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Subcritical asymmetric Rayleigh breakup of a charged drop induced by finite amplitude
perturbations in a quadrupole trap
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The breakup pathway of Rayleigh fission of a charged drop is unequivocally demonstrated by continuous,
high-speed imaging of a drop levitated in an AC quadrupole trap. The experimental observations consistently
exhibited asymmetric, subcritical Rayleigh breakup with an upward (i.e., opposite to the direction of gravity)
ejection of a jet from the levitated drop. These experiments supported by numerical calculations show that the
gravity induced downward shift of the equilibrium position of the drop in the trap causes significant, large
amplitude shape oscillations superimposed over the center-of-mass oscillations. The shape oscillations result
in sufficient deformations to act as triggers for the onset of instability below the Rayleigh limit (a subcritical
instability). The concurrently occurring, center-of-mass oscillations, which are out of phase with the applied
voltage, are shown to lead to an asymmetric breakup such that the Rayleigh fission occurs upwards via the
ejection of a jet at the pole of the deformed drop. As an important application, it follows by inference that
the nanodrop generation in electrospray devices will occur, more as a rule rather than as an exception, via
asymmetric, subcritical Rayleigh fission events of microdrops due to inherent directionality provided by the
external electric fields.
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I. INTRODUCTION

A charged drop of radius rd undergoes Rayleigh instability
when the total charge on the drop exceeds a critical value,
QR = 8π

√
εeγ r3

d , where εe is the electrical permittivity of the
medium and γ is the surface tension [1]. At this critical charge
the repulsive Coulombic force just balances the restoring sur-
face tension force of the droplet. The Rayleigh instability is
believed to be responsible for the breakup of raindrops in
thunderstorms [2], the formation of subnanometer droplets in
electrosprays, and generation of ions in ion mass spectrometry
[3]. Although the theoretical limit of the critical charge has
been known for more than a hundred years [1], the breakup
pathway was explicitly demonstrated only recently by Duft
et al. (2003) [4] through systematic experiments on a levi-
tated charged drop in a quadrupolar trap. Their experiments
indicate that a critically charged drop sequentially deforms
to an elongated prolate spheroid, eventually forming conical
tips at its poles from which two jets are ejected in opposite
directions. These jets carry 30–40% of original charge and
negligible mass (∼1%) [4,5]. The loss of charge reduces the
electric stresses acting on the droplet and the deformed drop
relaxes back to a spherical shape. The symmetrical jet ejec-
tion of a droplet tightly levitated in a quadrupole trap may
not correspond to practical situations such as electrosprays,
wherein unbalanced external forces such as gravity or an
external electric field are most likely to introduce asymmetric
breakup. The broken symmetry can have a tangible impact
on the pathway of drop deformation as well as on the char-
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acteristics of daughter droplets formation. A significant body
of theoretical literature, both analytical [6–9] and numerical
[10–14], indicates that instability of a charged droplet is sub-
critical with respect to “finite amplitude” prolate spheroidal
perturbations. In this study, we provide experimental evidence
for asymmetric, subcritical breakup through a combination
of controlled observations and numerical simulations on levi-
tated drops placed in external electric fields.

II. EXPERIMENTAL SETUP

A. Materials and method

The experiments were conducted by electrospraying (in
dripping mode) a positively charged droplet of an ethylene
glycol-ethanol mixture (50% v/v), into a quadrupole trap.
NaCl is added to increase the electrical conductivity (σ ) of the
droplet, which is measured using a conductivity meter (Hanna
instruments, HI 2316), and the viscosity (μd ) of the droplets
is measured using an Ostwald viscometer. The surface ten-
sion (γ ) of the droplet is measured using a pendant drop
(DIGIDROP, model DS) method, and the values obtained are
reconfirmed with the spinning drop apparatus (dataphysics,
SVT 20). The experiments are carried out at normal atmo-
spheric conditions [1 atm pressure and 25 ◦C temperature as
measured by using a VARTECH instrument (THM-B2)]. The
temperature is maintained using a room air conditioner and
temperature in the vicinity of the setup was measured and
found to remain unchanged at 26 ◦C during the course of
the experiment. The relative humidity is measured using a
VARTECH instrument (THM-B2) and found to be around
20%.
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FIG. 1. (a) Schematic of the experimental setup used for studying the generation, levitation, and imaging of a charged drop in an
electrodynamic balance. (b) Schematic of various lengths used for calculation of AR and AD. (c) Schematic depicting the typical analysis
setup used for (i) center of mass motion [Eq. (8)], (ii) surface oscillations [Eqs. (9)–(11)] and (iii) breakup of droplet (BEM simulations).

The quadrupole trap used in the present experiments
consists of two end-cap electrodes, which are shorted and
separated by 20 mm (= 2z0), and a ring electrode of the same
diameter (2ρ0) (such that ρ0 = z0), as shown in Fig. 1(a).

A function generator (33220A Function/Arbitrary Waveform
Generator, 20 MHz) is connected to a high-voltage amplifier
source (Trek, model 5/80, high-voltage power amplifier). This
assembly is used to apply the potential of the desired wave
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form between the electrodes. The applied peak to peak AC
potential in our experiments is 11 kV with frequency varying
from 0.1 to 0.5 kHz.

In a typical experiment, charged droplets are generated
using electrospray realized by applying high DC voltage (6–
7 kV) to a syringe tip. These charged droplets are then injected
between the electrodes and are stabilized by the quadrupolar
AC electric field between the end cap and the ring electrodes
of the trap, resulting in their electrodynamic levitation. Sin-
gle charged drop levitation is achieved by simultaneously
levitating a few drops in the trap by a series of injection
and stabilization episodes. The process is rendered quite sys-
tematic by adjusting the potential applied to the syringe tip
or by adjusting the trapping potential and frequency. After
suspending the desired number of drops within the trap, the
potential applied to the syringe tip is switched off, eliminating
any further injection of the droplet cloud. A single droplet
is made to survive in the trap, by eliminating (destabilizing)
all the other drops by appropriately adjusting the driving fre-
quency of the trap. The levitated single droplet is observed
using a high-speed CMOS camera (Phantom V 12, Vision
Research, USA), which is connected with a stereo zoom mi-
croscope (SMZ1000, Nikon Instruments Inc.). The camera is
kept inclined at 30◦–40◦ with respect to the plane of the ring
electrode. The error in the droplet diameter due to camera in-
clination is observed to be ∼2%. Nikon halogen light (150 W)
is used as a light source.

