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Simulations and experiments of phase separation in binary dusty plasmas
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Molecular dynamics simulations of binary dusty plasmas have been performed and their behavior with respect
to the phase separation process has been analyzed. The simulated system was inspired by experimental research
on phase separation in dusty plasmas under microgravity on parabolic flights. Despite vortex formation in the
experiment and in the simulations the phase separation could be identified. From the simulations it is found that
even the smallest charge disparities lead to phase separation. The separation is due to the force imbalance on the
two species and the separation becomes weaker with increasing mean particle size. In comparison, experiments
on the phase separation have been performed and analyzed in view of the separation dynamics. It is found that
the experimental results are reproduced by the simulation regarding the dependency on the size disparity of the
two particle species.
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I. INTRODUCTION

Phase separation processes can be observed in many dif-
ferent fields. They have been studied in very different systems
such as critical binary liquids, polymers, colloidal systems,
and metallic alloys [1–8]. In many cases, binary systems are
used to study fundamental phase separation processes. Such
binary systems, i.e., systems in which only two different
species are present, are the simplest possible system that can
exhibit phase separation and thus allows insights into the basic
processes.

Here we will analyze phase separation in binary dusty
plasmas. In addition to neutral gas and a plasma of electrons
and ions, binary dusty plasmas consist of two different types
of dust particles. Such binary dusty plasmas are known to
show phase separation [9–19]. Since in typical laboratory
discharges most of the acting forces depend on the particle
radius, binary dusty plasmas can be characterized by their
(relative) size disparity ε = (a2 − a1)/ā, where a1 and a2 are
the radii of the two species and ā is their mean.

Early experiments [9–14] and simulations [15–17] on bi-
nary dusty plasmas used relatively large size disparities. For
size disparities above a certain threshold, it is expected that
the two populations separate due to spinodal decomposition
[20,21] that relies on the nonadditivity of the particle-particle
interaction. In the experiments it was found, however, that
phase separation can be observed in dusty plasmas even at
much smaller size disparities which was attributed to a dif-
ference of the plasma forces due to the different particle
radii [18]. Recently, we have performed a systematic study of
phase separation in three-dimensional binary dusty plasmas
under microgravity conditions using parabolic flights [19].
There it was found that the phase separation of two species
is more pronounced with larger size disparity and that phase
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separation occurs even at the smallest investigated ε. Other
influences like the absolute particle size ā and plasma con-
ditions played only a minor role. In the experiments, due to
the acting forces, the larger particles accumulate at the outer
parts of the three-dimensional dust cloud, whereas the smaller
particles accumulate in the center.

One problem of the experiments is that the phase separa-
tion starts immediately on dust injection and that a good part
of the separation process has already occurred before the dust
cloud reaches a steady state. It is therefore not possible to
track the whole separation process from the beginning on.
Here we present molecular dynamics (MD) simulations of
different binary dust systems that allow us to study the entire
separation process. We use the LAMMPS code to model the
MD behavior of the dust particles. Here, we specifically aim
to model a situation that is close to the experimental situa-
tion. For further analysis, we also use adapted geometries to
study the influence of the curl and the divergence of the (re-
alistic) force field. The relevant interaction forces have been
derived from a SIGLO simulation of the plasma components.
Results will be compared with our experimental findings.
Furthermore, the simulations allow to vary parameters more
easily and in a more controlled way, whereas the number
of parameter variations in the experiment is limited by the
number of parabolas that can be flown during a measurement
campaign. Especially the amount of dust particles injected
into the plasma by electromagnetic dust shakers can only be
controlled in a very limited way, so that simulations with a
well-known particle number are a welcome complement to
the measurements.

The simulations will be checked against the experimental
results. Therefore, data from Ref. [19] have been reanalyzed
using a refined technique and new data have been obtained
from the 2019 and 2020 parabolic flight campaigns.

In the following section, we will briefly recapitulate the
experimental setup of the measurements [19]. Then, the setup
of the MD simulations will be introduced. The modeling of
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FIG. 1. Experimental setup used for the measurements under
microgravity: (a) side view, (b) top view.

the experimental situation together with two adapted geome-
tries will be presented in Secs. III, IV, and V. Finally, the
simulations will be compared with the experimental results
in Sec. VI.

II. SETUP OF EXPERIMENTS AND SIMULATIONS

A. Experimental setup

The experiments were performed on parabolic flights to
achieve microgravity conditions and enable the formation of
a three-dimensional dust cloud. Our plasma chamber is a
modified version of the chamber described elsewhere [22].
The experimental setup is depicted in Fig. 1. A parallel-plate
rf discharge is ignited between two electrodes with a gap of
30 mm and a diameter of 80 mm. The electrodes are driven
in push-pull mode at a frequency of 13.56 MHz. The work-
ing gas is argon at pressures of 20 to 40 Pa. Dust particles
are injected using electromagnetically driven shakers. Each
parabola provides 22 s of microgravity, during which a single
phase separation process can be measured. At the beginning of
the measurement, a previously prepared mixture of two types
of particles is injected. Both particle species are monodisperse
melamine formaldehyde (MF) spheres. The main difference
between the two species is their size. Additionally, one of the
species is doped with rhodamine-B (RhB) dye.

The separation process of the two particle populations is
then followed using a two-camera video microscopy setup
[18,19]. The particles are illuminated by a vertically expanded
laser sheet at a wavelength of 532 nm. When illuminated
by the laser, the RhB particles emit fluorescence light at a

wavelength of 590 nm. Two cameras observe the same field of
view through a beam splitter. One of the cameras (camera 1) is
equipped with a bandpass filter tuned to the laser wavelength,
recording the scattered light of all particles. The other camera
(camera 2) is equipped with a filter that transmits only the flu-
orescence light of the RhB particles. This allows to distinguish
between the species even at the smallest size disparities. Par-
ticles are detected in the recorded images and their positions
are determined using a moment method [23,24].

