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Bohr-Sommerfeld-like quantization in the theory of walking droplets
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Recent experiments have shown that self-propelled millimetric walking droplets bouncing on a vibrating liquid
surface exhibit phenomena, such as interference or tunneling, that so far were thought to be possible only in the
microscopic realm. Here we present calculations showing that the surface wave satisfies, in the long-memory
limit, a Bohr-Sommerfeld quantization-like relation. This strongly suggest the possibility of a novel fundamental
type of quantization in these experiments, which can simultaneously explain their emulation of the quantum
behavior and, more importantly, shed light into some of the interpretational difficulties of the standard quantum
theory.
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I. INTRODUCTION

Wave-particle duality still remains one of the most intrigu-
ing aspects of quantum theory. Actually, particles and waves
were considered apart until reunited by de Broglie in his
pilot-wave, also called double-solution, theory [1,2], further
elaborated by Bohm [3].

In the past few years, seminal work by Fort and Couder
[4] followed by Bush [5] on a new kind of macroscopic
hydrodynamic experiments [6] showed that the statistical
properties of millimetric oil droplets bouncing on a surface of
the same liquid excited above the so-called Faraday’s thresh-
old γF were reminiscent of quantum experiments [7]. The
collisions of such droplets, usually referred to as walking
droplets (WDs) or more simply as walkers, with the surface
create a wave influencing its future dynamics. Indeed, the
force exerted by the surface on the WD depends on its shape,
which in turn is determined by the previous history of the
bounces.

Amazingly, the droplet-surface wave interaction is respon-
sible for the emergence of a behavior that strongly resembles
that of the most paradigmatic quantum phenomena. Indeed,
single-particle diffraction and interference [8], single- and
double-slit interference [9], tunneling [10], orbital quantiza-
tion [11], and orbital level splitting [12] have been observed
in those experiments. Obviously, the question of why and how
this behavior arises, and if the origin is analog to that in the
quantum world is an issue of paramount interest.

In this paper, we address some aspects of this question by
considering the dynamics of a WD in the presence of a chaotic
anharmonic coupled quartic potential. With this choice, we
show that quantization in WDs does not emerge due to geom-
etry or other dynamical peculiarity of the systems, as already
observed in Refs. [13,14], but it is also a more general robust
result that happens in scenarios where no invariant tori exist
[15].

Our results demonstrate the emergence of quasistationary
regular patterns in the underlying wave field due to coherent
superposition, when a suitable Bohr-Sommerfeld (BS)-like
quantization condition is fulfilled [15,16]. Furthermore, we
show that, in the infinite memory limit, the previous condition
leads to the identification of a mass-dependent constant, play-
ing a role similar to that of the Planck’s constant in quantum
mechanics.

The paper is organized as follows. First, we briefly describe
in the following section the fundamentals of the theory. Next,
we present in Sec. III the results of our study. To sum up, we
conclude this work in Sec. IV with the conclusions and the
outlook.

II. THEORY

The dynamics of a microscopic WD bouncing on a vibrat-
ing liquid surface is customarily described (stroboscopically)
using Newton’s second law as [17,18]

mq̈(t ′) + D q̇(t ′) = −∇U (q) − m g
A

TF
∇ψt ′ (q), (1)

where m is the particle mass, q(t ′) its vector position at time
t ′, D is a friction parameter (assumed constant for simplicity),
U (q) is the external potential, g is the acceleration gravity, A is
related to the amplitude of the wave, TF the oscillation period,
and ∇ψt ′ the gradient of the wave field. As can be seen, the
last term accounts for the force exerted by the surface wave,
thus being responsible for the coupling between particle and
wave in this model. This wave field is taken as

ψt ′ (q) =
∫ t ′

−∞
J0[2π |q(t ′) − qp(s′)|/λ′

F ] e−(t ′−s′ )/TM ds′, (2)

where TM is a characteristic time that accounts for an ex-
ponential decay of the wave field, which is proportional to
(1 − γ /γF )−1, with γ the acceleration of the bulk fluid and
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γF Faraday’s threshold. As will be shown later, Faraday’s
wavelength λ′

F plays here the same role as does de Broglie’s
wavelength, λdB, in the quantum theory, and qp gives the
walker position along the “past” portion of its trajectory. In
this way, Eq. (2) accounts for the history of the droplet up to
time t ′, considering the effect of all the previous bounces on
the liquid, whose surface is assumed to be deformed in space
as a Bessel function of the first kind, J0.

