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Interfacial fluid mixing induced by successive waves, such as shock, rarefaction, and compression waves, plays
a fundamental role in engineering applications, e.g., inertial confinement fusion, and in natural phenomena, e.g.,
supernova explosion. These waves bring nonuniform, unsteady external forces into the mixing zone, which leads
to a complex mixing process. The growth rate of the mixing width is analyzed by decomposing the turbulent
flow field into the averaged field and the fluctuating counterpart. The growth rate is thus divided into three parts:
(i) the stretching or compression (S(C)) effect induced by the averaged-velocity difference between two ends
of the mixing zone, (ii) the penetration effect induced by the fluctuations which represent the penetration of the
two species into each other, and (iii) the diffusive effect, which is induced by the molecular diffusion and is
negligible in high-Reynolds-number flows at Schmidt number of order unity. The penetration effect is further
divided into the Richtmyer-Meshkov (RM) effect, which is induced by fluctuations that were deposited by earlier
wave interactions, and the Rayleigh-Taylor (RT) effect, which is caused by the fluctuations that arise in an overall
acceleration of the mixing zone. During the passage of the rarefaction waves, the mixing zone is stretched, while
during the passage of the compression waves or shock waves, the mixing zone is compressed. To illustrate these
effects, a physical model of RM mixing with reshock is used. By combining the S(C), RM, and RT effects, the
entire evolution of mixing width is restructured, which agrees well with numerical simulations for problems with
a wide range of density ratios.
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I. INTRODUCTION

Interfacial fluid mixing occurs when an irregularly per-
turbed interface separating two fluids with different densities
(ρh and ρl for heavy and light fluids, respectively) is sub-
jected to an external force directing from the light fluid
to the heavy fluid or an impulsive acceleration, which are
known as the Rayleigh-Taylor (RT) mixing [1,2] and the
Richtmyer-Meshkov (RM) mixing [3,4], respectively. The flu-
ids penetrate into each other, giving rise to a mixing zone that
consists of a bubble zone (the structures where the light fluid
penetrates into the heavy fluid) and a spike zone (the structures
where the heavy fluid penetrates into the light fluid). As a
primary quantity describing the evolution of the mixing zone
[5], the mixing width (h(t ), defined as the distance from the
bubble-zone front to the spike-zone front) plays a fundamental
role in engineering applications such as inertial confinement
fusion [6,7] and in natural phenomena such as supernova
explosion [8].

Generally, the evolution of the mixing zone depends on the
initial flow field of the mixing zone at t0, denoted as �(t0),
and the external forces that change with the spatial coordinate
x and time t , denoted as F (x, t ). The well-known RT mixing
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and the RM mixing are two classical representatives of the
general interfacial fluid mixing.

For classical RT mixing, the initial flow field is steady and
the perturbations at the interface grow because of the external
force [which results in an acceleration g(t ) of the system]. The
RT mixing with a constant acceleration g(t ) = g0 has been
investigated widely [9–11]. In the late stage, the flow achieves
a self-similar state; the spike and/or bubble width is given
by hi = αiAg0(t + ti,0)2, where i = s, b denotes the spike and
the bubble, with A being the Atwood number, defined as A =
(ρh − ρl )/(ρh + ρl ). For αb, its observed value has changed
widely from 0.02 to 0.12, which is mainly determined by the
initial perturbations and correspondingly the different evolu-
tion mechanisms (merging and competition of the bubbles)
[12–18]. Besides, as the density ratio ρh/ρl increases, αs in-
creases as well. The dependence of αs on the density ratio
is still under investigation [19]. For RT mixing driven by
variable acceleration, two kinds of length, � = 0.5(

∫ √
gdt )2

and � = ∫∫
gdt ′dt are proposed to scale the evolution of the

turbulent mixing width [20–22].
For classical RM mixing, the external force is loaded in-

stantaneously at t0 (more precisely, it happens in a timescale
that is much smaller than the timescale during which the RM
mixing develops). The mixing zone is compressed by the
shock wave [3], and the basic flow variables (density, pressure,
velocity, and temperature) are perturbed [23], which forms the
initial condition of RM mixing, i.e., �(t+

0 ). Therefore, �(t+
0 )

determines the following evolution of the mixing width. To
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be specific, the mixing zone undergoes a startup process [24],
a linear-growth phase [3,4,25], and then a power-law-growth
phase with the width h(t ) ∝ t θ , where θ represents a power
index of the classical RM turbulent mixing [26–31]. The
power-law growth indicates a decaying of the initial energy
(mainly the initial vorticity deposited by the shock wave).
The values of θ change from case to case (smaller than 2/3)
[28]. Inogamov and Oparin [28,29] gave the values of θ

as 2/5 for the two-dimensional RM turbulence and 1/3 =
0.33 for the three-dimensional one. Thornber et al. [32]
inspected the influence of different three-dimensional multi-
mode initial conditions on the turbulent mixing induced by
the RM instability. Simulations with the narrow-band initial
condition gives a power-law exponent θ ≈ 0.26 at an At-
wood number of 0.5 and θ ≈ 0.30 at an Atwood number of
0.9. The broadband case using a perturbation power spec-
trum of the form P(k) ∝ k−2 gives a power-law exponent
θ = 0.62.

However, the actual problems generally involve complex
external forces that change with the spatial position x and time
t . Examples involve successive nonlinear waves, i.e., shock
waves, rarefaction waves, and compression waves, which have
been widely observed in real conditions. During the interac-
tion of an individual wave with the mixing zone, the initial
flow field is the turbulent field inherited from the earlier
stages. Meanwhile, the mixing zone is accelerated by the
waves partially or as a whole object. That is to say, both
the initial flow field �(t0) and the successive external force
F (x, t ) contribute to the evolution of mixing zone. The fluid
mixing under such complex conditions has practical meanings
for engineering applications.

One typical physical model to study the interfacial fluid
mixing induced by the successive waves is the RM mixing
with reshock, which has been widely investigated over the past
decades. In one situation, the initial shock propagates from the
light fluid to the heavy fluid [33–41]. In this case, the interface
is initially accelerated by a shock wave and then the transmit-
ted shock reflects to accelerate the mixing zone for a second
time. After that, the mixing zone is influenced by the rarefac-
tion and compression waves alternatively [36,41]. For the first
two periods after the passage of the shock waves, the evolution
can be described with the analytical model considering the
RM effect [30]. For the linear growth behavior immediately
after reshock, i.e., h = h0 + 2αA�V t , many numerical and
experimental studies have been carried out to determine the
linear growth rate after reshock [33,35,36,42–44]. Using both
experiments and numerical simulations at a post-reshock At-
wood number of 0.712, Leinov et al. [35] obtained α values
ranging from 0.14 to 0.195. For a single-mode configuration,
Bouzgarrou et al. [45] obtained a larger value. Based on the
impulsive growth of a slightly perturbed diffuse interface and
an empirical closure, Lombardini et al. [36] obtained a model
that shows an A2 dependence of the reshock growth rate in the
range of small and moderate Atwood ratios. Thornber et al.
[42] extended the theory of Mikaelian [46] to account for
the molecular mixing in the mixing zone prior to reshock.
In another situation, the initial shock propagates from the
heavy fluid to the light fluid [47,48] and the mixing zone is
decelerated by several reflected shock waves with decreasing
strength.

When the waves (especially rarefaction and compression
waves in the late stage) interact with the mixing zone, what
are the mechanisms controlling the mixing-width evolution?
Hill et al. [34] suggested that the decreasing in growth rate
during the compression wave is because of the saturation in
turbulent motions. In a recent paper by Mikaelian [30], the
RT instability is believed to contribute to the mixing-width
growth. For the interaction between a single-mode pertur-
bation with a pure rarefaction wave, Morgan et al. [49,50]
and Liang et al. [51] treated it as a variable-acceleration RT
problem. However, as will be shown, these effects are not
enough to describe the entire evolution of mixing width up
to the late stage. In the present work, the flow field is de-
composed into the mean field and the fluctuation field, namely
Reynolds decomposition [52] and Favre decomposition [53].
The turbulent mixing is investigated considering the contri-
bution of the mean flow field and the fluctuation counterpart.
Results show that the growth rate of the mixing width includes
threes parts: (i) the stretching or compression (S(C)) effect
induced by mean-velocity difference between two ends of the
mixing zone during the propagation of waves, (ii) the penetra-
tion effect induced by the fluctuation field which represents
the penetration of the species into each other, and (iii) the
diffusive effect which denotes the molecular diffusion. The
diffusion effect is negligible in high-Reynolds-number flows
at Schimdt number of order unity. Furthermore, it is proposed
that the penetration effect can be divided into the RM effect,
which represents the influence of the initial fluctuation field
[10], and RT effect, which represents the fluctuation field
induced by the in-process external forces. Finally, the S(C),
RM, and RT effects are combined to establish an analytical
model, which is able to describe the evolution of the mixing
width up to the very late stage in problems with a wide range
of density ratios.

Numerical simulations are used to illustrate the physical
process and to evaluate the proposed model. The paper is
organized as follows. The governing equations, the numerical
schemes, the computational configurations, and the physical
process of RM mixing with reshock are described in Sec. II.
The theoretical basis and discussions of the effects are given
in Sec. III. An analytical model by combining the S, C, RM
and RT effects are proposed and validated with numerical
simulations in Sec. IV. A summary is given in Sec. V.