We have found from earlier experiments that the plasma
conditions do not significantly influence the demixing pro-
cess. Therefore, the most important variable is the size of
the particles. The number of different mixtures that can be
measured is limited by the number of dust shakers that can
be mounted to the chamber as they cannot be exchanged
during the flights. Our previous experiments [19] have been
extended by measurements with more different particle sizes.
For the analysis of the separation process our previous tech-
nique was refined, as described below. Also the previous data
have been reanalyzed by the refined technique. In total, 228
measurements obtained during the course of four parabolic
flight campaigns have been used and analyzed here.

B. Simulation and assessment of plasma forces

The main plasma-mediated forces on the particles gener-
ally are the ion drag force and the electric field force. To model
those forces, a simulation of the underlying ion and electron
properties in the plasma has been performed using the SIGLO
code (SIGLO-2D version 1.1, Kinema Software 1996–2003)
[25]. The simulations have been performed for parameters
which correspond to typical parameters of our experiment.
The geometry of the plasma vessel was modelled as closely as
possible. We used the gas parameter data for Argon shipped
with SIGLO and a neutral gas temperature of 300 K. Unless
otherwise noted, the neutral gas pressure was p = 30 Pa and
the rf peak-to-peak voltage was Urf = 75 V at a frequency of
13.56 MHz.

The simulation yields the spatially resolved plasma po-
tential V , the electron temperature Te and the electron and
ion densities, ne and ni, respectively. The ion temperature
is assumed as Ti = 300 K. Figures 2(a) and 2(b) show the
electron density and temperature as obtained from the SIGLO
simulation. SIGLO tends to produce slightly vertically asym-
metric results. Therefore, an average of the top and bottom
half is used for further calculations.

For our conditions (Argon, Te ≈ 100 Ti, p = 30 Pa), ion-
neutral collisions have to be taken into account. The floating
potential that a spherical dust particle attains in the presence
of collisions [26–28] is approximately φfl = −φ̂kBTe/e with
φ̂ = 1. Here kB is the Boltzmann constant and e is the elemen-
tary charge. Collisionless OML theory would yield φ̂ = 2.4.
Applying a capacitor model for the dust, the resulting dust
charge number is

Zd = 4πε0aφfl/e, (1)

where ε0 is the vacuum permittivity and a is the particle
radius. With this, a particle with a = 3.5 μm attains a charge
of Zd = 9460 at the center of our simulated discharge, which
is realistic [26–29].
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FIG. 2. Different quantities that are either provided directly by
the SIGLO code or deduced from those quantities; see text for details.
The gray boxes depict the location of the two electrodes. Shown
are (a) the electron density, (b) the electron temperature, (c) the
electric field force, (d) the ion streaming velocity, (e) the ion drag
force on particles with a = 3.5 μm, and (f) the total force on those
particles. The arrows indicate the direction of the ion streaming
velocity and the forces. Their length is normalized. Panels (g) and (h)
show the ion drag force along the horizontal x and vertical z axis; note
the different scales. Panels (i) and (j) represent zoomed-in views of
the total force on particles with ā = 3.5 μm and ε = 0.2.

The electric field force Fel on the dust is calculated directly
from the plasma potential V via

�Fel = Zd e �∇V, (2)

where �E = −�∇V is the electric field. The resulting elec-
tric field force on particles with a = 3.5 μm can be seen in
Fig. 2(c).

For the assessment of the ion drag force, again, ion-neutral
collisions have to be taken into account. Hutchinson and
Haakonsen have found that the ion drag force increases sig-
nificantly over the collisionless ion drag when ion-neutral
collisions are present [30]. First, we derive the collisionless
ion drag force. We follow the procedure described by Hutchin-
son [31] and Khrapak et al. [32,33], with the addition of the
collection force from Barnes et al. [34]. First, due to the
relatively high gas pressure, from the electric field the ion
streaming velocity is calculated as

�vi = μi �E (3)

using a modified form of Frost’s ion mobility [35,36]

μi = 1.68 × 1019

[
1 +

(
7 × 1018 E

nn

)1.238]−1.238/2
E

nn
, (4)

where nn is the neutral gas number density.
The ion drag force consists of the orbit force Fcoul and the

collection force

Fcoll = πa2mivsnivi

(
1 − 2eφfl

miv2
s

)
(5)

with vs = (v2
i + 4v2

T,i/π )1/2 and the ion thermal velocity
vT,i = (2kBTi/mi )

1/2.
The shielding efficiency of the streaming ions depends on

their flow velocity. The effective screening length is taken
from Hutchinson [31] as

λeff =
(

λ2
De

1 + 2kBTe/miv
2
eff

+ a2

)1/2

, (6)

where λDe is the electron Debye length, given by λ2
De =

ε0kBTe/nee2. The effective ion velocity veff is given by

v2
eff = v2

T,i + v2
i

{
1 +

[
vi/vB

0.6 + 0.05 ln (mi/mp)

]3}
, (7)

where vB = (kBTe/mi )
1/2 is the Bohm velocity and mp is the

proton mass. Hutchinson’s approximation Te = 100Ti is well
suited in our case [see Fig. 2(b)].

