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In a classical plasma the momentum distribution, n(k), decays exponentially, for large k, and the same is
observed for an ideal Fermi gas. However, when quantum and correlation effects are relevant simultaneously, an
algebraic decay, n∞(k) ∼ k−8 has been predicted. This is of relevance for cross sections and threshold processes
in dense plasmas that depend on the number of energetic particles. Here we present extensive ab initio results for
the momentum distribution of the nonideal uniform electron gas at warm dense matter conditions. Our results are
based on first principle fermionic path integral Monte Carlo (CPIMC) simulations and clearly confirm the k−8

asymptotic. This asymptotic behavior is directly linked to short-range correlations which are analyzed via the
on-top pair distribution function (on-top PDF), i.e., the PDF of electrons with opposite spin. We present extensive
results for the density and temperature dependence of the on-top PDF and for the momentum distribution in the
entire momentum range.
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I. INTRODUCTION

Dense quantum plasmas and warm dense matter (WDM)
have attracted growing interest in recent years. Typical
for WDM are densities around solid densities and ele-
vated temperatures around the Fermi temperature (see, e.g.,
Refs. [1–4]). Such situations are common in astrophysical sys-
tems [5–8], including the interiors of giant planets and white
dwarf stars or the atmosphere of neutron stars. In the labo-
ratory, WDM situations are realized upon laser or ion beam
compression of matter [9] and in experiments on inertial con-
finement fusion [10,11]. Under WDM conditions the electrons
are typically quantum degenerate and moderately correlated,
whereas ions are classical and, possibly strongly correlated.
These properties clearly manifest themselves in the thermo-
dynamic [12–16], transport, and optical properties [17–22] of
WDM. To gain deeper understanding of this unusual state of
matter, accurate results for structural quantities are essential,
including the pair distribution function [23,24] and the static
[25] and dynamic structure factor [21,26–28]. For additional
investigations of the uniform electron gas (UEG) model at
finite temperature, see Refs. [2,29–32].

Here we consider another many-particle property: the mo-
mentum distribution function n(k) and how it is influenced
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by finite temperature and Coulomb interaction effects. It is
well known that, for classical systems in thermodynamic
equilibrium, n(k) is always of Maxwellian form regardless
of the strength of the interaction. In contrast, in a quantum
system the momentum and coordinate dependencies do not
decouple, which leads to fundamentally different behaviors
of n(k) in ideal and nonideal quantum systems, and only for
an ideal system is the familiar Fermi distribution nid(k) being
recovered (here we consider only Fermi systems). However, in
a nonideal Fermi system, the momentum distribution decays
much slower with k, exhibiting a power law asymptotic. The
importance of a power law asymptotic has been pointed out
by Starostin and co-workers [33–35] and many others (see,
e.g., Ref. [36]) because an increased number of particles
in high-momentum states could have a significant effect on
scattering and reaction cross sections, in particular on fusion
reaction rates in dense plasmas [37–39]. The main goal of
the present paper is, therefore, to present accurate theoretical
results for the tail of the momentum distribution function.
Before outlining our goals in more detail, we briefly recall the
main available theoretical results on the large-k asymptotic of
the momentum distribution function.

Wigner [40] first demonstrated how to incorporate quan-
tum uncertainty between coordinate and momentum into n(k).
Following the development of perturbation theory for the
electron gas in the 1950s (see, e.g., Refs. [41,42]), Daniel
and Vosko [43] calculated the momentum distribution for an
interacting electron gas. They used the approximation due
to Gell-Mann and Brueckner for the correlation energy [44]
which corresponds to the random rhase approximation (RPA).
For the ground state, T = 0 K, they derived an analytical
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expression for the large-k asymptotic of the momentum dis-
tribution,

lim
k→∞

nRPA(k) ∼ 1

k8
; (1)

i.e., they found an algebraic decay, in striking contrast to
the exponential asymptotic of an ideal classical or quantum
system.

Galitskii and Yakimets [45] used Matsubara Green func-
tions and the Kadanoff-Baym relation [46] between the energy
distribution in equilibrium, f EQ(ω) [which is always a Fermi
or Bose distribution], and the spectral function A(k, ω),

n(k) =
∫

dω

2π
A(k, ω) f EQ(ω). (2)

Correlation effects enter only via the spectral function A,
which is given by Aid (k, ω) = 2πδ[h̄ω − E (k)] for an ideal
gas. Reference [45] computed the leading correction to the
ideal spectral function and confirmed the asymptotic, Eq. (1).
For a systematic improvement of this result higher order self-
energies have been computed, e.g., by Kraeft et al. [47], and
we also refer to the textbooks Refs. [46,48,49].

The exact limiting behavior in the asymptotic (1) was
found independently by Kimball [50] via a short-range ansatz
to the two-electron wave function, and by Yasuhara and
Kawazoe [51] who analyzed the large-momentum behavior of
the ladder terms in Goldstone perturbation theory. An impor-
tant result of Yasuhara et al. is the proof [51] that, at T = 0 K,
the asymptotic can be expressed via the on-top pair distribu-
tion function (on-top PDF), i.e., the PDF of a particle pair with
different spin projections at zero distance, g↑↓(r = 0),

lim
k→∞

n(k) = 8

9π2
(αrs)2 g↑↓(0)

2

(
kF

k

)8

, (3)

where α = ( 4
9π

)
1/3

, kF denotes the Fermi momentum, and
the coupling (Brueckner) parameter rs = r̄/aB is the ratio of
the mean interparticle distance, r̄ = [3/(4πn)]1/3, to the Bohr
radius [52]. A more general derivation has been presented by
Hofmann et al. [53] who have shown that Eq. (3) holds also
for finite temperature.

An extension of the results of Yasuhara et al. and Kimball
to arbitrary spin polarizations of the electron gas was per-
formed by Rajagopal et al. [54] who derived the next order
in the asymptotic which becomes dominant in the case of a
ferromagnetic electron gas because the on-top PDF vanishes:

nferro(k) −−−→
k→∞

4

3

8

9π2
(αrs)2 g↑↑′′

(0)

2

(
kF

k

)10

. (4)

Aside from dense plasmas, the tail of the momentum distri-
bution is also relevant for the electron gas in metals (see, e.g.,
Ref. [55]) as well as cold fermionic atoms [56,57]. In the latter
case, however, the short-range character of the pair interaction
leads to a modified large-momentum asymptotic, n(k) ∼ k−4,
instead of (1).

A second approach to the high-momentum tail is based
on quantum Monte Carlo (QMC) simulations. Here one can
either directly compute the asymptotic of n(k) or determine
it from the Fourier transform of the density matrix. While
the former requires us to extend the simulations to very large

momenta and to resolve the occupations over many orders of
magnitude, the latter way is potentially more efficient. Here
one calculates the on-top PDF (which is called “contact” in
the cold atomic gas community). In addition to its use in
Eq. (3), we mention that an accurate description of g↑↓(0)
is interesting in its own right, and is important for many
other applications, like the description of the static local field
correction [58–62].

Accurate QMC results for n(k) of the UEG in the ground
state were obtained in Refs. [55,63], whereas the on-top PDF
was studied in multiple QMC-based works [55,64–66], most
recently by Spink and co-workers [67]. At finite temperatures,
the momentum distribution n(k) has been investigated by Mil-
itzer et al. [68,69], who carried out restricted path integral
Monte Carlo (RPIMC) simulations and recently by Filinov
et al. [70] based on a version of fermionic PIMC that is for-
mulated in phase space. Furthermore, the only comprehensive
data set for g(0) in this regime was presented by Brown et al.
[71], again on the basis of RPIMC simulations.

Note that fermionic PIMC in coordinate space is limited
to moderate degeneracy [12,72], due to the notorious fermion
sign problem; see Ref. [73] for an accessible topical discus-
sion. On the other hand, RPIMC has been shown to exhibit
significant systematic errors of the thermodynamic quantities;
for example, the error for the exchange-correlation energy
reaches 10% at rs = 1 and � = 0.25 [74]. In addition, RPIMC
is substantially hampered by an additional sampling problem
(reference point freezing [75]) at high densities, rs � 1.

Therefore, it is of great interest to perform alternative
simulations that can access the momentum distribution of the
uniform electron gas at high degeneracy without any system-
atic errors. In this context, a suitable approach is given by the
recently developed configuration PIMC (CPIMC) method that
is formulated in Fock space (Slater determinant space) and
is highly efficient at high to moderate quantum degeneracy
[74,76]. In particular, CPIMC simulations were the basis for
the first ab initio thermodynamic results for the warm dense
UEG [74]. In combination with the likewise novel permuta-
tion blocking PIMC [77–79] scheme, it was possible to avoid
the fermion sign problem and to obtain ab initio thermody-
namic results for the UEG at warm dense matter conditions
[2,80]. In addition, ab initio results for the static density
response [81] also have been obtained with CPIMC.