II. COMPUTATIONAL CONFIGURATIONS
AND PROBLEM DESCRIPTION

A. Governing equations and numerical method

The flow field can be described by the three-dimensional
multicomponent Navier-Stokes equations and mass-fraction
equations as follows:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1a)

∂ρu
∂t

+ ∇ · (ρuu + pδ − τ) = 0, (1b)

∂ρE

∂t
+ ∇ · [(ρE + p)u]

−∇ · (τ · u − qc − qd ) = 0, (1c)
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∂ρYm

∂t
+ ∇ · (ρuYm) + ∇ · Jm = 0, (1d)

f = f (ρ, T,Ym), f = p, e,Cv,Cp,Cs, . . . . (1e)

In Eq. (1), u = [u, v,w] = [u1, u2, u3] denotes the veloc-
ity vector, t is time, ρ is density, p is pressure, and E is
the total energy. Ym is the mass fraction of the species m =
1, 2, . . . , M, with M being the total number of the species,
satisfying

∑M
m=1 Ym = 1. In the present cases, M = 2. δ is the

Kronecker function. The coordinates in three directions are
[x, y, z] or [x1, x2, x3]. The viscous stress tensor

τ = 2μ

[
S − 1

3
(∇ · u)δ

]
, (2)

in which μ is the mixture viscosity, S is the strain-rate
tensor, and its components are defined as Si j = (∂ui/∂x j +
∂u j/∂xi )/2, where i, j = 1, 2, 3. Based on the Fourier’s law,
the heat flux is defined as

qc = −∇ · (κT ), (3)

with T being the temperature. The interspecies-diffusion heat
flux is

qd =
M∑

m=1

CpmT Jm, (4)

with

Jm ≈ −Dρ∇Ym. (5)

Here, D is the mixture diffusion coefficient and Cpm is the
constant-pressure specific heat of species m. The equation of
state for an ideal gas is applied to close the equations, i.e.,

ρe = p/(γ − 1), (6)

with γ = Cp/Cv , the specific heat ratio of the mixture, and e
is the internal energy so that

E = e + u · u/2. (7)

The thermodynamic quantities of the mixture are modeled
with the isothermal and partial pressure assumptions as in
Ref. [54]. To be specific, the density and the pressure of the
mixture are obtained by the addition of the physical variables
of each species. The volume and temperature are equal for
each species, while the physical-property parameters, such
as specific heat at constant volume, are obtained by a linear
addition weighted with the mass fractions:

f =
M∑

m=1

fm for f = ρ, p,

f = f1 = · · · = fM for f = T,V,

f =
M∑

m=1

Ym fm for f = μ, κ, D,Cp,Cv. (8)

For the mth species, the Sutherland viscosity law [55] is
applied to calculate the viscosity,

μm = μ0,m

(
T

T0

)3/2 T0 + Ts

T + Ts
, (9)

TABLE I. Physical properties of the gases. SF6 is actually a
mixture of SF6 and acetone (Ac) with the mass fractions of 0.8 and
0.2, respectively [39].

Quantity M [kg kmol−1] γ μ0 [kg m−1 s−1] Pr Sc

H2 2.02 1.41 0.8287×10−5 0.69 1.79
Air 28.83 1.40 1.7161×10−5 0.72 0.76
CO2 44.01 1.29 1.3922×10−5 0.76 0.51
SF6 112.10 1.10 1.2388×10−5 0.80 0.69

with μ0,m being a reference viscosity at a reference tempera-
ture T0. In the present work, T0 = 273.15 K is used and the
reference viscosity of the species are listed in Table I. Ts

is an effective temperature, which changes among different
substances [55], and Ts = 124 K is applied to approximately
calculate the viscosity at moderate temperature and pressures.

The thermal conductivity κm and diffusivity Dm of the mth
species are the same as those in Ref. [36], which are calculated
as

κm = Cp,m
μm

Prm
, (10)

Dm = μm

ρmScm
, (11)

The Prandtl number Prm and Schmidt number Scm for the
species are listed in Table I.

The numerical simulation is implemented in the code of
finite difference for compressible fluid dynamics (CFD2),
which has been validated in our previous paper [41] and
has been used to investigate the RT instability [56–58] and
RM instability [59]. For the convective term, an improved
fifth-order monotonicity-preserving scheme (MP-R) [60–62]
with a Riemann solver proposed by Harten, Lax, and Van
Leer (HLL) is used. The temporal integration marches with
a third-order Runge-Kutta scheme.

B. Computational configurations

The problem considered is illustrated in Fig. 1, which in-
cludes a shock tube with an end wall. A shock wave initially
propagates from gas 1 to gas 2 and reflects off the end wall.
The cases are designed for two purposes. The first purpose
is to show the influence of the shock, rarefaction, and com-
pression waves on the evolution of mixing zone. The initial
density of gas 1 is lighter than that of gas 2. Thus, the initial
shock wave travels from the light gas to the heavy gas and
the initial Atwood number is positive. Three cases with the
initial density ratios ρh/ρl of 1.52, 3.89, and 14.4 are pre-
sented; the corresponding light- and heavy-gas combinations
are (air, CO2), (air, SF6), and (H2, air), which are referred to as
air-CO2, air-SF6, and H2-air, respectively. For the second pur-
pose, one more case with an initial negative Atwood number
is simulated. The gas 1 and gas 2 combination is (SF6, air),
which is named SF6-air. In comparison with the case air-SF6,
the distinguishing feature of the mixing-zone evolution when
the initial shock wave travels from the heavy fluid to light fluid
is given.

The shock wave with an initial Mach number Ma = 1.5
propagates in the positive x direction. The spanwise directions
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FIG. 1. A sketch of the computational domain and initial condi-
tions in RM mixing with reshock.

are denoted as y and z. The computational domain of all the
cases are given in Table II. The core area of the computa-
tional domain starts from xmin = −0.5L0 to xmax = 2L0, with
L0 = 0.2 m. The shock wave is initialized at x = −0.25L0. In
the region x < −0.5L0, a buffer region is used, which is long
enough to avoid shock reflections at the outflow boundary.
To save computational cost, the buffer region is discretized
with stretched grids. A nonreflection boundary condition is
imposed at the start of the buffer region. At the boundaries
normal to the y and the z directions, a periodic boundary
condition is used. At the end of the tube, i.e., x = 2L0, an adi-
abatic wall boundary is applied. The computational domains
and grid numbers of the core region for all the cases are given
in Table II.

The preshock state is initially set with the stagnation con-
dition being p0 = 23 000 Pa and T0 = 298 K. The pre- and
postshock states satisfy the Rankine-Hugoniot conditions.
Other properties of the initial gases are listed in Table III.

The initial perturbations of the material interface are set
using an inverse-Fourier method, as in Ref. [31], which uses
a power spectrum with constant energy at all initialized wave-
lengths. The initial scales in the perturbation range from
λmin = L0/32 to λmax = L0/8, with the root mean square of
the perturbations being λmin. The amplitude and phase of each
mode are computed from a Gaussian distribution of determin-
istic random numbers with the mean amplitude satisfying the
specified power spectrum; see Appendix A for details. A dif-
fuse initial interface of error function is imposed to compute

the mole fraction of gas 1 as

X1(x, y, z) = 1

2
erfc

(√
π[x − η(y, z)]

δ

)
, (12)

where δ = 0.05L0, η(y, z) is the perturbation satisfying the
specified power spectrum, and X2 = 1 − X1 represents the
mole fraction of the gas 2. The interface is thus initialized at
x − η(y, z) = 0. To improve the quality of the initial perturba-
tions on coarse meshes, the initial mole fraction is evaluated in
4×4×4 subcells for each computational cell and then summed
to give the mole fraction for each computational cell. The
mole fractions are then transferred to mass fractions to be used
in numerical simulations as

Yα = XαMα∑
i XiMi

, (13)

where Mi is the molecular weight of the ith species, which is
given in Table I. A visualization of the isosurface with Y1 =
0.5 is given in Fig. 1.

The method of initializing the perturbations is validated
using the θ -group case [31]. This case is a RM mixing with
multimode initial perturbations, which has been simulated
with eight independent codes. The results obtained with the
present code agree well with code-averaged results (see Ap-
pendix B). This comparison validates the present code as well.

The importance of the molecular viscosity can be estimated
using the Reynolds number, which can be defined as Re ≡
hḣ/(μ/ρ), where h is the width of the mixing zone [Eq. (17)]
and ḣ is its growth rate [Eq. (19)]. Using the numerical data
(e.g., the results of the case air-SF6 in Sec. II C), h is in the
range from 0.02 to 0.1 m and ḣ is in the range from 20 to
100 m s−1. From Tables I and III, μ ≈ 1×10−5 kg m−1 s−1

and ρ ≈ 1 kg m−3. Therefore, Re ranges from 4×104 to
1×106 and the mixing zone is in the high-Reynolds-number
regime in most of the duration of the simulation. Besides, the
Prandtl number and Schmidt number are of order unity (Ta-
ble I). The estimates indicate that the effects of the molecular
viscosity, heat conduction, and diffusion on the evolution of
the large-scale structures are negligible.

In simulations of turbulent mixing at high Reynolds num-
ber, there are generally two methods. In the first method, the
Eulerian equations are solved, which is called the implicit
large-eddy simulation (ILES) since the implicit numerical
dissipation serves as the subgrid dissipation [18]. In the
second method, the Navier-Stokes equations are solved, in
which the viscosity, the molecular diffusion, and the thermal
conduction are included, e.g., Ref. [39]. In both methods, a
grid-convergence study is necessary to ensure that the results
given in the paper are reliable. In the present work, the second
method is chosen and a grid-convergence study is carried out.

TABLE II. Computational domains, grid numbers, and spectrum of the initial perturbations for the numerical cases presented in this paper.

Cases Computational domain Grid numbers Perturbation spectrum

Air-CO2 [−0.5L0, 2L0]×[0, L0]×[0, L0] 960×375×375 P(k) ∼ k0, k ∈ [16π/L0, 64π/L0]
Air-SF6

H2-air [−0.5L0, 2L0]×[0, 2L0]×[0, 2L0] 960×750×750
SF6-air [−0.5L0, 2L0]×[0, L0]×[0, L0] 960×375×375
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TABLE III. Initial properties of pure light and heavy gases. ρ, U , p, T , and c0 denote the density, velocity, pressure, temperature, and
sound speed of the gases, respectively.