The shape deformations are characterized by two shape
parameters; namely, aspect ratio (AR) and asymmetric defor-
mation (AD), where AR indicates the symmetric deformation
while AD is the measure of asymmetry in the shape of the
drop. Thus, AR is defined as the ratio of the major axis (L)
to the minor axis (B) such that when AR > 1 the shape is
termed prolate and when AR < 1 the shape is called oblate,
as shown in Fig. 1(b). The asymmetric deformation AD =
L1/L2, where, L1 and L2 are the distances of north pole and
south pole from the centroid respectively [Fig. 1(b)]. Note that
the centroids are calculated using two-dimensioal images in
IMAGEJ. We define the gravity acting from north to south and
appropriately call the end caps the north and south end caps,
and the poles of the droplet north and south poles. The charge
on the droplet before and after the breakup is measured by
the cutoff frequency method and also verified by the transient
displacement method. The details of the methods can be found
in our previous work [15]. With this experimental setup three
types of analyses are carried out in this paper and the setups
used for these analyses are depicted in Fig. 1(c).

B. Distribution of electric potential in quadrupole trap

The potential of an ideal quadrupole trap is given by φ =
�(z2 − ρ2/2) = �r2P2(cos θ ), where � = �0ζ (t ), where
ζ (t ) = cos(2π f t ) is a time-periodic function of frequency
f while (z, ρ) and (r, θ ) stand for cylindrical and spherical
polar coordinates respectively. Thus r2 = ρ2 + z2 and ρ2 =
x2 + y2.

Here, �0 = φ0/(ρ2
0 + 2z2

0 ) (where φ0 is the applied poten-
tial) is the intensity of an ideal quadrupole potential. Unlike
the case of an ideal Paul trap, where ρ0 = √

2z0, the present
electrodynamic balance has ρ0 = z0 = 10 mm. Since our

electrodynamic balance is not an ideal Paul trap, the intensity
of applied potential (�0) is obtained by solving the electro-
static equation for the exact geometry of the setup in COMSOL

MULTIPHYSICS software. The obtained data of the potential
along ρ (0 < ρ < 3 mm) and z (0 < z < 1 mm) axes [φ(ρ, z)]
is then fitted into the equation of an ideal quadrupole trap
by multilinear regression method using ORIGIN (version 9.1.0
Sr2, b271) software and the value of R2 is found to be 0.99.
Thus the potential distribution represented by

φ = �0

[
z2 − ρ2

2

]
(1)

has the value of �0 ∼ 1.76 × 107 V/m2 and is used in the
numerical calculations presented in the next sections. The
electric field at the center of such a trap, ρ = z = 0, is 0.
For an ideal Paul trap, the value of �0 can be obtained from
the definition, �0 = φ0

r2
0 +2z2

0
. For φ0 = 5500 V, r0 = 10 mm,

and z0 = 10 mm the value of �0 = 1.83 × 107 V/m2. The
difference between the values obtained from the fitting and
from the definition is about 4%. The details of the fitting
procedure are discussed in our earlier work [15].

III. BOUNDARY ELEMENT FORMALISM FOR
DROPLET BREAKUP

To understand the mechanism of droplet breakup, numer-
ical calculations are performed for a perfectly conducting
liquid drop of radius rd , suspended in a dielectric medium (air)
in the presence of a quadrupole electric field. In this study, the
Stokes equation for flow field and the Laplace equation for
the electric potential (φ) are solved using the axisymmetric
boundary element method (BEM). Here, all the quantities in
the units of length are nondimensionalized by rd , and the time,
velocities, and stresses are scaled by μd rd/γ , γ /μd , and γ /rd

respectively, where γ is the interfacial tension. The charge

and electric fields are scaled by
√

r3
dγ εaε0 and

√
γ εaε0/rd

respectively such that the nondimensional Rayleigh charge is
Q = 8π . Thus the governing nondimensional electrohydrody-
namic equations can be written as

∇2φ = 0, (2)

∇ · vd,a = 0, (3)

−∇pd,a + χd,a∇2vd,a = 0, (4)

where subscripts d and a represent drop (internal medium)
and air (external medium) respectively. pd,a is the pressure,
and χ denotes the viscosity parameter. Here, χa = 1 for
external medium and χd = λ = μd/μa inside the drop. As
the droplet conductivity is high (σ > 50 μS/cm) in most
of the experiments, the ratio of charge relaxation timescale
(εdε0/σd ) to the hydrodynamic timescale (μd rd/γ ) is quite
small (� 10−3). Hence, charge relaxation may be considered
instantaneous and accordingly the droplet is modeled as a
perfect conductor.

