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Collisional redistribution of hydrogen line radiation in low- and moderate-density
magnetized plasmas
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A computer simulation technique has been applied to the modeling of radiation redistribution functions in low-
and moderate-density magnetized hydrogen plasmas. The radiating dipole is described within the Heisenberg
picture, and perturbations by the plasma microfield are accounted for through a time-dependent Stark effect
term in the Hamiltonian. Numerical applications are presented for the first Lyman and Balmer lines at plasma
conditions relevant to tokamak divertors and magnetized white dwarf atmospheres. In both cases, the collisional
redistribution of the radiation frequency is shown to be incomplete. Comparisons with a previously developed
impact model are performed, and results are discussed.
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I. INTRODUCTION

In plasma physics, the process of radiation scattering is
described by a redistribution function R(ω, �n, ω′, �n′): This
quantity is the joint probability density for an atom absorbing
a photon with frequency ω′ and direction �n′ and reemitting
it with frequency ω and direction �n. Redistribution function
models are widely used in astrophysics for the description
of spectral line formation from stellar atmospheres out of
local thermodynamic equilibrium [1–4]. In regimes where
collisions between the radiator and the plasma particles are
frequent, the reemitted photon loses memory of the state of the
incoming photon and the corresponding emission line shape
function is identical to the absorption line shape function
[1,5]; this situation is referred to as complete redistribution. In
a more general case, the reemitted radiation spectrum presents
a more elaborated structure, which is closely related to the
shape of the redistribution function R(ω, �n, ω′, �n′). Most of
the current models for redistribution functions involve the
Hummer R functions (RI , RII etc.) [6] and derived expres-
sions, which account for collisional redistribution, coherent
scattering, and Doppler redistribution due to the thermal mo-
tion of the atoms. One main advantage of these functions
is that they involve analytical expressions or integrals that
can be evaluated numerically within a reasonable CPU time;
applications include inertial fusion [7] and related research
works in astrophysics (e.g., see Refs. [8–10] for reviews),
laboratory plasma experiments [11,12], and general transport
theory [13,14]. In each of these domains, the radiation field
is investigated based on a numerical solving of the radiative
transfer equation and redistribution functions occur therein
through an integral scattering term. In support of these ra-
diation transport calculations, efforts have been undertaken
in order to provide more accurate models for the redistribu-
tion functions. The approaches are similar to those involved
in one-photon Stark line shape modeling. They include the
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impact approximation [15,16] and its extensions, either based
on refined collision operators [17] or on kinetic equations
[18–20], and they include stochastic approaches, such as the
model microfield method [21] and the frequency fluctuation
model [22,23]. Computer simulations involving a numerical
solving of the time-dependent Schrödinger equation have also
been performed, but the literature on the subject is rather
scarce. Some articles published a few decades ago were de-
voted to the calculation of Lyman α in specific dense plasma
conditions [24,25]; a focus was put on the investigation of in-
terference effects, and a conclusion was that the redistribution
is incomplete. In the present paper, we present a new simula-
tion method, and we apply it to the modeling of hydrogen line
redistribution functions in typical plasma conditions found in
magnetic fusion experiments and in magnetized white dwarf
atmospheres. In the magnetic fusion framework, the motiva-
tion for this paper is the need of accuracy in transport codes.
At the edge of several tokamaks, the so-called divertor region
contains a cold plasma in recombining regime (typically Te <

5 eV and Ne > 1014 cm−3), which is affected by significant
radiation trapping at frequencies near the hydrogen Lyman
series; these opacity effects have been demonstrated both
experimentally and numerically [26–31]. In the framework
of ITER preparation, simulations of the Lyman line radiation
transport in the divertor have shown that the opacity provides
a significant additional source of excited atoms, which can
affect the plasma ionization-recombination balance. Whereas
modeling efforts have been devoted to the improvement of
photon absorption cross sections (e.g., see Ref. [32] for a
recent report), the study of the photon scattering process
and its related redistribution function has been left pending.
The radiative transfer simulations reported in Refs. [29–32]
were performed within the complete redistribution approxi-
mation, i.e., assuming that the frequency and the direction
of a photon outgoing from a scattering process are indepen-
dent of those of the incoming photon. Although convenient
for calculations, the complete redistribution approxima-
tion is not systematically valid in tokamak edge plasma
conditions. A preliminary investigation [33], based on the
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impact approximation for ions, has indicated that the Zeeman
effect introduces nontrivial partial redistribution effects on
Lyman α. Here, we reconsider this problem and address the
collisional redistribution of the Lyman radiation in optically
thick divertor conditions using numerical simulations. Moti-
vated by recent studies in astrophysics [34], we also apply
numerical simulations to the calculation of the redistribu-
tion functions involved in the formation of Balmer lines in
white dwarf atmosphere conditions. The article is organized as
follows: In Sec. II, a brief presentation of the radiation trans-
port formalism is given, highlighting how the redistribution
function does explicitly appear inside the radiative transfer
equation. The modeling of redistribution function is next
addressed in Sec. III. The formalism involves the quantum
radiation theory. Various equations are introduced and dis-
cussed. In Sec. IV, numerical calculations of the first Lyman
lines are performed in optically thick divertor plasma condi-
tions. The analytical model previously developed in Ref. [33]
is next reexamined and compared to numerical simulations in
Sec. V. Technical details relative to this model are given in the
Appendix. In Sec. VI, the redistribution function of Balmer
lines is calculated in magnetic white dwarf atmosphere condi-
tions. Finally, a conclusion is given in Sec. VII.