The goal of this paper is to utilize CPIMC to obtain
ab initio data for the momentum distribution of the uniform
electron gas at finite temperature and high density correspond-
ing to rs � 0.7. To access stronger coupling, we also employ
a recently developed approximate method, restricted CPIMC
[82], as well as direct fermionic propagator PIMC simulations
in coordinate space—an extension of permutation blocking
PIMC [77]. In particular,

(1) We verify that the high-momentum asymptotic does
obey a k−8 behavior, and that it is solely determined by the
on-top PDF

(2) We present detailed CPIMC results for g↑↓(0) and
analyze its temperature and density dependence

(3) We investigate the momentum distribution function in
the vicinity of the Fermi momentum and for small momenta

(4) We investigate the momentum range of the onset of the
large-momentum asymptotic.
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This paper is organized as follows: In Sec. II we present
a brief overview of earlier theoretical work pertaining to the
uniform electron gas, together with the main predictions. This
is followed by an introduction to our quantum Monte Carlo
simulations in Sec. II B and by a presentation of the numerical
results in Sec. III.

II. THEORY FRAMEWORK

A. On-top pair distribution

Since the high-momentum tail of the momentum distribu-
tion function can be expressed in terms of the on-top pair
distributions [cf. Eq. (3)], we start by considering the pair
distribution of electrons with spin projections σ1 and σ2 [83],

gσ1σ2 (r1, r2) =
〈
�̂†

σ1
(r1)�̂†

σ2
(r2)�̂σ2 (r2)�̂σ1 (r1)

〉
〈
�̂

†
σ1 (r1)�̂σ1 (r1)

〉〈
�̂

†
σ2 (r2)�̂σ2 (r2)

〉 , (5)

where �σ1 (r1) [�†
σ1

(r1)] is a fermionic field operator anni-
hilating [creating] an electron in spin state |r1σ1〉. Note that
the two-particle density in the numerator is normalized to
the single-particle spin densities, nσ (r) = 〈�̂†

σ (r)�̂σ (r)〉, in
the denominator. Thus, in the absence of correlations and ex-
change effects, gσ1σ2 (r1, r2) ≡ 1. For electrons there exist four
spin combinations. Assuming a homogeneous paramagnetic
system, we have g↑↑(r1, r2) ≡ g↓↓(r1, r2) and g↑↓(r1, r2) ≡
g↓↑(r1, r2).

The total pair distribution function follows from the spin-
resolved functions (5) according to

g(r1, r2) =
∑
σ1σ2

gσ1σ2 (r1, r2)
nσ1 (r1)nσ2 (r2)

n(r1)n(r2)
, (6)

n(r) =
∑

σ

nσ (r), (7)

where the normalization ensures that, in the absence of
exchange and correlation effects, g ≡ 1. In a spatially ho-
mogeneous system, such as the UEG, the PDFs depend only
on the distance of the pair, gσ1σ2 (r1, r2) = gσ1σ2 (|r2 − r1|). Of
particular importance is the case of zero separation. Then the
Pauli principle leads to g↑↑(0) ≡ g↓↓(0) ≡ 0. On the other
hand, the probability of finding two electrons with different
spins “on top of each other” yields the on-top PDF, g↑↓(0),
which is related to total PDF in the paramagnetic case by [cf.
Eq. (6)]

g(0) = g↑↑(0) + g↑↓(0)

2
= 1

2
g↑↓(0), (8)

which is a fundamental property for the characterization of
short-range correlations. In a noninteracting system (rs → 0),
g↑↓

id (0) = 1, on the other hand, Coulomb repulsion leads to
a reduction of this value. Thus for the UEG a monotonic
reduction with rs is expected which will directly influence,
via Eq. (3), the tail of the momentum distribution.

There exist a variety of analytical parametrizations of
the on-top PDF. The ground state on-top PDF of correlated
electrons was investigated in Ref. [84] using the Over-
hauser screened Coulomb potential in the radial two-particle
Schrödinger equation. The results were parametrized for rs �
10 according to

g↑↓(0) = (
1.0 + Ars + Br2

s + Cr3
s + Dr4

s

)
e−Ers , (9)

where A = 0.0207, B = 0.08193, C = −0.01277, D =
0.001859, and E = 0.7524. These results will be called the
“Overhauser model” and used for comparison below.

On the other hand, the high-temperature asymptotic of the
on-top PDF of a classical nondegenerate electron gas where
χ = n
3 � 1, and � = kBT/EF � 1, is also known. Here n
is the density depending on the mean interparticle distance,
r̄ ∼ n−1/3, and 
 is the thermal de Broglie wavelength, 
2 =
h2/(2πmkBT ). A quantum-mechanical expansion was given
in Ref. [53], where the result depends on the order the high-
temperature limit, T → ∞, and the classical limit, h̄ → 0,
is taken. The reason is the existence of a third length scale
[48,85], the Bjerrum length, lB = βe2, where β = (kBT )−1,
giving rise to a second dimensionless parameter, the classical
coupling parameter, � = βe2/r̄ = lB/r̄.

In the case � � χ1/3 (i.e., lB � 
), the result is [53]

g(0) = 1

2

(
1 −

√
2π

lB



+ · · ·
)

, (10)

where the behavior is still dominated by the ideal Fermi
gas properties with deviations scaling like �χ−1/3, or,
(kBT )−1/2n0.

On the other hand, in the case χ1/3 � � (i.e., 
 � lB),
which corresponds to classical plasmas at moderate tempera-
tures, the on-top PDF becomes [53]

g(0) = 4π221/3

31/3

(
lB



)4/3

e− 3π
21/3 ( lB



)2/3 + · · · . (11)

This value is exponentially small due to the moderate
Coulomb repulsion and is not influenced by quantum effects.
Nevertheless, quantum effects (finite 
) show up in the alge-
braic momentum tail, according to Eq. (3), but only on length
scales much smaller than 
 or, correspondingly, at momenta
strongly exceeding 
−1. The latter case is out of the range of
WDM and not relevant for the present analysis.

Finally, there exists a more recent parametrization of the
ground state on-top PDF that is based on QMC simulations
[67]:

g(0; rs) = 1 + a
√

rs + brs

1 + crs + dr3
s

, T = 0 K, (12)

which will be used for comparison below. For an overview
of different models of g(0) for the ground state, the reader is
referred to the paper by Takada [62]. With explicit results for
the on-top PDF and, using Eq. (3), the large-k asymptotics of
the momentum distribution function can be reconstructed.

For finite temperature one can relate the PDF to an effective
quantum pair potential, g↑↓(r) = e−βVQ (r), an idea that was
put forward by Kelbg [86] and further developed by, among
others, Deutsch, Ebeling, and Filinov and co-workers; cf.
Refs. [87–90] and references therein. We will return to this
issue in Sec. III B 2.

B. Configuration PIMC (CPIMC) approach to g(0)
and n(k) of the warm dense electron gas

1. Idea of CPIMC simulations

CPIMC was first formulated in Ref. [91] and applied to
the UEG in Refs. [74,76,92]. For a detailed description of
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the CPIMC formalism we refer to the overview articles [2,93]
and to the recent developments [82]. Here we only summarize
the main idea. The thermodynamic expectation value of an
arbitrary operator Â is determined by the density operator ρ̂

and its normalization, the partition function Z , where we use
the canonical ensemble,

ρ̂ = e−βĤ , Z (β ) = Tr ρ̂, (13)

〈Â〉(β ) = 1

Z
Tr Âρ̂. (14)

Since the Hamiltonian involves only one- and two-body oper-
ators,

Ĥ =
∑

i j

hi j â
†
i â j + 1

2

∑
i jkl

wi jkl â†
i a†

j âl âk, (15)

its expectation value can be described via the reduced one- and
two-particle density matrices, di j and di jkl ; see the definitions
(16) and (17). Here the sums are over arbitrary complete
sets of single-particle states which below will be specified
to momentum eigenstates. Quantum Monte Carlo estimators
for these quantities are obtained through differentiation of the
partition function [93, Eq. (5.88)] with respect to the single-
particle matrix element

di j := 〈â†
i â j〉 = − 1

β

∂

∂hi j
ln Z, (16)

and the two-particle matrix element

di jkl := 〈â†
i â†

j âk âl〉 = − 1

β

∂

∂wi jkl
ln Z, (17)

respectively. The resulting expressions depend on the order
and choice of the indices (i, j) and (i, j, k, l ), respectively.

