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Scalar mixing in a Kelvin-Helmholtz shear layer and implications
for Reynolds-averaged Navier-Stokes modeling of mixing layers
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Large-eddy simulation of a temporally evolving Kelvin-Helmholtz (KH) mixing layer is performed with the
tenth-order compact difference code MIRANDA to examine the steady-state behavior of a passive scalar in a
shear-driven mixing layer. It is shown that the integral behavior of scalar variance in a KH mixing layer behaves
similarly to the integral behavior of scalar variance in a Rayleigh-Taylor (RT) mixing layer, and mixedness
of the simulated KH shear layer tends towards a value of about 0.8. It is further shown that if the k-L-a-V
Reynolds-averaged Navier-Stokes (RANS) model [B. E. Morgan et al., Phys. Rev. E 98, 033111 (2018)],
calibrated to reproduce steady-state mixing in an RT layer, is applied to simulate a KH mixing layer, the RANS
model will significantly overpredict the magnitude of scalar variance in the KH layer. A straightforward addition
to the k-L-a-V model is then suggested, and self-similarity analysis is applied to determine constraints on model
coefficients. It is shown that with the addition of a buoyancy production term in the model equation for scalar
variance, it becomes possible to eliminate the model deficiency and match steady-state mixedness in simulations
of both RT and KH mixing layers with a single model calibration.
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I. INTRODUCTION

The behavior of turbulent mixing layers is important to
the understanding of a variety of physical systems including
supersonic combustion [1], oceanic and atmospheric flows
[2–5], astrophysical phenomena [6], and inertial confinement
fusion (ICF) [7,8]. Within the ICF community, most his-
torical explorations of the impact of turbulent mixing have
focused on buoyancy- and shock-driven instabilities such as
Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabil-
ities [9–15]. More recently, there has been increasing interest
in the impact of shear-driven mixing in high-energy-density
systems [16–21] which can be seeded by sources of asymme-
try such as fill tubes, capsule supports, and x-ray shadowing
[22–26]. Canonical Kelvin-Helmholtz (KH) instability is a
shear-driven instability mechanism that occurs between two
fluid streams with different parallel components of velocity
[27,28]. In ICF applications, for instance, it is expected that
when a shock interacts with a material interface obliquely, the
normal component should contribute to RM instability while
the parallel component should contribute to KH instability.
Studying KH instability in isolation represents a simplified
representation of the fundamental shear-driven mixing pro-
cess that occurs in complex flows.

Since Reynolds-averaged Navier-Stokes (RANS) model-
ing remains a common tool for the design and analysis of ICF
targets, the development and improvement of RANS models
for variable density mixing remains a problem of significant
interest, and a wide body of work has been devoted to this
topic over the years [29–53]. Recently, the two-length-scale
k-L-a-V (k-2L-a-V ) model [42–44] has been developed for
the simulation of reacting buoyancy-driven mixing layers.

Using self-similarity analysis, Morgan et al. [43] have deter-
mined constraints on model coefficients that, when satisfied,
recover the expected steady-state mixedness for a Rayleigh-
Taylor mixing layer, where the mixedness is defined by

� ≡ 1 −
∫ ∞
∞ ˜Y ′′

HY ′′
H dz∫ ∞

∞ ỸHỸLdz
= 1 −

∫ ∞
∞ V dz∫ ∞

∞ ỸHỸLdz
. (1)

In Eq. (1), YH and YL indicate the mass fraction of the heavy
and light species, respectively, V indicates the model vari-
able representing scalar variance, and the tilde indicates the
mass-weighted Favre average such that an arbitrary scalar f
is decomposed according to

f = f̃ + f ′′. (2)

Given the importance of shear-driven mixing in ICF ap-
plications, it is desirable to evaluate and extend the k-2L-a-V
model for problems of reacting shear-driven mixing. Before
this can be achieved, however, it is first necessary to under-
stand the steady-state behavior of scalar variance in a KH
mixing layer. While there have been many previous stud-
ies of mechanical turbulence behavior and the transition to
turbulence in a KH shear layer [54–64], fewer studies have
focused on the behavior of a passive scalar [65–69]. Among
those studies that have examined scalar mixing in a KH layer,
fewer still have achieved sufficient development length, or
time integration in the case of a temporal shear layer, to
characterize late-time self-similar behavior. Thus, the present
work is organized around two objectives. First, high-fidelity
large-eddy simulation (LES) is conducted of a temporally
evolving, incompressible KH mixing layer in which a passive
tracer is transported by one fluid stream. This LES is evolved
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until late time in order to gain an understanding of the self-
similar mixedness of a KH mixing layer. Next the k-2L-a-V
RANS model is applied to quasi-one-dimensional (quasi-1D)
simulation of the same mixing layer, and improvements are
presented that are necessary to allow the model to match both
the steady-state mixedness of an RT mixing layer and the
steady-state mixedness of a KH mixing layer.

The remainder of this work is laid out as follows. First, in
Secs. II A and II B, a description is given of the MIRANDA code
as well as the computational setup for LES of a temporally
evolving KH mixing layer. Large-eddy simulation results are
presented and discussed in Sec. II C with a focus on the
late-time mixedness and profiles of scalar fluxes. Next, in
Secs. III A–III C, the k-2L-a-V RANS model is presented
along with similarity analysis for a steady-state shear layer
and a description of the problem setup for quasi-1D RANS
simulation of the temporally evolving mixing layer. Results of
these simulations are presented in Sec. III D, and comparisons
are made with LES. Finally, in Sec. IV, conclusions are drawn
and recommendations are made concerning the direction of
future research.