II. RADIATIVE TRANSFER FORMALISM

The formalism involved in radiative transfer investigations
can be found in textbooks, e.g., Refs. [1,5]. Here, a brief
presentation is given. Consider a set of atoms immersed in
a plasma, emitting and absorbing radiation in spectral lines.
The radiative transfer equation reads(

∂

∂t
+ �n · �∇

)
I = η − κI, (1)

where I ≡ I (ω, �n, �r, t ) is the radiation specific intensity at
location �r, at time t , at frequency ω, and in direction �n, and
η ≡ η(ω, �n, �r, t ), κ ≡ κ (ω, �n, �r, t ) are the emission and ab-
sorption coefficients, respectively. The polarization states can
be retained through the use of the Stokes parameters together
with a suitable modification of Eq. (1); we will not consider
this issue in the following, since our concern will be the
modeling of the emission coefficient rather than the solving
of the transport equation by itself. For the sake of simplicity,
the �r and t dependences are not written explicitly hereafter.
The emission and absorption coefficients are given by

η =
∑
u>l

h̄ωulAul

4π
Nuφul , (2)

κ =
∑
u>l

h̄ωul

4π
(NlBlu − NuBul )φul . (3)

In these expressions, the sums are carried out over the upper
and lower levels u, l that contribute to the line radiation; ωul

is the corresponding Bohr frequency; Aul , Bul , and Blu are the
related Einstein coefficients; φul ≡ φul (ω, �n) is the line shape
function, which denotes the probability density of emitting
or absorbing a photon with frequency ω in the direction �n
[normalization convention:

∫
dω

∫
d	φul (ω, �n) = 4π ]; and

Nu, Nl are the density of atoms in the upper and lower
levels. The negative contribution in Eq. (3) denotes stimulated

emission. In the expressions (2) and (3), it is implied that the
redistribution is complete, i.e., the frequencies and directions
of emitted and absorbed photons are assumed independent of
each other. In order to account for partial redistribution, one
has to perform the following substitution:

Nuφul → N∗
u φul

+ NlBlu


u

∫
dω′

∫
d	′Rul (ω, �n, ω′, �n′)I (ω′, �n′)

≡ Nuψul , (4)

at each place where the product Nuφul occurs. The quantity N∗
u

denotes the density of atoms excited by collisions; 
u is the to-
tal depopulation rate of level u, which includes both collisions
and radiation; and Rul (ω, �n, ω′, �n′) is the redistribution func-
tion, which denotes the joint probability density of absorbing
a photon with frequency ω′ in the direction �n′ and reemitting
it with frequency ω in the direction �n, with the normal-
ization convention

∫
dω

∫
d	

∫
dω′ ∫ d	′Rul (ω, �n, ω′, �n′) =

(4π )2. The function ψul present on the right-hand side is
usually referred to as emission profile to be distinguished
from the absorption profile φul . These two profiles are iden-
tical if redistribution is complete. Also, the redistribution
function factorizes as Rul (ω, �n, ω′, �n′) ≡ φul (ω, �n)φul (ω′, �n′)
if redistribution is complete. In the following, we address the
modeling of the redistribution function in a more general case
where the redistribution can be partial.