With that, the collisionless orbit force can be written as [31]

Fcoul = 8πa2niG(u) ln �
e2φ2

fl

miv
2
T,i

. (8)

Here, ln � is the Coulomb logarithm and G(u) is the Chan-
drasekhar function

G(u) = 1

2u2

[
erf (u) − 2u√

π
exp(−u2)

]
(9)

with u = vi/vT,i. The Coulomb logarithm is given by [32]

ln � = ln
b90 + λeff

b90 + a
, (10)

where b90 = Zd e2/4πε0miv
2
eff is the impact parameter for 90◦

scattering. The collisionless ion drag force finally becomes
Fi = Fcoll + Fcoul.

Now we consider the increase due to collisions. Hutchin-
son and Haakonsen have performed extensive numerical
simulations to determine the increase over the collision-free
case [30]. For our situation, the ion-neutral collision frequency
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is νin = e/miμi = 4.8 MHz at a typical position in the bulk
plasma. From the SIGLO data, we find the electron Debye
length to be about 600 μm. Under above assumption φ̂ = 1,
the cutoff radius becomes rc ≈ 85 μm (see Ref. [30] for an
explanation of the cutoff radius). This finally leads to the
collisionality νinrc/cs = 0.15, where the ion sound speed cs

equals the Bohm velocity. For our particles, the ratio λDe/a
lies between 133 (a = 4.5 μm) and 300 (a = 2 μm). In our
system, the ions stream against a stationary neutral gas back-
ground where the ions follow the drift distribution. For our
value of the collisionality, this results in a collisional force
factor (that gives the increase of the ion drag compared to the
collision-free case) of 2.

We therefore use Ftot = Fel + 2Fi as the total force (where
Fi is the collisionless ion drag force described above). The
ion streaming velocity, the (collisionless) ion drag force and
the total resulting force on dust particles with a = 3.5 μm are
shown in Figs. 2(d) to 2(f), respectively. The forces show the
characteristic shapes that lead to the formation of the void.
Fi has its maximum between the center of the discharge and
the electrodes. In this regime, where vi ≈ 300 m/s, the orbit
force becomes most effective as a result of a balance between
the number of passing ions and duration of their interaction
with the particle. The electric field force, in contrast, steadily
increases with increasing distance from the discharge center.
The superposition of those forces acting in opposite directions
thus creates a potential well where a dust cloud can be trapped
in a balance of (increased) ion drag and electric field force.
The Coulomb repulsion between the particles then makes for
the radial extent of the dust cloud.

Figures 2(g) and 2(h) show the total force along the
horizontal/radial x as well as along the vertical z direction,
respectively. In both cases, it can be seen that the total force
acts so that the particles are pushed outwards up to a certain
position where the force vanishes and then rises again with
opposite sign, pushing the particles backwards. The zoomed-
in views in Figs. 2(i) and 2(j) allow a more detailed inspection.
There, two species of slightly different radii are considered
(ā = 3.5 μm, ε = 0.2). In the horizontal direction, the equi-
librium position F = 0 is about x = ±37 mm. In the vertical
direction, it is about z = ±9.4 mm. It can be seen that in
both directions the equilibrium position of the larger species
is slightly more outside than that of the smaller species. Ad-
ditionally, around the equilibrium position, the force on the
larger species is larger. In our previous descriptions of the
phase separation processes [19], we have suspected that these
two effects drive the phase separation.

Further outside (at |x| > 40 mm respectively |z| >

10.3 mm), the inward-pointing force on the larger species
is larger. This should in theory repell the larger species out
of the outermost parts of the dust cloud. But this far away
from the equilibrium position, the forces are so high and their
gradient is so steep that the dust cloud ends with a sharp outer
boundary.

It has been found in the experiment that the phase sepa-
ration happens preferably along the z direction. This seems
reasonable from a comparison of the magnitudes of the forces
along x and z. The maximum force difference between the
two species is about 3 × 10−14 N at |x| = 30 mm (compared
to the total force 1.2 × 10−13 N) in x. In z, the difference is

1.4 × 10−13 N and the total force is 4 × 10−13 N [ε = 0.2; see
Figs. 2(i) and 2(j)]. As expected from the geometry, the forces
are larger in z direction, leading to a larger force disparity
for any given particle size and charge disparity. This will be
investigated further in Sec. IV.

C. Molecular dynamics simulation

These plasma forces are now used in a molecular dynamics
simulation of the dust particle motion. Molecular dynamics
simulations were performed using the LAMMPS code [37],
which has been proven to be a useful tool for the simulation of
dusty plasmas [17,38]. Most of the simulations were run on a
graphics card to greatly reduce the computation time [39–44].

The simulation is of a Langevin dynamics type. The tar-
get temperature (temperature of the heat bath) was varied
between 0 and 11 000 K in a couple of test runs. While the
particles’ kinetic temperature quickly adopts the temperature
of the heat bath, no substantial influence of the temperature on
the phase separation has been found; see also Appendix. The
temperature was chosen to be T = 1000 K for the subsequent
simulations.

The two species carry the (different) charges Q1 and Q2 due
to their size difference as discussed above in Eq. (1). Then, the
interaction energy is of a shielded Coulomb (Yukawa) type,

V (r) = Q1Q2

4πε0r
exp

(
− r

λS

)
, (11)

for a pair of different particles, spaced at a distance r. For
particles of the same species, the numerator of the first term
of course becomes Q2

1 or Q2
2. The screening length is chosen

as λS = 300 μm, which is a typical value for the outer bulk
(where the dust is located) of our simulated discharge accord-
ing to Eq. (6). When calculating the interparticle forces, the
potential is cut off at 3λS .