II. LARGE-EDDY SIMULATION OF A KH MIXING LAYER

A. The MIRANDA code

The code used to perform LES calculations in the present
study is MIRANDA, a tenth-order compact finite-difference
code developed at Lawrence Livermore National Labora-
tory. To maximize efficiency of computational resources,
MIRANDA’s incompressible formulation is utilized [70], which
has been previously applied in problems of RT mixing
[71–73]. Under this formulation, the governing equations for
two incompressible, nonreacting, miscible fluids are given by

∂ρ

∂t
+ u j

∂ρ

∂x j
= −ρ

∂u j

∂x j
= ρ

∂

∂x j

(
D

ρ

∂ρ

∂x j

)
, (3)

∂ρui

∂t
+ ∂ρuiu j

∂x j
= − ∂ p

∂xi
+ ∂τi j

∂x j
, (4)

where

τi j = μ

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
. (5)

In Eqs. (3)–(5), ρ is the mixture density, uj is the velocity vec-
tor, x j is the spatial vector, D is the binary species diffusivity,
p is the pressure, τi j is the viscous stress tensor, μ is the shear
viscosity, and δi j is the Kronecker delta. For the present work,
we notionally identify the fluid stream with greater velocity
as fluid 2 and set the density of both fluid streams to the same
value such that ρ1 = ρ2. Thus, the mass fraction of either fluid
can be treated as a passive scalar. Without loss of generality,
when discussing the behavior of a general scalar Y in the
following sections, the scalar under consideration is the field
associated with fluid 2.

Equations (3) and (4) are solved with a tenth-order compact
difference scheme for spatial discretization and a fourth-
order explicit Runge-Kutta scheme for temporal integration.
A Poisson equation is solved to obtain the pressure gradi-
ent in Eq. (4). The Poisson solver utilizes a pseudospectral
formulation, with an eighth-order compact stencil used for

second-derivative components in nonperiodic dimensions and
spectral differentiation used with fast Fourier transform in
periodic dimensions [74]. Additionally, MIRANDA utilizes an
artificial fluid LES approach in which artificial transport terms
are added to the fluid viscosity and diffusivity [75,76]. This
formulation is given by

μ = μ f + μ∗, (6)

D = D f + D∗, (7)

where the subscript f denotes the fluid, or physical, con-
tribution and an asterisk superscript denotes the artificial
contribution. The form of the artificial contributions used in
the present study is the same as that used by Morgan and Black
[73] in earlier simulations of RT mixing.

B. Problem setup and initial conditions

Simulations are conducted on a computational mesh of di-
mension 2π × 2π × 4π cm3 with the streamwise dimension
in x. The slower moving fluid stream is initialized such that the
streamwise velocity u = U1 = 900 cm/s for −2π � z < 0
and u = U2 = 1500 cm/s for 0 � z � 2π . This configuration
corresponds to a shear-analog Atwood number A = 0.25,
where the shear-analog Atwood number is defined by

A ≡ U2 − U1

U2 + U1
. (8)

Periodic boundary conditions are imposed in the x and y
dimensions, and nonpenetrating slip-wall boundaries are im-
posed at z = −2π and z = 2π . Constant mesh spacing is
utilized in all dimensions such that the number of grid points
in the z dimension, Nz, is equal to twice the number of grid
points in the x and y dimensions, that is, Nz = 2Ny = 2Nx.
Simulations are run until the integral mixing layer width
hint = π , where

hint ≡ 4
∫ 2π

−2π

Ỹ (1 − Ỹ )dz. (9)

To get an estimate of grid resolution requirements, it is
useful to derive a relationship between the Kolmogorov length
scale η and the grid Reynolds number defined by

Re	 ≡ 	U	x

ν
. (10)

In Eq. (10), 	U indicates the velocity difference U2 − U1,
	x indicates the grid spacing, and ν indicates the kinematic
viscosity. To arrive at a relationship between η and Re	,
consider that the specific dissipation rate ε can be related to a
characteristic turbulence length scale l and turbulence kinetic
energy k by

ε ∼ k3/2

l
. (11)

Thus, we can approximate the Kolmogorov length scale by

η =
(

ν3

ε

)1/4

≈
(

ν3l

k3/2

)1/4

. (12)

Recognizing for a fully developed mixing layer that l ≈ hint,
defining the number of computational grid points across the
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mixing layer as Nh ≡ hint/	x, and substituting in Eq. (10),
Eq. (12) can be rearranged to arrive at the expression

η

	x
≈

(
k

(	U )2

)−3/8( Nh

Re3
	

)1/4

. (13)

From experimental observations [56], the turbulence inten-
sity k/(	U )2 is expected to reach a maximum value of
about 0.035 along the center plane of the mixing layer. Thus,
Eq. (13) can be simplified further,

η

	x
≈ 3.52

(
Nh

Re3
	

)1/4

. (14)

Using Eq. (14) as an a priori estimate, we select ν to fix
Re	 = 100 and use constant D f corresponding to a Schmidt
number of unity. Grid size is selected such that Nz = 2048,
for a total of about 2.15 × 109 grid points. With an initial ten
points across the mixing layer, it is therefore estimated that
η/	x should range between about 0.20 and 0.53 throughout
the simulation. The simulation is therefore expected to be
in the well-resolved LES regime with resolution extending
into the dissipation range for the late-time, fully developed
mixing layer [77].