III. REDISTRIBUTION FUNCTION MODELING

The two main causes for radiation redistribution are the
collisions with perturbers and the Doppler effect relative to
the thermal motion of the atom. The latter is usually described
through a convolution with the atomic velocity distribution
function [6]. Since it involves no major difficulties (apart from
the numerical computation by itself), we do not consider this
effect and focus on the modeling of the redistribution func-
tion in the atomic frame of reference, i.e., without Doppler
broadening. Correlations between the Doppler effect and the
collisions will not be addressed as well since they are not
essential to the investigation presented hereafter (if required,
they can be retained using the same method as that for one-
photon line shape modeling [35]). Various approaches to the
modeling of collisional redistribution have been reported in
the literature, e.g., Refs. [2,15–25]. For convenience, and by
consistency with already available line shape codes, we here
use the same terminology as in Stark broadening modeling,
along the lines of review articles and textbooks [36–39]. The
emission line shape ψul in Eq. (4) is proportional to the power
spectrum P(ω) radiated from a single atom. According to
quantum electrodynamics, this quantity is given by the fol-
lowing relation:

P(ω) = ω4

3πε0c3
F (ω), (5)

F (ω) = lim
T →∞

1

2πT
〈 �̃d (−)(−ω, T ) · �̃d (+)(ω, T )〉, (6)

with

�̃d (±)(±ω, T ) =
∫ T

0
dt e±iωt �d (±)(t ). (7)
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The quantities �d (+)(t ) and �d (−)(t ) denote the positive and
negative frequency contributions to the dipole operator ex-
pressed in the Heisenberg picture, and the brackets denote
an average carried out over the atomic states, the perturbers,
and the radiation field. Equation (6) holds for line radiation,
i.e., it is assumed that the characteristic frequency ω of the
radiated field is much larger than the characteristic spectral
band. As in Ref. [36], we refer to the quantity F (ω) as the line
shape function. An explicit evaluation of this quantity requires
a model for the time evolution of the dipole operator. If the
redistribution is complete, the following Heisenberg equation
of motion can be used (h̄ ≡ 1 is set):

�̇d (+) = i[HA + V, �d (+)], (8)

and the usual one-photon line shape formalism applies; here,
HA is the atomic Hamiltonian and V = −�d · �Eplasma is the
Stark perturbation due to the plasma microfield �Eplasma. By
convention, a Zeeman effect term is included in HA if a mag-
netic field is present. If the redistribution is partial, Eq. (8)
must be modified in such a way so as to account for the
quantized (transverse) electric field �ER. The latter involves
one contribution �Ein, corresponding to the incoming pho-
ton and another one �Eout, corresponding to the reemitted
photon; namely, one has �ER ≡ �Ein + �Eout. In a classical elec-
tromagnetism framework, these contributions correspond to
the solution of the Maxwell equation set in the absence of
source and the solution in the presence of an oscillating dipole,
respectively. Both must be retained for a consistent descrip-
tion of the scattering process. The term �Eout contributes to
the radiative width and (Lamb) shift. A proper accounting for
these two effects within the Heisenberg picture has already
been discussed, e.g., see Refs. [40–45]. A practical imple-
mentation consists, first, in defining a new effective atomic
Hamiltonian H̄A, which includes a non-Hermitian term,

H̄A = HA − iKrad. (9)

The operator Krad is assumed diagonal in the atomic Hamilto-
nian base; it is given by

〈 j|Krad| j〉 =
∑
k< j

ω3
jk|〈 j| �d (0)|k〉|2

6πε0c3
≡

∑
k< j

A jk

2
, (10)

where Ajk is the Einstein coefficient corresponding to the
j → k radiative transition. The next step consists in replacing
the commutator [HA, �d (+)] present in Eq. (8) by the following
expression:

H̄†
A

�d (+) − �d (+)H̄A. (11)

Introducing the interaction term −�d · �Ein and applying the
rotating wave approximation, which holds for near-resonant
radiation [43–45], one obtains the following equation of mo-
tion for the dipole:

ḋ (+)
a = i(H̄†d (+)

a − d (+)
a H̄ ) + i

∑
b

[d (+)
a , d (−)

b ]E (+)
in,b, (12)

where the a and b indices denote x, y, and z components, H̄ =
H̄A + V , and E (+)

in,b refers to the positive frequency component

of the field �Ein. Equation (12) will be used in substitution of

Eq. (8) for the modeling of the dipole evolution with partial
radiation redistribution. In order to get a solution, we assume
the field act as a weak perturbation on the atomic system and
apply a linearization procedure. The dipole operator at first
order reads

d (+)
1,a (t ) = i

∫ t

0
dt ′Ū †

l (t ′, t )

×
∑

b

[d (+)
0,a (t ′), d (−)

0,b (t ′)]E (+)
b (t ′)Ūu(t ′, t ). (13)