Further, neutral gas friction of the dust motion is taken into
account. For the assessment of the neutral gas drag, we use
the well-established Epstein formula

β = δ
8

π

p

aρdvth,n
(12)

for the friction coefficient [45]. Here vth,n = (8kBT/πmn)1/2

is the neutral thermal velocity with T being the neutral gas
temperature and mn the mass of an argon atom. The coefficient
δ is between 1 and 1.44 depending on the type of scattering
(diffuse/specular) of the neutral atoms by the dust particles.
It was found that a value of δ = 1.44 is appropriate for dusty
plasmas [46].

For the ion drag and electric field forces, a force field that
contains the spatially dependent sum of those forces on the
used particle types is calculated prior to the simulation run.
In each time step, this force field is interpolated onto the
particle positions and applied as an additional force before
the integration step. The same method is used for the particle
charge. The spatially dependent charge is interpolated onto
the particle positions and updated each time step. The time
step is 50 μs and the positions and velocities of all particles
are stored every 10 ms for further analysis.
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FIG. 3. (a) Drift velocity of the two species of particles, averaged
over all particles in each time step. The force disparity is �F =
5 × 10−14 N in this example. (b) Drift speed (red circles) versus
force disparity �F . For the smallest forces, there is hardly any drift.
From about �F = 10−14 N on, the drift speed starts to approach the
Epstein friction limited drift speed (dashed line), but does not reach
it.

III. LINEAR GEOMETRY

The resulting force field is quite complex and not curl free.
To separate the various influences, we start the discussion of
phase separation in simpler geometries.

An interesting question is the role of the neutral drag versus
Coulomb inter-particle interaction under the action of a con-
stant separation force during the demixing process. To assess
which effect determines the final drift speed, simulations with
a simple slab geometry have been performed. The simulation
volume was a cuboid with a volume of 40 × 20 × 0.4 mm3.
Periodic boundary conditions have been used in all dimen-
sions. The thickness of the simulated slice (0.4 mm) was
chosen as a compromise between computing time and sim-
ulating a true three-dimensional system. A total amount of
20 000 particles was simulated, 10 000 particles per species.
The particles are randomly positioned at the beginning of the
simulation. Then, the simulation is run for 5 s (simulated time)
with the Coulomb interaction only, allowing the system to
reach an equilibrium state. Afterwards, a constant separation-
driving force in the x direction is switched on, starting the
simulated phase separation. This way, the process can be fol-
lowed from the beginning without any superimposed motion
due to the stabilization of the dust cloud.

In this simulation, all particles have the same radius (a =
3.5 μm) and fixed charge (Zd = 7000). However, the two
randomly distributed species experience opposite separation
forces. The force on particles of species #1 is �F = −�F/2 êx

and the force on particles of species #2 is �F = +�F/2 êx,
where êx is the unit vector in x direction. Simulation runs
have been performed for different values of the force disparity
�F . For consistency with the other simulated geometries, we
used T = 1000 K and the neutral friction coefficient β = 52
corresponding to p = 30 Pa.

The resulting mean drift velocities of the two populations,
vx,1 and vx,2, respectively, are shown in Fig. 3(a). As an ex-
ample, the result for �F = 5 × 10−14 N is shown. Due to the
symmetry of the external forces, the resulting velocities are
symmetric around v = 0. The force is switched on at t = 0.
In the initial phase of about 120 ms, the particles move to
new equilibrium positions in their local confinement potential

that is constituted by the neighboring particles. Afterwards, v

settles to its final value of about 0.4 mm/s when the two pop-
ulations each begin to move collectively against each other.
This happens in the first second and after that, there is only a
slight further increase of v. The Epstein time 1/β = 19 ms is
about one order of magnitude smaller than the timescale of the
settling of v, indicating that Coulomb collisions significantly
contribute to the particle dynamics.

This overall behavior is comparable between all values of
�F . Therefore, the time average of all data points with t > 2 s
is considered to measure the final drift speed vd . The drift
speed versus the force disparity is depicted in Fig. 3(b). While
there is hardly any drift at the smallest forces, vd rapidly in-
creases between �F = 5 × 10−15 N and �F = 5 × 10−14 N.
At even higher forces, vd increases approximetely linearly
with �F .

Next, we evaluate the drift speed that would be expected
for a drift limited by neutral drag. It can be easily obtained
from the balance between neutral drag force and the applied
external force, i.e.,

�F

2
= mdβvd , (13)

where md is the dust mass. This yields a drift speed of vd =
1.8 mm/s for the situation shown in Fig. 3(a). Hence, the
real drift speed is about a factor of 4.5 below this value. The
neutral drag-limited drift speed is shown as dashed line in
Fig. 3(b). The real drift speed is below the drag limit for all
values of �F , which shows that Coulomb collisions play an
important role in jamming the particle motion. At very low
forces, the force is not strong enough to break the Coulomb
blockade at all. Then, there is an intermediate regime where a
notable particle motion onsets. At the larger forces considered
here, the drift speed is about half of the value expected for a
system exhibiting only Epstein drag. Similar situations where
oppositely charged “plus- and minus-charge” particles are
exposed to the same external field have already been studied
earlier and a similar overall behavior was found [47,48]. How-
ever, interestingly, we did not find distinct lane formation in
our simulations, which could further enhance particle trans-
port.

IV. RADIAL GEOMETRY

To further assess the role of different forces in the phase
separation process, we performed simulations with a syn-
thetic, vortex-free but divergent force field. The force field
is chosen cylindrically symmetric and constructed from the
force profile from the SIGLO simulation along one spatial
coordinate, i.e., the radial force is taken as either Fx(x) or
Fz(z) as in Figs. 2(g) or 2(h). This allows us to investigate
the asymmetry of the phase separation behavior between the
x and z direction that was found in the experiment. A full set
of simulation runs has been performed for both force profiles,
mean particle radii of ā = 2 μm, 3.5 μm, and 4.5 μm and
size disparities between ε = 0.01 and ε = 0.2. The radii of
the two species were chosen symmetrically to the mean size.