Finally, an initial perturbation to the interface is specified
in Fourier space as a function of the maximal and minimal
wave numbers κmax and κmin according to

ξ (x, y) =
κmax∑

j=κmin

κmax∑
k=κmin

	x

κmax − κmin + 1
cos( jx + φx, j )

× sin(ky + φy,k ), (15)

where the phase shift vectors φx, j and φy,k are drawn from
uniformly distributed random numbers between 0 and 2π . The
streamwise velocity field at time t = 0 is then given by

u(x, y, z) = U1 + 	U

2

[
1 + tanh

(
z − ξ (x, y)

5	x

)]
. (16)

An initial perturbation spectrum is selected such that κmin = 8
and κmax = Nz/32. Note that since the perturbation is only
applied to the streamwise velocity component, the initial
velocity field is expected to have nonzero divergence. A con-
sequence of this discrepancy is likely the presence of spurious
pressure waves at early time as the velocity field relaxes to a
state of zero divergence.

C. Results and discussion

As discussed previously, the primary motivation of the LES
portion of the present study is to gain some understanding of
the late-time self-similar behavior of scalar mixing in a KH
mixing layer. Figure 1 gives a qualitative impression of the
mixing layer development by plotting contours of the scalar
field at several time instants, where characteristic length scales
and timescales have been defined according to

l0 = 4π

κmax + κmin
(17)

and

t0 = l0
	U

. (18)

FIG. 1. Slice of instantaneous Y contours in the y = π plane
taken at several times: (a) t/t0 = 0, (b) t/t0 = 23.9, (c) t/t0 = 43.6,
(d) t/t0 = 62.2, (e) t/t0 = 119.3, and (f) t/t0 = 340.

Before examining the behavior of the scalar field, however,
it is first necessary to examine the mechanical evolution of the
mixing layer to identify the onset of steady-state behavior and
to evaluate quality of the simulation against expected behav-
ior. Figure 2(a) plots the temporal evolution of three measures
of the mixing layer width as a function of time. In this figure,
hu,99 and hY,99 are defined as the distances between the 99%
and 1% contours of velocity and the scalar fields, respectively,
while hint was defined previously by Eq. (9). Figure 2(b)
plots the temporal evolution of the nondimensional growth
parameter δ/A derived from each of the three measures of
mixing layer width, where for a given h, δ is the growth rate
of a spatially developing mixing layer,

δ ≡ dh

dx
. (19)

Thus, for a temporally evolving mixing layer, we have

ḣ = dh

dx

dx

dt
= δUc, (20)

where the dot notation has been used to indicate differen-
tiation with respect to time and Uc ≡ (U2 + U1)/2 is the
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FIG. 2. Temporal evolution of three measures of mixing layer width: (a) mixing layer width as a function of time and (b) nondimensional
growth parameter δ/A as a function of time.

convective velocity. Thus, rearranging, we can write

δ

A = 2ḣ

	U
. (21)

From experimental observation, it is expected that the
nondimensional growth parameter defined by Eq. (21) should
reach a steady-state value around 0.08 [56]. Figure 2(a) shows
that the mixing layer grows fairly linearly for t/t0 � 100, with
hu,99 and hY,99 taking a slightly greater value and demon-
strating somewhat more oscillation than the integral mixing
width. Figure 2(b) illustrates that for t/t0 � 100, the growth
parameter defined by Eq. (21) oscillates around the expected
value when it is calculated from hu,99.

Figure 3 plots the evolution of Reynolds stress maxima
as a function of time. Again, from previous experimental
observation [56], it is expected that the normalized turbulence
kinetic energy (TKE) k = 1

2 Rii should approach a steady-state
maximum of around 0.035. Figure 3 indicates that during the
early transition process, k/(	U )2 peaks at a value around
0.048 before decreasing to a steady-state value around 0.03
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FIG. 3. Evolution of Reynolds stress maxima as a function of time.

for t/t0 � 100, about 14% lower than expected. Limited vari-
ation in Re	 suggests that the steady-state value could be
sensitive to Reynolds number and that pushing towards higher
Re	 would likely see the computational result approach the
expected experimental value.

From Figs. 2 and 3 it seems that the mixing layer transitions
to turbulence approximately during the time t/t0 = 0–100
and then achieves reasonably steady growth for t/t0 � 100.
As Fig. 4 indicates, by t/t0 = 400 both the scalar and ve-
locity spectra have achieved inertial ranges conforming to
a − 5

3 scaling that span between one and two decades. The
spectra in Fig. 4 are computed from 2D Fourier transforms
at the nominal center plane of the mixing layer at z = 0. It
is interesting to note that the scalar field seems to demon-
strate a more fully developed inertial range than the velocity
field at Re	 = 100. Limited variation in Reynolds number
has indicated that the two spectra appear to collapse by
Re	 = 500. It is also clear from Fig. 4 that the low-wave-
number end of the spectra is saturated, which could suggest
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FIG. 4. Energy spectral density of the velocity and scalar fields
at t/t0 = 400, arbitrarily normalized by the magnitude at κ = 1.
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FIG. 5. Comparison of two average profiles with experimental data by Bell and Mehta [56]: (a) average streamwise velocity profile and
(b) average TKE profile.

a late-time impact due to the finite size of the simulation
domain.