In this framework, the governing equations are then trans-
formed into integral equations and are solved using standard
methods reported in our previous works [12,16,17]. The inte-
gral equation of the electric potential for a perfect conductor
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drop is given by

φ(rs) = φ0(rs) + 1

4π

∫
Ene(r)

|r − rs|dS(r), (5)

where Ene is the normal component of the electric field (n · E)
with n as an outward normal, r and rs are the position vectors
on the surface of the drop, called the field and singular points
respectively, and φ0 is the applied electric potential which can
be written as

φ0(ρ, z) =
√

Ca�

[
(z − zshift )

2 − ρ2

2

]
. (6)

Ca� = (r3
dεe/γ )�2

0 is the electric capillary number where �0

is the strength of the applied quadrupole potential. Here zshift

accounts for the shifted position of the droplet from the center
of the quadrupole trap. For convenience of calculations in
these numerical simulations, the trap center is moved instead
of the drop position, as reflected in the equation of the trap
potential [Eq. (6)]. Thus the center of the drop coincides with
the origin (z = ρ = 0), and zshift is kept constant during the
calculations. Since the breakup time is much smaller than the
period of applied AC field (ω−1), typical breakup times are of
the order of few tens of microseconds while the frequencies
applied are of the order of 100–300 Hz (timescales of 1–10
ms), the external potential (absorbed in

√
Ca�) is assumed

to be DC such that the end caps are at positive potential
for a positive value of

√
Ca�. Thus Eq. (6) represents a DC

potential, with ζ (t ) = 1. Moreover, during this short time of
breakup, the droplet is assumed to be quasistationary with
respect to center of mass, and gravitational effects are ignored.
The unknown potential φ(rs) is constant on the surface of
the drop, and is determined by the condition of conservation
of charge given by

∫
Ene(r)dS(r) = Q, where Q is the con-

stant surface charge on the drop. The force density is then
given by �f = n∇ · n − [τe], where [τe] = (1/2)E2

ne is the
normal electric stress acting on the drop surface. A small
shape deformation is introduced initially via a function of the

form rs(θ ) = rd (1 + ∑4
l=1 αlPl (cos θ )), where Pl is the lth

Legendre mode and αl is the corresponding coefficient. The
force density is then used in the integral equation of interfacial
velocity, which is given by

v(rs) = − λ

4π (1 + λ)

∫
�f (r) · G(r, rs)dS(r)

+ (1 − λ)

4π (1 + λ)

∫
n(r) · T (r, rs) · v(r)dS(r), (7)

where G(r, rs) = 1
|x| + xx

|x|3 and T (r, rs) = −6 xxx
|x|5 are the ker-

nel functions with x = (r − rs) and are extensively discussed
in the literature [18,19]. The shape of the drop is then evolved
with time using an explicit Euler scheme. The details of
the numerical scheme adopted in this study can be found in
[17]. To summarize, the numerical calculations are aimed at
explaining the asymmetric deformation and breakup without
attempting to describe the center-of-mass (CM) or surface
oscillations.

FIG. 2. The detailed mechanism of droplet center-of-mass mo-
tion, surface oscillation, breakup, and relaxation observed in a single
high-speed video of a single drop, where inset figures represent
(i) experimental and theoretical CM [obtained by solving Eq. (8)]
oscillation dynamics in comparison with the normalized applied
AC cycle, (ii) experimental observation of the drop deformation
dynamics in terms of AR, and (iii) the enlarged region near the
breakup and subsequent relaxation of the drop. The intersection of
vertical and horizontal black dash-dotted lines indicates the point
of instability with respect to the AC cycle. The red dots labeled
A–P are used to indicate the various stages of the droplet evolution,
and corresponding shapes are given in Fig. 3. Parameters: μd = 6.0
mPa s, rd = 108 μm, γ = 30 mN/m, zshift = 500 μm, μa = 0.0185
mPa s, f = 114 Hz, ρd = 960 kg/m3, and �0 = 1.76 × 107 V/m2.

IV. RESULTS

In a typical experiment reported in this work, a charged
droplet, under the influence of gravity, gets levitated at an
off-centered position in the quadrupole electrodynamic (ED)
balance, as shown in Fig. 1(a). Unlike the ion trap in vacuum
[3], which operates at GHz frequency, the present setup op-
erates at sub-kHz frequencies for levitating charged droplets
at normal atmospheric pressure. It takes several minutes for
the levitated droplets to evaporate to the point of attaining
Rayleigh critical charge and undergo breakup. The events are
recorded using a high-speed camera at speed in the range
of 1 × 105 – 2 × 105 frames per second (FPS) for about 2–4
seconds. The video is played back to analyze droplet center-
of-mass (CM) oscillations [Fig. 2(i)], shape deformations, and
the asymmetric breakup event [Fig. 2(ii)] and its relaxation
back to original spherical shape after the breakup [Fig. 2(iii)].
The image sequence shown in Fig. 3 clearly indicates all these
stages of breakup.

The droplet is seen to undergo simultaneous CM motion
and shape deformations leading to an asymmetric breakup
predominantly in the upward direction (that is, at the north
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FIG. 3. Sequence of experimental images showing center-of-
mass motion, deformation, breakup, and shape relaxation. The
sequence of images A–F depicts CM and surface oscillations, im-
ages G and H show continuous deformation, image I indicates
breakup, and images J–P correspond to relaxation of the drop shape
after breakup. The timescales of the images are A: −29.1 ms;
B: −24.9 ms; C: −20.2 ms; D: −16.4 ms; E: −10.2 ms; F: −7.8 ms;
G: −0.95 ms; H: −0.43 ms; I: 0 ms; J: 0.25 ms; K: 0.45 ms;
L: 0.68 ms; M: 0.9 ms; N: 1.1 ms; O: 1. 3 ms; P: 1.9 ms. The drop
shape images are obtained by processing high-speed video in IMAGEJ
software [20]. The parameters of the experimental observations are
the same as those given in Fig. 2.

pole if the gravity acts from north to south). Out of the 49
breakup events observed, 42 cases resulted in upward ejection,
whereas the rest exhibit downward ejection. About 24–30%
charge loss is observed in the breakup, similar to that reported
in the literature [4,21–25]. The fact that a large number of
frames captured in different stages of the charged droplet
breakup process, observed through high-speed imaging of a
single drop, makes it possible to compare the observations
with continuous-time evolution models of the entire process.
This constitutes a major distinguishing feature of this work.