The corresponding dynamics is usually studied making
Eq. (1) adimensional by a suitable scaling, which renders

κ ẍ + ẋ = −∇V (x) − β ∇ψt (x), (3)

where t = t ′/TM , x(t ) = q(t )/λ̃F , V (x) = U (λ̃F x)TM/(Dλ̃2
F ),

λF = λ′
F /λ̃F , κ = m/(DTM ), and β = mgA/(TF D)(TM/λ̃F )2

is a memory factor that modulates the effect of the past
bounces on the wave field. Here λ̃F is a characteristic length
in the system, which can be taken equal to 1 for simplicity.
Despite the fact that the scaled parameters κ and β are related
through their dependence on D and TM , and then implicitly on
the γ /γF ratio, we will consider hereafter these quantities as
independent in order to explore the full range of possibilities
that this allows.

In this work, we will consider a WD moving on a vibrating
fluid surface close to the Faraday threshold, γ → γF , where
TM → ∞ and then β → ∞. In that case, the exponential in
Eq. (2) disappears, with the scaled wave field equal to

ψ (x, y) =
∫ t

−∞
J0(2π |x − xp(s)|/λF ) ds, x = (x, y). (4)

Likewise, we consider an external potential given by the two-
dimensional coupled quartic oscillator

V (x, y) = 1
2 x2y2 + 1

400 (x4 + y4), (5)

which is shown in full and desymmetrized form in the inset of
Fig. 1. This potential has been extensively studied, especially
in connection with quantum chaos [19–22]. The phase space
associated with Eq. (5), as well as for other quartic oscillators
with different parameters (see, for example, Refs. [19,23–
27] where rigorous results concerning orbits’ stability can
be found), has almost surely a mixed structure, which com-
bines regular and irregular motion at the same energy, this
producing a very rich dynamics. In particular, the motion is
totally regular for the potential (5) without the coupling term
x2 y2, while in the absence of x4 + y4 the system becomes
unbounded with a very chaotic motion, which still presents
some tiny regions of regularity [23]. For all practical pur-
poses, however, these regular regions are so small that they
can be neglected in general, and this is also the case for the
potential (5), due to the selected values of the parameters, 1/2
and 1/400. As a consequence, phenomena observed in this
potential are also expected in any other chaotic system due
to the almost total absence of the regular structures that will
result in mixed dynamics, this changing with the system. Note
that a representative composite Poincaré surface of section
of the system, like the one shown in Fig. 1, is formed by a
plethora of disconnected points densely covering the phase
space, and no visible imprints of regular motion, i. e., in-
variant tori, are appreciated by the naked eye. Actually, the
Lyapunov exponent of the generic chaotic trajectory of the

FIG. 1. Inset: Isopotential E = 1 for the two-dimensional cou-
pled quartic potential of Eq. (5) in the full configuration space.
The blue shaded area shows the fundamental domain in the desym-
metrized system, which is defined in this case for x � y > 0. The
whole potential can be constructed by reflexion of the shown fun-
damental domain respect to the x and y axes, and the diagonals
y = ± x. Main body: Poincaré surface of section {x = 0, px < 0}
for a trajectory of a unit-mass particle with energy E = 1 moving
solely under the quartic potential, a situation where no friction or
particle-surface coupling effects are considered.

system shown in Fig. 1 for an energy E is always positive and
equal to 0.3748 E1/4 [21]. The choice of potential (5) ensures
the inclusion of a chaotic component in the walker dynamics,
even in the absence of any liquid surface. Finally, the use of
a smooth potential simplifies the calculations as no boundary
effects need to be taken into account [28].