Due to the strong difference in the forces along x and z
the simulated systems have a different size when using either
of the force profiles. Hence, it is necessary to perform a
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FIG. 4. Simulation with a cylindrical geometry that was con-
structed from the force along the z axis. The two species of particles
have radii of a1 = 3.15 μm and a2 = 3.85 μm. (a) snapshot of the
system after initialization. Particles of species 1 (black) and species
2 (red) are mixed. (b) Snapshot after running for 5 more seconds
with force disparity. The populations are separated and a phase
boundary can be seen. [(c) and (d)] Radial particle distributions for
the situations shown in (a) and (b), respectively. (e) Evolution of
the radial positions and (f) ratio of the radial positions of the two
populations. All these quantities show an increasing separation of
the two populations with time.

dedicated initialization run for each geometry. The simulation
box has a volume of 120 × 0.4 × 120 mm3, which is large
enough to accommodate the system for both force profiles.
The system is radially symmetric in x and z, periodic boundary
conditions are used in y direction. The interparticle spacing
is determined by the Coulomb interaction forces and hence
depends on the (mean) particle radius via the dust charge.
We performed some test runs to estimate the particle number
density and assess the number of particles needed to gener-
ate dust systems of comparable size regardless of the mean
particle size. To initialize the system, forces and charges for
the mean particle size ā are applied until an equilibrium is
reached after 5 s of simulated time. Then, the charges Zd1 and
Zd2 and respective forces for sizes a1 and a2 are switched on.
The activation of the force disparity marks the time t = 0.

Figure 4 shows the results of the run with ā = 3.5 μm and
ε = 0.2 using the force from the z direction [Fig. 2(h)] as
the radial force. The system consists of N = 6000 particles.
An example with a relatively large size disparity was chosen
that features a distinct phase separation to demonstrate the
behavior of the system. Figures 4(a) and 4(b) show the system
at t = 0 and at t = 5 s, respectively. Both populations are
completely mixed in Fig. 4(a). In Fig. 4(b), there are two
concentric shells each containing nearly exclusively particles
of one of the species. The larger species accumulates in the
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FIG. 5. Temporally averaged mean distance ratio B vs. relative
size disparity ε for all simulation runs of a radial geometry with the
force profile taken from the z axis (see text for details).

outer shell. Additionally, there is a central region where both
species stay mixed. As the phase separation happens in radial
direction, the radial position is a good quantity for further
analysis. For each particle i at position (xi, zi ), the radial
position b(i, t ) = (x2

i + z2
i )1/2 is calculated.

The distributions of the radial positions f (b)db of the two
species are a measure for the behavior of the two populations.
They are shown in Figs. 4(c) and 4(d) for the time steps corre-
sponding to the snapshots in Figs. 4(a) and 4(b). It can be seen
that they reflect the situation well: At t = 0, the distributions
are neary identical, showing the mixed state of the system.
At t = 5 s, the distributions are split in the outer region, they
are narrower and their overlap is reduced. From the center to
about b = 7.5 mm, the overall forces are too small to drive the
phase separation and the distributions match.

Next, the radial positions of all particles are averaged per
population, yielding the mean radial positions of the two
populations b̄1(t ) and b̄2(t ). These are good indicators for
the behavior of the respective species as a whole. As can be
seen in Fig. 4(e), b̄1(t ) and b̄2(t ) start at the same value at
t = 0, indicating that both species were initialized to the same
average position and are fully mixed. During the run, b̄1(t )
decreases whereas b̄2(t ) increases, meaning that the (smaller)
particles of species 1 gather in the inner regions and the
(larger) particles of species 2 in the outer.

The ratio b̄2(t )/b̄1(t ), see Fig. 4(f), enables us to use a
single quantity to describe the phase separation. As time
progresses, an increasing ratio indicates that the smaller pop-
ulation accumulates at the inside and the larger population
accumulates at the outside of the system. The temporally
averaged ratio B = 〈b̄2(t )/b̄1(t )〉t thus is a single number that
characterizes a run: A faster separation as well as a more
pronounced separation both lead to a larger temporally aver-
aged mean distance ratio. We have already used this parameter
B for the analysis of our previous experiments, facilitating
comparisons [19].

The averaged mean distance ratios B of all runs with the
radial force taken from the z profile are shown in Fig. 5 against
the size disparity ε. A phase separation (B > 1) can be seen
for ā = 2 μm and ā = 3.5 μm even at the smallest ε = 0.01
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considered here. The phase separation in terms of B is more
pronounced for larger ε. This trend is expected since for larger
ε the force disparity increases, leading to a more pronounced
separation. Furthermore, there is an influence of the absolute
particle size: The larger the mean particle size at a fixed ε,
the less intensive the phase separation is. From evaluating the
forces as shown in Figs. 2(i) and 2(j) at different mean radii ā
we find that the force disparity scales about linearly with ā. In
contrast, the Coulomb blockade as well as the neutral gas drag
that obstruct the phase separation both scale with ā2. Thus, the
simulations with larger ā show less phase separation.

When using the force profile taken from the x axis, no
phase separation is found. As mentioned in Sec. II B, the
force difference is about five times larger along the z axis
compared to the x axis. The value of the force difference along
z (1.4 × 10−13 N) lies just at the beginning of the regime
where the drift speed approaches the neutral drag limit, as
seen in the linear geometry. The force taken from the x axis
obviously is too small to drive the separation process on the
studied time scale.