The shortcut notation E (+)
in,b ≡ E (+)

b has been used here. The
quantities Ūl (t ′, t ) and Ūu(t ′, t ) denote propagators acting
on states in the lower and upper levels relative to the
transition under consideration, respectively. They obey the
time-dependent Schrödinger equation,

∂

∂t
Ūu,l (t

′, t ) = −iŪu,l (t
′, t )H̄u,l (t ), (14)

with the initial condition Ūu,l (t ′, t ′) = 1 and with the condi-
tion t ′ � t . The Hamiltonians H̄u,l are the projections of H̄
onto the upper and lower levels and taken at initial time, i.e.,
expressed in the Schrödinger picture. The identity H̄†d (+)

a −
d (+)

a H̄ ≡ H̄†
l d (+)

a − d (+)
a H̄u has been used here; it holds within

the no-quenching approximation where inelastic collisions are
neglected. This approximation (commonly used in line broad-
ening modeling [39]) is suitable here, in particular, due to the
energy level degeneracy of the hydrogen atom. In Eq. (13), the
quantities d (+)

0,a (t ′) and d (−)
0,b (t ′) correspond to the zeroth-order

“bare” solutions of the equation of motion, i.e., in the absence
of radiation damping. They are given by

d (+)
0,a (t ′) = U †

l (0, t ′)d (+)
a (0)Uu(0, t ′), (15)

d (−)
0,b (t ′) = U †

u (0, t ′)d (−)
b (0)Ul (0, t ′), (16)

where the corresponding propagators obey the time-
dependent Schrödinger equation associated with the bare
Hamiltonian H = HA + V ,

∂

∂t
Uu,l (t

′, t ) = −iUu,l (t
′, t )Hu,l (t ). (17)

Because of the no-quenching approximation, the propagators
Ūu,l (t ′, t ) only act on the operator d (+)

0,a that occurs in Eq. (13).
Ignoring entanglement between Stark broadening and radi-
ation damping due to time ordering, we use the following
approximation:

Ū (t ′, t ) � U (t ′, t )e−Krad (t−t ′ ). (18)

This approximation holds in regimes where the radiative
damping is weak compared to the other line broadening mech-
anisms. A similar factorization procedure is sometimes used
in Stark broadening simulations (albeit in another context:
the factorization concerns the ionic and electronic contribu-
tions to the evolution operator, e.g., see Ref. [46] for details).
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From Eq. (18), one can rewrite the first-order dipole as

d (+)
1,a (t ) = i

∫ t

0
dt ′ ∑

b

[e−Krad,l (t−t ′ )d (+)
0,a (t )e−Krad,u (t−t ′ ), d (−)

0,b (t ′)]E (+)
b (t ′). (19)

The radiated power spectrum is obtained by using this ex-
pression for the dipole in the formulas (5)–(7). Since the
positive and negative frequency components �d (+)

0 and �d (−)
0

act on the lower-energy atomic states on the left (bra) and
right (ket) sides, respectively, the following substitution can
be performed in Eq. (19):

[e−Krad,l (t−t ′ )d (+)
0,a (t )e−Krad,u (t−t ′ ), d (−)

0,b (t ′)]

→ e−Krad,l (t−t ′ )d (+)
0,a (t )e−Krad,u (t−t ′ )d (−)

0,b (t ′), (20)

and the final result becomes simpler. For completeness, we
now write the radiation field operator explicitly,

�E (+)(t ′) = −i
∑
�k′′,�ε′′

√
ω′′

2ε0V
a�k′′,�ε′′ (0)e−iω′′t ′ �ε′′. (21)

The sum is carried out over the modes (�k′′, �ε′′), ω′′ = |�k′′|c
is the corresponding frequency, a�k′′,�ε′′ (0) is the annihilation
operator at initial time, and V is the quantization volume. The
occurrence of a�k′′,�ε′′ (0) can be eliminated formally through
expressing the statistical average in Eq. (6) explicitly in terms
of the density operator ρ. Assuming weak coupling, we write
it in factorized form as

ρ = ρA ⊗ ρP ⊗ |1�k′,�ε′ 〉〈1�k′,�ε′ |, (22)

where ρA = ∑
β |β〉〈β| involves the initial (lower-energy)

atomic states contributing to the scattering, ρP involves the
plasma variables, and |1�k′,�ε′ 〉〈1�k′,�ε′ | refers to the one-photon
state relative to the incoming radiation. The implementa-
tion of the expression (22) inside the statistical average (6)
makes the following identities 〈1�k′,�ε′ |a†