In the zero-memory limit, β = 0, where droplet and sur-
face wave do not interact, and for time-independent potentials
(as it is usually the case), the motion of the walkers is gov-
erned solely by the external force, −∇V , and the friction. The
latter dissipates energy from the droplet until it eventually
stops bouncing. The situation is quite different when the vi-
brating surface has an effect, i.e., when β > 0. In this case, the
particle sojourns the landscape formed by the mountains and
valleys on the wave field also contributing, at the same time, to
its shaping. If the correlation with the wave is small, i.e., when
β → 0 (low-memory limit), the particle still stops after some
time due to friction [14]. On the contrary, beyond that limit
the bouncing does not stop in general, since, depending on
the actual value of β, the vibrating liquid surface may supply
energy to the walker, this giving rise, eventually, to a very
irregular and non-Markovian motion. This can be viewed as
a transition from bouncing to walking, or alternatively from
dissipative to self-maintained regime, in Eq. (3) [14].

III. RESULTS AND DISCUSSION

In this section, we report the results of our study and the
corresponding discussion. For this purpose, we introduce first
in Sec. III A the walker orbits that are the cornerstone for our
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FIG. 2. Energy time evolution for the walkers that are attracted
asymptotically to the horizontal periodic orbits of the coupled quartic
oscillator potential (5) for λF = 1, κ = 8, and β = 89.59 (blue full
line), 120.00 (green dotted line), and 152.07 (red dashed line). Inset:
Horizontal periodic orbits in configuration space associated with the
energies shown in the main panel, and corresponding isopotential
contours at V = 205.69, 586.67, and 752.73 (with the same color or
line type used in the main body) for the desymmetrized system (see
inset in Fig. 1).

work. Next, we present in Sec. III B the mean wave, which
exhibits a quantization behavior, similar to that observed in
quantum systems. Finally, we perform a systematic study of
the previous quantization scheme in Sec. III C 2.

A. Walker orbits

In this paper we focus on the horizontal trajectories, three
of which are shown in the inset of Fig. 2, or the alterna-
tively symmetrically equivalent vertical ones, which have not
been shown in the figure, associated with the potential (5).
We have numerically verified that these periodic orbits (POs)
are stable in a rather large range of parameters (2 � κ � 12
and 0 � β � 3000). They are indeed attractors for all walker
trajectories irrespective of their initial conditions, with the
motion asymptotically driven to a stationary situation along
the previous POs with an energy that oscillates periodically
in time, as shown in the main panel of Fig. 2 [29,30]. This
behavior is produced by the (periodic) driving wave field, the
oscillation amplitude and period depending on the memory
parameter, β. On the contrary, in the absence of correlations
between particle and surface wave and without friction, i.e., in
the purely classical Hamiltonian case [by setting D = 0 and
A = 0 in Eq. (1), and then β = 0 in Eq. (3)], those motions
are known to be unstable POs [23]. Despite their unstable
character, they still play here an important dynamical role,
as at the quantum level where they give rise to the so-called
“scarring” [31] of some eigenfunctions [20–22].

Figure 3 shows one of the trajectories introduced in Fig. 2
on its way to approaching the asymptotic horizontal PO

FIG. 3. (a) Configuration space (x, y) and (b) transversal phase
space (y, py ) for the walker orbit trajectory shown in blue full line
in Fig. 2, which asymptotically approaches the horizontal periodic
orbit defined by {y = 0, py = 0}. The position of the initial condition
has been highlighted with a red square. The blue circles mark the
positions where the traversal momentum py nullifies, which is equal
to the winding number (μ = 16 in this case).