V. REALISTIC GEOMETRY

Now, the full force fields from Sec. II B and Fig. 2 are
used. A slice of the dust cloud is simulated, similar to the
slice that is experimentally observed by the video microscopy
setup. The simulation volume is a cuboid with a volume of
120 × 0.4 × 40 mm3. The particles are confined by the full
force profile and the size of the simulation volume in x and z
is chosen so that it can accomodate the whole dust system. In
the y direction, periodic boundary conditions are used as be-
fore. It should be noted that in comparison to the experiment,
where the observed slice is a section of a toroidal system, the
toroidal character of the geometry was neglected here. For the
initialization, as before, the force profile for particles with the
mean size of the two species is calculated and applied to both
species for 5 s. Afterwards, the correct force fields with the
slightly different forces on the two species are applied and
the simulation is run for another 5 s. Again, t = 0 indicates
the assignment of the individual particle forces.

The results for a simulation run with particles of radii
a1 = 3.15 μm and a2 = 3.85 μm, respectively, are depicted
in Fig. 6. Trajectories are shown in Fig. 6(a). It can clearly be
seen that the particle motion is dominated by vortex structures
that are generated because of the nonvanishing curl of the
force field [49–51]. These vortices have also been observed
in our experiments and pose a problem for the analysis of the
phase separation using Fick’s law. The drift speeds associated
with the vortices are of the order of 1 mm/s, which is greater
than the typical drift speed due to the phase separation. The
above described analysis using the particle distributions helps
to overcome this problem [19]. To start the analysis, Figs. 6(b)
and 6(c) show snapshots of a system directly after initializa-
tion (t = 0) and at the end of the run (t = 5 s). A run with the
same particle sizes as in Fig. 4 is shown here.

In vertical direction, the behavior is very similar to the
radial geometry: Close to the void, there is a mixed region.
Further outside there is a region where preferably the smaller
particles (species 1) accumulate. Finally, the larger particles
(species 2) preferably accumulate at the top and bottom of
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FIG. 6. Example of a simulation run for particles with a1 =
3.15 μm and a2 = 3.85 μm: (a) Trajectories of particles of both
species from t = 0 to t = 5 s. For clarity, only every 10th trajectory is
shown. (b) Particle positions of species 1 (black) and species 2 (red)
at the beginning of the phase separation. Here every third particle is
shown. (c) Same as in (b), but situation at the end of the simulation
run. Particles of the larger species mainly accumulate at the top
and bottom of the discharge while particles of the smaller species
accumulate closer to the void. [(d) and (e)] Distribution f (b)db of the
radial positions of both populations at t = 0 and t = 5 s, respectively.
(f) Mean radial positions b̄1/2 of the two populations and (g) their
ratio b̄2/b̄1. At t = 0, a ratio of 1 and identical distributions indicate
a mixed system. A progressively increasing ratio as well as a shift
of the distributions in opposite direction correspond to the increasing
separation of the two populations.

the discharge. In the horizontal direction, however, there is
no clear tendency towards a separated state. The asymmetric
behavior between x and z direction is consistent with our
findings from the previous sections, where we concluded that
the force difference along the z direction is large enough to
effectively drive the separation, while this is not the case along
the x direction.

The analysis of the separation is performed analogously to
Sec. IV and Ref. [19]. Here ellipsoidal coordinates are chosen
that follow the shape of the cloud. Details can be found in
Ref. [19]. The ellipsiodal position

b(i, t ) = 1

12 mm

[( |xi| − min (|xi|, 12 mm)

4

)2

+ z2
i

]1/2

(14)
is calculated so that it indicates whether the particle is close
to the center of the discharge (b = 0) or further out (b ≈ 1 for
a particle at the outer edge of a typical dust cloud). The dis-
tributions [see Figs. 6(d) and 6(e)] show the transition from a
mixed state with identical distributions at t = 0 to a separated
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FIG. 7. Temporally averaged mean distance ratio B of all simu-
lation runs using the realistic geometry vs relative size disparity ε.

state at t = 5 s, where the distributions are narrower and do
not completely overlap at b > 0.6. Also, the mean positions of
both populations [Fig. 6(f)] and their ratio [Fig. 6(g)] indicate
an advancing phase separation with species 1 accumulating
on the inside and species 2 on the outside. The similar shape
of the distributions and b̄ compared to Fig. 4 suggest that
there are no effects that directly or indirectly depend on the
geometry and influence the phase separation significantly. Es-
pecially, the curl in the force field and the resulting intense
vortex motion has only a limited impact on the phase separa-
tion.

Again, we have performed simulation runs for different
absolute particle sizes and size disparities. The needed amount
of particles for each mean size is again estimated from some
test runs. We finally used N0 = 40 000 for ā = 2 μm, N0 =
30 000 for ā = 3.5 μm, and N0 = 26 000 for ā = 4.5 μm.
The mean distance ratios B of all runs are compiled in Fig. 7.
When considering the data points belonging to the same mean
radius, B increases with increasing ε, as expected. The relation
is nearly linear, and a linear fit would go through the point
(ε = 0; B = 1), meaning that there would be no separation if
both species had the same size. The slope of this proportional-
ity, however, depends on the absolute particle size. As above,
the phase separation is stronger with larger ε or smaller ab-
solute particle radius ā. Overall, the results are comparable to
those with the radial geometry, supporting the hypothesis that
geometric effects like the vortices do not strongly influence
the phase separation.