Let us now present explicit expressions for the one- and
two-particle density matrices in CPIMC. Configuration PIMC
is path integral Monte Carlo formulated in Fock space [91],
i.e., in the space of N-particle Slater determinants, |{n}〉 =
|{n1, n2, . . . }〉, constructed from the single-particle orbitals |i〉
where ni is the associated occupation number.

In CPIMC the canonical partition function (13) is written
as a Dyson series in imaginary time; for details see Ref. [82].
A configuration C determining a MC state is given by a
set of initially occupied orbitals {n}, along with a set of K
changes κi to this set, called kinks at their respective times ti,
1 � i � K ,

C := {{n}, t1, . . . , tK , κ1, . . . , κK}. (18)

Due to the Slater-Condon rules for fermionic two-particle
operators, each interaction matrix element yields either a two-
particle term, corresponding to κ = (i, j), or a four-particle
term, κ = (i, j, k, l ). Thus the kinks are given by either two
or four orbital indices, respectively. The kink matrix element
qi,i−1(κi) represents the off-diagonal matrix elements with
respect to the possible choices of 2- or 4-tuples κi. The final
result for the partition function is [82]

Z (β ) =
∞∑

K = 0
K �= 1

∑
{n}

∑
κ1

. . .
∑
κK

∫ β

0
dt1

∫ β

t1

dt2 . . .

∫ β

tK−1

dtK (−1)K

(
K∏

i=0

e−Ei (ti+1−ti )

)
×

(
K∏

i=1

qi,i−1(κi)

)
, (19)

where paths with K = 1 violate the periodicity and have to be
excluded. Configurations can be sampled from the partition
function

Z =
∑∫

C
W (C), (20)

with the weight function

W (C) = (−1)K

(
K∏

i=0

e−Ei (ti+1−ti )

)(
K∏

i=1

Wi,i−1

)
, (21)

which allows one to rewrite thermodynamic expectation val-
ues (14) as

〈A〉 =
∑∫

C
W (C)A(C). (22)

An example configuration (path) is illustrated in Fig. 1. With
three particles present, horizontal solid lines represent diago-
nal matrix elements, as given by the exponential factor in the
partition function (19), and the occupation number state at a
given time-interval is specified by the set of all these lines
in this interval. On the other hand, the vertical solid lines
represent interaction terms, where the occupation changes
according to the specified kink κi, weighted by the respective

kink matrix element qi,i−1(κi). Due to the periodicity of the
expectation values (14), the kinks must add to yield the initial
occupation vector at 0 < t < t1 again:

K∏
i=1

q̂i,i−1(κi) = 1̂. (23)

0
1
2
3
4
5

0 t1 t2 t3 t4 t5 β0
imaginary time

or
bi

ta
l
i

q5,4(κ5)|{n(4)}〉

FIG. 1. Illustration of a path C, Eq. (18), with five kinks. The
three kinks 1, 3, 5, at times t1, t3, t5, each involve four orbitals:
κ1 = (1, 4; 3, 5), κ3 = (1, 3; 0, 2), κ5 = (4, 5; 1, 3) respectively. The
two kinks 2 and 4, at t2 and t4, involve two orbitals each: κ2 = (0; 1)
and κ4 = (2; 4). The fourth Slater determinant |n(4)〉 exists between
the imaginary “times” t3 and t4 and contains three occupied orbitals
{ 0, 2, 5 }.
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This representation of the partition function can now be
applied to the observables of interest. For the one-particle
density matrix we obtain, for i �= j,

di j (C) = − 1

β

K∑
ν=1

(−1)α{n(ν)},i, j

q{n(ν)}{n(ν−1)}(κν )
δκν,(i, j). (24)

where α{ν},i, j denotes the number of occupied orbitals between
orbitals i and j in N-particle state |{ν}〉, cf. Ref. [76]. For the
uniform electron gas, the off-diagonal matrix elements vanish
in a momentum basis, whereas the diagonal ones yield the
momentum distribution, as will be discussed in Sec. II B 2.

Let us now turn to the CPIMC estimator for the two-
particle density matrix. Here we have to distinguish several
cases of index combinations [94, Eq. 3.14]. If i < j, k < l are
pairwise distinct

di jkl (C) = − 1

β

K∑
ν=1

(−1)α{n(ν)},i, j+α{n(ν−1)},k,l

q{n(ν)}{n(ν−1)}(κν )
δκν,(i, j,k,l ). (25)

The term under the sum (without the Kronecker delta) will be
abbreviated as the weight of the kink κν ,

W (κν ) := (−1)α{n(ν)},i, j+α{n(ν−1)},k,l

q{n(ν)}{n(ν−1)}(κν )
.

In the case of i = k, but with all other indices being different,

di jil (C) = − 1

β

K∑
ν=1

(−1)α{n(ν)}, j,l

q{n(ν)}{n(ν−1)}(κν )
n(ν)

i δκν,( j,l ). (26)

Finally, if i = k and j = l , but i �= j, the matrix elements are
given by

di ji j (C) =
K∑

ν=0

n(ν)
i n(ν)

j

τν+1 − τν

β
. (27)

The expectation value of this estimator is given by the
weighted sum over all possible configurations C,

di jkl = 〈â†
i â†

j âk âl〉 = 1

Z

∑∫
C

di jkl (C)W (C). (28)

Due to the large single-particle basis sizes that have to be
used in the CPIMC simulations, the variances of these estima-
tors may be very large for some transitions [i.e., combinations
of indices (i, j) or (i, j, k, l)]. However, special cases can be
used to derive the estimators needed to measure short-range
properties of the system: The momentum distribution and the
on-top PDF.

2. Momentum distribution with CPIMC

The momentum distribution function is given by the diag-
onal part of Eq. (16), if a plane wave basis is being used; cf.
Sec. II B 3. For i = j, we obtain

〈n̂i〉 = − 1

β

∂

∂hii
ln(Z ) = 1

Z

∑∫
C

ni(C)W (C),

ni(C) =
K∑

ν=0

n(ν)
i

τi+1 − τi

β
, (29)

where the contribution of each time slice is weighted by the
length of horizontal paths.

3. On-top pair distribution function with CPIMC

The definition (5) of the spin-resolved PDF requires
the two-particle density matrix in coordinate representation,
which is obtained from the two-particle density matrix (17) in
momentum representation, i.e., using plane wave orbitals,

〈rσ |ks〉 = 1√
V

eikrδs,σ =: ϕk(r)δs,σ . (30)

To shorten the notation, the wave vector k will be represented
by an index i ↔ ki of the corresponding single-particle ba-
sis eigenvalue. The field operators in a position-spin basis
are related to the creation and annihilation operators in a
momentum-spin basis |i〉 := |kisi〉 by

�̂σ (r) =
∑

i

φi(r, σ )âi,

�̂†
σ (r) =

∑
i

φ∗
i (r, σ )â†

i . (31)

The on-top PDF (8) follows from the PDF (5) for different
spin projections, σ2 �= σ1,

g↑↓(0) := gσ1σ2 (r, r) =: g↑↓
0 . (32)

With the basis transformation (31) of the field operators, a
straightforward calculation yields the CPIMC estimator for
the on-top PDF (for details see Appendix A),

g↑↓
0 (C) = 1

β

K∑
ν=1

∑
k �= i < j �= l

k < l

(
1 − δsiν ,s jν

)
w(κν )

× (
δs jν ,slν

δsiν ,skν
− δsiν ,slν

δs jν ,skν

)
−

K∑
ν=0

∑
i< j

(
1 − δsi,s j

)
n(ν)

i n(ν)
j

τν+1 − τν

β
. (33)

III. SIMULATION RESULTS

We have performed extensive CPIMC simulations with
N = 54 particles. Due to the fermion sign problem, these
simulations are restricted to small coupling parameters, rs �
0.7. To extend the range of parameters, we also performed
simulations with N = 14 particles. As shown before, impor-
tant structural properties, such as the static structure factor
[16,95] and the pair distribution function, only weakly de-
pend on the particle number. A quantitative analysis of the
N-dependence of the results will be performed for the tail of
the momentum distribution in Sec. III B. The CPIMC results
are complemented by restricted CPIMC simulations [82]. To
access larger values of the coupling parameter, we also include
fermionic PIMC simulation results in coordinate space for the
on-top PDF.

A. Momentum distribution

1. Overview

Let us start by analyzing the general trends of the momen-
tum distribution when either the temperature or the coupling
strength are varied. In Fig. 2 we present CPIMC data for N =
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Θ = 2.0
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FIG. 2. Temperature dependence of the momentum distribution
of moderately correlated electrons, rs = 0.5. CPIMC results with
N = 54 particles for three temperatures are compared to the ground
state (solid black, data of Ref. [84]). For comparison, the ideal
Fermi distribution is shown by dashed lines of the same color as the
interacting result (from left to right � = 1.5, 2.0, 4.0).