Figures 5–7 compare LES profiles averaged over t/t0 =
100–400 with experimental data from Bell and Mehta [56].
Beginning with Fig. 5, it is clear that during this time frame,
the average streamwise velocity profile matches quite closely
with experiment; although the peak k/(	U )2 in the simulation
appears slightly lower than experiment, this is consistent with
earlier observations in Fig. 3. Figure 6(a) additionally com-
pares the streamwise (R11) Reynolds stress, stream-normal
Reynolds stress (R33), and primary shear stress (R13) pro-
files with Bell and Mehta [56]. These profiles again show
reasonably good agreement with the experiment; however,
it is observed that the average R11 and R22 magnitudes are
somewhat underpredicted. Figure 6(b) further compares the
shear correlation coefficient C13 defined by

C13 ≡ −˜u′′w′′

(ũ′′u′′)1/2(˜w′′w′′)1/2
, (22)

where u indicates the streamwise component of velocity and
w indicates the stream-normal component of velocity. A slight
overprediction in the shear correlation coefficient indicates
that, although the magnitude of the streamwise Reynolds
stress in the LES is somewhat low compared with experiment,
the relative proportion of shear to normal stress is approx-
imately maintained. Finally, in Fig. 7, the triple correlation
˜u′′w′′w′′, which represents the primary correlation associated

with shear stress transport, is compared with experiment. Al-
though the qualitative behavior of this term is maintained, the
LES underpredicts peak magnitude by about 30%. Overall,
however, Figs. 5–7 seem to indicate a generally good level of
agreement with experiment and serve to build confidence in
the accuracy of the LES.

Having established that the LES solution reaches a steady-
state growth and that velocity statistics agree reasonably well
with experiment, we next consider the mixing statistics of a
passive scalar. Figure 8(a) plots the scalar mixedness as a
function of time; recall that mixedness was defined earlier
in Eq. (1). Interestingly, the mixedness follows a temporal
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FIG. 6. Comparison of average Reynolds stress profiles with experimental data by Bell and Mehta [56]: (a) Reynolds stress profiles and
(b) shear correlation coefficient, C13. Symbols (◦) indicate experimental data and solid lines indicate present LES.
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tion ˜u′′w′′w′′/(	U )3 with experimental data by Bell and Mehta [56].

evolution that is fairly similar to what has been observed
previously for RT instability [71–73]. At early time, the
mixedness drops low as pretransitional mixing is dominated
by large-scale entrainment. After the mixing layer transitions
to turbulence, the mixedness approaches a steady-state value
around � ≈ 0.8. Three time instances are indicated in Fig. 8
by colored symbols. These times correspond to times at which
instantaneous profiles are considered in subsequent plots. For
instance, in Fig. 8(b), spatial profiles of the scalar variance
˜Y ′′Y ′′ are plotted at three time instants and for the average
t/t0 = 100–400. The magnitude and shape of the average
generally agree with similar profiles reported by Pantano et al.
[67]. Additionally, we see that as the mixedness oscillates over
time, so too does the magnitude of the scalar variance profile.

Figures 9 and 10 plot spatial profiles of scalar fluxes and
scalar variance fluxes in the stream-normal and streamwise
directions at the three time instants indicated in Fig. 8(a)
and for the time average t/t0 = 100–400. The stream-normal
scalar flux in Fig. 9(a) is observed to take on a fairly smooth
Gaussian-like profile similar to the Reynolds stress profiles,
while the streamwise scalar flux in Fig. 10(a) demonstrates
somewhat more variation across time instants. Conversely,
the stream-normal scalar variance flux in Fig. 9(b) exhibits
generally antisymmetric behavior about z = 0 similar to the
shear stress transport correlation illustrated in Fig. 7. The
streamwise scalar variance flux in Fig. 10(b) exhibits similar
behavior, although again with more variation across time in-
stants. In particular, at time instant t/t0 = 100, there seems to
be complex behavior around z = 0. This complex behavior at
early time suggests it could be difficult to model with a simple
gradient diffusion approximation.

III. RANS SIMULATION OF A KH MIXING LAYER

A. The k-2L-a-V model

The k-2L-a-V model represents the two-length-scale
extension of the k-L-a-V model [42,43]. The model equa-

tions are derived from the compressible RANS equations
for a multicomponent gas mixture. The Reynolds stress
tensor, turbulence kinetic energy, mass-flux velocity vec-
tor, and density-specific-volume covariance are defined,
respectively, by

ρRi j ≡ ρu′′
i u′′

j , (23a)

ρk ≡ 1
2ρu′′

i u′′
i , (23b)

ai ≡ −u′′
i , (23c)

b ≡ −ρ ′
(

1

ρ

)′
. (23d)

Equations (24)–(37) below summarize the k-2L-a-V model,
where Ỹk is the mass fraction of specie k, μt is the eddy
viscosity, gj is the gravitational acceleration vector, e is the
specific internal energy, Lt is the turbulent transport length
scale, Ld is the turbulent destruction length scale, and Vα is
the model variable for variance of the mass fraction of species
α. The model coefficients Cμ, Ca, Cb, CB, CD, CL1, CL2t , CL2d ,
CL3t , CL3d , CV 1, CV 2, CV 3, Na, Ne, Nk , NLt , NLd , NV , NY , and
Cdev are determined through similarity analysis. The model
equations are

Dρ

Dt
= −ρ

∂ ũi

∂xi
, (24)

ρ
DỸk

Dt
= ∂

∂xi

(
μt

NY

∂Ỹk

∂xi

)
, (25)

ρ
Dũ j

Dt
= ρg j − ∂ p

∂x j
− ∂

∂xi
(ρRi j ), (26)

ρ
Dẽ

Dt
= − p

∂ ũi

∂xi
− ai

∂ p

∂xi
+ CD

ρ(2k)3/2

Ld
+ ∂

∂xi

(
μt

Ne

∂ ẽ

∂xi

)
,

(27)