Quantity ρ [kg m−3] U [m s−1] p [Pa] T [K] c0 [m s−1]

Air-CO2 Postshock light gas 0.498 240.8 56541 393.4 398.5
Preshock light gas 0.268 0.0 23000 298.0 346.9
Preshock heavy gas 0.408 0.0 23000 298.0 269.5

Air-SF6 Postshock light gas 0.498 240.8 56541 393.4 398.5
Preshock light gas 0.268 0.0 23000 298.0 346.9
Preshock heavy gas 1.040 0.0 23000 298.0 155.9

H2-air Postshock light gas 0.035 909.1 56641 395.2 1514.4
Preshock light gas 0.019 0.0 23000 298.0 1315.1
Preshock heavy gas 0.268 0.0 23000 298.0 346.9

SF6-air Postshock heavy gas 2.214 123.6 53119 323.5 162.4
Preshock heavy gas 1.040 0.0 23000 298.0 155.9
Preshock light gas 0.268 0.0 23000 298.0 346.9

The results show that a grid resolution of 5.3×10−4 m, i.e.,
about 12 grid nodes per λmin, in the spanwise direction can
give converged results in terms of the mixing width. There-
fore, the resolution is used for the cases listed in Table II. See
Appendix C for details.

In the postprocessing of the numerical data, plane average
is used to obtain the averaged properties of the flow field;
i.e., the variable f is decomposed into the plane-averaged
quantity and the fluctuating part, i.e., Reynolds decomposition
[52] f = f + f ′, where f (x) = ∫∫

�
f (x, y, z)dydz/Ac and the

cross area Ac = ∫∫
�

dydz. � refers to the cross section at a
streamwise location x. The Favre decomposition is denoted
by f = f̃ + f ′′, where f̃ = ρ f /ρ.

C. Physical process

The physical process of the RM mixing with reshock is
presented in this section. The quantities and the method to
calculated them are given as follows:

(i) The evolution of the wave structures (see Fig. 2) is
obtained with one-dimensional simulations, in which the com-
putational settings are the same as those in Secs. II A and II B
except for an absence of the initial perturbations.

(ii) The growth of the perturbations are shown with the
instantaneous field of the gas-1 mass fraction (see Figs. 3 and
4) in the three-dimensional simulations with initial perturba-
tions.

(iii) The energy spectrum of the fluctuating motions (see
Fig. 5). The radial density spectra of the cases are given to
show the transition process of the turbulent mixing as well as
the evolution of different modes [39,63]. The radial spectrum
of density is calculated as follows:

Eρ ′ (k, x, t ) =
∑

k− 1
2 <kyz�k+ 1

2

ρ̂ ′∗ρ̂ ′(x, ky, kz, t ), (14)

with the radial wave number defined as kyz =
√

k2
y + k2

z . ·̂ de-

notes Fourier transform in the y-z plane and (·)∗ is its complex
conjugate. The spectra are averaged in the central mixing zone
defined as the zone with

{x|4Ỹ1(x)[1 − Ỹ1(x)] � 0.9}. (15)

(iv) In the three-dimensional simulations with initial per-
turbations, the interface position xI, or the averaged position
of the mixing zone is defined as follows:

xI ≡
∫ xmax

xmin
Ỹ1(1 − Ỹ1)xdx∫ xmax

xmin
Ỹ1(1 − Ỹ1)dx

. (16)

The velocity of the interface vI is the time derivative of xI

[see Figs. 6(a) and 6(d)].
(vi) The growth of the mixing width [see Figs. 6(b) and

6(d)], which is defined as the distance from the bubble-zone
front (xB, the position with a prescribed light-fluid mass frac-
tion Ỹl = 0.05) to the spike-zone front (xS, the position with

FIG. 2. Displacement of the interface and the wave structures
that interact with the interface. The data are obtained with one-
dimensional simulations in the cases (a) air-SF6 and (b) SF6-air. In
the three-dimensional simulation of the SF6-air case, the distribu-
tion of the waves with the aid of the averaged pressure profile at
t = 2.28 ms is given in panel (c). This shows that in the case of
SF6-air, because of the extend of the mixing zone, the third wave
is more likely to be a compression wave.
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FIG. 3. Instantaneous field of the light-fluid (gas 1) mass fraction
in the RM mixing with reshock in the case of air-SF6. The left panels
show the evolution of the bubble zone (represented by an isosurface
with the mass fraction of gas 1 being 0.1) and the right panels show
the evolution of the spike zone (represented by an isosurface with
the mass fraction of gas 1 being 0.9). Panels (a), (b), (e), and (f)
are before the reshock and panels (c), (d), (g), and (h) are after the
reshock.

Ỹl = 0.95), i.e.,

h ≡ sgn(A)(xB − xS), (17)

where A is the Atwood number. For light-to-heavy cases
(the initial shock travels from light gas to the heavy gas),
sgn(A) = 1 and xB > xS. For heavy-to-light cases (the initial
shock travels from heavy gas to the light gas), sgn(A) < 1 and
xB < xS.

FIG. 4. Instantaneous field of the heavy-fluid (gas 1) mass frac-
tion in the RM mixing with reshock in the case of SF6-air. The
left panels show the evolution of the spike zone (represented by an
isosurface with the mass fraction of gas 1 being 0.1) and the right
panels show the evolution of the bubble zone (represented by an
isosurface with the mass fraction of gas 1 being 0.9). Panels (a), (b),
(e), and (f) are before the reshock and panels (c), (d), (g), and (h) are
after the reshock.

(vii) The molecular mixing fraction, which is used to quan-
tify the amount of the molecularly mixing fluids [64,65]. The
molecular mixing fraction [see Figs. 6(c) and 6(f)] is calcu-
lated as

� =
∫ xmax

xmin
Y1Y2dx∫ xmax

xmin
Y1 Y2dx

. (18)

In the light-to-heavy case, the interface is accelerated first by
two shock waves and then by the rarefaction wave and com-
pression wave alternatively with their strength decaying. In
the heavy-to-light case, the interface is accelerated first by the
initial shock wave and then decelerated by several reflected
shock waves with decaying strength. In three-dimensional
simulations of the heavy-to-light cases, the pressure profiles
indicate the waves after the second shock wave are not very
sharp [see Fig. 2(c)] and the interface is decelerated gradu-
ally [see Fig. 6(d)]. Thus, the waves after the second shock
wave are more likely to be compression waves. Therefore,

053109-6



GROWTH MECHANISM OF INTERFACIAL FLUID-MIXING … PHYSICAL REVIEW E 103, 053109 (2021)

FIG. 5. Evolution of the radial energy spectrum of density for the cases [(a), (b)] air-SF6 and [(c), (d)] SF6-air. Panels (a) and (c) show
the evolution of energy spectrum during the initial stage after the passage of the first shock wave. Panels (b) and (d) show the evolution of
the energy spectrum during the whole process. In panels (a) and (c), the lines are shifted to clarify the profiles. The profile is shifted upward
with a value of lg(5) relative to the profile at the previous time sample. kmin = 2π/Lmax, kmax = 2π/Lmin, in which Lmin and Lmax are defined in
Sec. II B. In the vertical axis, �k = 2π/L0. The variable is set so that the normalized total energy is 1 when integrated against the horizontal
variable.

the waves after the second shock wave will be referred to as
compression waves.

Generally, for each case, the whole process is divided into
several stages according to the interaction between the mixing
zone and the waves. Each period is denoted using the follow-
ing method: “wave” defines a period when a wave directly
interacts with the mixing zone, which is followed by “after
wave,” defined as the period when the wave leaves the mixing
zone. Therefore, the two periods (wave, after wave) makes
a couple. For example, (shock 1, after shock 1) denotes the
period during the passage of the first shock wave and the
period after the passage of the first shock wave. Likewise,
in light-to-heavy cases, (shock 2, after shock 2), (rarefac-
tion 1, after rarefaction 1), (compression 1, after compression
1), (rarefaction 2, after rarefaction 2), and (compression 2,
after compression 2) are defined; in heavy-to-light cases,
(shock 2, after shock 2), (compression 1, after compression
1), and (compression 2, after compression 2) are defined.
The periods and the notations used in the paper are listed in
Table IV.

Before the shock 2, the flow field is characterized with
small-scale bubbles and spikes [Figs. 3(a), 3(b), 3(e), 3(f),
4(a), and 4(d)]. After the shock 2, the scales of the domi-
nate structures grow larger [Figs. 3(c), 3(d), 3(g), 3(h), 4(b),
4(c), 4(e), and 4(f)]. The evolution of each mode is given
in Fig. 5. Initially, the energy is constant among the wave
numbers ranging from kmin = 2π/Lmax to kmax = 2π/Lmin.
As the secondary instability develops, an inertial range with
a k−5/3 scaling appears, which indicates a transition from
nonlinear stage to the turbulent stage of the mixing process.
The wave numbers of the lower and upper limits of the inertial
range can be denoted with kl and ku. When ku � 2kl , the
energy-containing scales departs from the dissipation scales,
and thus mixing transits to turbulence in the mixing zone [66].
By using this criteria, the transition time can be estimated,
e.g., t = 0.39 ms in the case of air-SF6 and t = 0.52 ms in
the case of SF6-air. Similarly, using the energy spectrum of
the density in the cases of air-CO2 and H2-air (not shown),
the transition time can be approximated as t = 1.21 ms and
t = 0.09 ms, which are marked in Fig. 15. Later on, the energy
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FIG. 6. Evolution of the velocity of the interface vI [(a), (d)], the mixing width [(b), (e)], and the molecular mixing fraction [(c), (f)]. The
results are from the cases of air-SF6 [(a)–(c)] and SF6-air [(d)–(f)]. In the case of air-SF6, the dashed lines mark the time (tS1, tS2, tR1, tC1, tR2)
when the waves (the first shock wave, second shock wave, first rarefaction wave, first compression wave, and second rarefaction wave) meet
the mixing zone. In the case of SF6-air, the dashed lines mark the time (tS1, tS2, tC1, and tC2) when the waves (the first shock wave, second shock
wave, first compression wave, and second compression wave) meet the mixing zone.

at the smaller wave numbers grow larger [see Figs. 5(b) and
5(d)], indicating the growth of the large-scale structures. The
mixing transition corresponds to the rise in the molecular
mixing fraction [67]. Figures 6(c) and 6(f) show that after
the passage of the first shock wave, the molecular mixing
fraction increases quickly, and before reshock, � = 0.86 in

the case of air-SF6 and � = 0.82 in the case of SF6-air, which
are approximately the values in the multimode RM mixing at
late stage when the mixing approaches the self-similar state,
e.g., Refs. [32,42]. When the fluids are well mixed in the
small-scale structures, the local Atwood number [42] or the
effective Atwood number [67] is small, which will result in a
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TABLE IV. The mechanisms controlling the evolution of the mixing width during each period of RM mixing with reshock. NA represents
“not applicable.” SU represents the “start-up” process. + and − represent positive and negative contributions, respectively.