�k′′,�ε′′ (0) = δ�k′,�k′′δ�ε′,�ε′′ 〈0|
and a�k′′,�ε′′ (0)|1�k′,�ε′ 〉 = δ�k′,�k′′δ�ε′,�ε′′ |0〉 appear, which eliminates
the field operators. Now, define the following two quantities:

�D(+)(t )

=
∫ t

0
dt ′e−Krad,l (t−t ′ ) �d (+)

0 (t )e−Krad,u (t−t ′ ) �d (−)
0 (t ′) · �ε′e−iω′t ′

,

(23)

�D(−)(t ) = [ �D(+)(t )]†, (24)

the line shape function reads

F (ω) = ω′

2ε0V
lim

T →∞
1

2πT
〈 �̃D(−)(−ω, T ) · �̃D(+)(ω, T )〉, (25)

where �̃D is a Fourier transform of �D from Eq. (23), similar to
Eq. (7). This formula will serve as a basis in the calculations
presented hereafter. The redistribution function introduced in
Eq. (4) can be obtained from F (ω) through normalization
and summation over the polarization states [note that the

quantities �D(±)(t ), �̃D(±)(±ω, T ), and F (ω) depend on the
incoming photon frequency ω′ through the exponential term
e−iω′t ′

present in Eq. (23)]. Since the average over the one-
photon state |1�k′,�ε′ 〉 has been performed explicitly, the brackets

now denote a statistical average over the atomic states and the
plasma variables only.

IV. APPLICATION TO LYMAN LINES IN OPTICALLY
THICK DIVERTOR PLASMAS

The line shape function F (ω) given in Eq. (25) has been
calculated numerically for Lyman lines in conditions typical
of optically thick divertor plasmas. The numerical method
involves an integration of the Schrödinger Eq. (17), an evalu-
ation of the matrix products (15) and (16), and an evaluation
of the integral (23). The Fourier transform (7) has also been
performed numerically; the upper bound T has been chosen
sufficiently large so as to obtain convergence in the result. The
microfield �Eplasma has been evaluated from a simulation of the
perturber trajectories. In this simulation, the plasma particles
are left moving near the atom in a cubic box with periodic
boundary conditions. This method is precisely the same as that
used in Stark-broadened one-photon line shape calculations,
e.g., see Refs. [47–54] for details. The Schrödinger Eq. (17)
is also identical to that employed in one-photon line shape
calculations and can be addressed with the same algorithms.
Both ions and electrons have been retained here. In order to
reduce the noise, several runs corresponding to different initial
conditions have been performed. Figure 1 shows a plot of
the line shape function F (ω) for Lyman α, assuming pure
hydrogen plasma with Ne = 1014 cm−3 and Te = Ti = 1 eV.
The incoming photon frequency detuning �ω′ = ω′ − ωLyα

has been set equal to 5 × 10−5 eV. This value is on the order
of the line width, hence, it is representative of the charac-
teristic energy of an incoming Lyman α photon produced by

FIG. 1. Plot of the Lyman α line shape function F (ω) normal-
ized to unity. A numerical simulation method has been used. Both
resonance fluorescence and Rayleigh components are visible in the
spectrum, which indicates that the radiation redistribution is incom-
plete. Only the σ components of the spectrum are shown here for the
sake of clarity.
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FIG. 2. Plot of the Lyman β line shape function for the same
conditions as in Fig. 1. The redistribution is also incomplete. The
Zeeman components are broader than those of Lyman α because the
Stark effect is more important for this line.

emission from another atom. An external magnetic field of 2 T
has been assumed. A linear polarization, perpendicular to �B,
has been assumed for the incoming photon. In order to clarify
the figure, only the σ components of the spectrum, i.e., those
involving the selection rule �ml = ±1, are shown. As can be
seen in the figure, the spectrum presents three components.
The two lateral components coincide with the normal Zeeman
spectrum observed parallel to �B. They denote resonance fluo-
rescence: the atomic upper levels have been populated through
excitation by the incoming radiation field together with elastic
collisions with the plasma particles. The third component is
located at the position of the incoming photon frequency. It
is interpreted as coherent Rayleigh scattering and it indicates
that part of the radiation has not been redistributed by colli-
sions. The redistribution is also partial for Lyman β. Figure 2
shows the result of a calculation performed in the same con-
ditions. The fluorescence components are broader in this case
because the Stark effect is more important for this line.