defined by {y = 0, py = 0}, both in configuration space, (x, y)
[Fig. 3(a)], and also in the traversal phase space [Fig. 3(b)],
defined in the coordinates {y, py} which are perpendicular to
it. Note that the initial condition, which is marked as a red
square, is initially separated from the horizontal PO 10−3 units
of length, while the final point plotted is ∼5 times closer
to it. This distance reduces when considering longer time
evolutions, as in Fig. 2. Similar results are also obtained for
other initial conditions, as well as for other fluid parameters
(κ , β). However, if the initial value of y(0) is too large, the
motion does not end up in the horizontal but in the vertical PO
{x = 0, px = 0}, which is dynamically equivalent to the one
under study. The rate of approximation to the previous POs
depends on the eigenvalues (Floquet multipliers) of the traver-
sal monodromy matrix, which describes the (traversal) motion
in its vicinity [32]. As can be seen in Fig. 3(b), the trajectory
not only approaches the PO (which is here represented by the
origin), as previously shown in Fig. 3(a), but it also rotates
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around it. The angle rotated when evolved over one period of
time equals 16 π rad. As a consequence, the winding number
associated with the horizontal PO equals μ = 16, since it is
given by the number of half turns (π rad), that a surrounding
trajectory describes on the transversal phase space. As the
initial condition that has been considered has py = 0, the
winding number μ can be calculated by counting the number
of times does py nullify, something that happens at the empty
circles in Fig. 3. Let us remark that the value μ = 16 is the
same as that obtained in the Hamiltonian case, i.e., when
the effect of the surface wave is absent. Let us remark that
the computation of the winding number can be conducted in
this case by solely counting how many times py does nullify
because the phase space traversal to the (horizontal) PO coin-
cides with the Cartesian coordinates {y, py}. Other trajectories
require the definition of a much more involved curvilinear set
of coordinates, where the transversal plane does not coincide
with any of the Cartesian axis nor does it have a constant
orientation [33].

B. Mean wave

Let us discuss next the interference effects on the surface
wave created by the WD motion, a point which is central in
our work. To this end, we consider a mean wave defined as the
properly normalized average

�(x, y) ∼
∫ ∞

−∞
J0(2π |x − xp(s)|/λF ) ds, x = (x, y), (6)

which corresponds to the infinite long-time limit of Eq. (4)
adequately normalized. This function can also be obtained as
the convolution of J0 with the statistical distribution of the
droplet position [13]. The accuracy of the mean wave was
verified in the Ref. [34], where it was demonstrated its ability
to reproduce the results obtained for “quantum corrals” [35].
In that work, time averages of the instantaneous wave field
over a time of ∼230 TM were conducted. In our case, those
(long-time) averages have been conducted over a lapse of time
6.5 times larger. Nonetheless, this difference is not significant,
as the shape of the time average of the instantaneous wave
field remains almost unaffected when computed over times
larger than a critical threshold.

If the droplet dynamics is irregular, the wave field interacts
destructively with itself, thus yielding an approximate homo-
geneous low-intensity pattern à la Shnirelman [36,37], with
no recognizable features in it. Contrary, if the WD moves
periodically in time, inducing a periodic field ψt , as in the
present case, the correlations implicit in Eqs. (1)–(4) may give
rise to coherence leading to the emergence of regular patterns
in � in Eq. (6). Notice that this must not necessarily always
be the case, since for a constructive interference to exist extra
conditions must be fulfilled. For example, in the semiclassical
theory [16] quantization conditions appear for the action in
terms of a universal (Planck) constant [15].

To illustrate the previous point in our case, we present in
Fig. 4 the results for |�(x, 0)|2 obtained for the trajectories
and parameters depicted in Fig. 2 (and using the same color
code), along with the results for other trajectories with dif-
ferent memory parameters (in pink). Several comments are
in order. First, in all cases the mean wave accumulates in an

FIG. 4. Mean wave defined as the time average of the instant
surface wave in Eq. (4) for λF = 1, κ = 8, and β = 152.07 (a),
120.00 (b), 89.59 (c), 67.00 (d), 49.412 (e), 37.00 (f), and 24.94 (g).
The position of the turning point, xTP

± , has been marked as a vertical
line, which separates the classically allowed (central white) from the
forbidden region (blue shaded).