VI. COMPARISON WITH EXPERIMENTAL DATA

In the simulations, one is able to instantly obtain the
positions of the two particle species. In the experiment, how-
ever, the diagnostic setup yields the positions of only one of
the species directly, namely the rhodamine-B doped species
(observed via camera 2). Additionally, the positions of all
particles are seen in camera 1. In the previous analysis [19],
we have compared the reconstructed particle positions from
“all” particles and the RhB particles and derived the separa-
tion parameters B from their data. Thus, the undoped species
has not been used as an independent quantity. Here now, to

FIG. 8. Snap shots of (a) camera 1 (all particles) and (b) camera
2 (RhB particles) at a progressed state of the phase separation in data
set 1. (c) Reconstructed particle positions of the RhB species seen in
camera 2 (red) and the pure MF species (black). Every other particle
is shown. The snap shots were inverted and their contrast enhanced.

allow for better comparison of experimental and numerical
results, the positions of the undoped pure MF particles are
reconstructed. This is done by measuring the positions of all
particles resulting in a list of the positions of “all” particles.
Now, for each RhB position, the closest “all” position is elim-
inated from the list if it lies within a neighborhood of 0.2 mm.
The remaining particles are assumed to be the positions of
the MF particles. The allowed deviation of positions of 0.2
mm accounts for an imperfect calibration of the cameras and
vibrations during the flight that shift the cameras relatively
to each other. Even if a particle is eliminated from the list
that does not correspond to the RhB particle that caused this
elimination, the maximum distance of 0.2 mm ensures that the
maximum position error of the erroneously remaining “MF”
particle is < 0.4 mm compared to the position of the particle
that should have remained instead. Snap shots of both cameras
and reconstructed particle positions are shown in Fig. 8.

It is probable that not all particles are detected. Further-
more, the fraction of detected particles may be different
between the two cameras. Due to bleaching of the RhB par-
ticles, this fraction may change over time for camera 2. This
would lead to incorrect number of particles assigned to the
“MF” species. However, the fraction of correctly detected
particles is not dependent on the position and therefore, the
normalized radial distribution should not be affected by these
effects.

Now, the positions of all particles, the RhB particles and
the reconstructed MF particles are calculated using the ellip-
soidal coordinates as in Sec. V. The mean positions of two
experimental data sets is shown in Fig. 9. The corresponding
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FIG. 9. Mean radial distance b̄ of two measurements versus time.
For data set 1, the RhB particles are the larger species (d̄RhB > d̄MF).
For data set 2, the RhB particles are the smaller species (d̄RhB < d̄MF).
In both cases, the curve for b̄all lies between b̄RhB and b̄MF.
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TABLE I. Particle properties of the two data sets shown in Figs. 8
and 9.

Data set 2aMF (μm) 2aRhB (μm) ε

1 6.84 ± 0.07 7.12 ± 0.15 +0.040 ± 0.024
2 7.01 ± 0.08 6.38 ± 0.15 −0.094 ± 0.025

particle radii and the resulting size disparities are compiled
in Table I. Note that here we have defined the size disparity
as the ratio of the radius of the RhB species to the radius
of the unmarked species, ε = (aRhB − aMF)/ā. Thus, ε > 0
indicates that the RhB particles are the larger species while
ε < 0 indicates that the pure MF particles are the larger
species. Both data sets were obtained at a pressure of 30 Pa
and an rf power of 2.5 W. In addition to the positions of the
RhB particles from camera 2, b̄RhB, and the reconstructed MF
particles, b̄MF, the data from camera 1, b̄all (all particles), is
shown. As opposed to the simulation, an asymmetry between
the particle types might be present that is not solely caused by
the size difference of the particles. Effects of the RhB dye that
is present in only one of the populations as well as different
particle properties due to the storage conditions are possible.
Therefore, two data sets are shown here that have opposed size
disparities.

In both cases, b̄ of the smaller species is smaller than b̄
of the larger species. b̄all lies between the other curves in
both cases. The analysis has been started as early as possible
after dust injection, i.e., when the dust cloud has stabilized
enough to have its final shape that allows to reliably determine
radial positions. At that time, the phase separation has already
progressed. Hence, there is a difference between b̄RhB and
b̄MF already at the beginning of the analyzed sequence. In
the case of data set 1, this difference increases further. In the
case of data set 2, the difference remains nearly constant. The
absolute value of the relative size disparity |ε| is larger for data
set 2, which probably leads to a faster phase separation. Thus,
the phase separation has already reached its final, separated
state when the dust cloud has stabilized and the analyzed
sequence starts. In contrast, the phase separation takes longer
for data set 1, so that the separation process and not just its
final state is reflected in the depicted curves. Furthermore, in
the first 2 s of data set 1, all the b̄ curves rapidly increase
and then decrease again. This probably is a an artifact of the
stabilization of the dust cloud. It is included in some data
sets due to the manual selection of the start of the analyzed
sequence. However, the ratio b̄RhB/b̄MF that will be analyzed
in the following is not affected by this common behavior of
both populations.

Finally, the temporally averaged mean distance ratio B =
〈b̄RhB(t )/b̄MF(t )〉t of all analyzed measurements is shown in
Fig. 10. We complemented our previous 175 data points from
Ref. [19] with 53 new measurements from 2019 and 2020
parabolic flight campaigns. 19 of the new data points use a
new mean radius of ā = 4.5 μm. All new points integrate
nicely with the reanalyzed older data. It can clearly be seen
that there is a correlation between the size disparity and the
distance ratio. For ε < 0.05 there is a linear relationship be-
tween ε and B. One would expect B = 1 at ε = 0 because
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FIG. 10. Temporally averaged mean distance ratio B of all mea-
surements vs. relative size disparity ε.

perfectly identical particles do not separate and thus yield
B = 1. However, the curve seems slightly shifted towards
higher B. Possible reasons were already discussed in Ref. [19].
Additionally, B seems to saturate at ε > 0.05 (but not at ε <

−0.05), but there are not enough data points in this regime for
this to be significant. In addition, the size disparity cannot be
controlled in the experiment as exactly as in the simulations
due to the size distribution of the manufactured particles (see
Table I).