V. ANALYSIS OF A PREVIOUSLY DEVELOPED
IMPACT MODEL

An analytical model for the Lyman α redistribution func-
tion, suitable for fast evaluation in a radiation transport code,
was developed in Ref. [33]. The model involves the impact
approximation for ions; in this framework, the line shape is
given by the following formula:

F (ω) = πω′

2ε0V

∑
α,β

pβCαβ


αβ
rad
α

L(ω′ − ωαβ, 
αβ )

× [

rad

α δ(ω′ − ω) + 
coll
α L(ω − ωαβ, 
αβ )

]
. (26)

The main steps in the derivation of this expression are pre-
sented in the Appendix. The sum is performed over the
upper (α) and lower (β) states involved in the line, and,
by definition, Cαβ = |〈α| �d (0)|β〉|2|〈α| �d (0) · �ε′|β〉|2, 
rad

α =
〈α|Krad|α〉, 
coll

αβ = 〈α|Kcoll|α〉 + 〈β|Kcoll|β〉 where Kcoll is
the collision operator and L(x, γ ) = (γ /π )/(x2 + γ 2) is
the normalized Lorentzian function. Figure 3 shows a nu-

FIG. 3. Plot of the Lyman α line shape obtained from the impact
model. The Zeeman components have different amplitudes, which
is in contrast to the simulation result in Fig. 1. A reason for this is
that interferences between the scattering amplitudes are not retained
within this model. See the text for explanation.

merical application to Lyman α at the same density and
temperature conditions as in the previous section. In the
numerical calculation, the δ function in Eq. (26) has
been replaced by the quantity [2/π (ω′ − ω)2tm] sin2[(ω′ −
ω)tm/2] ≡ δ1/tm (ω′ − ω), which is expected to provide mean-
ingful results if tm is chosen large enough (it exactly coincides
with the δ function at the tm → ∞ limit). Here, this time has
been set equal to the simulation time used in Fig. 1; its value
is tm = 4.4 × 10−9 s. The collision operator Kcoll has been
evaluated using a variant of the Griem-Baranger-Kolb-Oertel
model [55], designed to account for the Zeeman degeneracy
removal. As can be seen in the figure, the redistribution is
incomplete as in the simulation result in Fig. 1, but the relative
amplitude of the Zeeman components is different. The σ+
component appears much higher than the σ− component. An
interpretation for this is that the atom has more probability

FIG. 4. If the interferences between the scattering amplitudes are
removed from the simulation, the two results are in agreement with
each other. Here, the Lyman α line shape has been calculated with
the same conditions as in Figs. 1 and 3.
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FIG. 5. The Stark widths obtained from the impact model and
the simulation are also in good agreement. Here, the simulation and
impact results are plotted for the same plasma conditions. For the
sake of clarity, the magnetic field has been set equal to zero.

to be pumped in the ml = 1 Zeeman sublevel than in the
ml = −1 sublevel if the impact model is used. This deviation
stems from the neglect of interferences between the scattering
amplitudes in Eq. (26). Transitions, such as |1s〉 → |2p1〉 →
|1s〉, |1s〉 → |2p−1〉 → |1s〉 are susceptible to interfere with
each other, resulting in an increase in the probability for the
atom to reemit radiation from a sublevel far from the exci-
tation. In contrast, by construction, the simulation accounts
for such interferences. Figure 4 illustrates this point. We have
artificially removed these interferences from the simulation
by dropping the off-diagonal matrix elements of the evolution
operator at the stage of evaluating the integral (23). The results
are now in agreement with each other. It is worth noting that
the Stark widths obtained from the impact model and the
simulation are also in good agreement. This is magnified in
Fig. 5. The simulation and impact results are plotted for the
same plasma conditions. For the sake of clarity, the magnetic
field has been set equal to zero.

VI. BALMER LINES IN MAGNETIC WHITE
DWARF ATMOSPHERES

We have applied the simulation to the redistribution
of Balmer lines in white dwarf atmosphere conditions.
Calculations have been performed for pure hydrogen plasma
at Ne = 1017 cm−3 and Te = Ti = 1 eV. Figure 6 shows a
plot of the Hα and Hβ line shapes. The detuning �ω′ has
been set equal to 5 × 10−3 eV for Hα and 3 × 10−2 eV for
Hβ. In each case, the spectrum presents the Rayleigh peak
at the position of the incoming photon frequency ω′, which
indicates that redistribution is again incomplete. The influence
of an external magnetic field is presently under investiga-
tion. In contrast to magnetic fusion experiments, the white
dwarfs can have an extremely intense magnetic field (up to
several kiloteslas), resulting in the occurrence of quadratic
Zeeman effect and corresponding asymmetric spectra. The
quadratic Zeeman effect has already been investigated in the
literature [56], but elaborate line shape models accounting for
this effect simultaneously with the Stark broadening are not

FIG. 6. Plot of the Hα and Hβ line shapes in white dwarf atmo-
sphere conditions. The redistribution is incomplete in both cases.

