL REVIEW E 103, 053303 (2021)

approximately 1/k those of w and v. The w field shows a rapid
change from positive to negative, which shows an interface.

Figure 1(b) shows the behavior of the breathing solution
over one period by eight snapshots at equal time intervals.
In this subsection, phase j corresponds to the time t = jT/8.
The interface of w oscillated within a confined region 5.5 <

x < L. As shown in Fig. 1(b), the interface of w moved right-
ward in the former half of the period (phases from 0 to 4),
and leftward in the latter half (phase during 4, · · · , 7 and 0),
whereas the motion of v was slightly delayed; the distribution
did not change the position significantly during the phases
0 and 1 as well as the phases 4 and 5. The shape of the v

field during the right-moving interval differed from that of
the left-moving interval, indicating that the interfaces did not
maintain the shape owing to the nonlinear interaction between
w and v.

The oscillation mechanism was explained in Ref. [20] as
follows. The origin of the oscillation was due to the Hopf
bifurcation from the steady solution, which occurs when τ is
reduced. Therefore, even in the oscillation region, an unstable
steady solution exists. Let us consider that the interface of w

moves to the right (from the position of the interface of the
unstable solution). Owing to the profile of w, w increased in
the region where the interface was swept. The increase in w

increased the value of v, owing to Eqs. (27) and (28). The
increase in v reduced w owing to Eqs. (26) and (28). The
reduction in w resulted in the interface moving in the inverse
direction, and the interface of w was pushed to the left. Similar
dynamics occurred when the interface moved to the left. These
processes yielded the oscillations. However, it is noteworthy
that the inhomogeneity of the periodic motion clearly shows
that this periodic orbit in the phase space was far from a simple
oscillation, and the phase response to perturbation is expected
to exhibit a strong phase dependence.

2. Projected phase sensitivity functions

The phase sensitivity function was calculated using the
method described in Ref. [11], and converted to the phase
sensitivity vectors, Qw and Qv [11], which are shown in Fig. 2.

Figure 2 shows that Qw assumed significant values in a
region (5 � x) over one period. The peak of Qw corresponded
approximately to the position of the interface of w [Fig. 1(b)],
although the magnitude and sign changed in one period. The
values of Qw were either positive (phases from 0 to 2 and
5 to 7) or negative (phases 3 and 4). Qv was assumed in a
relatively wider region (4 � x). The peak of Qv also corre-
sponded approximately to the position of the interface, and
the values of Qv were negative (phases from 0 and 1, and from
5 to 7) and positive (phase 2 and 3) or both (phase 4). These
characteristics imply that the behavior near the LC was not
symmetric under the translation t → t + T/2, owing to the
LC being far from the Hopf bifurcation point.

Next, we evaluate the phase sensitivity function
using the projection method. Recall that the fields
of w and v were discretized into a 2N-dimensional
space W = {w1, · · · ,wN , v1, · · · , vN } ∈ R2N where
w j = w( j�x, t ), v j = v( j�x, t ), and �x = L/N . We
partitioned the computational domain [0, 2π ] into two
regions, [0, �)(Region 1;R1) and [�, L](Region 2;R2).
Correspondingly, we defined two subspaces W1 and W2

as follows:

W1 = {w j, v j | j�x ∈ R1}, W2 = {w j, v j | j�x ∈ R2}.
(29)

Subspaces W1 and W2 are characterized by the basis of W . If
we define an orthonormal basis of W as {v1, · · · v2N } ([v j]i =
δi j ), the orthonormal basis of Ws (s = 1, 2) is Ws =
span{v j, vN+ j | j = 1, · · · , N, j�x ∈ Rs}. In the following
analysis, we use W2 as the target region. The projection from
W2 to W defines the matrix V ′ in Sec. II C, by which the
projection method can be applied.

The convergence of the inverse power method was de-
termined based on the condition |xk − xk−1| < 10−10 within
20 iterations. Figure 3(a) shows the phase sensitivity vectors
in phase zero by the projection method. Here, the cases for
� = 0 (control; blue solid curves) and � = 4.5, 5.0, 5.2, 5.4
are shown.

FIG. 4. (a) Computational grid and target regions. Target regions are displayed by rectangles with dotted lines A, dashed lines B, broken
lines C, and solid lines D, respectively. Rectangles are slightly shifted such that each region can be clearly distinguished. (b) Velocity and
vorticity fields. Target regions are shown as well.
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FIG. 5. Phase sensitivity vectors obtained using projection method. Colors indicate the magnitude of |Q|. Regions A–C correspond to those
shown in Fig. 4.