54 particles showing the entire momentum range for moder-
ate coupling, rs = 0.5, and three temperatures and indicating
that the occupation of high-momentum states is coupled in
a nontrivial way to occupation of lower momentum states.
Interestingly, an increase of temperature not only leads to
the familiar broadening of n(k) around the Fermi edge and
depletion below it, but may also lead to a lower population of
the tail (see below). The most striking observation is the strong
deviation, in the tail region, from the exponential decay in
case of an ideal Fermi gas. Our simulations clearly confirm the
correlation-induced enhanced population of high-momentum
states with the asymptotic, n(k) ∼ k−8.

Let us now turn to the dependence on the coupling pa-
rameter. To this end, we present, in Fig. 3, the momentum
distribution for a fixed temperature, � = 2, and two values
of rs and also compare this to the ideal Fermi gas. For large
momenta, k � 6kF , we observe an increase of the population
when rs grows. However, for intermediate momenta, kF �
k � 6kF , the ideal distribution is significantly above the cor-
related distributions. Finally, below the Fermi momentum, the
correlated distributions are again above the ideal momentum
distribution.

This behavior seems counterintuitive, and we analyze it
more in detail in the next section.

2. Interaction-induced enhanced population
of low-momentum states

Let us now investigate in more detail the behavior of the
momentum distribution in the range from k = 0 to momenta
on the order of several kF . To focus on correlation effects we
plot, in Fig. 4, the difference of the correlated distribution
and the Fermi distribution for the case of rs = 0.5. Clearly,
we observe an enhanced population of low-momentum states,
k � 1.5kF , compared to the Fermi function. The effect is
biggest at the lowest temperature and decreases monotonically
with �. On the other hand, it is clear that, upon further

0 2 4 6 8 10 12 14
10−15

10−11

10−7

10−3

k/kF

n
(k

)

nid(k)

rs = 0.7

rs = 0.2

FIG. 3. Density dependence of the momentum distribution of
moderately correlated electrons at temperature � = 2. CPIMC re-
sults with N = 54 particles are compared to the ideal Fermi-Dirac
distribution nid (full black line). For momenta below approximately
6kF the correlated distributions are indistinguishable from nid. For
comparison, the ground state distributions, as given by Ref. [84], are
shown by the dashed lines of the same color as the finite temperature
result (from top to bottom: rs = 0.7, 0.2).

reduction of �, this effect will decrease again and vanish in
the ground state. The reason is that, at T = 0 K, all low-
momentum states are completely occupied, and, due to the
Paui principle, correlations can only enhance the population of
unoccupied states, at k > kF . The same analysis is performed,
for a fixed temperature but different coupling parameters, in
Fig. 5. Here we observe a monotonic trend: with increasing
rs, the difference of the populations increases with respect to
the ideal case.

This interaction-induced enhanced population of low-k
state has been reported before, e.g., based on restricted PIMC
simulations, by Militzer and Pollock [68], and on thermody-
namic Green functions by Kraeft et al. [47]. The origin of this

1 2 3 4
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n
(k

)
−

n
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(k
) Θ = 1.5

Θ = 2.0

Θ = 4.0

0 1 2 3 4 5

-0.01

0.00

k/kF

k
4
{n

(k
)
−

n
id

(k
)}

/
2

FIG. 4. Upper panel: deviation of the momentum distribution
(CPIMC results with N = 54 particles) from the ideal Fermi-Dirac
distribution at moderate coupling rs = 0.5. Lower panel: Difference
of the distribution functions weighted with k4/2 (Hartree units), i.e.,
k-resolved kinetic energy density.
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FIG. 5. Same as Fig. 4, but for a fixed temperature, � = 2, and
three densities. The different ordering of the curves in the lower panel
arises from the rs-dependence of the horizontal scale, kF ∝ r−1

s .

effect is interaction-induced lowering of the energy eigenval-
ues, E (k) < E id (k) [68]. Here the interacting energy contains,
in addition, an exchange and a correlation contribution,

E (k) = E id (k) + �Ex(k) + �Ec(k). (34)

The behavior reported here is dominated by the exchange
contribution, i.e., by the Hartree-Fock self-energy (the Hartree
term vanishes due to homogeneity and charge neutrality),
which is negative,

�Ex(p) = �HF(p) = −
∫

d3q

(2πh̄)3
w(|p − q|) n(q). (35)

The negative Hartree-Fock self-energy shift is largest at small
momenta and decreases monotonically with k. As a con-
sequence, the system tends to increase the population of
low-momentum states.

An interesting consequence of this population increase is
that the mean kinetic energy of the correlated electron gas may
be lower than that of the ideal electron gas at the same temper-
ature [47,68]. Our simulations clearly confirm this prediction.
This effect is illustrated in the lower panels of Figs. 4 and
5 where we plot the k-resolved difference of kinetic energy
densities. For the parameters shown in theses figures, the ex-
cess kinetic energy (compared to the ideal UEG) concentrated
in low-momentum states (positive difference) is smaller than
the kinetic energy reduction (negative difference) at larger
momenta. This is evident from the areas under the curves in
the lower panels of Figs. 4 and 5. As a result the total kinetic
energy difference of the interacting system compared to the
ideal system is negative for a broad range of parameters. The
corresponding kinetic energies for the interacting and ideal
systems are presented in Appendix B, in Tables II and III, for
54 and 14 particles, respectively.

Our argument, so far, was based on the negative sign
of the Hartree-Fock self-energy. However, for a complete
picture we also need to consider the energy shift due to
correlations, �Ec. In contrast to the Hartree-Fock shift, the
correlation corrections to the energy dispersion are typically
positive, but smaller, as was shown for the Born approxima-

0.01

0.1

1

5

0.1 1 10

θ

rs

Militzer & Pollock
-0.12
-0.1
-0.08
-0.06
-0.04
-0.02
 0
 0.02
 0.04
 0.06
 0.08

FIG. 6. Interaction-induced lowering of the kinetic energy. Heat
map: Kxc, Eq. (36), computed from the parametrization by Groth
et al. [80]. Solid black line: rs-�-combinations where Kxc vanishes;
dotted lines: uncertainty interval of 5 × 10−3 Ha. Solid blue line:
Kxc = 0 according to RPIMC results of Ref. [68]. Red (green) pluses:
CPIMC results for kinetic energy decrease (increase) compared to
ideal case. Red circles (green crosses): CPIMC data points where
the occupation of the lowest orbital, n(0), is higher (lower) than in
the ideal case, i.e., nid (0). Extensive data for the kinetic energy are
presented in the tables in Appendix B.

tion (Montroll-Ward approximation), in Ref. [47]. However,
this result applies only for weak coupling. For stronger cou-
pling, in particular, rs � 1, at least T -matrix self-energies
would be required. An alternative are QMC simulations, as
presented in Ref. [68], which allow one to map out the range
of density and temperature parameters where the difference of
correlated and ideal kinetic energies changes sign.

The present CPIMC simulations are not directly applicable
to the range rs � 1. However, we can take advantage of the
accurate parametrization of the exchange-correlation free en-
ergy fxc of Groth et al. [80] that is based on a combination of
CPIMC, PB-PIMC, and ground state QMC results. In particu-
lar, the exchange-correlation contribution to the kinetic energy
is obtained by evaluating [26]

Kxc = − fxc − θ
∂ fxc

∂θ

∣∣∣∣
rs

− rs
∂ fxc

∂rs

∣∣∣∣
θ

, (36)

and the corresponding results are depicted in Fig. 6. The line
where the kinetic energy difference changes sign is in good
agreement with the results of Ref. [68], for rs � 1, but we find
significant deviations at smaller rs and lower temperatures.

It is interesting to compare the parameter values where the
kinetic energy difference changes sign to the occupation of
the zero-momentum state, n(0), relative to the ideal distribu-
tion, nid (0). For most temperatures considered, the interacting
zero-momentum state n(0) has a larger population than the
corresponding ideal state. Only for the lowest temperatures,
� ∈ { 1/16, 1/8 }, do we observe the opposite behavior.