FIG. 7. White dwarfs can have a very strong magnetic spectrum,
resulting in asymmetric Zeeman spectra. Here, this effect is illus-
trated in the case of Hβ under a magnetic field of 2 kT. The quadratic
Zeeman effect yields a shift of the overall line and splitting of the
components. The unperturbed Hβ frequency is shown as reference.
The Rayleigh peak is still visible, indicating that redistribution is
incomplete.
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yet available; this lack concerns both one-photon line shapes
and redistribution functions. An example of redistribution
function with quadratic Zeeman effect is shown in Fig. 7. The
Hβ line shape has been calculated assuming a magnetic field
value of 2 kT and taking the same values as above for the
other plasma parameters. The frequency interval is larger and
involves frequencies close to Hγ ; hence, for consistency, mix-
ing with the n = 5 level has been retained in the calculation.
The incoming photon frequency detuning has been set equal
to 0.1 eV. As can be seen in the figure, the line shape has
a complex structure. The quadratic Zeeman effect yields an
overall shift of the spectrum (see the vertical dashed line for
the unperturbed Hβ frequency) and it provides a splitting of
the components. The Rayleigh peak is still visible, indicating
that redistribution is incomplete.

VII. CONCLUSION

The collisional redistribution of line radiation has been
investigated in low- and moderate-density magnetized plas-
mas. The formalism involves an equation of motion for the
atomic dipole expressed in the Heisenberg picture. In this
framework, using a linearization procedure, we have derived
an expression for the dipole response to the incoming photon
involved in the scattering process. This response enters as
an input in the radiation power spectrum formula used in
line shape calculations. Using a computer simulation method,
we have first applied this formula to the modeling of the
collisional redistribution of the first Lyman lines in divertor
plasma conditions. The obtained spectra present an unshifted
component at the frequency of the incoming photon. This
component is interpreted as the result of Rayleigh scattering,

and its occurrence indicates that a part of the radiation has
not been redistributed by collisions. The remaining part of
the spectra corresponds to resonance fluorescence induced by
the collisions. A previously developed impact model has also
been applied to the collisional redistribution of Lyman α. The
obtained spectra are qualitatively in agreement with the sim-
ulation results, but deviations between the intensities of the
Zeeman components are present. A reason for these deviations
is that interferences occurring between the scattering ampli-
tudes are not retained within the impact model. This point has
been illustrated through comparison to a specific simulation
where these interferences have been removed artificially. In an
astrophysical framework, the collisional redistribution of radi-
ation has next been examined through calculations of Balmer
lines in white dwarf atmosphere conditions. The obtained
spectra present a Rayleigh peak, indicating that the redistri-
bution is again incomplete in such conditions. The influence
of a strong magnetic field has also been illustrated through
a calculation of Hβ accounting for quadratic Zeeman effect.
The resulting spectrum presents a complex structure, with an
overall shift and an asymmetric splitting of the components.
New calculations are presently underway. In the magnetic
fusion framework, a refinement of the impact formula still
remains to be performed. This extension should involve an
implementation of the interference effects. Deviations to the
impact approximation for ions, which are expected at the
highest density regimes, should also be addressed, e.g., using
an improved collision operator model as in Ref. [17]. In the
field of dense plasma diagnostics, specific experiments with
laser-plasma interactions (as recently reported in Ref. [57])
also provide motivation for the development of new redistri-
bution function models.

APPENDIX

The analytical expression (26) has been obtained within the impact approximation. In this model, the microfield evolution
timescale is assumed much shorter than the characteristic time of interest of the line. In this framework, the action of perturbers
is treated as a series of binary and brief collisions. The first step in the derivation of Eq. (26) consists in rewriting the average
present in Eq. (25) in terms of a four-times autocorrelation function,

F (ω) = lim
T →∞

ω′

4πε0V T

∫ T

0
dt4

∫ t4

0
dt3

∫ T

0
dt2

∫ t2

0
dt1 ei[ω(t2−t4 )+ω′(t3−t1 )]C(t2, t1, t4, t3), (A1)

C(t2, t1, t4, t3) ≡
∑
a,b,c

ε′
aε

′
c

〈
e−Krad,l (t4−t3 )d (+)