The validity of the target regions was evaluated
using λmin, i.e., the absolute minimum Ritz values for
the reduced equation (25). The values were 2.398 ×
10−4(� = 4.5), 1.210 × 10−2(� = 5.0), 4.696 × 10−2(� =
5.2),−1.606 × 10−1(� = 5.4), whereas 1.107 × 10−7 for
the control case. When comparing with the profiles with the
control case, we may conclude that the main profile can be
restored when λmin is approximately 0.1 or less, although the
critical value depends on the accuracy demands. The ratio of
the area (length) of R2 to the entire region for the case where
l = 5.2 is 17.2%.

Because of the change in variables, the orders of the mag-
nitude of Qw and Qv were the same. Based on our selected
values of �, the major profile of Qw was within the target
region R2 for all the cases presented, whereas a portion of the
profile of Qv was outside the target region when � was large.
We estimated the relative magnitude of the phase sensitivity
function, εb, based on the absolute maximum Qv in region
R1 to that in region R2, i.e., 1.227 × 10−2 (� = 4.5), 0.1267
(� = 5.0), 0.2947 (� = 5.2), and 0.6521 (� = 5.4). The values
of εb may correspond to ε in the analysis in Sec. II D.

In the cases where � = 4.5 and 5.0, the calculated Qw and
Qv in the target region yielded almost the same profile as
the control case. It is noteworthy that the target region was
limited (28 and 20% of the entire region for � = 4.5 and
5.0, respectively). When � = 5.2, the profiles of Qw and Qv

were consistent with the control case, although the absolute
peak values of Qw and Qv were slightly larger than those of
the control case. The case � = 5.4 provides an example of
the resultant profiles if the target region does not encompass

the major profiles. The profiles deviated from the control case,
although the qualitative behavior was preserved. These results
were consistent with the analysis in Sec. II D, where the error
of the projected phase sensitivity function was O(ε2) or less.

A similar analysis was performed for different phases (2,
4, and 6). The results, as shown in Figs. 3(b)–3(d), were
consistent with the discussion for the case of phase zero.

B. Two-dimensional flow past a flat plate

We analyzed a two-dimensional viscous flow past a flat
plate in a uniform flow. A fractional step method was used
to solve the incompressible Navier-Stokes equations using an
immersed boundary method [22]. The finite volume method
was used for spatial discretization [23]. The Adams-Bashforth
scheme and the Crank-Nicolson scheme were used for the
time integration of the advection terms and that of the dis-
sipation terms, respectively. The computational code was
modified from that used in Ref. [11] except for the implemen-
tation of the immersed boundary method.

The domain size was [0, 6c] × [0, 4c], where c(= 1) is the
wing cord of the plate. For comparison, the domain size was
set to be small such that the phase sensitivity function for
the velocity in the entire region can be calculated within a
reasonable time. A constant velocity was applied at the bound-
aries x = 0 and y = 0, 4c. The outflow boundary condition
proposed by Dong et al. [24], which aims to minimize the
domain truncation, was used for the boundary x = 6c.

The center of the plate wing was at (x, y) = (2c, 2c) and
the plate was perpendicular to the uniform flow direction. The
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TABLE I. Ritz values for various target regions. “NA” indicates
the cases where Ritz value did not converge under the prescribed
conditions.

Target region Ritz value Symbol

[c, 3c] × [c, 3c] NA D
[c, 4c] × [c, 3c] −1.07 × 10−1 C
[c, 5c] × [c, 3c] −8.20 × 10−2 B
[c, 6c] × [c, 3c] −5.55 × 10−2

[0, 6c] × [c, 3c] −5.25 × 10−2 A
[0, 6c] × [0.5c, 3.5c] 5.05 × 10−3

[0, 6c] × [0, 4c] 7.36 × 10−3 Control

uniform flow velocity was (U, 0) (U = 1) and the Reynolds
number was Re = Uc/ν = 200, where ν is the kinematic vis-
cosity. An unequal and orthonormal grid was used, although
the grid spacing in the region around the plate wing was
uniform, c/30. The number of grid points was 120 × 120
[Fig. 4(a)].

The periodic solution was obtained numerically using the
Newton-Raphson method [15] under the condition where
the relative errors of both the residue and the increment of the

iteration were less than 10−11. The period was T = 4.042 64
when a single period was segmented into 1408 = 27 × 11
time steps. The origin of the phase was set at the time when
the maximum lift was attained.