The video images (see Fig. 3) raise four major questions:
(i) How are the CM motion and the shape deformations re-
lated, and how do they affect the breakup pathway of the
drop? (ii) Why does the droplet breakup predominantly occur
in one direction (upward, at the north pole)? (iii) How is the
critical charge required to induce the instability modified due
to CM-surface oscillations coupling? (iv) What is the role of
the external quadrupolar potential on the droplet destabiliza-
tion? To answer these questions, it is necessary to analyze all
the stages observed in the breakup process, including center-
of-mass oscillations, dynamics of surface oscillations in the
quadrupole trap and the physics of upward breakup and these
are discussed in detail in the following sections.

V. DISCUSSION

A. Center-of-mass motion

The droplet in our experiments is levitated in a purely
AC quadrupole potential [15], unlike the previous study [26]
where the weight of the charged drop is balanced by an
additional DC bias voltage. In the theoretical description of
the problem, the weight of the droplet therefore appears in
the z-directional (the direction of gravity) equation of motion,
which is a modified Mathieu equation on account of the grav-

ity and the frictional drag, as

z′′(τ ) + cz′(τ ) − azz(τ ) cos(τ ) + g

ω2
= 0. (8)

Here, the trap potential given by Eq. (1) is used, where
the center of the coordinate system coincides with the
geometric center of the trap, and the droplet undergoes z-
directional CM motion. Here, az = 2Q�0/( 4π

3 r3
dρdω

2), c =
6πrdμa/( 4π

3 r3
dρdω), τ (= ωt ) is the nondimensional time,

ω = 2π f , f is the frequency of the applied AC field, ρd is
the density of the drop, μa is the viscosity of the air, and Q is
the charge on the drop. It should be noted that z in Eq. (8) is
kept dimensional so that it can be directly compared with the
experimental observations. All the required parameters can
be obtained from experiments, except the charge on the drop
which can be determined indirectly by one of the two methods
described below.

With respect to CM stability of the droplet, a droplet can
get loosely levitated with lower CM stability (az ∼ 0.25) with
large CM oscillations. As the droplet evaporates with time, the
mass of the droplet decreases, thereby increasing the value
of stability parameter az. When az reaches a critical value
(az,critical ∼ 0.445, at c ∼ 0), the CM oscillations become vi-
olent (known as spring oscillations [27]) and the droplet tries
to escape the ED balance. Thus, to re-stabilize the droplet,
the applied frequency is increased, which reduces the value of
az. In most of the experiments (80% of all the experiments),
the frequency is adjusted such that the droplet is levitated at
a value just below its critical stability limit (az ∼ 0.4–0.44).
Thus an approximate value of the charge on the droplet can
easily be obtained from the definition of az. The value of Q
calculated from the definition of az using all other measured
experimental parameters yields Q of the order of Rayleigh
charge (QR), clearly indicating that the droplet is charged near
the Rayleigh limit.

Alternately, when a bigger sized droplet is levitated at a
lower value of az, due to its high initial charge, the droplet
breaks before it undergoes spring oscillations. In this case, the
charge on the droplet can be estimated by fitting the value
of the charge in the modified Mathieu equation to match the
experimentally obtained amplitude of the CM oscillations, as
shown in Fig. 4(a). It is interesting to note that the value of
charge fitted to match the amplitude of the CM oscillations in
the experiments is nearly equal to the Rayleigh limit of charge
within ±10%, which can be attributed to experimental error
(Q ∼ QR).

Thus, although the above methods can be used to determine
the charge on the droplet, and suggest a near Rayleigh charge,
the accuracy is limited, especially when attempting to explain
subcritical instabilities. Hence, as will be discussed, recourse
will be taken by BEM simulations to ascertain the same.

The above calculations are reported for a positively
charged droplet. It is pertinent to mention here that for the
discussion presented in this work we consider the droplet to
be positively charged. It is easy to note that the discussion can
be extended to a negatively charged droplet with appropriate
reversal of the signs of the end caps and ring electrodes. A
few experiments were indeed conducted to ensure that the
phenomenon is independent of the sign of the charged droplet.
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FIG. 4. (a) Comparison of CM motion obtained from numerical solution of Eq. (8) and experimental image processing. The values of
parameters used for numerical solution are borrowed from experimental observation as indicated in the figure. (b) The variation of CM and
applied AC field with time as obtained from the numerical solution. The parameters used are the same as those given in Fig. 2.

The CM oscillations can also be used to get the approxi-
mate z-directional shift (zshift) of the drop from the center of
the trap. From Fig. 4(a) the maximum value of zshift estimated
as ∼500 μm. The droplet is found to oscillate below the center
of the trap and remains bounded between the center of the
trap and the south end cap [as shown Fig. 1(a)]. Note that
the end cap is located at 10 000 μm in the experimental setup
used in this work. The time-averaged equilibrium position of
the droplet (〈zshift〉 = z̄) can also be obtained from the simple
force balance in the z direction. The expression of z̄ in terms
of the trapping parameters can be found in the Supplemental
Material (SM) [28].

The important observation here is that, when the droplet is
stabilized at an off-centered position, it oscillates with the ap-
plied frequency (ω) around its equilibrium position [Fig. 4(a)],
experiencing a local uniform electric field (E = 2�0zshift)
along with a nonzero quadrupolar electric field (�). The am-
plitude of these CM oscillations and E are proportional to
zshift . In contrast, when the droplet is stabilized exactly at the
center of the trap by annulling the force of gravity with a DC
field [4], it experiences negligible influence of the external
quadrupolar fields and thereby exhibits small amplitude CM
oscillations. This apparently minor difference has a significant
effect on the nature of droplet surface destabilization.