“inner” region, bounded by the two prominent outer global
maxima located at xWD,max

± which are near, although not ex-
actly at the walker orbit turning points, xTP

± , their value outside
this region always being very small. The origin of these results
lie on the fact that the WD motions create a wave that is
always confined within that inner region. Accordingly, the
WD spends more time in the vicinity of the turning points,
thus building up more probability in their neighborhoods,
as happens when semiclassically constructing quantum wave
functions. Note also in Fig. 4 that a small part of the mean
wave goes beyond the position of the turning points entering
the classically forbidden region (outmost shaded), similar to
what happens in the quantum case. Again, the two previous
facts indicate that the WD model exhibits similarities to well-
known quantum effects, as pointed out in the Introduction.

Second, notice that Figs. 4(a), 4(c), 4(e), and 4(g), which
show the mean waves for β = 152.07, 89.59, 49.41, 24.94,
respectively, exhibit a clear nodal pattern, which is obviously
the result of a constructive interference produced on ψt as the
walker progresses along its trajectory. Moreover, the number
of nodes increases with the value of β from one panel to the
next by one unit, from 4 to 7 in this case.

Third, notice that the waves for the intermediate values
of β = 120.00, 67.00, and 37.00 shown in Figs. 4(b), 4(d),
and 4(f), respectively do not have, on the contrary, such a
clear set of nodes, which indicates that the interference there
is destructive. The emergence or absence of a well-defined
set of nodes depends strongly on the position of the turning
points of the WD, which are also responsible of the position
of the nodes in the Bessel function present in the integral (6)
[29]. In order to demonstrate this fact, we show in Figs. 5(a)–
5(g) two Bessel functions centered at the WD-turning points,
J0(2π |x − xTP

± |/λF ) and in Figs. 5(h)–5(n) their sum. As can
be seen, while in Figs. 5(h), 5(j), 5(l), and 5(n) the distances
between the turning points are such that the nodes of both
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FIG. 5. (a)–(g) Bessel functions centered at the turning points of
the walking droplet, xTP

− (continuous lines), and xTP
+ (dashed lines),

and their sums (h)–(m). Parameters and coloring as in Fig. 4.

Bessel functions almost coincide, for the separation distances
shown in Figs. 5(i), 5(k), and 5(m) the nodes do not overlap
[38]. The emergence of the clear nodal pattern visible in
Figs. 5(h), 5(j), 5(l), and 5(n) is then caused by the con-
structive interference of the two separated Bessel functions.
A similar behavior is also observed in Figs. 4(a), 4(c), 4(e),
and 4(g), whose origin must then also be the constructive
interference of the instantaneous wave that drives the droplet,
as heuristically shown in Ref. [29]; such a nodal pattern in the
mean wave is reminiscent of the quantization that is observed
in quantum systems. Contrary, the interference between the
two separated Bessel functions in Figs. 5(i), 5(k), and 5(m),
of the instantaneous wave with itself in Figs. 4(b), 4(d), and
4(f) must be destructive.

Fourth, the situation described in the two previous points is
highly reminiscent of what happens in quantum mechanics.

Fifth, let us conclude this section by pointing out that
similar results are obtained for other values of κ , since this
parameter changes only the value of the β parameter where
quantization is observed (see discussion of Fig. 7 below).
Actually, the minimum number of nodes that is observed,

something that happens for the smallest value of β, may
change from one κ to the other.

C. Quantization of walking droplets

Let us investigate next the condition for the emergence
of the constructive interference responsible for the results of
Fig. 4 and make use of it to be able to reproduce the nodal
structure of the quantum eigenfunctions. In this respect, it
should be first noticed that, although quantization effects are
not uncommon in wave phenomena, the peculiarity here is
that our mean wave is strongly linked to the WD motion [39].
For this purpose, we have divided this section in two parts.
First, we present in Sec. III C 1 the fundamental ansatz of this
work, namely, that those mean waves (6) which have a clear
nodal pattern satisfy the BS quantization condition. Second,
we address in Sec. III C 2 which conditions are required in
order to satisfy the previous equation for a constant h̄.