0,a (t3)e−Krad,u (t4−t3 )d (−)
0,b (t4)e−Krad,l (t2−t1 )d (+)

0,b (t2)e−Krad,u (t2−t1 )d (−)
0,c (t1)

〉
. (A2)

Similar developments were reported in the literature, e.g., Refs. [15,16]. The autocorrelation function satisfies the relation
C∗(t2, t1, t4, t3) = C(t4, t3, t2, t1). With this property, the contribution to Eq. (A1) from the integration domain with t2 > t4 is
the complex conjugate of the contribution from t2 < t4. This justifies the replacement [16]∫ T

0
dt4

∫ t4

0
dt3

∫ T

0
dt2

∫ t2

0
dt1 · · · = 2 Re

∫ T

0
dt4

∫ t4

0
dt3

∫ t4

0
dt2

∫ t2

0
dt1 · · · . (A3)

The autocorrelation function (A2) is split into three terms, which correspond to the three possible time sequences in Eq. (A1):
(i) t1 � t2 � t3 � t4; (ii) t1 � t3 � t2 � t4; (iii) t3 � t1 � t2 � t4. The term (i) reads

C(i) =
∑
a,b,c

ε′
aε

′
c

〈
e−Krad,l τ3 d (+)

0,a (t1 + τ1 + τ2)e−Krad,uτ3 d (−)
0,b (t1 + τ1 + τ2 + τ3)e−Krad,l τ1 d (+)

0,b (t1 + τ1)e−Krad,uτ1 d (−)
0,c (t1)

〉
, (A4)

and, because of stationarity, it simplifies into

C(i) =
∑
a,b,c

ε′
aε

′
c

〈
e−Krad,l τ3 d (+)

0,a (τ1 + τ2)e−Krad,uτ3 d (−)
0,b (τ1 + τ2 + τ3)e−Krad,l τ1 d (+)

0,b (τ1)e−Krad,uτ1 d (−)
0,c (0)

〉
. (A5)
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Here, by definition, τ1 = t2 − t1, τ2 = t3 − t2, and τ3 = t4 − t3. A further simplification consists in neglecting the nondiagonal
matrix elements of the evolution operators Uu and Ul involved in Eq. (A5). The substitution d (+)

0,a (τ1 + τ2)e−Krad,uτ3 d (−)
0,b (τ1 + τ2 +

τ3) → d (+)
0,a (0)e−Krad,uτ3 d (−)

0,b (τ3) can be performed in Eq. (A5). The dipole d (−)
0,b (τ3) and the dipole d (+)

0,b (τ1) do not overlap in time,
hence, they can be averaged separately. We introduce collision operators Kcoll,u, Kcoll,l relative to the upper and lower levels and
assume they are diagonal. The autocorrelation function (i) reads

C(i) =
∑
α,β

pβCαβe(iωαβ−
αβ )τ3 e(−iωαβ−
αβ )τ1 , (A6)

with

Cαβ = |〈α| �d (0)|β〉|2|〈α| �d (0) · �ε′|β〉|2, (A7)


αβ = 〈α|Kcoll + Krad|α〉 + 〈β|Kcoll + Krad|β〉. (A8)

Interference terms, such as 〈α| �d (0)|β〉 · 〈β| �d (0)|α′〉 for α′ = α have been neglected. A similar treatment can be performed on
the terms (ii) and (iii). The resulting autocorrelation functions read

C(ii) =
∑
α,β

pβCαβe(iωαβ−
αβ )τ3 e−2
rad
α τ2 e(−iωαβ−
αβ )τ1 , (A9)

C(iii) =
∑
α,β

pβCαβe(iωαβ−
αβ )τ3 e−2
rad
α τ2 e(iωαβ−
αβ )τ1 , (A10)

and the spectrum is given by Eq. (26), namely,

F (ω) = πω′

2ε0V

∑
α,β

pβCαβ


αβ
rad
α

L(ω′ − ωαβ, 
αβ )
[

rad

α δ(ω′ − ω) + 
coll
α L(ω − ωαβ, 
αβ )

]
, (A11)

where 
rad
α = 〈α|Krad|α〉, 
coll

αβ = 〈α|Kcoll|α〉 + 〈β|Kcoll|β〉, and where L(x, γ ) = (γ /π )/(x2 + γ 2) denotes the normalized
Lorentzian function. Note that 〈β|Krad|β〉 has here been set equal to zero since the lower level is not subject to radiative decay
for Lyman lines.
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