The electrostatic force acting on a positively charged drop
that exhibits oscillations in its CM motion sensitively depends
upon the relative position of the charged drop within the trap,
with respect to the oscillatory potential of the south end cap.
The numerical solution of Eq. (8) is plotted as a function of
time along with the applied AC cycle, as shown in Fig. 4(b).
It can be observed that, in the positive AC cycle, the position
of the drop is lowest, i.e., near the south end-cap electrode

[maximum negative displacement; also see Fig. 2(i)]. This
indicates that there is a phase shift of π between the CM mo-
tion and the applied field. It will be seen later that the π phase
shift and the large amplitude CM oscillations of the droplet
have an important implication for the asymmetric breakup of
the droplet. The exact phase lag between the applied AC field
and the CM motion could not be measured in the experiments.
The comparison is made possible by synchronizing the peak
position of the deformation [Fig. 2(ii)] to the negative peak of
the AC cycle [Fig. 2(i)] at early times.

B. Dynamics of surface oscillation

The equations governing the dynamics of surface oscil-
lation of the levitated charged droplet [29] in a quadrupole
trap are obtained from a leading order asymptotic theory
with respect to small amplitude of oscillations. The surface
of the droplet is described as rs(t, θ ) in terms of Legendre
modes with αl as the perturbation coefficient. The coefficient
α1 represents the CM motion, α2 and α4 indicate symmetric
dipolar and quadrupolar shape deformations, respectively, and
the coefficient α3 is a measure of asymmetric shape deforma-
tion. The experimental observations of the oscillatory shape
deformations can be described by a potential theory with
viscous corrections [29], and these viscous corrections (which
suppress high-frequency capillary oscillations) are found to
be critical to explain the experimental observations. To linear
order in shape coefficients and small displacements of CM, we
assume that the droplet experiences a quadrupolar field given
by Eq. (1) and that the droplet is levitated at zshift , where it
experiences a uniform electric field E = 2�0zshift . This allows
us to write the governing equations for shape coefficients in
the limit of small deformations as

α′′
2 (t ) + 6

3β + 2

(
2(λ + 4)Oh α′

2(t ) + 4α2(t ) − 3CaE ζ 2 + 10X
√

Ca� ζ − 25Ca� ζ 2

7

)
= 0, (9)

α′′
3 (t ) + 1

4β + 3

(
24(2λ + 5)Oh α′

3(t ) + 120α3(t ) − 108
√

CaE

√
Ca� ζ 2

)
= 0, (10)

α′′
4 (t ) + 1

5β + 4
(840(λ + 2)Oh α′

4(t ) + 2520α4(t ) − 900Ca� ζ 2) = 0, (11)
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FIG. 5. A schematic representation of the effect of various elec-
trical parameters on shape oscillation characteristics of the droplet:
(a) applied AC signal, (b) oscillations of a neutral drop in the pres-
ence of quadrupole and/or uniform field, (c) oscillation of highly
charged drop levitated exactly at the center of the quadrupole trap,
(d) oscillation of a moderately charged drop levitated at a position
away from the center of the trap in the presence of a quadrupole
potential.

where Oh = μd/
√

γ rdρd is the Ohnesorge number, β =
ρa/ρd is the density ratio between the droplet and the
surrounding medium, X = Q/QR is the fissility, Ca� =
(r3

dεe/γ )�2
0, and CaE = (rdεe/γ )E2, where Ca� and CaE are

the forces due to quadrupolar potential and uniform fields re-
spectively. The effect of several electrical force terms such as√

CaE
√

Ca� (asymmetric force on an uncharged drop due to
uniform field and field due to quadrupole potential coupling)
and Q

√
Ca� (force on a charged drop due to quadrupole po-

tential) on the characteristics of surface dynamics [Fig. 2(ii)]
can be understood by solving Eqs. (9), (10), and (11) si-
multaneously. A schematic representation of effect of various
parameters and forces on the characteristics of a charged
droplet oscillations is shown in Fig. 5. Fig. 5(a) is a variation
of the applied potential with respect to time. If the value of
�(t ) is positive the end-cap potential is positive and vice
versa.

The shape oscillations of an off-centered uncharged drop
in a quadrupole trap are caused by Ca� and CaE . Ca� in-
duces both dipolar and quadrupolar shape oscillations with a
frequency of 2ω while, CaE (due to off-center position) ex-
cites dipolar oscillations with a frequency 2ω. These forces
induce the polarization of the free charges in a neutral drop,
and the droplet oscillates with the frequency of 2ω [Fig. 5(b)].
On the other hand, the quadrupolar field acting on the to-

tal unperturbed charge (Q) of the undeformed drop leads to
symmetric shape deformations with frequency ω due to the√

Ca�Q term as shown in Fig. 5(c). The experiments (Fig. 2)
indicate that the shape oscillations occur at frequency ω with
weak oblate deformations, thereby suggesting a complex in-
terplay between the shape deforming terms

√
Ca�Q, Ca�, and

CaE , where the first term contributes a ω response, the latter
two terms contribute to the superimposed 2ω response. This
has been elucidated in Fig. 5(d).

The shape deformations can also be understood in terms
of the electrostatic attraction or repulsion between the charge
on the droplet and the polarity of the electrodes. When the
applied potential is positive (and maximum), the positively
charged droplet experiences maximum electrostatic repulsion
from the end cap electrodes and deforms the droplet into an
oblate shape (AR < 1). Similarly, in the negative AC cycle,
the droplet experiences electrostatic attraction from the end
cap electrodes and deforms into a prolate spheroid (AR > 1)
[Fig. 5(c)]. Using this reasoning, the peak negative potential
of the AC cycle is made to coincide with the peak prolate am-
plitude of the shape deformation observed in the experiments,
so as to match the temporal evolution of deformation with the
applied field, and has been reported elsewhere [29].