Cases Air-CO2 Air-SF6 H2-air SF6-air

Periods Notation S(C) Penetration S(C) Penetration S(C) Penetration S(C) Penetration

Shock 1 S1 − + − + − + − −
After shock 1 AS1 Negligible + Negligible + Negligible + Negligible +
Shock 2 S2 − − − − − − − +
After shock 2 AS2 + in SU − to + + in SU − to + + in SU − to + − in SU +
Rarefaction 1 R1 + + + + + + NA NA
After rarefaction 1 AR1 Negligible + NA NA Negligible + NA NA
Compression 1 C1 NA NA − + − + − +
After compression 1 AC1 NA NA NA NA NA NA Negligible +
Rarefaction 2 R2 NA NA + + + + NA NA
Compression 2 C2 NA NA NA NA − + − +
After compression 2 AC2 NA NA NA NA Negligible + Negligible +

temporary decrease in the growth rate in RT turbulent mixing
and a small growth rate after reshock. This will be discussed
in Sec. IV D.

In light-to-heavy cases, after the period shock 1, the inter-
face moves downstream with a quasiconstant velocity. Upon
the second shock wave, the interface-velocity reverses. In this
stage, the mixing width first decreases and then increases.
Later, the mixing zone interacts with rarefaction and com-
pression waves alternatively, while the mixing zone moves
toward two directions correspondingly [36,41]. Thus, the mix-
ing zone experiences a variable-acceleration period. In the
period of rarefaction 1, the growth rate of mixing width in-
creases significantly, while it slows down substantially in the
period of compression 1 [34,36,41] [see Fig. 5(b)]. In heavy-
to-light cases, after the period of shock 1, the interface moves
downstream. Upon the acceleration of the second shock wave
and compression waves, the interface velocity decreases. In-
fluenced by the shock waves and compression waves, the
mixing zone is first compressed and then its width increases.
It is easy to understand that when the late-stage rarefaction
and compression waves meet the mixing zone, the turbulent
motions from the previous periods will lead to a continuous
increasing in the mixing width, although the corresponding
growth rate decays with time, which will be called RM effect
hereafter. In the previous research (e.g., Refs. [30,49–51]), it
is proposed that the RT effect contributes to the growth of
the mixing zone since the mixing is accelerated as a whole
object during the rarefaction waves. Similarly, the RT-stable
effect also contributes when the heavy fluid accelerates the
light fluid [see Fig. 6(a)]. In the next section, a growth-rate-
decomposition formula is established, which reveals another
mechanism that is very important when the waves interact
with the mixing zone, i.e., the S(C) effect induced by the
nonuniform velocity distribution in the mixing zone.

III. THE GROWTH-RATE-DECOMPOSITION FORMULA

A. The growth rate of the mixing width

Based on the equation of mixing width [Eq. (17)], its
growth rate follows

ḣ = sgn(A)(ẋB − ẋS), (19)

i.e., the velocity difference of the bubble-zone front
(Ỹ0 = 0.05) and the spike-zone front (Ỹ0 = 0.95). The overdot
represents a time derivative of the corresponding variable. To
understand the speed of the two fronts, one can investigate the
speed of a virtual point with a specific mass fraction Ỹ0, i.e.,
ẋỸ0

. Based on an infinitesimal analysis of the averaged-mass-
fraction profile (see Fig. 7 and its caption for details), ẋỸ0

reads

ẋỸ0
= − ∂Ỹ1/∂t

∂Ỹ1/∂x

∣∣∣∣
Ỹ0

. (20)

Using the equation of the averaged mass fraction

∂Ỹ1

∂t
+ ũ

∂Ỹ1

∂x
= 1

ρ̄

∂RY1u

∂x
+ 1

ρ̄

∂

∂x

(
ρD

∂Ỹ1

∂x

)

+ 1

ρ̄

∂

∂x

(
ρD

∂Y ′′
1

∂x

)
, (21)

with the turbulent flux RY1u ≡ −ρY ′′
1 u′′ and D being the mix-

ture diffusion coefficient, one obtains

ẋỸ0
= [u + Vpen + Vdiff]

∣∣
Ỹ0

, (22a)

Vpen = u′ρ ′

ρ
− 1

ρ

∂RY1u/∂x

∂Ỹ1/∂x
, (22b)

Vdiff = − 1

ρ∂Ỹ1/∂x

∂

∂x

(
ρD

∂Ỹ1

∂x
+ ρD

∂Y ′′
1

∂x

)
. (22c)

ẋ∗
Ỹ0

= [
u∗ + V ∗

pen + V ∗
diff

]∣∣
Ỹ0

, (22d)

V ∗
pen = u′∗ρ ′∗

ρ∗ − 1

ρ∗
∂R∗

Y1u/∂x∗

∂Ỹ1/∂x∗ , (22e)

V ∗
diff = − 1

ρ∗∂Ỹ1/∂x∗
∂

∂x∗

(
1

ReSc

∂Ỹ1

∂x∗ + 1

ReSc

∂Y ′′
1

∂x∗

)
. (22f)

In deriving Eq. (22), ũ = u + ρ ′u′/ρ is applied, where u
represents the Reynolds-averaged mean velocity. Vpen repre-
sents the contribution of fluctuation field and Vdiff represents
the velocity induced by the diffusive effect. Equations (22d)–
(22f) represent the nondimensional form of the growth rate of
the mixing width, in which the variables are normalized with
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FIG. 7. A scheme showing the evolution of the mass fraction profile to derive the speed of the virtual point with mass fraction of Ỹ0. At
time t , the mass fraction is the dash-dotted line with the virtual point at point A, which changes to the solid line at t + �t with the virtual point
denoted with A′ (see the right panel). A vertical line starting at A′ crosses the profile at time t at point B. The three points A, A′, B forms a right
triangle. The length LA′B = ∂Ỹ1/∂t�t . tan θ = −∂Ỹ1/∂x. The minus sign is used because ∂Ỹ1/∂x is negative at the sample point. Applying
LAA′ = LA′B/ tan θ , one gets ẋỸ0

= lim
�t→0

LAA′/�t = −(∂Ỹ1/∂t )/(∂Ỹ1/∂x)|Ỹ0
.

characteristic variables. The characteristic velocity is chosen
as the velocity jump of the interface after the passage of the
first shock wave, the length scale is chosen as the spanwise
length of computational domain and the characteristic density
is chosen as the average density of the initial unshocked fluids.
Combining the Eqs. (19) and (22), the growth rate of the
mixing width is decomposed as

ḣ = sgn(A)(u|B − u|S + Vpen|B − Vpen|S + Vdiff|B − Vdiff|S),
(23)

which will be referred to as the growth-rate-decomposition
(GRD) formula.

The turbulent flow in the mixing zone can be decomposed
into a mean value and a fluctuating part according to the
Reynolds decomposition [52]. For turbulent mixing induced
by interfacial instability, the mixing zone grows in the stream-
wise direction, i.e., the direction of the acceleration in the RT
mixing or the velocity of the shock wave in the RM mixing,
and the average is performed in the direction along the initially
unperturbed interface. From Eq. (23), the growth rate of the
mixing width involves contributions of three factors:

(i) The S(C) effect induced by the mean-velocity difference
between two ends of the mixing zone. When the mean-
velocity difference is not zero, the mixing zone is stretched
or compressed.

(ii) The penetration effect induced by the fluctuating ve-
locity. From Eq. (22b), Vpen is determined by the mass flux
ρ ′u′/ρ, and the gradients of the turbulent flux RY1u and the
averaged mass fraction. To be more specific, the mass flux
and turbulent flux are dominated by two important processes.
The first one is, in light-to-heavy cases, (Y ′′

1 > 0, u′′ > 0)
or (ρ ′ < 0, u′ > 0) and, in heavy-to-light cases, (Y ′′

1 < 0,
u′′ < 0) or (ρ ′ < 0, u′ < 0), which reveals that the light fluid
penetrates into the heavy fluid. The second one is, in light-
to-heavy cases, (Y ′′

1 < 0, u′′ < 0) or (ρ ′ > 0, u′ < 0) and, in
heavy-to-light cases, (Y ′′

1 > 0, u′′ > 0) or (ρ ′ > 0, u′ > 0),
which reveals that the heavy fluid penetrates into the light
fluid. Therefore, the contribution of Vpen difference between

two ends of the mixing zone is named as the penetration effect.
This will be analyzed in detail in Sec. III C.

(iii) The diffusive effect, which is induced by the molecular
diffusion, because physically it tends to decrease the hetero-
geneity inherited from the initial separation of two fluids.
From Eq. (22f), it is easy to understand that turbulent mixing
at high Reynolds number and at Schmidt number of order
unity, the diffusive term can be neglected.

It is worth emphasizing that, although the contributions of
the mean velocity and the fluctuating part are added inde-
pendently, they influence each other inherently. For example,
when there is a mean velocity gradient in the mixing zone,
the turbulent kinetic energy and thus the mass flux ρ ′u′/ρ
and the turbulent flux RYl u are enhanced or decreased [41],
and thereby the penetration effect is enhanced or decreased
correspondingly. Conversely, the turbulent motion decreases
the mean velocity gradient according to its averaged equation.