ρ
Dk

Dt
= − ρRi j

∂ ũi

∂x j
+ ai

∂ p

∂xi
− CD

ρ(2k)3/2

Ld
+ ∂

∂xi

(
μt

Nk

∂k

∂xi

)
,

(28)

ρ
DLt

Dt
= CL1ρ

√
2k + CL2tρLt

∂ ũi

∂xi
− CL3tρRi j

Lt

k

∂ ũi

∂x j

+ ∂

∂xi

(
μt

NLt

∂Lt

∂xi

)
, (29)

ρ
DLd

Dt
= CL1ρ

√
2k + CL2dρLd

∂ ũi

∂xi
− CL3dρRi j

Ld

k

∂ ũi

∂x j

+ ∂

∂xi

(
μt

NLd

∂Ld

∂xi

)
, (30)

ρ
Daj

Dt
= C2

BCbb
∂ p

∂x j
− Caρa j

√
2k

Ld
− Ri j

∂ρ

∂xi

+ ∂

∂xi

(
μt

Na

∂a j

∂xi

)
, (31)

ρ
DVα

Dt
= CV 1μt

∂Ỹk

∂xi

∂Ỹk

∂xi
− CV 2ρ

√
2k

Ld
Vα − CV 3ai

Vα

b

∂ρ

∂xi

+ ∂

∂xi

(
μt

NV

∂Vα

∂xi

)
, (32)
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FIG. 8. Evolution of the scalar variance: (a) mixedness as a function of time and (b) spatial profiles of the scalar variance ˜Y ′′Y ′′ at three
time instants and for the average t/t0 = 100–400.

where

D

Dt
≡ ∂

∂t
+ ũi

∂

∂xi
, (33)

μt = Cμρ
√

2kLt , (34)

S̃i j = 1

2

(
∂ ũi

∂x j
+ ∂ ũ j

∂xi

)
− 1

3

∂ ũk

∂xk
δi j, (35)

ρRi j = −Cdev2μt S̃i j + 2

3
ρkδi j . (36)

For the special case of binary mixing, V1 = V2 = V , and
Ristorcelli [78] derived the following expression, which is
utilized here to close b:

b =
(

rρ

ρH

)2

V. (37)

In Eq. (37), r is a constant factor that can be written in terms
of the Atwood number A ≡ ρH −ρL

ρH +ρL
or as a ratio of the heavy

fluid density ρH to the light fluid density ρL,

r ≡ ρH

ρL
− 1 = 2A

1 − A
. (38)

The model equations above differ from previously pub-
lished versions of the model [42–44] primarily by the
inclusion of an additional buoyancy production term on the
right-hand side of Eq. (32) (i.e., the term involving CV 3).
This term is inspired by enthalpic production mechanisms
included in similar models that solve a transport equation for
density variance [29,32]. The particular form that appears in
Eq. (32) comes from analogy to the transport equation for
b written by Besnard et al. [31]. In the work by Besnard
et al. and in subsequent development of the so-called BHR
model [31,35,36,39], a production term of the form ( b+1

ρ
)ai

∂ρ

∂xi

appears in the model equation for b. This term derives from
transformation of a dilatational production term in the govern-
ing equation for the average specific volume [31]. As shown
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by Ristorcelli [78], b and V are expected to be related by
Eq. (37). Thus, an additional production term of the form
ai

∂ρ

∂xi
is here postulated for inclusion in the model equation

governing transport of V as well. From prior similarity anal-
yses it has been shown that the self-similar magnitudes of ai

and b assume a dependence on Atwood number [38,43]. Thus,
to remove the self-similar Atwood-number dependence while
maintaining correct dimensionality and expected self-similar
profile, the buoyancy production term used in the present work
is multiplied by the ratio V

b , which results in the form used in
Eq. (32). As Sec. III B will discuss next, both production terms
are necessary to simultaneously match steady-state mixedness
of an RT mixing layer and steady-state mixedness of a KH
mixing layer.

B. Similarity analysis

Previous work [38,42,43] has shown that a set of model
coefficients can be derived for the k-2L-a-V model which
satisfy an ansatz of self-similar growth for canonical RT, RM,
and KH flows. When self-similarity constraints are satisfied,
the k-2L-a-V model has been previously shown to reproduce
experimentally observable parameters, such as RT and KH
growth rates, as well as the mixedness of an RT mixing
layer.

1. Similarity analysis for a quasi-1D KH mixing layer

We now build on the previous work by considering the
mixedness of a KH mixing layer. To begin, we assume a
constant density, and a change of variable is introduced in
terms of the mixing layer half-width h(t ). Let χ ≡ x/h. It
is assumed that k, Lt , Ld , and V are separable in space and
time such that k(χ, t ) = K0(t ) f (χ ), Lt (χ, t ) = Lt0(t )

√
f (χ ),

Ld (χ, t ) = Ld0(t )
√

f (χ ), and V (χ, t ) = V0(t ) f (χ ) with
f (χ ) = 1 − χ2. A linear scalar profile is assumed such that

Ỹ (χ ) = 1
2 (1 − χ ). (39)

Substituting Eq. (39) into Eq. (1) allows us to derive the
following simple expression for the mixedness of a KH layer:

�KH = 1 − 4V0. (40)

In Sec. II C, �KH was determined to approach a value of
about 0.8 for a fully developed mixing layer. For a quasi-1D
KH mixing layer, the buoyancy production term drops out of
Eq. (32), reducing it to

ρ
DV

Dt
= CV 1μt

(
∂Ỹ

∂x

)2

− CV 2ρ

√
2k

Ld
V + ∂

∂x

(
μt

NV

∂V

∂x

)
.