C. Droplet breakup

In the course of executing both the CM and shape oscil-
lations, the evaporation of the droplet can cause the droplet
charge to approach its Rayleigh limit, leading to the onset of
Rayleigh instability, which eventually leads to an asymmetric
breakup via the formation of a jet (movie, SM [28]). We
consider a positively charged droplet for convenience of argu-
ments, and it should be noted that the physics is unaltered for
a negatively charged droplet. Thus, considering a positively
charged droplet levitated using an AC quadrupole field, the
relative potential (either positive or negative) of the end cap
and the corresponding deformation are critical to asymmetric
breakup. While the quadrupolar field �0 corresponding to that
acting at the center of the drop can only induce symmetric
deformation in the drop and thereby a possible symmetric
breakup [as shown in Figs. 6(a) and 6(b)], any asymmetric
breakup should occur due to the differential, locally uniform
field E acting on the surface of an off-centered droplet [as
shown in Figs. 6(c) and 6(d)]. A positively charged droplet
near a positive south end cap should deform into an oblate
spheroid due to the electrostatic repulsion at the poles between
the like-charged drop and the end cap as well as due to the
electrostatic attraction between the oppositely charged drop
and the ring electrode at the equator [Fig. 6(d)]. On the other
hand, if a positively charged drop is near the negative south
end cap [Fig. 6(c)] it should break in the downward direction
due to higher electrostatic attraction from the south end cap
and repulsion from the ring electrode [as shown in Fig. 6(c)].
It is also possible that a positively charged droplet near a posi-
tively charged end cap could attain an oblate shape [Fig. 6(d)].

The experiments show that the breakup is predominantly
asymmetric, with a majority of jet ejection events occur-
ring upwards [at the north pole, against gravity, as shown in
Figs. 3 and 6(e)] (also see SM [28]). With the above possible
scenarios (Fig. 6), the predominance of the upward breakup
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FIG. 6. Schematic representation of polarity of electrodes,
droplet position, and corresponding deformation leading to breakup.
Panels (a) and (b) show the drop at the center of the trap and
symmetric deformation, whereas panels (c) and (d) show the drop at
an off-centered position with endcap polarity dependent deformation
and breakup.

is somewhat intriguing, and its understanding requires care-
ful theoretical analysis of the problem. Therefore, to further
understand the underlying mechanism and the stresses respon-
sible for the asymmetric breakup, we performed numerical
simulations using the axisymmetric boundary element method
(BEM). The asymptotic analysis in small � [Eqs. (9)–(11)],
indicates that the oscillations associated with the natural
frequency are quickly damped such that at long times, the
oscillation frequency is the same as the applied frequency
[29]. Moreover, at the onset of jet ejection, the rate of change
of AR values predicted by the simulations (presented in our
previous work [17]) in the viscous limit is in good agreement
with those observed in the previously reported experiments
[5]. Therefore, to understand the mechanism of droplet de-
formation and breakup, BEM calculations are carried out in
the viscous flow limit. Additionally, experiments indicate that
the breakup of the droplet is very fast and occurs at around
1/10 of the timescale associated with the time period of the
AC signal. In view of this, the simulations are carried out
by considering either positive or negative DC quadrupole po-
tential with the intensity of the applied electric field �0. All
the parameters are borrowed from direct observations of the
experiments, and the value of zshift is taken as the maximum
displacement observed from Fig. 4(a), i.e., ∼500 μm.

A systematic set of simulations (see the AppendixA) ad-
dressing different scenarios corresponding to Figs. 6(c)–6(e)
are then performed to understand the underlying mecha-
nism. The numerical analysis depicting the effect of various
initial perturbations, charge on the drop, polarity of the end-
cap electrodes and position of the droplet in the trap on

the breakup characteristics is summarized in the Appendix
(Table I).

We first conduct calculations with an initially spherical
droplet. The simulations indicate that, at Rayleigh charge
(i.e., 8π ) with a downward zshift and an unperturbed initial
spherical shape, the drop breaks in the downward direction
for negative end-cap potential. The observation is explained
by the fact that in the vicinity of a negative end cap the
positive charges accumulate at the south pole of the drop due
to electrostatic attraction between charges on the drop and the
end-cap electrode. Due to the accumulation of charges, the
droplet develops high curvature at the south pole, which leads
to a downward breakup for experimentally relevant parame-
ters (Appendix Table I case 2).

Secondly, an analysis of the CM motion on the levitated
charged droplets indicates that most often, the droplet breakup
occurs when the droplet is near the south end-cap electrode
(see SM [28]). Experiments [Fig. 2(i)] also show that the pos-
itively charged droplet is in the vicinity of the south end cap
when the latter is at positive peak potential. This is attributed
to the phase lag of π between the applied potential and the
CM motion. Thus one can conclude that the case (2) in Table I
[also indicated in Fig. 6(c)] is rarely encountered. Therefore,
we consider the case of an initially spherical droplet near an
end cap with positive potential, with the drop exhibiting a
downward zshift . The positively charged drop now experiences
an electrostatic repulsion from the end-cap electrode as well as
attraction from the ring electrode. Thus, in this configuration,
the droplet renders a stable oblate shape and cannot undergo
breakup for typical experimental parameters [Appendix Ta-
ble I case 3, Fig. 6(d)].

These results contradict the experimental observation
where the droplet breaks in the upward direction in the
positive cycle of the applied field (which corresponds to
positive end-cap potential). The apparent inconsistency can
be resolved by observing that in Figs. 2(ii) and 3, at
point G, which is the droplet state just before the breakup,
the droplet exhibits a highly deformed prolate spheroidal
shape and does not undergo prolate-to-oblate oscillations
thereafter. As at this point, the droplet has built a near
critical charge to admit Rayleigh instability that leads to
a breakup. We therefore consider this point to be the
onset of the Rayleigh instability, and investigate several
scenarios.