B. The S(C) effect during the propagation of the waves

In this section, the S(C) effect is discussed in detail. When
the waves propagate in the mixing zone, a velocity difference
between the bubble-zone front and the spike-zone front arises
as

�V ≡ sgn(A)(u|B − u|S), (24)

which stretches or compresses the mixing zone. The origins of
the velocity difference during a shock wave and a rarefaction
wave are shown in Fig. 8 schematically.

For the shock waves, the two ends of the mixing zone are
shocked successively, forming the velocity difference. Since
the average density changes in the mixing zone, �V changes
as well when the shock wave propagates in the mixing zone.
When the shock propagates from the heavy fluid to the light
fluid, a rarefaction wave forms behind the shock [see Fig. 8(a),
left panel]. (For the majority of real gases, the nature of the
reflected wave can be identified according to density distribu-
tion.) As the shock comes into the mixing zone, the near-wall
fluid obtains a velocity jump VJ0 (VJ0 refers to the magnitude of
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FIG. 8. A scheme to show the origin of the velocity difference
during the propagation of the waves in light-to-heavy cases. Variation
of extend of the mixing zone (shaded area), mass fraction of the
light fluid (dotted line), pressure profile (dashed line), and velocity
profile (solid line) when (a) a shock wave and (b) a rarefaction wave
passes through the mixing zone. The wavefront lies in the mixing
zone [(a) left panel, (b) upper panel] and outside the mixing zone
[(a) right panel, (b) lower panel]. Data are taken from the numerical
results of the case air-SF6.

the velocity jump). Subsequently, as the rarefaction wave ac-
celerates the fluids behind the shock wave, the velocity jump
of the near-wall fluid increases. The velocity jump reaches a
peak value VJ1 as the shock arrives at the other end of the
mixing zone where VJ1 is equal to VJ. Therefore, the magnitude
of the velocity difference first increases monotonically from
VJ0 to VJ and then decreases to zero as the shock wave leaves
the mixing zone (see the period S2 in Figs. 10, 11, and 12
and period S1 in Fig. 13). In contrast, when the shock prop-
agates from the light fluid to the heavy fluid, a compression
wave forms behind the shock wave, and velocity difference
decreases monotonically from VJ0 to VJ (see the period S1 in
Figs. 10, 11, and 12 and S2 in Fig. 13).

During the propagation of rarefaction and compression
waves, as the waves come into the mixing zone from the
near-wall side, the fluids occupied by the waves are first ac-
celerated; see Fig. 8(b). Longer periods of accelerations are
observed for fluids at shorter distances from the wall. Thus,
a velocity gradient arises and the velocity difference emerges
correspondingly. When the wavefront arrives at the other end
of the mixing zone, the velocity difference reaches its peak
value. Then, as the strength of the waves decays, the velocity
difference decreases as well, as expected.

C. The penetration effect

From Eq. (22b), Vpen is determined by the mass flux ρ ′u′/ρ,
the gradients of the turbulent flux RY1u, and the averaged mass
fraction. The relationship between the turbulent statistics and
the turbulent structures can be analyzed using the method of

FIG. 9. Turbulent statistics from each quadrant normalized by
the maximum value for turbulent flux RYl u (left panels) and the mass
flux ρ ′u′ (right panels). Panels (a) and (b) are used to define the four
events in RYl u and ρ ′u′. Panels (c) and (d) are from the case of air-SF6.
Panels (e) and (f) are from the case of SF6-air. The penetration of the
light fluid into the heavy fluid is represented by Q1 event in panel
(c), by Q2 event in panel (d), and by Q3 event in panels (e) and (f);
the penetration of the heavy fluid into the light fluid is represented by
Q3 event in panel (c), by Q4 event in panel (d), and by Q1 event in
panels (e) and (f).

quadrant analysis, which has been successfully used in analyz-
ing the Reynolds shear stress in turbulent channel flow [68].

Using the quadrant analysis, the turbulent flux RY1u can be
divided into four categories according to the signs of Y ′′

1 and
u′′. Without loss of generality, the light-to-heavy case is used
to illustrate this method. The first quadrant (Q1), Y ′′

1 > 0 and
u′′ > 0, indicates the process that the light fluid penetrates
into the heavy fluid; the second quadrant (Q2), Y ′′

1 < 0 and
u′′ > 0, contains the motion associated with the heavy fluid
flows back to the heavy-fluid side; the third quadrant (Q3),
Y ′′

1 < 0 and u′′ < 0, contains the penetration of the heavy
fluid into the light fluid; and the fourth quadrant (Q4), Y ′′

1 > 0
and u′′ < 0, contains the motion that takes light fluid back to
the light-fluid side. Thus, the first- and third-quadrant events
contribute to the negative turbulent flux (positive production),
and the second- and fourth-quadrant events contribute to the
positive turbulent flux (negative production). The contribution
to the turbulent flux from each quadrant as a function of x
location is shown in Fig. 9(c) at a sample time t = 3.8 ms.
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FIG. 10. The evolution of the growth rate by the numerical sim-
ulation (NS) (red dotted line) and by the GRD formula (blue lines)
as well as the contribution of the S(C) effect (green dash-dotted line)
and the penetration effect (brown dashed line) are given. Character-
istic periods are isolated to show the contribution of the two effects.
The notations of the periods are as follows: S1 for the period of shock
1; AS1 for the period after the shock 1, S2 for the period of shock 2;
AS2 for the period after the shock 2; R1 for the period of rarefaction 1
followed by the period AR1. The notations are also listed in Table IV.
Data are taken from the case of air-CO2.

At the spike-zone side, the turbulent flux is dominated by the
penetration of the heavy fluid into the light fluid (Q3 event).
At the bubble-zone side, the turbulent flux is dominated by
the penetration of the light fluid into the heavy fluid (Q1
event). In most parts of the mixing zone, the Q1 and Q3 events
dominates the turbulent flux. In the center of the mixing zone
(where the turbulent flux is maximum), the turbulent flux from
Q1 and Q3 is 1.04 times the total turbulent flux.

Similarly, the turbulent flux in the heavy-to-light cases and
the mass flux ρ ′u′ in two configurations can be analyzed. Their
results are shown in Fig. 9. A consistent conclusion can be
drawn that in the spike-zone side, the turbulent statistics re-
lated with species transport are dominated by the penetration
of the heavy fluid into the light fluid while in the bubble-zone
side, the turbulent statistics are dominated by the penetration
of the light fluid into the heavy fluid. In the whole mixing
zone, the turbulent statistics are dominated by the penetrations
of the two species into each other. Therefore, the contribution
of Vpen difference between two ends of the mixing zone is
named as the penetration effect.

D. The contribution of each mechanism in RM
mixing with reshock

The mechanisms controlling the evolution of the mixing
width is calculated using GRD formula for the four cases as

shown in Figs. 10–13. The numerical results are a derivative of
the mixing width. The two results agree well with each other,
which validates the GRD formula [Eq. (23)]. The diffusive
effect in Eq. (23) is not involved, which reveals that in the
present simulations with high Reynolds numbers, the growth
of the mixing width is dominated by large-scale structures and
the contribution of the diffusion is negligible. Furthermore,
the contribution of the S(C) and the penetration effects are
highlighted with enlarged figures. The results are summarized
in Table IV, which indicates the following:

(i) During the propagation of shock wave and the compres-
sion wave, the mixing zone is compressed, while during the
propagation of rarefaction wave, the mixing zone is stretched.
After the passage of the shock waves, S(C) effect with small
amplitude (relative to the amplitude during the propagations
of the waves) is observed, which is negative when the wave
travels from the light fluid to the heavy fluid and positive when
the wave travels from heavy fluid to light fluid.

(ii) During most duration of the simulation, the penetration
effect is positive. One exception is that during the propagation
of the shock wave from heavy fluid to the light fluid and a
short time after that, the penetration effect is negative, which
is consistent with the phase-reversal phenomenon when the
shock wave travels from the heavy fluid to the light fluid [69].

(iii) During the propagation of waves, when the light fluid
accelerates the heavy fluid (in light-to-heavy cases this cor-
responds to rarefaction, while in heavy-to-light cases this
corresponds to compression waves), the contribution of the
penetration effect increases, which is consistent with the RT-
instability effect reported in the previous research. Conversely,
when the heavy fluid accelerates the light fluid, the penetration
effect decreases, which is consistent with the RT-stable effect.

(iv) It is worth noting two complex periods. The first one is
during the propagation of shock waves. The second one is the
short time after the shock wave leaves the mixing zone, which
is called the startup process in the literature [24]. During the
propagation of shock waves, both the S(C) and penetration
effects contribute to the growth rate. During the startup pro-
cess, the S(C) effect and the penetration effect are of the same
order. However, these two periods have not been well studied
yet.

E. The GRD formula and the RM and RT mixing

The GRD formula provides a method to quantitatively an-
alyze the mechanisms controlling the evolution of the mixing
width in an interfacial fluid mixing. The growth rate is divided
into three parts, i.e., the S(C) effect, the penetration effect,
and the diffusive effect. As two special cases of general fluid
mixing, the classical RM and RT mixing can be analyzed
using the GRD formula.