1. Quantization condition

Guided by the results in the WD experiments [8–12], we
will restrict our research goal to check only if the quantized
mean waves shown in Fig. 4 fulfill a quantization condition
similar to those satisfied by the semiclassical approximations.
According to the semiclassical theory, the energy of the quan-
tum eigenfunctions fulfill the well-known BS quantization

FIG. 6. (a) (Squared) Quantum eigenfunctions (blue solid line)
for the one-dimensional quartic potential V (x, 0) of Eq. (5) (black
line) and (squared) mean wave (6) for V (x, y) projected in the x axis
(orange dashed line), for nx = 4 − 7. The energy and β scales are
given at the left and right vertical axes, respectively. Corresponding
phase space pictures obtained from (b) purely classical and (c) walk-
ing droplet trajectories.
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TABLE I. Protocol for the different tasks and involved unknowns calculated in each step of the determination of the value of the
quantization constant of a walking droplet, as described in Secs. III B and III C 2.

Step Task Unknown

QUANTUM
1 Computation of the quantum eigenfunctions for a given reduced mass, κ ψn

2 Determination of the number of nodes of ψ2
n n

3 For each n, determination of the position of the largest maxima of ψ2
n xQ,max

±
WALKING DROPLET

4 Selection of the adequate Bessel function centered at xQ,max
− such that

it has a maximum at xQ,max
+ and n nodes within the range (xQ,max

− , xQ,max
+ ) λF

5 Calculation of the memory factor β such that the maxima of the
mean wave, xWD,max

± , coincide with xQ,max
± β, x, �

SEMICLASSICAL BOHR-SOMMERFELD CONDITION
6 Computation of the parameters of the walking droplet

∮
px dx, μ

7 Calculation of the hydrodynamical quantization constant that fulfills Eq. (7) h̄WD
β

condition [15] for the phase, mechanical plus topological [33],

1

h̄

∮
px dx − μπ

2
= 2πn, n = 0, 1, 2, . . . . (7)

We will apply Eq. (7) to our case, taking into account that the
constructive interference [40,41] is observed only for certain
values of the action.

In this work, it is assumed that the WD mean waves also
fulfill Eq. (7); then the existence of a hydrodynamical constant
h̄WD is simply postulated. In the quantum case, Eq. (7) implies
that for a time-independent potential, like the one given by
Eq. (5), only certain energies (those which yield the adequate
action) are allowed, at least if the system is bounded. How-
ever, in the WD problem the energy is time-varying, and, as
a consequence, the energy is not well defined. Then it is the
memory β the parameter that takes over the role played by
the energy in a quantum system. Still, a direct comparison
between the mean waves (6) presented in Fig. 4 and the
corresponding quantum eigenfunctions obtained for the same
reduced mass κ [cf. continuous lines in Fig. 6(a)] cannot be
performed, since they appear at different spatial ranges. To
circumvent this problem, we conduct the procedure described
in the next section.

2. Quantization constant in walking droplets

The procedure to calculate a quantization constant associ-
ated with the WD is briefly summarized in Table I. It consists
of seven steps, which combine some quantum computations
(steps 1–3) with others in the WD system (steps 4 and 5),
and ends up with two final points (steps 6 and 7), where the
hydrodynamical constant is calculated.