In the first case, we consider the experimentally observed
drop shape corresponding to image G in Fig. 3 as an initial
shape in the numerical calculations. The outline of the drop
shape in image G is obtained using the IMAGEJ software and
is fitted using the nonlinear least-square method to a Legendre
series (using Mathematica software, version 10) to obtain
the coefficients of the different Legendre modes. The details
of the shape fitting analysis can be found in SM [28]. The
coefficient of the second Legendre (P2) mode is thus obtained
as 10.56 μm and that of the third Legendre (P3) mode as
+2.08 μm, and the radius (rd ) of the undeformed drop is
108 μm. The shape fitting indicates that the symmetric P2

mode is most prominent. Incidentally, P2 is the most unsta-
ble mode as predicted by the linear and nonlinear analysis
of Rayleigh breakup of a charged drop [10,30]. A signifi-
cant value of the asymmetric P3 mode is also observed (a
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positive value of P3 mode means a higher curvature at the
north pole and vice versa). The simulations are initialized with
a shape corresponding to image G (Fig. 3) where the initial
shape of the droplet considered in the simulations is perturbed
with the coefficients of P2 and P3 modes, obtained from the
experiments. For numerical simulations the parameters are
nondimensionalized with rd and are given as Ca� = 0.00058,
zshift = 4.63, α2 = 0.1, α3 = 0.02.

The BEM calculations are carried out by providing an ini-
tial surface charge Q to this perturbed shape (the perturbation
is obtained form the experimental drop shape) drop at a value
which is in the sub-Rayleigh charge limit and progressively
increasing it till the critical (i.e., minimum) value of the charge
at which the droplet undergoes breakup (cases 4-7 in Table I).

If the charge is less than this critical value, the droplet
relaxes back to the spherical shape (Appendix Table I case 4).
However, when the charge is around the critical value (cases
5-7 in Table I), the initial shape perturbations grow, and the
droplet evolves to form sharp conical ends, finally admitting a
numerical singularity [17]. It is found that the droplet breaks
at 98.7% (i.e., 7.9π ) of the Rayleigh charge for the given
parameters. The breakup at subcritical charge clearly demon-
strates that subcritical Rayleigh instability can be induced by
finite-amplitude perturbations. Since the external electric field
is small, it acts as a trigger for inducing surface perturbations
and has an insignificant role in causing break up. This is in line
with the prediction of the theory that the breakup of a droplet
in the quadrupole electric field is a transcritical bifurcation
[12].

To understand the mechanism more clearly, a closer look
at the role of initial perturbation suggests that, for an initial
shape with dominant P2 perturbation and a positive P3 per-
turbation, the breakup is always observed in the upward (at
the north pole) direction when the end cap is positive, in con-
formity with experiments (Appendix Table I case 5). Under
these conditions, there can be two mechanisms responsible for
asymmetry in the droplet shape at the onset of the breakup.

First, a significant positive α3 perturbation (for the P3

mode) in the initial droplet shape can assist upward and asym-
metric breakup (Appendix Table I case 5).

Second, although initially α3 = 0, an α3 perturbation can
develop due to the nonlinear interaction between the dipolar
charge distribution on the drop and the positive (when the
south end cap is positive) uniform electric field (E ) experi-
enced by the prolate spheroidal droplet, or the

√
CaE

√
Ca�

term in the evolution equation for α3 in Eq. (10) (Appendix
Table I case 8).

When simulations are carried out even in absence of an
initial P3 perturbation, case 8, the subsequent manifestation
of the P3 mode leads to an upward (north pole) asymmetric
deformation and subsequent breakup. Since the magnitude of
α3 depends on the strength of the coupling between α2 and E
(which takes a certain amount of time to become significant),
the asymmetry manifests at a later stage in the dynamics of
the drop breakup. This explains the late onset of asymmetric
breakup seen in Fig. 7.

The above reasoning may be quantified by examining the
time evolution of normal stresses acting on the surface of
the drop (see Fig. 8) using the BEM method. Initially, when
the drop is perturbed with experimentally obtained values of

FIG. 7. Comparison of experimental observations with BEM
simulations for temporal evolution of AR and AD along with the
drop shapes at three different times near the breakup (shown in the
bottom panel).

shape deformation coefficients, the normal electric stresses
acting on the drop surface are only marginally higher at the
north pole. As may be seen in Fig. 8, the stress distribution re-
mains nearly symmetric for a considerable time (between t =
−2.2 and −0.15 ms). The nearly symmetric stress distribu-
tion also corresponds to nearly symmetric dipolar (P2) charge
distribution. Beyond this point (t = −0.15), the interaction
between P1 and P2 escalates, creating an asymmetric (P3)
charge distribution and thereby asymmetric Maxwell stress
distribution, which through a feedback mechanism manifests
as an asymmetric upward breakup. The asymmetry is thus a
result of the finite-amplitude perturbation of the symmetric
mode, and therefore the AD manifests later (as compared to
AR) in the instability. The mechanism prevails even when
the initial perturbation does not have the P3 mode (α3 = 0),
thereby explaining why the upward breakup is more prevalent
in experiments.

FIG. 8. The stress distribution on the surface of the drop obtained
from BEM simulation. The numbers indicated below the drop shapes
are times in milliseconds.
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The droplet shape evolution predicted by BEM simulations
is compared with the experimental observations, as indicated
by AR and AD. A remarkable agreement is observed between
the experiments and the simulations (Fig. 7), including the
important observation of a late onset of asymmetry. Moreover,
the shapes of the drop from the critical point (G) to the
breakup point (I) are accurately predicted by the BEM simula-
tions, as shown in Fig. 7. The drop shape corresponding to the
image I is compared without considering the jet part observed
in the experiments since the BEM calculations for perfect
conductor drop cannot capture the jet formation. To predict
the jet and progeny formation in the breakup of charged drops,
it is necessary to consider the finite charge dynamics on the
drop surface [31]. Since in this study BEM simulations are
carried out for the understanding of the underlying mechanism
of the experimentally observed asymmetric breakup of highly
conducting charged drops, the finite surface charge dynamics
is neglected.

In certain cases (in about 10% of the cases) where α3 is
negative, a downward breakup has been observed. This can be
explained as follows: although a phase shift of π is observed
between the applied AC field and the CM oscillations, in few
experiments, we observe that the south end cap is at negative
potential when the droplet is at the bottom of its CM motion
and attains a critical shape. Moreover, the shape at this stage
also indicates a negative α3 (for details see SM [28]). Since
this situation is rare, fewer droplets are found to break in the
downward direction.