For the RM instability, it can be analyzed using the pro-
cesses related with the first shock wave, i.e., shock 1 and after
shock 1. During the interaction of the shock wave with the
mixing zone, the compression by the mean velocity is signif-
icant, which has been reported in the previous research [3].
However, the penetration effect is also important especially
when the wave travels from the light fluid to the heavy fluid,
which has not drawn enough attention so far. When the shock
travels from the heavy fluid to the light fluid, the penetration
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FIG. 11. The evolution of the growth rate by the numerical simulation (NS) (red dotted line) and by the GRD formula (blue lines) as well
as the contributions of the S(C) effect (green dash-dotted line) and the penetration effect (brown dashed line) are given. Data are taken from
the case of air-SF6. The notations for the periods are given in Table IV.

effect is negative which corresponds to the so-called phase-
reversal phenomenon in RM instability. After the shock wave
leaves the mixing zone, a startup process is observed, in which
the S(C) and penetration effects are both important. Besides,
during the startup process, the penetration effect transits from
its value during the propagation of the shock waves to the
value of the successive linear-growth behavior. Therefore, it
is beneficial to divide the classical RM instability into three
periods: The first one is the period when the shock wave
interacts with the mixing zone, the second one is the startup
process, followed by the third period when the penetration
effect dominates. It is suggested that the concept of RM effect
be defined as the interfacial-fluid mixing induced by the initial
fluctuation field, e.g., the third period aforementioned.

For the incompressible RT instability, it can be proved that
the S(C) effect is zero (see Appendix D for details). For the
weak compressible RT instability, the results of a published
paper show that the S(C) effect is one order smaller than the
penetration effect (see Appendix D for details). When the
light fluid accelerates the heavy fluid, the penetration effect
increases, which corresponds to a RT-instability effect, while
a decrease in penetration effect corresponds to a RT-stable
period when the heavy fluid accelerates the light fluid. The
RT effect thus represents the penetration effect induced by the

external forces (which result in the overall acceleration of the
system) during the evolution of the turbulent mixing.

The GRD formula can be used for complex interfacial
mixing problems, such as the RM mixing with reshock in
the present paper. In the complex problems, it is necessary
to emphasize that the S(C) effect is essentially different from
the RT effect. Quantitatively, during the early period of the
rarefaction and compression waves, the growth rate induced
by RT is 2αAgt with α ≈ 0.1 and A < 1 while that of the S(C)
effect is of ξgt where ξ ≈ O(1) (see Appendix E for details).
Here g is the acceleration of the system and t starts from the
time when the waves meet the mixing zone. This reveals that
the growth rate by the S(C) effect is an order larger than that of
the RT effect during the propagation of waves. Besides, when
the waves interact with the mixing zone, the S(C) effect first
increases and then decreases to zero when the waves leave the
mixing zone. However, for RT effect, it results in a growth
rate that decays slowly after the waves leave the mixing zone
(see Figs. 10–13).

From the previous analysis, it is suggested that the pen-
etration effect can be divided into two parts, i.e., the RM
effect, which represents the influence of the initial fluctuation
field, and the RT effect, which represents the contribution of
fluctuation motions induced by the in-process external forces.
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FIG. 12. The evolution of the growth rate by the numerical simulation (NS) (red dotted line) and by the GRD formula (blue lines) as well
as the contribution of the S(C) effect (green dash-dotted line) and the penetration effect (brown dashed line) are given. Data are taken from the
case of H2-air. The notations for the periods are given in Table IV.

Therefore, in high-Reynolds-number flow, the three factors,
namely S(C), RM, and RT effects control the evolution of
the mixing width. This results in the analytical model in the
next section, which can describe the complex evolution of the
mixing width up to late stage.

IV. ANALYTICAL MODEL FOR THE EVOLUTION
OF MIXING WIDTH

In this section, the analytical model for the evolution of
the mixing width up to very late stage is proposed. First,
the whole process is divided into several stages according to
the interaction between the mixing zone and the waves, as
described in Sec. II C. In a specific case, some of the periods
are too short to identify, and therefore, it is removed from
analysis. The resulting periods used in the present cases are
summarized in Table IV. Second, for an individual period, the
mixing width is described by

hi(t ) = hi,S(C)(t ) + hi,RM(t ) + hi,RT(t ), (25)

where hi denotes the mixing width during the ith stage which
starts at ti,0. hi,S(C), hi,RM, and hi,RT are the contributions of
S(C), RM, and RT effects, respectively. Here, it is assumed
that the RM and RT effects can be formulated independently.

Equation (25) can be easily reduced to the classical RT and
RM instabilities. More importantly, this framework is quite
useful for describing the mixing width under successive wave
interactions. Note that Eq. (25) is a general framework. One
or two terms on the right-hand of Eq. (25) can be zero. For
example, in periods after the startup process in AS1 and AS2,
the S(C) effect and RT effect are zero and only the RM effect
is active. Next, the detailed formulation for each effect are
given.

A. S(C) effect

The mixing width induced by the S(C) effect is

hi,S(C)(t ) =
∫ t

ti,0

�V dt . (26)

During the interaction between the waves and the mixing
zone, it is approximated that the Reynolds-averaged veloc-
ity of different parts of the mixing zone changes with the
same trend. This approximation is rational since without the
waves, the velocity difference is negligible (in particularly
for the Reynolds-averaged velocity); therefore, they should
follow a similar routine to change from the initial velocity
to the final velocity. This provides a method to estimate the
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FIG. 13. The evolution of the growth rate by the numerical simulation (NS) (red dotted line) and by the GRD formula (blue lines) as well
as the contributions of the S(C) effect (green dash-dotted line) and the penetration effect (brown dashed line) are given. Data are taken from
the case of SF6-air. The notations for the periods are given in Table IV.

velocity at the bubble-zone front [uB(t )] and spike-zone front
[uS(t )] by the velocity at the mixing-zone center [uI(t )], i.e.,
uS(t ) = uI(t − �tS) and uB(t ) = uI(t − �tB), where �tS is
the difference of the times when the wave front arrives at
the mixing-zone center and the spike-zone front while �tB
is defined similarly for the bubble-zone front. Using Eq. (24),
the velocity difference follows

�V (t ) = sgn(A)[uI(t − �tB) − uI(t − �tS)]. (27)

The resulting velocity differences for four cases are shown in
Fig. 14, which shows that the velocity difference during the
rarefaction and compression waves calculated by the present
model agree well with the numerical results. For the velocity
difference during the propagation of shock waves, the model
obtains values that account for at most 0.79 to 1.29 times of
the accurate values that are given by the numerical simula-
tions, suggesting that a further study is needed.

B. RM effect

In the periods AS1 and AS2, after the startup process,
the RM effect dominates and a model by combining a linear
growth and a power-law growth, which represents a self-
similar growth behavior [27,30], is adopted. The linear growth
is formulated as

hi,RM(t ) = hi,0 + 2α1AVJ(t − ti,0), (28)

and the successive power-law growth is formulated as

hi,RM(t ) = h∗
i (1 + (t − t∗)/τ )θ . (29)

hi,0 is the mixing width at ti,0. A is the Atwood number and VJ

is the velocity jump because of the shock wave. α1 is a nondi-
mensional coefficient. The characteristic time τ = θh∗

i /ḣ∗
i . h∗

i
and ḣ∗

i are the mixing width and its growth rate (induced by
the penetration effect) at the transition time t∗ = βh0/VJ. h0 is
the mixing width right before the corresponding shock wave.
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FIG. 14. Velocity difference during the shock waves (left pan-
els), rarefaction, and the compression waves (right panels) calculated
by the numerical simulation (NS) (red dotted line) and the present
model (27) (blue solid lines). The cases for air-CO2 [(a), (b)], air-SF6

[(c), (d)], H2-air [(e), (f)], and SF6-air [(g), (h)] are presented.

Equation (29) ensures that the mixing width and growth rate
are continuous at t∗.

In the stages during and after the passage of rarefaction and
compression waves, it is assumed that the turbulent flow inher-
ited from the earlier stages decays if there is no other energy
input, as observed in the late-stage RM mixing. Therefore,
this contribution can also be evaluated with the self-similar
solution of Eq. (29) by replacing t∗ = ti,0.

C. RT effect

During the passage of rarefaction and compression waves,
the mixing zone is accelerated partially or as a whole ob-
ject because of the pressure gradient accompanied with the

waves. Precisely speaking, the mixing zone undergoes a
variable-acceleration process, i.e., RT mixing under variable
acceleration g(t ). The width induced by the variable acceler-
ation can be scaled by � = 0.5(

∫ √
gdt )2 or � = ∫∫

gdt ′dt
[20–22]. For the RT effects induced by the rarefaction or
compression waves, the acceleration magnitude first increases
and then decreases to zero. Therefore, the length scale � is
not proper since its growth rate becomes zero immediately
when the acceleration is zero, which is obviously not physical.
Therefore, the mixing width induced by the RT effects is
evaluated with

hi,RT(t ) = α2A� = α2A
∫ t

ti,0

∫ s

ti,0

g(t ′)dt ′ds, (30)

where α2 is a nondimensional parameter and A is the Atwood
number. The acceleration is the second derivative of the av-
eraged mixing center [Eq. (16)], i.e., g(t ) = ẍI. Since xI is
the the averaged center of the mixing zone, ẍI represents an
averaged acceleration of the mixing zone so that it can be used
for evaluating the mixing width induced by the RT effect.

D. Validations using numerical simulations

To analytically describe the interfacial-fluid mixing pro-
cess, there are basically two challenges. First, the physical
mechanisms determining the evolution of the mixing width
should be understood, which has been clarified in the previous
sections. Second, the parameters for quantitatively predicting
the mixing width corresponding to each mechanism should be
specified.

There are two types of input parameters [30]. The first type
involves dynamical parameters which vary from case to case,
such as the Atwood number, the time when the wave meets the
mixing zone, the motion of the mixing zone, etc. Temporarily,
one has to rely on numerical simulations or experiments to get
the dynamical parameters, e.g., Refs. [30,40,70]. The dynam-
ical parameters are listed in Table V. During the shock-wave
stage, the parameter h0 is the mixing width right before the
shock wave. During the propagation of a wave, ts represents
the time when the wave meets the mixing zone, tfc repre-
sents the time when the wave front arrives at the center of
the mixing zone, and tfe represents the time when the wave
front leaves the mixing zone. te represents the ending time of
the corresponding period. A denotes Atwood number, calcu-
lated as A = (ρB − ρS)/(ρB + ρS), where ρB and ρS are the
densities at the bubble-zone front and the spike-zone front, re-
spectively. In the present cases, as the mixing zone moves, the
densities of the fluids changes as well. However, the Atwood
number does not change significantly as the waves interact
with the mixing zone. VJ denotes the velocity jump of the
interface because of the shock wave. After the passage of the
shock waves, tSU is the time when the startup period ends.