(41)
Substituting into Eq. (41) and assuming incompressibility
leads to

D

Dt
(V0 f ) = CV 1CμLt0

√
2K0

(
− 1

2h

)2

f

− CV 2

√
2K0

Ld0
V0 f + ∂

∂x

[
CμLt0 f

√
2K0

NV

∂

∂x
(V0 f )

]
. (42)

According to the similarity ansatz, the turbulence length scale
is assumed to grow self-similarly such that Lt0 = βh. From
prior self-similarity analysis of the two-length-scale model
applied to a KH mixing layer [42], the following expressions
have been previously determined:

β2 = 4CL1NLt

8Cμ − CμNLtCL3tCdev�
(43)

and

L̇t0 = 4CL1

8 − NLtCL3tCdev�

√
2K0. (44)

In Eqs. (43) and (44), the variable � ≡ (	U )2

k is the inverse
of the turbulence intensity. In addition, prior analysis [42] has
determined the following relationship for the steady-state ratio
of length scales:

Ld0

Lt0
=

(NLd

NLt

)(
8 − NLtCL3tCdev�

8 − NLdCL3dCdev�

)
. (45)
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Recognizing from Eq. (40) that V̇0 = 0 in the self-similar regime, after some algebra and substitution of Eqs. (43)–(45), Eq. (42)
can be rearranged to give[

8CL1V0 + CV 1CL1NLt − CV 2V0

(
NLt

NLd

)
(8 − NLdCL3dCdev�) − 24CL1

NLt

NV
V0

]
χ2

−
[
CV 1CL1NLt − CV 2V0

(
NLt

NLd

)
(8 − NLdCL3dCdev�) − 8CL1

NLt

NV
V0

]
= 0. (46)

To ensure that both the χ2 terms and the constant terms in
Eq. (46) go to zero simultaneously requires

NV = 2NLt . (47)

Substituting Eq. (47) back into Eq. (46) reduces both sets of
terms in square brackets to

CV 1CL1NLt − 4CL1V0

− CV 2V0

(
NLt

NLd

)
(8 − NLdCL3dCdev�) = 0, (48)

which can be rearranged to solve for the following constraint
on CV 1 in terms of �KH:

CV 1 =
[

8CV 2

CL1NLd
− CV 2Cdev�

CL3d

CL1
+ 4

NLt

](
1 − �KH

4

)
.

(49)

Alternatively, Eq. (49) can be rearranged to solve for �KH,

�KH = 1 − 4CV 1NLt

8CV 2
CL1

− CV 2CdevNLt�
CL3d
CL1

+ 4
, (50)

where the result that NLt = NLd [42] has been used to simplify
Eq. (49).

2. Similarity analysis for a 1D RT mixing layer

Next the model equations are considered for a 1D RT
mixing layer in the limit of zero Atwood number. In this case,
the buoyancy production term in Eq. (32) is retained,

ρ
DV

Dt
= CV 1μt

(
∂Y

∂x

)2

− CV 2ρ

√
2k

Ld
V

− CV 3a
V

b

∂ρ

∂xi
+ ∂

∂x

(
μt

NV

∂V

∂x

)
. (51)

As before, the RT mixedness is determined by substituting
into Eq. (1),

�RT = 1 − 4V0. (52)

Again referring to earlier published similarity analysis
[38,43], the self-similar profiles of the mass-flux veloc-
ity a and the density-specific-volume covariance b are,
respectively,

a = −CB
A

1 − A2

√
2K0 f (53)

and

b = 4A2

1 − 2A2 + A4
V0 f , (54)

where A is the conventional Atwood number. Substituting
back into Eq. (51) and applying the low-Atwood-number ap-
proximation leads to

D

Dt
(V0 f )

= CV 1CμLt0

√
2K0

(
− 1

2h

)2

f − CV 2

√
2K0

Ld0
V0 f

+ CV 3CB

√
2K0

(
1

h

)
f + ∂

∂x

[
CμLt0 f

√
2K0

NV

∂

∂x
(V0 f )

]
.

(55)

For an RT mixing layer, the relationship between Lt0 and h is
somewhat simpler than in the case of a KH mixing layer [38]
such that

β2 = CL1NLt

2Cμ

(56)

and

L̇t0 = CL1

2

√
2K0. (57)

Then, substituting back into Eq. (55) and recognizing for an
RT layer that Lt0 = Ld0, the following expression is obtained:[

CL1tV0 + CV 1CL1t NLt

8
− CV 2V0 + CV 3CB

4

√
CL1NLt

2Cμ

− 3CL1NLt

NV
V0

]
χ2 −

[
CV 1CL1t NLt

8
− CV 2V0

+ CV 3CB

4

√
CL1NLt

2Cμ

− CL1NLt

NV
V0

]
= 0. (58)

Again, it is required that NV = 2NLt in order to simultaneously
solve both sets of bracketed terms. Utilizing this constraint
reduces both sets of terms in Eq. (58) to the expression

CV 1CL1NLt

8
+ CV 3CB

4

√
CL1NLt

2Cμ

−
(
CV 2 + CL1

2

)(
1 − �RT

4

)
= 0. (59)

Then rearranging Eq. (59) to solve for CV 3 gives the constraint

CV 3 = (2CV 2 + CL1)(1 − �RT) − CV 1CL1NLt

2CB

√
2Cμ

CL1NLt
.