3. High-momentum asymptotics of n(k)

In Figs. 7 and 8 we present data for low to moderate tem-
peratures focusing on momenta beyond the Fermi edge. We
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FIG. 7. Large momentum behavior of the momentum distribu-
tion, for rs = 0.2 and � = 0.0625. Top: blue line. CPIMC results
for N = 54 particles, pink line: best fit to the asymptotic, Eq. (3),
with g↑↓(0) taken from CPIMC data; green: ground state value from
Ref. [96]. Bottom: relative difference of CPIMC and the ground state
data from the asymptotic (pink line in top plot), according to Eq. (37).

directly compare the CPIMC data to the asymptopic behavior
where a k−8 tail is expected, with the coefficient determined
by the on-top PDF g(0) [cf. Eq. (3)], where g(0) is taken from
the same CPIMC simulation. As can be seen in these figures,
the CPIMC data clearly exhibit the expected algebraic decay,
for sufficiently large k. To make a quantitative comparison, we
also plot, in the lower panels, the relative difference between
CPIMC data, n(k), and the asymptotic, n∞(k), according to

δ∞(k) = n(k)

n∞(k)
− 1. (37)

The results for δ∞ clearly confirm that our ab initio CPIMC
data approach the asymptotic. Moreover, we can estimate the
momentum range where the asymptotic behavior dominates.
For low temperatures of EF /16, the asymptotic is reached
at about 6kF ; cf. Fig. 7. With increasing temperature, the
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CPIMC
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Ground State

6 8 10 12 14
−1

0

1

2

k/kF
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FIG. 8. Same as Fig. 7, but for rs = 0.5 and � = 2.
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g(
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FIG. 9. On-top PDF, g↑↓(0) = 2g(0), for N = 54 electrons at
rs = 1 and θ = 4, from different methods. Red circles: CPIMC re-
sults for g↑↓(0) for different values of the momentum cutoff, Emax

(top x-axis); solid red line: linear fit. Green crosses: standard PIMC
data for the distance-dependent PDF, g↑↓(r), (bottom x-axis); solid
green curve: linear fit. Blue diamonds: RPIMC data from Ref. [71]
for the same conditions but N = 66.

asymptotic is approached only at larger momenta, e.g., for
� = 2, around 11kF ; cf. Fig. 8. A systematic analysis of the
onset of the asymptotic will be given in Sec. III C.

In these figures we also included ground state data for
the momentum distribution (green lines), which allows us to
analyze finite temperature effects. In all figures we observe
that the finite temperature distribution, n(k; �), intersects the
ground state function, n(k; 0), coming from above, before
it reaches the asymptotic. In the range of the algebraic tail
the finite temperature function is always below the ground
state result, for the same rs and k, in agreement with Fig. 2.
This behavior is, at first sight, counterintuitive because one
expects that finite temperature effects increase the population
of high momentum states. As we will show in Sec. III B 2 this
temperature dependence is, in fact, nonmonotonic and is due
to a competition between Coulomb repulsion and exchange
effects.

Finally, we note that our simulations reveal that the k−8

asymptotic is observed independently of the particle number,
in agreement with the predictions of Refs. [53,97]. We will
return to the question of the particle number dependence in
Sec. III B 1.

B. Ab initio results for g(0)

After analyzing CPIMC data for the large momentum tail
of the distribution function we now concentrate on the coeffi-
cient in front of the asymptotic k−8 term. According to Eq. (3),
this coefficient is entirely determined by the on-top PDF g(0),
which is directly accessible in quantum Monte Carlo simula-
tions. For PIMC in coordinate space, the straightforward way
is to analyze the r-dependence of the PDF and subsequently
extrapolate to r = 0. Typical results are shown in Fig. 9 for
direct fermionic (labeled “PIMC”) and restricted (“RPIMC”)
PIMC simulations. In contrast, in CPIMC a direct estimator
for the on-top PDF is available [cf. Eq. (33)], and the results
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FIG. 10. Influence of the particle number on the on-top PDF
at � = 0.0625 for CPIMC results with N = 66, N = 54, and 38
particles. We show the relative deviation of each respective data
point from the corresponding CPIMC result for N = 14, which
corresponds to the horizontal line at 0. Simulation results from the
approximate RCPIMC and RCPIMC+ methods [82] are included.
“TA” denotes twist angle averaging.

are included in Fig. 9 with the red symbols. These results
depend on the size of the single-particle basis and the cor-
responding cutoff energy Emax (top x-axis). Overall, for a suf-
ficiently large basis, very good agreement of the two indepen-
dent fermionic simulations, PIMC and CPIMC, is observed
for the parameter combinations where both are feasible.

This gives additional support for our CPIMC data, in par-
ticular for its use at low temperatures, where CPIMC provides
the only ab initio approach. In fact, CPIMC data for g(0)
were already used for comparisons above. In this section we
investigate the density and temperature dependence of g(0).
But first we explore how sensitive this value depends on the
number of particles in the simulation cell.

1. Particle number dependence

We have performed extensive CPIMC simulations for g(0)
for a broad range of particle numbers, from N = 14 to
N = 66. Two typical examples are shown, for � = 0.0625, in
Fig. 10, and for � = 2, in Fig. 11. In these figures we use the
case N = 14 as the reference for comparison because, for this
number, the widest range of parameters is feasible, although,
naturally, simulations with larger N are more accurate. All fig-
ures confirm that finite size effects are very small in g(0) and
do not exceed 2%, even for N = 14. Regarding simulations
with the two approximate CPIMC variants that were discussed
above [82], the analysis reveals that RCPIMC+ is reliable
for intermediate temperatures, 0.1 � � � 0.5. Even at lower
temperatures (cf. Fig. 10), we observe that RCPIMC+ data
points for N = 54 are close to CPIMC simulations for N = 54
particles (and more accurate than CPIMC for N = 14) and,
therefore, can be well used for larger rs-values, where CPIMC
is not possible, due to the sign problem. At the same time,
RCPIMC [82] turns out to be not sufficiently accurate for
computing g(0) and is not used in this paper.

FIG. 11. Same as Fig. 10, but for the temperature � = 2.

2. Temperature dependence

We now turn to the temperature dependence of the on-top
PDF. In Figs. 12 and 13, we plot g(0) from CPIMC data over a
broad range of temperatures for rs = 0.2 and 0.2 � rs � 0.7,
respectively. The figures display an interesting nonmonotonic
behavior: the on-top PDF increases, towards both low and
high temperatures. This is easy to understand: At very low
temperatures, the system approaches an almost ideal Fermi
gas for which g(0) would be exactly 0.5. The (weak) Coulomb
repulsion gives rise to an additional depletion of zero distance
pair states. This is confirmed by the lower absolute values of
g(0) when rs is increased from rs = 0.2 to 0.4 and 0.7.

On the other hand, for increasing temperature, in the range
where the electron gas is dominated by classical behavior
(� > 1), both exchange and Coulomb repulsion effects are
suppressed, as compared to thermal motion, and the prob-
ability that two particles approach each other closely tends
to unity, as would be the case in a noninteracting classical
gas. A nontrivial question is the position of the minimum. It
appears around � = kBT/EF ∼ 0.63, with a depth of 0.42,
for rs = 0.2, around � = 0.63, with a depth of 0.365, for

0 1 2 3 4

0.43

0.44

0.45

Θ

g
(0

)

CPIMC, N = 54, rs = 0.2

RCPIMC+, N = 54, rs = 0.2

FIG. 12. Temperature dependence of the on-top pair distribution
for rs = 0.2 from CPIMC simulations with N = 54 particles. Very
good agreement of RCPIMC+ [82] with CPIMC is confirmed.
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FIG. 13. Temperature dependence of the on-top PDF for rs =
0.5, from CPIMC simulations with 14 particles. Twist angle aver-
aging has been applied. Shaded area indicates the statistical error.
The minimum temperature is set by the fermion sign problem. For
better visibility, the curves for rs = 0.5 and 0.7 are shifted vertically
by the number given in parentheses.

rs = 0.4, and around � = 0.63, with a depth of 0.296, for
rs = 0.7.