The second type, listed in Table VI, involves the nondi-
mensional parameters. It is now impossible to predict the
nondimensional parameters; therefore, some of them are ob-
tained by fitting. For the periods related with the first two
shock waves, the nondimensional parameters differ from case
to case, and they are obtained by fitting so that the evolution of
the mixing width is consistent with the numerical data. In the
late stage, when the rarefaction waves and compression waves
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TABLE V. Dynamical parameters needed for calculating the mixing width. NA denotes ”not applicable”. The meaning of the variables can
be found in Sec. IV D.

Period Parameters Air-CO2 Air-SF6 H2-air SF6-air

Shock 1 h0[m] 0.0243 0.0234 0.0212 0.0233
103ts[s] 0.0584 0.0584 0.0103 0.1700
103tfc[s] 0.0777 0.0773 0.0188 0.2089
103tfe[s] 0.1142 0.1258 0.0255 0.2276

After shock 1 103ts[s] 0.1142 0.1258 0.0255 0.2276
103tSU[s] 0.1480 0.1177 0.0745 0.3011
103te[s] 1.4238 2.0423 0.8374 1.5444
A 0.235 0.652 0.860 −0.635
VJ[m s−1] 219.3 171.5 383.0 157.5

Shock 2 h0[m] 0.0454 0.0658 0.0856 0.0541
103ts[s] 1.4238 2.0423 0.8374 1.5444
103tfc[s] 1.4825 2.1388 0.8783 1.5901
103tfe[s] 1.5216 2.1881 0.8997 1.6830

After shock 2 103ts[s] 1.5216 2.1881 0.8997 1.6830
103tSU[s] 1.9518 2.4810 0.9910 1.8373
103te[s] 1.9518 2.6270 1.1199 2.1675
A 0.232 0.697 0.860 −0.668
VJ[m s−1] 241.5 231.0 599.0 109.2

Rarefaction 1 103ts[s] 1.9518 2.6270 1.1199 NA
103tfc[s] 1.9909 2.7310 1.1560 NA
103tfe[s] 2.0105 2.7680 1.1766 NA
103te[s] 2.2452 3.6380 1.6767 NA
A 0.232 0.686 0.849 NA

After rarefaction 1 103ts[s] 2.245 NA 1.6767 NA
103te[s] 3.890 NA 1.7592 NA
A 0.229 NA 0.849 NA

Compression 1 103ts[s] NA 3.6380 1.7592 2.1675
103tfc[s] NA 3.8300 1.8671 2.2357
103tfe[s] NA 3.9150 1.8929 2.3998
103te[s] NA 4.7690 2.1714 2.5885
A NA 0.671 0.878 −0.654

After ompression 1 103ts[s] NA NA NA 2.5885
103te[s] NA NA NA 2.7532
A NA NA NA −0.667

Rarefaction 2 103ts[s] NA 4.7760 2.1714 NA
103tfc[s] NA 4.8360 2.2230 NA
103tfe[s] NA 5.0000 2.2746 NA
103te[s] NA 5.5000 2.7955 NA
A NA 0.668 0.866 NA

Compression 2 103ts[s] NA NA 2.7955 2.7531
103tfc[s] NA NA 2.8832 2.8238
103tfe[s] NA NA 2.9657 2.9898
103te[s] NA NA 3.3938 3.3260
A NA NA 0.866 −0.676

After compression 2 103ts[s] NA NA 3.3938 3.3260
103te[s] NA NA 4.0000 3.9551
A NA NA 0.866 −0.674

come into effect, the mixing is in the turbulent regime and
similar coefficients among different cases can be expected.
Therefore, the parameters for the rarefaction 1 period in the
case of air-SF6 are first obtained by fitting and then they are
used for the successive periods and the corresponding periods
in other light-to-heavy cases. Similarly, the parameters for the
compression1 period in the case of SF6-air are obtained by
fitting and then they are used for the successive periods in the
case of SF6-air.

After the passage of the shock wave, β is used to calculate
the duration of the linear-growth stage, i.e., t∗ = βh0/VJ. In
the present cases, β = 1.9 is used for three light-to-heavy
cases and β = 0.9 is used for the heavy-to-light case. α1 is
used to calculate the linear growth rate after the passage of the
shock wave, i.e., ḣ = 2α1AVJ. Results show that α1 changes
from case to case and the values after the second shock wave
are generally smaller than that after the first shock wave.
This is because of the large molecular mixing fraction before
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TABLE VI. Nondimensional parameters needed for calculating the mixing width.

Period Parameters Air-CO2 Air-SF6 H2-air SF6-air

After shock 1 β 1.90 1.90 1.90 0.90
α1 0.50 0.34 0.30 0.45
θ 0.25 0.20 0.20 0.28

After shock 2 β 1.90 1.90 1.90 0.90
α1 0.08 0.12 0.08 0.20
θ 0.28 0.20 0.20 0.28

Rarefaction 1 θ 0.28 0.28 0.28 NA
α2 0.45 0.45 0.45 NA

After rarefaction 1 θ 0.28 NA 0.28 NA
Compression 1 θ NA 0.28 0.28 0.38

α2 NA 0.45 0.45 0.45
After compression 1 θ NA NA NA 0.38
Rarefaction 2 θ NA 0.28 0.28 NA

α2 NA 0.45 0.45 NA
Compression 2 θ NA NA 0.28 0.38

α2 NA NA 0.45 0.45
After compression 2 θ NA NA 0.28 0.38

reshock [see Figs. 6(c) and 6(f)], which can lead to a small
growth rate of mixing width after reshock [42]. θ is the power
index to calculate the mixing width in the late-stage RM
effect. For the light-to-heavy cases, θ varies from 0.20 to 0.28,
which is similar to the value that Thornber et al. [32] obtains
with narrow-band initial perturbations. For the heavy-to-light
case, θ = 0.38, higher than those of the light-to-heavy cases.
α2 is used to calculate the RT effect [Eq. (30)] during the
passage of rarefaction and compression waves. α2 = 0.45 is
used for all the related periods in the four cases. It is noted
that the coefficients given in Table VI are not general since
the coefficients used for different effects depends on the initial
conditions [13,14,16–18,32].

The mixing width obtained by numerical simulations and
those obtained with the models considering different factors
are shown in Fig. 15 for the four cases. For the period when
the shock waves interact with the mixing zone and the startup
period after it, there is no widely accepted model; therefore,
the mixing width by numerical simulation is adopted. In par-
ticular, the S(C) effects are evaluated both by the present
model in Sec. IV A and by the numerical simulations, and
the resulting mixing width turn out to agree well with each
other. After the startup process, the RM effect dominates, and
therefore, the profiles considering the RM effect describes
the evolution of mixing width very well, which is consistent
with the previous research [30]; however, it deviates from the
numerical results significantly in the late stage after reshock.
When the RT effect is involved, the growth rate increases
during the propagations of first rarefaction wave and decreases
during the compression waves in light-to-heavy cases while
in the heavy-to-light cases the growth rate increases during
the propagation of compression waves. The results are further
improved and are in very good agreement with the numerical
results when the S(C) effect during the rarefaction and com-
pression waves is considered. Thus, the combined effects of
S(C) and RT explain the complex evolution of growth rate in
the late stage. These facts indicate that the factors considered
in Eq. (25) are physical and that the quantitative model can
capture these factors well.

It is noted that the present model can be used to de-
scribe the evolution of the mixing width rather than to predict
it. The dynamical parameters can mostly be obtained from
one-dimensional simulations. However, the nondimensional
parameters depend initial perturbations, especially during the
early-stage evolution. In applications, the model can be used
to estimate the magnitude of the mixing width. To enhance
the applicability of the model, more systematical work needs
to be done to determine the dependence of the nondimensional
parameters on the initial perturbations.

V. SUMMARY

Based on decomposing the turbulent flow into the aver-
aged field and the fluctuating counterpart, a GRD formula
is established, which shows that the growth of the turbulent-
mixing width is controlled by the S(C) effect, the penetration
effect, and the diffusive effect. The diffusive effect is neg-
ligible for the turbulent mixing with high Reynolds number
at Schimdt number of order unity. The penetration effect is
further divided into the RM and RT effects which represent
the influence of the initial fluctuations and the fluctuations
that arise (or decrease) when the mixing zone is subjected
to external forces. The model of RM mixing with reshock
is used to illustrate these effects. Results show that when
the waves interact with the mixing zone, the S(C) effect is
significant. To be specific, during the propagation of shock
wave and the compression waves, the mixing zone is com-
pressed while during the propagation of rarefaction waves the
mixing zone is stretched. After the startup period following
the shock waves, the growth rate is dominated by the RM
effect. During the passage of rarefaction and compression
waves, the S(C), RM, and RT effects are all important. Ac-
cordingly, an analytical model is proposed for the evolution of
the mixing width up to the very late stage when the strength of
the waves is negligible. The results obtained for four typical
cases with different light- and heavy-gas combinations indi-
cate that the model can be applied to problems with a wide
range of density ratios.
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FIG. 15. Mixing width obtained by the numerical simulations (NSs) and by the models considering some of the factors in Eq. (25). “RM”
and “RT” represent the RM and RT effects, respectively. “Shock” represents the mixing width during the shock waves, which is obtained from
the numerical results. “S(C)” denotes the S(C) effect during rarefaction and compression waves, with the suffix “_NS” indicating the velocity
difference calculated from the NS and “_Model” indicating that the velocity difference is calculated from the model [Eq. (27)]. The four cases
of air-CO2 (a), air-SF6(b), H2-air (c), and SF6-air (d) are presented. The black arrows mark the transition time as described in Sec. II C.