(60)
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TABLE I. Summary of the k-2L-a-V model coefficients. Differences are indicated with bold text.

�RT �KH Cμ Cdev Ca Cb CB CD CL1 CL2t CL2d CL3t CL3d CV 1 CV 2 CV 3 NLt,Ld Na,e,k,V,Y

0.800 0.657 1.00 0.404 1.46 5.00 0.553 1.24 0.990 -5.83 0.515 -9.24 0.272 1.131 2.97 0.000 1.24 2.48
0.800 0.800 1.00 0.404 1.46 5.00 0.553 1.24 0.990 -5.83 0.515 -9.24 0.272 0.660 2.97 0.666 1.24 2.48

Alternatively, Eq. (60) can be rearranged to solve for �RT,

�RT = 1 −
2CBCV 3

√
CL1NLt

2Cμ
+ CV 1CL1NLt

2CV 2 + CL1
. (61)

Now utilizing Eqs. (49) and (60), it is possible to derive
a set of model coefficients in terms of the desired self-
similar mixedness of both an RT and a KH mixing layer.
Table I summarizes the complete set of model coefficients,
where the remainder of model coefficients are determined by
constraints previously derived [38,42–44] to enforce an RT
growth parameter αb = 0.025, an RT energy ratio of 0.5, a
KH turbulence intensity of �−1 = 0.035, a KH growth pa-
rameter of δ/A = 0.08, an homogeneous isotropic turbulence
(HIT) TKE decay exponent n = 1.11, and an HIT scalar de-
cay exponent m = 1.33. Two sets of model coefficients are
given in Table I, which illustrate that for a model that does
not include the buoyancy production term in Eq. (32) (i.e.,
a model in which CV 3 = 0), the expected mixedness for a KH
mixing layer is 0.657, a value which is significantly lower than
expected based on the LES calculations discussed previously
in Sec. II C. On the other hand, if the buoyancy production
term is included and the values of CV 1 and CV 3 are computed
according to Eqs. (49) and (60), then both the self-similar
mixedness of an RT mixing layer and the self-similar mixed-
ness of a KH mixing layer can be set to 0.8.

C. Problem setup and initial conditions

Reynolds-averaged Navier-Stokes simulations with the
k-2L-a-V model are computed with the ARES code, which is
a second-order arbitrary Lagrangian-Eulerian hydrodynamics
code developed at Lawrence Livermore National Laboratory

[40,43]. In the next section, simulations are performed of
both a 1D RT mixing layer and a quasi-1D KH mixing
layer.

For RT mixing layer simulations, two ideal monatomic
gases are considered subject to constant acceleration at A =
0.05. This problem is set up in a domain of size of 1 cm
with 1600 uniformly spaced computational zones. Turbulence
length scales are initialized to zero everywhere except for
the two zones bordering the interface at z = 0, where Ld =
Lt = 4.0 × 10−6 cm. Turbulence kinetic energy is initialized
to zero everywhere except the two interface zones, where k is
initialized to 1.0 cm2/s2.

Kelvin-Helmholtz mixing layer simulations are run with
960 uniformly spaced computational zones on a domain
extending from z = −48.0 cm to z = 48.0 cm. Turbulence
length scales are initialized to zero everywhere except for the
two zones bordering the interface at z = 0, where Ld = Lt =
0.44 cm. Turbulence kinetic energy is additionally initialized
to zero everywhere except for the two interface zones, where
k is initialized to 0.01(	U )2. The initial velocity profile is
chosen to match the Bell and Mehta experiment [56] and the
LES results in Sec. II C such that u = U1 = 900 cm/s for
z < 0 and u = U2 = 1500 cm/s for z � 0, corresponding to
A = 0.25.

D. Results and discussion

To examine the impact of the buoyancy production term in
Eq. (32), two simulations of the KH mixing layer described
in Sec. III C are conducted using the two sets of model coef-
ficients summarized in Table I. Figures 11 and 12 compare
basic metrics of mixing layer growth rate and turbulence
intensity between the two simulations. Of course, since the
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FIG. 11. Mixing layer growth for RANS simulations of a KH mixing layer with two different sets of model coefficients: (a) mixing layer
width as a function of time and (b) KH growth parameter δ/A as a function of time.
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FIG. 12. TKE in RANS simulations of a KH mixing layer with two different sets of model coefficients: (a) maximum normalized TKE
k/(	U )2 as a function of time and (b) steady-state TKE profile across the mixing layer at the simulation end time.

buoyancy production term in Eq. (32) is zero for KH mixing,
the two simulations are not expected to be different in these
metrics, and in fact no difference is observed in Figs. 11 and
12. Figure 11 does illustrate that both simulations approach
a steady-state growth parameter of δ/A = 0.08 as expected.
Additionally, Fig. 12 illustrates that the two simulations ap-
proach a steady-state turbulence intensity �−1 = 0.035 as
expected. Thus, the change to model coefficients has not
impacted model behavior previously obtained for KH mixing
layer development [42].

Figure 13 illustrates the primary difference between the
two sets of model coefficients in Table I. In this figure, the
steady-state mixedness is plotted for 1D RANS simulations of
an RT mixing layer [in Fig. 13(a)] and a KH mixing layer [in
Fig. 13(b)] with both sets of model coefficients. As this figure
illustrates, the steady-state mixedness of the RT mixing layer
approaches 0.8 for both sets of model coefficients. In the KH
simulations, the steady-state mixedness approaches 0.657 for
the simulation that does not include the buoyancy production
term in Eq. (32), while the mixedness approaches the expected

0.8 for the simulation that includes the buoyancy production
term. As observed in Sec. II C, a value of �KH ≈ 0.8 is more
consistent with LES.