This minimum can be understood as due to the balance
of two opposite trends: depletion of g(0), due to Coulomb
repulsion, and increase of g(0), due to quantum delocalization
effects. At high temperatures and low densities, the PDF can
be expressed in binary collision (ladder) approximation

g↑↓(r) = e−βV (r), (38)

where V is the Coulomb potential, which reproduces the
behavior right of the minimum. At small interparticle dis-
tances, r � 
, however, quantum effects have to be taken
into account in the pair interaction. Averaging over the finite
spatial extension of electrons leads to the replacement of
the Coulomb potential by the Kelbg potential (quantum pair
potential) [86,98,99],

V K(r) = V (r)

{
1 − e− r2


2 + √
π

r


̃

[
1 − erf

(
r


̃

)]}
, (39)

where 
̃ = 
. Note that V K has the asymptotic V K(0; β ) =
e2


(β ) ∼ T 1/2, which removes the Coulomb singularity at zero
separation. While this potential has the correct derivative,
dV K(0)/dr = − e2


2 , its value at r = 0 is accurate only at weak
coupling. At the same time, this potential can be extended
to arbitrary coupling by retaining the same analytical form,
but correcting the standard thermal de Broglie wavelength 


(referring to an ideal gas) to the wave length of interacting
particles, which gives rise to the so-called improved Kelbg
potential [88,89],


 → 
̃ = 
γ , (40)

V K(0; β ) → V IK(0; β ) = e2


(β )γ (β )
. (41)

At low temperature the effective wavelength of the elec-
trons increases, γ (β ) ∼ T −1/2, which ensures that g↑↓

IK (0) =

FIG. 14. Analysis of the minimum of the on-top PDF. Filled
symbols correspond to the location of the minimum in the �-rs plane
(left axis �). Open symbols correspond to the minimum value of
the OT-PDF (right axis). Orange circles: CPIMC results for N = 14
particles. The green line represents the values of g(0) at a fixed
temperature � = 0.656. ESA: results of the extended static approxi-
mation [58]; see text.

e−βV IK (0) is finite. Accurate values for the function γ in a
two-component plasma and for different spin projections were
presented in Refs. [88,89] from a fit to PIMC data. In similar
manner, the present ab initio QMC results for the on-top PDF
can be used to compute an effective de Broglie wavelength of
the warm dense uniform electron gas, and the concept of an
effective quantum pair potential allows for a simple physical
interpretation of some of its thermodynamic properties.

As we already saw for the example of three densities, the
location of the minimum changes with the coupling strength
rs. This effect is analyzed systematically in Fig. 14. We ob-
serve an increase of the minimum position, �min, with rs

(full squares, left axis). The reason is that, with increasing
coupling, the interaction strength increases, as is seen by the
increasing depth of the minimum (open symbols, right axis).
Therefore, the monotonic increase of g(r) with temperature
sets in already at a higher temperature when rs is increased. In
addition to CPIMC data which are restricted to rs � 1 we also
included an analytical fit (“ESA” [58]) that agrees well with
CPIMC and extends the data to rs = 8. More information on
this approximation is given in the discussion of Fig. 16.

3. Density dependence

Let us now discuss the density dependence of the on-
top PDF. As we have seen above, with increasing coupling
strength, rs, the value of g↑↓(0) decreases, due to the increased
interparticle repulsion. This connection can be qualitatively
understood from Eq. (38) if it is used with an effective
potential that includes many-body effects beyond the pair
interaction. This monotonic decrease with rs is confirmed by
our simulations for all temperatures. As an illustration, we
show in Figs. 15 and 16 the behavior for � = 0.0625 and
� = 1, respectively.

At low temperature and weak coupling, the temperature
dependence of g(0) is very weak (cf. Fig. 15) in agreement
with Fig. 13. At θ = 1, finite temperature effects increase the
particle repulsion due to stronger localization of electrons, and
g(0) falls slightly below the ground state value (cf. Fig. 16).
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FIG. 15. Density dependence of the on-top PDF for � = 1/16 at
weak coupling. Open (filled) circles: CPIMC (RCPIMC+) results for
N = 54 particles. Lines: results of ground state models, i.e., Eq. (9)
(Overhauser model) and of Calmels et al. [100].

This confirms the nonmonotonic temperature dependence of
g(0) discussed above, since this temperature is in the vicinity
of the minimum of g(0).

Let us now discuss the consequences of this density and
temperature dependence of g(0) for the high-momentum
asymptotics of n(k). According to Eq. (3), the number of elec-
trons occupying large-k states is proportional to n(k; rs,�) ∝
r2

s g(0; rs,�) k8
F (rs )
k8 , where we made the dependence on the

coupling parameter explicit. Taking into account that kF ∝
n1/3 ∼ r−1

s , the absolute value of the asymptotic occupa-
tion number, at a given k and fixed �, scales as n(k) ∝
r−6

s g(0; rs,�)k−8. On the other hand, considering the occu-
pation number as a function of the momentum normalized
to the Fermi momentum, κ = k/kF , the density dependence
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FIG. 16. Density dependence of the on-top PDF for � = 1. Red
squares: CPIMC data [rs � 0.4: N = 54 particles; rs � 0.5: N =
14]. Blue circles: FP-PIMC data [0.6 < rs � 8: N = 66; 0.1 � rs �
0.6: N = 34]. Black full (dashed) lines: ground state DMC simula-
tions [67] and Eq. (9), respectively. Inset: zoom into the high-density
range (linear scale).

FIG. 17. Top: On-top PDF (top), bottom: the function (43) for
two temperatures: � = 4 (orange line and symbols) and � = 2
(green line and symbols). Triangles: CPIMC data for N = 54;
squares: FP-PIMC with N = 66 particles. Dotted lines: parametriza-
tion of Dornheim et al. [58]; black line: ground state parametrization
of Calmels et al. Note the extended rs-range in the lower figure. For
more data on the maximum of s(rs), see Table I.

becomes

n(κ ) → s(rs,�)κ−8, (42)

s(rs,�) = 9

2
α8r2

s g(0; rs,�), α :=
(

4

9π

) 1
3

. (43)

Given the monotonic decrease of g(0) with rs, the function
n(κ ) may exhibit nonmonotonic behavior as a function of
rs, including a maximum at an intermediate rs-value. This is
clearly seen in Fig. 17 for the temperatures � = 2, 4.

As expected, at all temperatures, the coefficient s(rs) in-
creases monotonically, for small rs, starting from zero. The
decrease, governed by the monotonic decrease of g(0) sets in
only at large rs where CPIMC simulations are not possible
any more. On the other hand, an extensive set of restricted
PIMC data [71] for g(r) is available, for 1 � rs � 40, which
has recently been used by Dornheim et al. [58] to construct
an analytical parametrization of g(0; rs, θ ). The results are de-
noted as ESA because they constitute an important ingredient

TABLE I. Location and height of the maximum of the parameter
s(rs), Eq. (43), as a function of temperature. Results are based on the
parametrization of the on-top PDF by Dornheim et al. [58]; see also
Fig. 17.

� rmax
s smax � rmax

s smax � rmax
s smax

0.0625 4.325 0.022 0.75 3.649 0.015 2.5 4.261 0.023
0.125 4.308 0.021 1.0 3.594 0.015 3.0 4.550 0.027
0.25 4.132 0.019 1.5 3.712 0.017 3.5 4.827 0.030
0.5 3.821 0.016 2.0 3.969 0.020 4.0 5.091 0.034
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FIG. 18. Illustration of the prescription (44) to determine the
onset of the large-momentum asymptotic from the intersection of
the ideal Fermi function, f id (k), (dashes), with the k−8 asymptotic,
n∞(k), (full lines of the same color). The asymptotic is determined
from CPIMC simulations of the on-top PDF for N = 54 particles.

to the effective static approximation for the static local field
correction that was presented in Ref. [58].

An example is shown in the lower part of Fig. 17 for
two temperatures, � = 2 and � = 4. The maximum of s is
observed around rs = 4, for � = 2 and rs ≈ 5, for � = 4. We
have performed a systematic parameter scan on the basis of
the analytical fit (ESA) over a broad range of temperatures.
The results are collected in Table I. These results show that
the maximum of s(rs) is generally located in the range 3.5 �
rs � 6.0. Interestingly rmax

s , the rs-value where the maximum
is located, exhibits a nonmonotonic temperature dependence.
The reason is the nonmonotonic temperature dependence of
g(0) that was discussed in detail in Sec. III B 2. Finally, the
comparison with the ab initio results in Fig. 17 suggests that
the ESA fit can be further improved using our CPIMC and
FP-PIMC data.

C. Onset of the large-k asymptotic of n(k)

Let us now find an approximate value of the momentum
k∞ where the k−8-asymptotic starts to dominate the behavior
of the distribution function. In particular, we are interested in
understanding how this value depends on density and temper-
ature.

First, we observe that the significant broadening of the
low-momentum part of the distribution that is observed when
the temperature is increased pushes the value k∞ to larger mo-
menta. Figure 2 suggests that this onset is near the intersection
of the asymptotic, Eq. (3), n∞(k) with the ideal MDF given by
the Fermi-Dirac distribution function nid (k):

nid (k∞)
!= n∞(k∞). (44)

This approach is demonstrated in Fig. 18, and the results
are presented for a broad range of densities, in the range of
rs = 0.2 . . . 1.6, and temperatures � � 4, in Fig. 19. For this
procedure, to obtain the asymptotic n∞ we used the value of
g(0) that was computed in CPIMC simulations.