The amount of particles injected into the plasma cannot be
controlled perfectly. As a result, consecutive measurements at
the same parameters may use different amounts of particles
and therefore produce a slightly different B. This and the
inevitable residual gravity on the parabolic flight are suspected
to be the main reasons for the scatter of data points at the same
ε and ā in Fig. 10. We performed measurements at different
gas pressures and rf powers and found no significant trends
[19]. This stays true with the addition of the new data. Main
reason might be that the expected changes of the separation
behavior with these parameters is relatively small (see Ap-
pendix). The resulting change in B then completely vanishes
in the larger variations due to particle number changes and
residual gravity.

These results agree with our simulations from the previous
section insofar that they showed a linear relationship between
ε and B, as well. Furthermore, in the simulations the phase
separation in terms of B was weaker with increasing mean
particle radius ā. Although we conducted measurements with
different mean radii, we did not see this effect in the exper-
iment. When comparing Figs. 7 and 10, it can be seen that
the absolute values of B are larger in the experiment than
in the simulation, i.e., the phase separation is stronger in the
experiment. This suggests that the forces may be larger in the
experiment. The SIGLO simulations for the force field were
done for a dust-free discharge. The presence of the dust will
collect electrons from the plasma and hence result in larger
gradients of the plasma properties. This could lead to larger
forces and force differences between the species.

At larger size disparities, it is known that binary complex
plasmas feature lane formation [11–14,17]. The effect has also
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been found at small size disparities when the second dust
species was injected into an already existing dust cloud of the
first species [18]. However, we have not observed lane forma-
tion in the experiments or simulations presented here, which is
probably due to the strong vortex motion in conjunction with
the slow separation dynamics.

As can be seen in Figs. 2(g) and 2(h) the ion drag force
outbalances the electric field force only by a small amount in
the central region. Therefore, the balance of the plasma forces
versus Coulomb repulsion can change by subtle variations of
parameters. We have noticed that there are parameters where
some particles can enter the void. In contrast, it is known that
a stable void is formed in experiments regardless of chamber
geometry or exact choice of plasma conditions. This supports
the hypothesis that the ion drag force may be underestimated
by our method. A higher ion drag force would lead to stronger
phase separation, which would be consistent with our exper-
imental data. A more advanced (self-consistent) simulation
of the dusty plasma or a more accurate calculation of the
forces could improve the agreement between simulations and
experiments.

VII. SUMMARY

We have investigated phase separation in binary dusty
plasmas at small size disparities (ε < 0.2) by means of simu-
lations. The plasma conditions were obtained from the SIGLO
software and used to compute the force fields acting on the
dust particles. The shape of the force profiles and their depen-
dence on the particle size leads to a force disparity between the
two particle species of slightly different size. The force dis-
parity generally explains the radial separation of the species
and the structure of the resulting dust cloud that is observed in
experiments under microgravity conditions.

We have then performed Langevin dynamics simulations
of binary dust systems using the LAMMPS software. First,
a linear geometry with forces acting in opposite directions
on the two species show that strong-coupling effects of the
particles play an important role, i.e., dust-dust collisions sig-
nificantly reduce the final drift speed of the particles.

The simulation of the full geometry of the microgravity
experiment reproduces many of the experimental results, in-
cluding the formation of vortex flows. Despite the vortex
flows, we could identify phase separation even at a very small
size disparity (ε = 0.01). The phase separation was quantified
using an ellipsoidal coordinate. We have found that the phase
separation is more pronounced with increasing force disparity
due to increasing size disparity. At fixed size disparity, the
phase separation becomes less pronounced with increasing
mean particle size as a result of the interplay of forces.

By comparison with a radially symmetric, vortex-free ge-
ometry we have found that the vortices do not have a major
influence on the phase separation. There is a generally good
agreemment between experiment and simulation regarding a
linear dependency of the separation parameter B on the size
disparity ε. However, the simulation yields a dependence of
the phase separation on the absolute size of the used particles,
which has not been observed experimentally.
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ACKNOWLEDGMENTS

Financial support by Deutsches Zentrum für Luft-
und Raumfahrt under Contracts No. 50WM1638 and No.
50WM1962 is gratefully acknowledged. The authors thank
Peter Druckrey for technical support. We are grateful for the
comments of the referee which led to several improvements
of this manuscript.

APPENDIX: RESULTS OF PARAMETER
VARIATIONS

We have varied several parameters in the simulation of the
realistic geometry that may directly or indirectly influence
the phase separation: dust particle kinetic temperature T and
particle number N in LAMMPS, neutral gas pressure p, and
rf peak-to-peak driving voltage Urf in SIGLO (resulting in
different force fields). The default values were T = 1000 K,
p = 30 Pa, and Urf = 75 V. The default particle number N0

depends on the mean particle size and the values are given in
Sec. V. The results of the simulation in terms of the separation
parameter B are shown in Fig. 11. For all runs, we chose
ε = 0.1.

In all cases, there are the expected trends: With higher
temperature, the phase separation is slightly stronger, because
with increasing particle motion it becomes easier for particles
to penetrate the system. With increasing particle number, the
particle density increases, particles exhibit more Coulomb
collisions and thus the phase separation is inhibited. With
increasing neutral gas pressure, the increasing neutral drag has
the same effect. With higher plasma power, the ion density as
well as the electric field increase, leading to increased driving
forces for the phase separation.
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