The present work also highlights the complexity of mix-
ing process when the shock wave interacts with the mixing
zone and during the startup period. During the propagation
of shock waves, the penetration effect is also important. For
example, when the shock wave travels from the light fluid to
the heavy fluid, the growth rate induced by the penetration
effect can be of the same order with that of the S(C) effect
(e.g., periods S1 in Figs. 10–12 and S2 in Fig. 13). Besides,
the numerical results show that after the shock waves leave
the mixing zone, the S(C) effect is not zero. When the shock
travels from the light fluid to the heavy fluid it is negative,
while it is positive when the shock wave travels from the
heavy fluid to the light fluid, which makes the startup process
even more complex. Therefore, further investigation should be
carried out on the modeling of the S(C) and penetration effects
during the propagation of shock waves and in the startup
process.

The present work provides a GRD formula to quantitatively
analyze the growth mechanism in complex interfacial fluid
mixing. In the future, it will be applied to fluid mixing under
convergent geometries, which has practical meanings for the
natural phenomenon and for the engineering applications.

ACKNOWLEDGMENTS

The authors want to thank the θ -group researchers for
developing the code used for initializing the perturbations,
which has been used in the θ -group case. The authors want
to thank Huilin Lai from Fujian Normal University for kindly
offering the original data of the compressible RT instability
simulated with a discrete Boltzmann model. This work is sup-
ported by the National Natural Science Foundation of China
under Grants No. 11802038 and No. 91852207 and by the
National Key Project under Grant No. GJXM92579.

APPENDIX A: SPECIFICATION OF THE INITIAL
PERTURBATIONS

The perturbations at the surface satisfy a power spectrum
given as

P(k) =
{

Ckζ kmin < k < kmax

0 otherwise
, (A1)

where k =
√

k2
y + k2

z denotes the one-dimensional wave

number of perturbations. The root mean square of the
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perturbations (σ ) is prescribed, i.e.,
∫ kmax

kmin
P(k)dk = σ 2. In this

way, the constant C is determined.
In two-dimensional wave space, the amplitude of the mode

(km, kn) satisfies

a(km, kn) ∼
√

P(kmn)

2πkmn
, (A2)

where kmn = √
k2

m + k2
n . In physical space, the perturbations

are of the form

η(y, z) =
∑
m,n

amncos(kmy)cos(knz)

+ bmnsin(kmy)cos(knz)

+ cmncos(kmy)sin(knz)

+ dmnsin(kmy)sin(knz), (A3)

where km(n) = m(n)k0 and k0 = 2π/L0. The amplitude coeffi-
cients amn, bmn, cmn, and dmn are random numbers chosen from
a Gaussian distribution so that the standard deviation is pro-
portional to σmn = √

P(kmn)/(2πkmn)�km�kn. Here �km =
�kn = k0. The relevant demonstration on the transforma-
tion from the wave space [Eq. (A1)] to the physical space
[Eq. (A3)] has been given by Ref. [32].

In the present work, the power index ζ = 0, kmin =
2π/Lmax, and kmax = 2π/Lmin, where Lmax = L0/8 and
Lmin = L0/32. The root mean square of the perturbations σ

equals λmin. Thus, the average value of the coefficients follows

amn = bmn = cmn = dmn (A4)

= 1√
3π

√
λ3

mink2
0

k
. (A5)

The parameters chosen are used so that the perturbations can
develop into turbulence soon after the first shock wave.

APPENDIX B: VALIDATION WITH THE θ-GROUP CASE

The original θ -group case [31] is a benchmark case de-
signed to compare eight independent codes. This simulation is
initialized with narrow-band perturbations. The initial length
scales of the perturbations range from L/8 to L/4, with L
being the length of the cross section of the computational
domain. The energy of the initial modes are constant, resulting
in a root mean square of the amplitude being 0.1λmin. The
density ratio of the heavy and light fluid is 3:1 and the adi-
abatic index γ = 5/3 for both gases. The initial shock wave
travels from the heavy fluid to the light fluid. A premix width
δ = L/32 is used. For the basic quantities describing the mix-
ing process, such as mixing width, the results have converged
with 256 grid nodes in the spanwise direction. Therefore, in
the present work, a numerical simulation is carried out using
a grid resolution of 364×256×256 in a domain of 1.4L×L×L.
The mixing width is obtained by integrating the averaged
mole-fraction profile, i.e., W = ∫ Lx

0 Xl (1 − Xl )dx. Figure 16
shows that the present mixing width agrees well with the the
code-averaged mixing width in Ref. [31], which validates the
present code as well as the method to generate the initial
perturbations.

FIG. 16. The evolution of nondimensional mixing width as a
function of the nondimensional time obtained by the present code
and from the code-averaged mixing width in Ref. [31].

APPENDIX C: GRID-CONVERGENCE STUDY

The case of air-SF6 is simulated with four sets of grid num-
bers to test the influence of the grid resolution on the primary
results. Rectangle grid elements are used. The cases have grid
numbers of 280×125×125, 640×250×250, 960×375×375,
and 1280×500×500, which are named cases G125, G250,
G375, and G500 respectively. The evolutions of the bubble-
zone front, the interface, and the spike-zone front are shown
in Fig. 17(a) and the evolution of the mixing width is shown
in Fig. 17(b). Results show that the two finest grid cases give
approximately the same profiles, indicating that they have
converged. Therefore, the grid resolution with 375 grids nodes
in 0.2 m is applied in the simulations.

APPENDIX D: THE MEAN-VELOCITY DIFFERENCE
IN RT INSTABILITY

It is proved that the velocity difference between two ends
of the mixing zone is zero in incompressible RT instability

FIG. 17. A grid-convergence study for the air-SF6 case. The evo-
lutions of the bubble-zone front, interface, and spike-zone front are
shown in panel (a). The evolution of the mixing width is shown in
panel (b).
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FIG. 18. The Reynolds-averaged velocity in classical-
incompressible RT instability. In this configuration, two fluids,
with ρh being the density of the heavy fluid and ρl being the density
of the light fluid, are put in a gravitational fluid �g. The interface is
denoted with a red line. The area of the cross section is S. The mean
velocity at z0 is U0. At an arbitrary position z, the mean velocity and
volume fraction of the heavy and light fluids are Xh, Uh and Xl , Ul ,
respectively. Since the fluids are incompressible, the volume of the
fluid flowing into the frame across z0 is U0S�t , while that flowing out
from z is UhSXh�t + Ul SXl�t . The volume enclosed by z and z0 is
constant; therefore, U0S = UhSXh + Ul SXl . The Reynolds-averaged
mean velocity ar z is defined as Uz ≡ (UhSXh + Ul SXl )/S. Therefore,
Uz = U0. In this way, it is proved that the Reynolds-averaged mean
velocity is U0 everywhere in the z direction.

and is much smaller than the growth rate induced by the
penetration effect in weak compressible RT instability. For
classical RT instability, it refers to a configuration in which
the heavy fluid is supported by the light fluid in a gravi-
tational field or two superposed fluids are accelerated. The

fluids are assumed to be incompressible. In this situation, it
can be proved that the Reynolds-averaged velocity is uniform
in the vertical direction (see Fig. 18). For compressible RT
instability, the averaged velocity is assumed to be zero in
theoretical analysis [71]; i.e., there is no velocity difference
between two ends of the mixing zone. To find out the influence
of the compressibility on the averaged velocity, the numerical
simulation of a compressible RT instability [72] is reanalyzed
(the original data are provided by the authors of Lai et al.
[72]). This is a RT-instability problem of a compressible flow
simulated with a discrete Boltzmann model [73,74]. The ini-
tial interface is cosine shaped and the instability is influenced
both by thermodynamic and hydrodynamic nonequilibrium
effects. The compressibility can be measured by the Mach
number. Using the characteristic velocity of single-mode RT
instability v ∼ √

g/k, where g is the acceleration and k is the
wave number, and the sound speed c ≡ √

d p/dρ, the Mach
number is approximately 0.17 [72]. Therefore, this case corre-
sponds to the weak compressibility regime. The instantaneous
fields of density, vertical velocity, and the Reynolds-averaged
velocity are shown in Fig. 19. This indicates that, in the
weak compressibility regime, the variation in the Reynolds-
averaged velocity is one order smaller than the velocity of the
bubble and the spike. Therefore, it is reasonable to neglect the
mean-velocity gradient in analytical models [71].

APPENDIX E: AN ANALYSIS OF VELOCITY
DIFFERENCE ON DIMENSIONAL GROUNDS

The velocity difference during the propagation of rarefac-
tion and compression waves can be obtained by analyzing
this problem on dimensional grounds. When the wave front
lies in the mixing zone, the characteristic physical variables
are the acceleration of the interface ẍI, the density ratio, the
length occupied by the waves �x, and the velocity of the
wave front Vw. A velocity scale is deduced as ẍI�x/Vw, and a

FIG. 19. Instantaneous field of density (a), vertical velocity (b), and the plane-averaged vertical velocity (c). These are results of a
compressible RT-instability case and the data are from the authors of Ref. [72].
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coefficient that includes the influence of the density ratio ξ can
be introduced. By approximating �x/Vw with �t (the time
interval that starts when the wave front meets the mixing-zone
edge), one obtains �V = ξ ẍI�t , where ξ is a nondimensional
velocity difference.

According to the analysis in Sec. IV A, before the
wave front arrives at the other end of the mixing zone,

�V ≈ �VB in light-to-heavy cases, i.e., the velocity in-
crease at the near-wall side of the mixing zone. Since
the velocity at different parts of the mixing zone acceler-
ates with the same trend, ẍB(t ) ≈ ẍI(t − �tB). Therefore,
ξ = �V/(�t ẍI ) ≈ �VB/(�t ẍI ) = ẍB/ẍ ≈ 1. The same anal-
ysis can be performed in heavy-to-light cases. Therefore,
ξ ∼ O(1).
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