To begin, the first three steps are devoted to the computa-
tion of the quantum eigenfunctions, ψn, which are taken as
the reference. These steps are necessary in order to establish
the location of the outer maxima, xQ,max

± , in the probability
density associated with the nth energy level, which has n
nodes within the range x ∈ (xQ,max

− , xQ,max
+ ), n also being the

integer fulfilling the quantization condition (7).
Steps 4 and 5 are the cornerstone of our procedure, since

they refer to the calculations for the WD. Here optimal λF and
β parameters are computed in order to be able to compare with

the quantum function, ψn, calculated in the previous three
steps. Following the approach reported in Ref. [29], step 4
is devoted to the calculation of the best suited value of λF .
For this purpose, two Bessel functions, J0(|x − xQmax± |/λF ), are
centered at the points xQ,max

± such that their sum has the best
defined n nodes (being n the integer taken as reference in step
2) within the range x ∈ (xQ,max

− , xQ,max
+ ); in this situation, the

nodes of each individual Bessel function are almost coincident
(see discussion of Fig. 5 above). This is done by selecting the
λF value such that the Bessel function J0(|x − xQmax± |/λF ) has
n nodes within the range x ∈ (xQ,max

− , xQ,max
+ ) and a maximum

at xQ,max
± . Subsequently, the optimal value of β is calculated,

such that the location of the maxima of the corresponding
mean wave (6), xWD,max

± , coincides with those of the quantum
eigenfunctions, xQ,max

± , previously calculated in step 3. Note
that the mean wave also has n nodes withing the WD turning
points. Tuning the value of λF adds an additional degree of
freedom to the quantization phenomenon, as it changes the
distances between the nodes of oscillations of the Bessel func-
tions. This simple approach neglects, however, a fundamental
point in relation with Eq. (7), namely, the dependence existing
between λF and β, which plays here an analogous role to that
existing between λdB and E in the quantum theory, i.e., the
renowned de Broglie’s principle. Some interesting results on
this dependence have been reported in Ref. [42].

Finally, steps 6 and 7 deal with the calculation of the
effective hydrodynamical constant, h̄WD

β . For this purpose, one
must calculate in step 6 the classical action and the winding
number associated with the PO of the WD, and include those
values (as well as the reference integer, n) in Eq. (7) in order
to calculate the value of the quantization constant, which
depends in general on the values of n and β.

Figure 6 shows some of the results that are obtained. Here
we have used as a reference the quantum results obtained from
the potential (5) in the limit of y very small, which makes
the system separable. The eigenfunctions associated with the
quantum numbers nx = 4, 5, 6, 7 and ny = 0 are shown at their
corresponding energies in Fig. 6(a) in blue. These results have
been obtained by solving the Schrödinger equation associ-
ated with the effective one-dimensional potential V (x, 0), by
setting y = 0 in Eq. (5), using a basis set formed by ∼700 ele-
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ments of the discrete variable representation (DVR) [43]. We
have chosen to make this comparison since, for sufficiently
long times, the motion of the WD takes place in the immediate
neighborhood of the x axis (see Fig. 3), and then the influence
of the transversal degree of freedom y is negligible [44]. The
mean waves yielded by the procedure described above appear
superimposed in the orange dashed line, being the scale for
β shown at the right vertical axis of the plot. The absolute
maxima of the WD and quantum functions are matched with
a precision of 0.05 in our case, a value that is high enough
for our purposes. Nonetheless, this precision can be arbitrarily
increased up to machine precision if necessary. A more subtle
aspect is the agreement between the inner maxima of the
quantum function and the quantized mean wave. In this case,
there is no way to fit the position of the set of maxima of
the mean wave with that of the quantum eigenfunction. Then
the distance between the relative maxima of the WD and the
quantum functions found in the “inner” region emerges as an
excellent indicator of the accuracy of our calculations. In our
case, this difference is less than 0.08. Notice also that the
intensity of the mean waves in the inner region is always much
smaller than the corresponding quantum counterpart.