0 1 2 3 4

2

4

6

8

Θ

k
∞

/k
F

rs = 0.2

rs = 0.7

rs = 1.2

rs = 1.6

FIG. 19. Onset k∞ of the large-momentum asymptotic, as calcu-
lated from Eq. (44). The procedure is illustrated in Fig. 18. CPIMC
simulations with N = 14 particles. The lower limit of �, for the
different curves, is set by the fermion sign problem.

This figure shows that, with an increase of correlations
(increase of rs) the onset of the asymptotic is shifted to lower
momenta, even though the dependence is weak. The figure
also shows that an algebraic tail of the momentum distribution
exists also in a weakly quantum degenerate plasma with � >

1. With increasing temperature, the onset of this asymptotic
is pushed to larger momenta with k∞/kF increasing slightly
faster than �0.5.

IV. SUMMARY AND OUTLOOK

A. Summary

In this paper we have performed an analysis of the mo-
mentum distribution function of the correlated warm dense
electron gas using recently developed ab initio quantum
Monte Carlo methods. We have presented extensive data ob-
tained with CPIMC, for small rs. This was complemented
with new fermionic propagator PIMC data, for rs � 1, so the
entire density range has been covered. Our CPIMC results for
the momentum distribution of the warm uniform electron gas
achieve an unprecedented accuracy: the asymptotic is resolved
up to the eleventh digit for momenta up to approximately
15kF ; cf. Figs. 2 and 3. For all parameters the existence of the
1/k8 asymptotic is confirmed. Moreover, based on accurate
data for the on-top PDF the absolute value of n(k) in the
asymptotic is obtained.

While the value of the on-top PDF decreases mono-
tonically with rs, it exhibits an interesting nonmonotonic
temperature dependence with a minimum around � = 0.656,
e.g., Fig. 13. This was explained by a competition of Coulomb
correlations and exchange effects. We also investigated the
density and temperature dependence of the momentum where
the algebraic decay begins to dominate the tail of the momen-
tum distribution.

In addition to the large-momentum tail we also investigated
the occupation of low-momentum states in the warm dense
electron gas. An interesting observation is that Coulomb inter-
action may lead to an enhanced occupation of low-momentum
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states (compared to the ideal case), which is mostly due
to exchange effects (cf. Fig. 5). Together with an enhanced
population of high-momentum states this leads to a depopu-
lation of intermediate momenta in the range kF � k � 3kF .
This nontrivial redistribution of electrons may give rise to
a counterintuitive interaction-induced decrease of the kinetic
energy of the finite temperature electron gas. This confirms
earlier results [47,68] and, at the same time, complements
the extensive new and more accurate data in a broad range
of parameters.

B. Outlook

Part of our results for the on-top PDF were obtained with
help of the recent extended static approximation (ESA) [58].
Its advantage is that it allows for relatively easy parame-
ter scans in a broad range of densities and temperatures.
Therefore, an important task is to further improve this ap-
proximation with the present high-quality data for g(0). The
present simulations concentrated on the range of rs � 10,
which is of relevance for warm dense matter. At the same time
the jellium model is also of interest for the strongly correlated
electron liquid; see, e.g., Refs. [101,102]. It will, therefore, be
interesting to extend this analysis to larger rs-values, which
should be straightforward based on an analysis of the on-top
PDF.

Finally, the momentum distribution function is of crucial
importance for realistic two-component plasmas for which ex-
tensive restricted PIMC simulations (e.g., Refs. [11,24]) and
fermionic PIMC simulations (e.g., Refs. [12,103]) have been
performed. Therefore, an extension of the present analysis of
the on-top PDF to two-component QMC simulations is of high
interest.

This will also be the basis for the application of the
present results to estimate the effect of power law tails in
n(k) in fusion rates (see, e.g., Refs. [37–39]) and other inelas-
tic processes, that involve the impact of energetic particles.
An example of the latter are electron impact excitation and

ionization rates of atoms in a dense plasma. Such effects were
predicted for various chemical reactions in Ref. [35] based on
a approximate treatment of collision rates and phenomeno-
logical Lorentzian-type broadening of the electron spectral
function in Eq. (2). However, such approximations are known
to violate energy conservation (see, e.g., Ref. [104]). The
present approach to n(k) makes such approximations obsolete
and, moreover, eliminates the multiple integrations over the
energy variables in Ref. [35], substantially simplifying the
expressions for the rates.

Finally, the relevance of algebraic tails of n(k) for nuclear
fusion rates in dense plasmas was discussed by many authors
(e.g., Refs. [33,35,36,105]), but the agreement with experi-
mental data remains open. The results of the present work
are applicable to many fusion reactions of fermionic parti-
cles, such as the proton-proton or 3He–3He fusion reactions
in the sun or supernova stars that were considered (e.g., in
Refs. [38,105]). For quantitative comparisons the present sim-
ulations should be extended to multicomponent electron-ion
plasmas and include screening effects of the ion-ion interac-
tions (see, e.g., Ref. [39]), which does not pose a fundamental
problem.
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APPENDIX A: DERIVATION OF THE CPIMC-ESTIMATOR FOR THE ON-TOP PDF, EQ. (33)

We start by expressing the field operators in terms of the creation and annihilation operators in momentum representation [cf.
Eqs. (31)]:

�̂†
σ1

(r)�̂†
σ2

(r)�̂σ2 (r)�̂σ1 (r) =
(∑

i

φ∗
i (r, σ1)â†

i

)(∑
j

φ∗
j (r, σ2)â†

j

)(∑
k

φk (r, σ2)âk

)(∑
l

φl (r, σ1)âl

)

=
∑
i jkl

ϕ∗
i (r)ϕ∗

j (r)ϕk (r)ϕl (r)δsi,σ1δs j ,σ2δsk ,σ2δsl ,σ1 â†
i â†

j âk âl . (A1)

The equation is symmetric with respect to the two possible choices of the spin projections (σ1 =↑, σ2 =↓) and (σ1 =↓, σ2 =↑),
so we extend the sum over the two possibilities. Since we are interested in the case of antiparallel spins, σ1 �= σ2, we consider
the following relations of the summation indices:

{i, j, k, l ∈ Z|si = σ1 = sl , s j = σ2 = sk} ∪ {i, j, k, l ∈ Z|si = σ2 = sl , s j = σ1 = sk}
= {i, j, k, l ∈ Z|si = sl , s j = sk} \ {i, j, k, l ∈ Z|si = sl = s j = sk}. (A2)
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Thus the last line of Eq. (A1) can be replaced by the sum over the sets in the last line of Eq. (A2). Since both possible choices of
the spins are allowed in the latter relation, the sum is twice the value of one definite choice,

�̂†
σ1

(r)�̂†
σ2

(r)�̂σ2 (r)�̂σ1 (r) =
∑
i jkl

ϕ∗
i (r)ϕ∗

j (r)ϕk (r)ϕl (r)δsi,σ1δs j ,σ2δsk ,σ2δsl ,σ1 â†
i â†

j âk âl

= 1

2

∑
i jkl

ϕ∗
i (r)ϕ∗

j (r)ϕk (r)ϕl (r)δsi,sl δs j ,sk

(
1 − δsi,s j

)
â†

i â†
j âk âl . (A3)

The statistical expectation value of this four-operator product can be expressed via the momentum representation of the two-
particle density matrix, di jkl ,〈

�̂†
σ1

(r)�̂†
σ2

(r)�̂σ2 (r)�̂σ1 (r)
〉 = 1

2

∑
i jkl

ϕ∗
i (r)ϕ∗

j (r)ϕk (r)ϕl (r)δsi,sl δs j ,sk

(
1 − δsi,s j

) 〈â†
i â†

j âk âl〉
=di jkl

. (A4)

We further need two-operator products that give rise to the spin densities appearing in the denominator of Eq. (5). Applying
again the basis transformation, Eq. (31), we obtain

�̂†
σ (r)�̂σ (r) =

∑
i j

ϕi(r)ϕ j (r)δsi,σ δs j ,σ â†
i â j . (A5)

In the uniform electron gas, momentum conservation leads to 〈â†
i â j〉 = 〈n̂i〉 δi, j and, consequently,

〈�̂†
σ (r)�̂σ (r)〉 =

∑
i j

ϕi(r)ϕ j (r)δsi,σ δs j ,σ 〈â†
i â j〉

=
∑

i

|ϕi(r)|2δsi,σ 〈n̂i〉. (A6)

The expectation value (A4) and the spin density (A6) contain products of plane wave single-particle orbitals (30) for which
|ϕi(r)|2 = 1

V , and, due to momentum conservation,

ϕ∗
i (r)ϕ∗

j (r)ϕk (r)ϕl (r) = 1

V 2
ei

=0

(kk + kl − ki − k j ) r = 1

V 2
. (A7)