VI. CONCLUSIONS

While the work of Duft et al. [4] has shown pioneering
evidence for a symmetrical pathway for Rayleigh breakup,
the present study shows that this is not universal, and per-
haps is an exception in realistic situations. Specifically, by
considering the effect of gravity and external electric fields
and from the insight obtained by numerical calculations, an
asymmetric breakup might turn out to be the rule in real-life
practical situations, such as the one that is commonly en-
countered in nanodrop generators using electrosprays. This is
amply demonstrated through continuous high-speed imaging
of levitated drops in a quadrupole trap combined with BEM
simulations. The external electric fields act as initiators of
finite-amplitude shape deformations, which assist in driving
the droplets towards subcritical Rayleigh breakup even when
the charges carried by them are less than the Rayleigh critical
charge. BEM calculations accurately predict these values to
be about 98–99% of the Rayleigh limit in conformity with
experimental observations. It must be pointed out that detailed
bifurcation diagrams exist for Rayleigh instability, and these
clearly include transcritical bifurcations at Q = QR [10,12] as
well as imperfect transcritical bifurcations in the presence of
walls [32]. The prolate and oblate deformations correspond to
sub- and supercritical bifurcations, respectively. The present
observations are in conformity with a previous study that
showed that the applied quadrupole potential could further
reduce the critical Rayleigh charge due to an interaction be-
tween the applied field and the Rayleigh instability [12]. The
external fields also induce asymmetric jet ejection, and the

study shows that there is a strong shape instability coupling
in the dynamics of charged drops.

The study has a far-reaching bearing on technologies
exploiting the Rayleigh breakup process for nanoparticle gen-
eration using electrosprays, or ion mass spectrometry. The
occurrence of subcritical break up will influence the history,
and asymmetric break up will affect the evolution of the spa-
tial distribution of droplet sizes. Moreover, judicious choice
of the polarity of confining electrodes can lead to greater
effectiveness in the breakup of droplets. All these practical
implications of the findings presented here deserve careful
consideration in future studies.

The sizes of the ejected droplets could not be measured
very accurately due to the limitation of the resolution of
the microscopy used in our experiments. However, look-
ing at at the hazy droplet images provides an approximate
estimate of the daughter droplet size as ∼5 ± 4 μm. The
daughter droplets move away from the observational field of
view within 10–20 μs after their ejection due to electrostatic
repulsion from the mother droplet. As a result, it is not pos-
sible to make direct observations on the fate of the daughter
droplets. However, based on the observations and analysis of
the breakup pathway of the mother droplet, it is reasonable
to expect that the ejected daughter droplets would undergo
further breakup, giving rise to yet smaller satellite droplets,
and so on. This, however, needs further careful investigation.

M.S. and N.G. contributed equally to this work, where
M.S. performed the experiments, data analysis, and writing
of the manuscript and N.G. performed BEM simulations, data
analysis, and writing of the manuscript. Y.S.M. contributed
to application of analytical tools to data analysis and review
of the manuscript. R.T. conceived the problem, analyzed and
interpreted the data, and reviewed the manuscript.

APPENDIX: RESULTS OF EXTENDED BEM
SIMULATIONS

For different values of forcing parameter, i.e., intensity of
quadrupole electric field, Ca�, the mode of droplet breakup
is significantly different. For the numerical analysis of drop
breakup, the strength of forcing parameter is borrowed from
the actual experimental parameters, i.e., Ca� = 0.00058 and
is used in BEM simulations. In simulations if the forcing term
(Ca�) is arbitrarily increased by 10 times, it is observed that
in the presence of high positive �0 the positively charged
drop deforms into oblate spheroid and remains stable even
for charge higher than the Rayleigh limit (Q > 8π ). This is
basically due to high electrostatic repulsion exerted by the
south end cap at positive potential on the positively charged
drop. A value of Ca� much lower than 0.00058 does not
affect the drop deformation significantly and the drop breaks
symmetrically.

Thus, the value of Ca� is kept constant at 0.00058 and
all the other situations that can arise during the experiments
with respect to direction of applied electric field, position of
the drop in the trap, and initial perturbations are analyzed
using BEM simulations. The results are summarized in Ta-
ble I. From the table it can be observed that the downward
breakup is a special case that occurs only when � is negative.
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TABLE I. Summary of initial conditions and breakup behavior of a charged drop levitated in the quadrupole trap. Position of the drop in
the trap is abbreviated as COT (center of trap) or NSEC (near south end cap) and SN represents simulation number.

SN Initial shape perturbations Charge (Q) Position Sign of � Result

1 α2 = α3 = 0 8π COT Positive/Negative Symmetric breakup
2 α2 = α3 = 0 8π NSEC Negative Downward breakup
3 α2 = α3 = 0 8π NSEC Positive Stable oblate
4 α2 = 0.1, α3 = 0.02 <7.9π NSEC Positive Stable sphere
5 α2 = 0.1, α3 = 0.02 7.9π NSEC Positive Upward breakup
6 α2 = 0.1, α3 = 0.02 7.9π NSEC Negative Downward breakup
7 α2 = 0.1, α3 = −0.02 7.9π NSEC Positive Symmetric breakup
8 α2 = 0.1, α3 = 0.0 7.9π NSEC Positive Upward breakup
9 α2 = 0.1, α3 = 0.0 7.9π NSEC Negative Downward breakup

As argued in the article, this, however, is a less probable con-
dition. Thus simulations also indicate that when � is positive,
which is the more probable case, the breakup is upward as also
seen in most experimental observations. Interestingly, even in

the absence of initial P3 perturbation in the drop shape, the
droplet breakup occurs with an upward asymmetry when the
charge is sub-Rayleigh, demonstrating subcritical breakup of
charged droplets.
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