Finally, the crucial step in our discussion on the quanti-
zation of the WD theory is to confirm that the underlying
WD motion, corresponding to our “constructively interfering”
mean waves, fulfill a BS-like quantization condition equiv-
alent to Eq. (7), as happens in the quantum case. For this
purpose, we present in Fig. 6(b) the phase space pictures
for the horizontal PO (left) and walker orbits (right), corre-
sponding to the wave functions in Fig. 6(a). The former are
propagated by numerically integrating Hamilton’s equations
of motion at the quantum eigenenergies: E4, E5, E6, and E7.
The latter are obtained using Eq. (3) and the values of λF

and β obtained with the procedure described above. Notice
the difference between the two plots: while the first one is
symmetric with respect to both x = 0 and vx = 0, the second
is symmetric with respect to the point x = vx = 0. From these
plots, the values for the mechanical action to be used in (7)
are obtained. Regarding the topological phase, the winding
number μ is not always easy to ascertain. For unstable POs it
coincides with the Maslov index [45], but in general it can be
numerically computed as described in Ref. [46].

Once the total actions are known, values for the quan-
tization parameter in the macroscopic hydrodynamical WD
theory, h̄WD

β , can be obtained from Eq. (7). If the ansatz at the
beginning of this section is coherent, h̄WD

β will be constant,
this proving that the emergence of the constructive interfer-
ence in the mean wave has a physical connection to the walker
motion, equivalent to what that existing in the quantum theory
between the de Broglie’s wave and the particle motion, and
moreover it has the same origin. The corresponding results
are shown in Fig. 7 for a large number of values of the
memory parameter β (or n) and the scaled mass κ . As can
be seen, the resulting values of h̄W D

β for each value of κ are
not constant. However, they tend to be so in the large memory
limit, where the different curves converge to a well-defined
asymptotic value h̄WD

∞ . The corresponding values, obtained by
fitting the data to the expression h̄WD

β = h̄WD
∞ [1 − a/(β − b)],

are presented in the inset in Fig. 7, where they are seen to
follow the power law h̄WD

∞ = 0.56 κ0.13.

FIG. 7. Quantization constant, h̄W D
β , obtained from a Bohr-

Sommerfeld-like expression (7) as a function of the memory
parameter β for different values of the scaled mass κ: 4 (red circles),
8 (yellow diamonds), 12 (blue squares), 16 (green crosses), and 20
(magenta plus signs), respectively. The dependence of the asymptotic
values, h̄W D

∞ , with κ is shown in the inset.

The existence of the hydrodynamic constant defined in
this work can be tested in experiments, for example, using a
chaotic billiard such as the Bunimovich stadium [37]. In this
respect the scaled mass κ in a typical experiment is usually
one order of magnitude smaller than the parameters used in
this work. Moreover, for the set of parameters selected here,
getting sufficiently large values of β would require values
γ /γF larger than ∼0.96. Still, the asymptotic behavior in-
ferred for large memory β, and then for the long-memory
limit, for all the results presented in Fig. 7 makes us expect
similar results also for that range of parameters. A more
involved aspect is the dependence that exists between β and
κ through the ratio γ /γF . Reaching the long-memory limit
in an experiment by getting closer to the Faraday thresh-
old (γ → γF ), would reduce the value of κ , which tends to
zero proportionally to (1 − γ /γF ), and increase the memory
parameter, which diverges with (1 − γ /γF )−2, and then no
constant value of h̄WD

β would be observed. Tuning the oscil-
lation period would be an alternative to change the memory
factor β while keeping constant the scaled mass κ in order to
identify h̄WD

∞ .

IV. CONCLUSIONS AND OUTLOOK

Summing up, in this paper we have studied the dynamics of
a WD in the presence of a two-dimensional (chaotic) quartic
oscillator, demonstrating the emergence at specific values of
the memory parameter β of (averaged) mean waves created
by the walker which exhibit clear nodal patterns, produced
by the coherent interference in the instant wave field, similar
to that appearing in microscopic quantum systems. That is,
the memory β is the tuning parameter that determines the
quantization condition of the system.

Furthermore, by computing the mechanical action and
winding number of the walker orbits, and the number of nodes
of the mean wave, we have been able to identify a quantization
condition which is completely similar to the usual semiclassi-
cal BS condition. More importantly, we have demonstrated
that the associated quantization parameter, playing the role
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of the universal quantum Planck’s constant, remains fairly
constant for sufficiently large values of the memory.
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