The projection method was used to obtain the projected
phase sensitivity function for the target regions described
below. In this calculation, we focused on the response to
the perturbation to velocity components, u = (u, v) alone,
whereas the response to the pressure and previous time step
was not calculated, contrary to the description in Sec. III A,
where the entire degree of freedom was used to obtain the
phase sensitivity function. The convergence condition for
the inverse power method was the same as that detailed in
Sec. III A 1, and the Ritz value was labeled as nonavailable
(NA) if the condition was not satisfied.

Figure 4(b) shows a snapshot of the vorticity field at
phase zero. Five target regions were selected: (Control)
[0, 6c] × [0, 4c], (A) [0, 6c] × [c, 3c], (B) [c, 5c] × [c, 3c],
(C) [c, 4c] × [c, 3c], and (D) [c, 3c] × [c, 3c]. These regions
were related to the distribution of the coherent vortices; two
coherent vortices with a positive sign and one coherent vortex
with a negative sign are shown in Fig. 4. The target region
can be characterized by the subspace of the space determined

FIG. 6. Distributions of phase sensitivity functions obtained using the projection method along cross lines. (a) Z̃w along line x = xc(= 2.5).
(b) Z̃v along line x = xc. (c) Z̃w along line y = yc(= 2.0). (d) Z̃v along line y = yc.

053303-8



PHASE REDUCTION TECHNIQUE ON A TARGET REGION PHYSICAL REVIEW E 103, 053303 (2021)

by the discretized computational domain in a similar way
described in Sec. III A. Figure 5 shows the phase sensitivity
vector [11], Q = (Qu, Qv ). We remark that the phase shift due
to the perturbation �u δ(x − x0), where �u and δ(x) repre-
sent a constant perturbation vector and the three-dimensional
delta function, respectively, is expressed as �u · Q(x0) [11].
The Q field obtained using the projection method for the

regions A, B, and C was almost the same as that of the control
field, whereas the field of |Q| assumed values outside and
above the region A in the control case (Fig. 5, “control”). The
comparison suggests that the proposed method works well
even if the target region is small.

To compare these fields in detail, we present the functions
Z̃u(0) and Z̃v (0) along the lines y = yc(= 2.0) and x = xc(=
2.0) in Fig. 6. Even in the region C, the functions agreed well
with those for the case with the control region, although the
values of the functions Z̃u(0) and Z̃v (0) outside the region
C were not negligible. Such characteristics of the projection
method corresponded well to the results provided in Sec. III A.

For a quantitative assessment, the Ritz values for various
target regions, including regions A–D and the control case, are
listed in Table I. For region D, the inverse power method did
not converge under the prescribed iteration condition (“NA”
in the table), implying that the absolute Ritz value was not
sufficiently small. A comparison between the control field and
the Q field (Fig. 5), as well as the cross-section fields (Fig. 6),
suggests that the target regions in which the Ritz value was ap-
proximately 0.1 or less yielded a reasonable Q field, although
dependency on the required accuracy was involved.

IV. CONCLUDING REMARKS

Herein, we have proposed a method to calculate the phase
sensitivity function in a target domain that can be used in
conjunction with the Jacobian-free method to obtain the phase
sensitivity function using only the time evolution of the
system [11].

The proposed method utilizes the Rayleigh-Ritz procedure,
which approximates the eigenvalues and the eigenvectors for
a large system by considering an appropriate subspace. Com-
bined with the inverse iteration method, this method provides
an approximation of the phase sensitivity function as the
eigenvector of the zero (absolute minimum) eigenvalue.

This method was demonstrated via an analysis of the
breathing solution of a reaction-diffusion system, in which
an interface oscillated in a confined region and no significant
change occurred in the other wide region. It was demonstrated
that the proposed method functioned as intended; the phase
sensitivity function in the target region was similar to the
original one, even when the relative area (length) of the target
region was less than 20% and the computational time was
reduced significantly. The error depended on the width of the
region in which the major part of the phase sensitivity function
was contained.

In addition, we analyzed the flow past a flat plate to analyze
the dependency of the phase sensitivity functions on the area
of the target region. Although we omitted the response to the
pressure and information from the previous time step, we suc-
cessfully obtained the approximation of the phase sensitivity
functions, although an extremely small target region did not
provide good results. The analysis of this case suggested that
even the omission of a variable and the spatial region enabled
the estimation of the phase sensitivity function.

The projection method can be used in a more compli-
cated system; its application to two-dimensional or three-
dimensional PDE problems with different time scales will
significantly reduce the computational cost. This will be in-
vestigated in future studies.
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