In Fig. 14, steady-state scalar variance profiles are com-
pared among the two KH RANS simulations and from LES
previously discussed in Sec. II C. Consistent with the previ-
ously remarked discrepancy in mixedness behavior, Fig. 14
illustrates that the peak magnitude of scalar variance agrees
more closely with LES for the case calibrated to give �KH =
0.8. In other words, if a model with only a single scalar
variance production mechanism is calibrated to reproduce
the RT mixedness, it will likely overpredict scalar variance
production due to shear. Equivalently, if a model with a sin-
gle production mechanism is calibrated to reproduce the KH
mixedness, it will likely underpredict scalar variance produc-
tion in an RT mixing layer.

Profiles of scalar and scalar variance turbulent fluxes are
plotted in Fig. 15. In this figure, RANS fluxes are recon-
structed from the gradient diffusion closure where for a model
variable f with diffusion coefficient Nf , the turbulent flux is
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FIG. 13. Steady-state mixedness in RANS simulations using two different sets of model coefficients: (a) mixedness in an RT mixing layer
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FIG. 14. Steady-state scalar variance profiles across a KH mix-
ing layer for two different sets of RANS model coefficients.

approximated by

ũ′′
i f ′′ ≈ μt

Nf

∂ f

∂xi
. (62)

While the turbulent scalar flux matches LES reasonably well
with no difference between the two RANS simulations, the
turbulent scalar variance flux profile demonstrates a similar
difference in magnitude as was observed for the scalar vari-
ance itself in Fig. 14. While the agreement with LES is not
as close as with the turbulent scalar flux, it is clear that the
turbulent scalar variance flux is overpredicted in the case with
�KH = 0.657, and the case with �KH = 0.800 is closer in
magnitude to the LES result.

Of course, the mixing layers simulated in the present work
have been nonreacting, so overprediction of the scalar vari-
ance in these simulations has not had a significant impact
on metrics of interest such as growth rates and turbulence
intensity. In simulations of reacting mixing layers, however,
accurate prediction of the scalar variance is crucial to pre-
dicting the average reaction rate [43]. The inclusion of the
buoyancy production mechanism in Eq. (32) along with the
calibration procedure based on self-similarity analysis dis-
cussed in Sec. III B should therefore be considered important
in simulations of reacting mixing layers, such as in ICF ap-
plications, which may involve mixing due to combined shear
and buoyancy mechanisms.

IV. SUMMARY AND CONCLUSIONS

In the present work, LES has been performed of a tempo-
rally developing shear layer in which a passive scalar tracer
was transported by one fluid stream. This LES was evolved
until late time in order to examine the self-similar behav-
ior in a regime that could be compared with RANS results.
Large-eddy simulation results demonstrated generally good
agreement with previously published experimental data by

Bell and Mehta [56] in profiles of average velocity, turbulence
kinetic energy, and Reynolds stresses. These comparisons
with experiment built confidence in the quality of the LES,
allowing further examination of turbulent statistics of the pas-
sive scalar.

The integral measure of scalar variance known as mixed-
ness was found to approach a value of around 0.8, similar to
behavior in self-similar RT mixing. After identifying the value
of this key parameter from LES, attention was then turned
towards improving the k-2L-a-V RANS model to allow it to
match self-similar mixedness for both RT and KH mixing lay-
ers with a single set of model coefficients. It was determined
that the addition of a buoyancy production term in the model
equation for scalar variance introduces the necessary degree of
freedom to achieve such a calibration. Self-similarity analysis
was then applied to derive algebraic constraints on model co-
efficients that, when satisfied, would reproduce the expected
self-similar mixedness behavior in RANS simulations.

The improved k-2L-a-V model was then applied in 1D
simulations of an RT mixing layer and quasi-1D simulations
of the KH mixing layer simulated with LES. It was found that
the improved model reproduced the expected mixedness of
0.8 for both RT and KH mixing layers, while a model with-
out the buoyancy production term significantly overpredicted
mixedness for the KH mixing layer.

In simulations of reacting turbulence, which have not been
considered in the present work but which remain the primary
motivation for development of the k-2L-a-V model, accurate
prediction of the scalar variance is crucial to prediction of
the average reaction rate. Reacting RT mixing layers were
simulated previously by Morgan et al. [43], and the k-2L-a-V
model was demonstrated to match LES data quite well. As
the present work has demonstrated, however, should the ear-
lier version of the k-2L-a-V model used by Morgan et al.
[43] be applied to simulation of a reacting shear layer or a
reacting mixing layer with combined elements of RT and KH
instability, production of scalar variance due to shear effects,
and therefore the impact of scalar variance on average reaction
rate, would likely be overestimated. Fortunately, as the present
work has also shown, a straightforward improvement can be
made that allows for improved prediction of scalar variance
production due to combined effects of buoyancy and shear.

Of course, more work remains to be done. The improved
k-2L-a-V model should be compared against suitable high-
fidelity simulation or experimental data for complex, reacting
turbulent mixing with combined elements of both RT and KH
instability. Most likely, such an effort will require significant
additional computation and is therefore left as future work.
It is expected, however, that the improved k-2L-a-V model
discussed in the present work should perform better in such a
simulation than the earlier model which has been previously
applied successfully in simulation of a simpler reacting RT
mixing layer [43].
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