With the definition (5) of the spin-resolved pair distribution function and the results from Eqs. (A4) and (A6), the on-top PDF
may be expressed via quantities that are directly accessible in CPIMC simulations,

g↑↓
0 = gσ1σ2 (r, r) =

1
2V 2

∑
i jkl δsi,sl δs j ,sk

(
1 − δsi,s j

)
di jkl(

1
V

∑
i δsi,σ1〈n̂i〉

)(
1
V

∑
i δsi,σ2〈n̂i〉

) = 1

2

∑
i jkl δsi,sl δs j ,sk

(
1 − δsi,s j

)
di jkl∑

i δsi,σ1〈n̂i〉
Nσ1

∑
i δsi,σ2〈n̂i〉

Nσ2

= 1

Z

∑∫
C

⎛
⎝ 1

2Nσ1 (C)Nσ2 (C)

∑
i jkl

δsi,sl δs j ,sk

(
1 − δsi,s j

)
di jkl (C)

⎞
⎠W (C). (A8)

The estimator can be read off the expression in the braces,

g↑↓
0 (C) = 1

2Nσ1 (C)Nσ2 (C)

∑
i jkl

δsi,sl δs j ,sk

(
1 − δsi,s j

)
di jkl (C)

:=gi jkl (C)

,

(A9)
where the sum can be rearranged as

1

2

∑
i jkl

gi jkl =
∑

k �= i < j �= l
k < l

(
δsi,sl δs j ,sk − δs j ,sl δsi,sk

)

× (
1 − δsi,s j

)
di jkl −

∑
i< j

(1 − δsi,s j )di ji j,

(A10)

using the symmetry properties of the two-particle density
matrix. The first sum is over the off-diagonal matrix elements,
where the conditions of Eq. (25) apply. The latter sum is diag-
onal in creation and annihilation operators, and the conditions
of Eq. (27) are met. Finally, we obtain

g↑↓
0 (C) = 1

β

K∑
ν=1

∑
k �= i < j �= l

k < l

(
δs jν ,slν

δsiν ,skν
− δsiν ,slν

δs jν ,skν

)

× (
1 − δsiν ,s jν

)
w(κν )

−
K∑

ν=0

∑
i< j

(
1 − δsi,s j

)
n(ν)

i n(ν)
j

τν+1 − τν

β
.
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TABLE II. Comparison of the kinetic energy of an ideal system
with the one of an interacting system. CPIMC results using N = 54
particles. The errors in the fourth column are below 10−5.

� rs 〈T 〉id 〈T 〉
0.0625 0.1 108.8100 108.8246 ± 0.0004
0.0625 0.2 108.8192 108.9342 ± 0.0001
0.0625 0.3 108.8181 109.1260 ± 0.0347

0.125 0.1 114.4736 114.3502 ± 0.0005
0.125 0.2 114.4478 114.3825 ± 0.0109

0.25 0.1 136.0115 135.5971 ± 0.0009
0.25 0.2 136.0206 135.4052 ± 0.0059

0.5 0.1 190.1595 189.4961 ± 0.0020
0.5 0.2 190.1765 189.0191 ± 0.0018
0.5 0.3 190.2606 188.5758 ± 0.1650

0.75 0.1 251.5991 250.7692 ± 0.0044
0.75 0.2 251.5512 250.1747 ± 0.0039

1 0.1 316.1412 315.5346 ± 0.0045
1 0.2 316.1129 314.9269 ± 0.0052
1 0.3 316.2673 314.4380 ± 0.0069
1 0.4 316.2784 314.0231 ± 0.0108

1.5 0.2 449.9120 448.8363 ± 0.0116
1.5 0.4 449.9719 447.9611 ± 0.0174
1.5 0.5 450.0298 447.5733 ± 0.0091

2 0.2 586.2656 585.3832 ± 0.0150
2 0.4 586.2975 584.5058 ± 0.0227
2 0.5 586.5608 584.1818 ± 0.0044
2 0.7 586.1378 583.5645 ± 0.0155

4 0.2 1139.5097 1139.5308 ± 0.0974
4 0.4 1139.6215 1138.7960 ± 0.1286
4 0.5 1141.0448 1138.5607 ± 0.0168
4 0.7 1140.7310 1138.0877 ± 0.2161
4 1 1139.7371 1137.4673 ± 0.0257
4 1.3 1140.4339 1137.4851 ± 0.4838

The first sum extends over all kinks κν := (iν, jν, kν, lν ) with
the proper ordering of the indices ensured by the Kronecker
deltas. The second sum extends over all occupation numbers
of occupied orbitals, i < j, with opposite spin projections, at
all imaginary time intervals weighted by the relative extension
of the time slice in imaginary time.

APPENDIX B: MODIFICATION OF THE KINETIC
ENERGY BY INTERACTION EFFECTS

The influence of Coulomb interaction on the kinetic energy
of the warm dense uniform electron gas was studied in the
main text in Sec. III A 2; see in particular Figs. 4 and 5. In
this Appendix we provide Tables II and III with extensive
benchmark data for the kinetic energy of the UEG compared
to the kinetic energy of the ideal system, based on ab initio
CPIMC simulations, for temperatures 0.0625 � � � 4 and
rs � 2.

TABLE III. Same as Table II, but for N = 14 particles.

� rs 〈T 〉id 〈T 〉
0.0625 0.1 12.0017 12.0066 ± 0.0
0.0625 0.2 12.0014 12.0202 ± 0.0
0.0625 0.3 12.0011 12.0412 ± 0.0
0.0625 0.4 12.0015 12.0685 ± 0.0
0.0625 0.5 12.0015 12.1010 ± 0.0

0.125 0.1 12.4235 12.4326 ± 0.0
0.125 0.2 12.4181 12.4439 ± 0.0
0.125 0.3 12.4191 12.4627 ± 0.0
0.125 0.4 12.4308 12.4885 ± 0.0
0.125 0.5 12.4429 12.5193 ± 0.0

0.25 0.2 15.1806 15.1710 ± 0.0
0.25 0.3 15.1742 15.1796 ± 0.0
0.25 0.4 15.1805 15.1965 ± 0.0
0.25 0.5 15.1856 15.2205 ± 0.0001
0.25 0.6 15.1954 15.2499 ± 0.0011

0.5 0.1 20.1999 20.1744 ± 0.0001
0.5 0.2 20.1995 20.1509 ± 0.0003
0.5 0.3 20.2131 20.1370 ± 0.0002
0.5 0.4 20.2276 20.1307 ± 0.0001
0.5 0.5 20.2184 20.1321 ± 0.0001
0.5 0.6 20.1993 20.1395 ± 0.0001
0.5 0.7 20.1976 20.1522 ± 0.0010

0.75 0.2 26.1944 26.1617 ± 0.0002
0.75 0.3 26.2597 26.1323 ± 0.0003
0.75 0.4 26.2478 26.1094 ± 0.0003
0.75 0.5 26.2289 26.0942 ± 0.0003
0.75 0.6 26.2855 26.0838 ± 0.0003
0.75 0.7 26.2125 26.0797 ± 0.0003
0.75 0.8 26.2691 26.0798 ± 0.0009

1 0.1 33.0213 32.9558 ± 0.0006
1 0.2 33.0236 32.9127 ± 0.0006
1 0.3 33.0191 32.8765 ± 0.0004
1 0.4 32.9910 32.8460 ± 0.0004
1 0.5 33.0087 32.8217 ± 0.0003
1 0.6 33.0067 32.8029 ± 0.0003
1 0.7 32.9989 32.7882 ± 0.0001
1 0.8 32.9953 32.7776 ± 0.0003
1 0.9 32.9874 32.7713 ± 0.0010
1 1 33.0208 32.7629 ± 0.0158

1.5 0.1 47.1352 47.0962 ± 0.0004

2 0.1 61.5714 61.5066 ± 0.0009
2 0.2 61.5276 61.4679 ± 0.0007
2 0.4 61.5819 61.3997 ± 0.0011
2 0.5 61.6823 61.3725 ± 0.0014
2 0.7 61.5246 61.3244 ± 0.0016
2 1 61.6415 61.2688 ± 0.0020

4 0.1 119.7877 119.9513 ± 0.0018
4 0.2 119.9672 119.9236 ± 0.0032
4 0.4 119.8911 119.8764 ± 0.0035
4 0.5 119.8763 119.8596 ± 0.0036
4 0.7 120.2538 119.8108 ± 0.0043
4 1 119.9191 119.7682 ± 0.0055
4 2 119.9626 119.6560 ± 0.0067
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