
PHYSICAL REVIEW E 103, 053106 (2021)

Correlation in thermal fluctuations induced by phase-locked hydrodynamic modes
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Thermal fluctuations constitute a fundamental equilibrium phenomenon whose spatial and temporal correla-
tions are governed by the relevant scales of molecular collisions. From the continuum point of view, thermal
fluctuations in a fluid can be regarded as comprising a multitude of hydrodynamic modes (HMs) with random
phases, each one having one degree of freedom. We show that in a two-dimensional fluid channel with the
Navier slip boundary condition, in which the HMs are represented by periodic arrays of vortex and antivortex
pairs, periodic modulation of the slip boundary condition can selectively suppress noncommensurate HMs while
phase lock the remaining eigenmodes. As a result, thermal fluctuations would exhibit mesoscopic-scale spatial
correlations, manifest as a spatially varying diffusion constant when evaluated from the fluctuation-dissipation
theorem. Good agreement is shown with the molecular dynamics results. Such manifestation of equilibrium
collective motion implies that instead of just being an alternative mathematical basis for expressing thermal
fluctuations, in mesoscopic systems the HMs may be manipulated to have physical consequences very different
from those expected in bulk fluid.
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I. INTRODUCTION

Hydrodynamic modes (HMs) are the eigenfunctions of the
Navier-Stokes (NS) equation under the appropriate boundary
conditions. As the HMs are orthogonal to each other, in accor-
dance to the equipartition theorem each one has one degree
of freedom and therefore is activated by 1

2 kBT of energy in
a thermal bath. Here kB denotes the Boltzmann’s constant
and T is temperature. A HM represents a collective motion
of the fluid, in sharp contrast to the Brownian motion of
individual molecules. Therefore, in order to represent thermal
fluctuations in terms of the HMs, one needs to reconcile
the long-range correlations that exist in the HMs, with the
very short-range spatial correlations that usually characterize
the thermal fluctuations. In a previous publication [1], this
reconciliation was accomplished by the addition of multiple
HMs with random phases, thereby obliterating the long-range
correlations of the HMs. In particular, in a two-dimensional
(2D) mesoscopic channel the authors of Ref. [1] have shown
the analytic solution of the HMs to comprise periodic arrays
of vortex and antivortex pairs along both the axial channel
direction (labeled x) and the height direction (labeled z). As
the HMs can slide freely along the x direction, which can be
represented by an added random phase in HM’s periodic array,
superposition of such HMs was shown to reproduce the ther-
mal fluctuations time series with the same statistical properties
as that obtained from molecular dynamics (MD). Through the
orthogonality of the HMs, the fluctuation-dissipation theorem
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can also be expressed simply in terms of the eigenvalues of the
HMs, and the resulting diffusion constant value was shown
to be in good agreement with that obtained from molecular
dynamics (MD) [1].

It is an intriguing question whether some traces of the
HMs, with their long-range correlated fluid motion, can be
observed in thermal equilibrium. If so, there can be important
consequences since thermal fluctuations are fundamental to
the statistical mechanics of equilibrium systems; any nonlo-
cal correlations in thermal fluctuations would introduce new
elements to the statistical ensemble averaging of physical
parameters.

In this work, we show that by periodically modulating
the slip length in the Navier boundary condition along the
walls of a two-dimensional (2D) mesoscopic channel, the
nonlocal correlations of phase-locked HMs can become par-
tially detectable. This is due to the fact that the periodically
modulated boundary condition can suppress those HMs with
incommensurate periodicities, as well as add an energy cost
to any movement (along the x direction) of the HMs that
are commensurate with the periodicity of the boundary con-
dition modulation. In this sense the relative phase of the
periodic array of the HMs and that of the boundary mod-
ulation are “locked.” We obtained good agreement between
the theory prediction of nonlocal correlation and molecular
dynamics (MD) simulations on the same system. In particu-
lar, we have observed mesoscopic-scale spatial correlations
in equilibrium thermal fluctuations. Furthermore, diffusion
along the x direction of the channel is shown to exhibit an
unusual Einstein relation that corresponds to a spatially vary-
ing diffusion constant, consistent with the results on nonlocal
correlations.
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FIG. 1. A schematic illustration of the modulated boundary of
a mesoscopic 2D channel with height 2H and width 2L, with the
fluid molecules at the equilibrium state. Yellow regions denote the
segment where the solid wall-fluid intermolecular potential is given
by δw f = 0.2 in the notation of the Lennard-Jones potential, and blue
regions denote the segment where solid wall–fluid intermolecular po-
tential is given by δw f = 1.2. The two red and pink rectangles denote
the sampling regions for the evaluation of the velocity correlations.

II. SYSTEM GEOMETRY AND SOLUTION APPROACH

A. Geometry of the channel with modulated boundary condition

Consider a two-dimensional (2D) fluid channel with height
2H along the z direction and width 2L along the x direction.
The center of the channel is located at z = 0. A schematic
illustration of the fluid channel geometry is shown in Fig. 1,
where the periodically modulated slip length ls(x) along the
channel wall is delineated by different colored wall molecules.

While the geometry depicted in Fig. 1 is two dimensional,
we suggest that such a system can be simulated approxi-
mately in three dimensions (3D) by using modulation stripes
along the y direction. In such a system obviously dynamical
anisotropy, e.g., in the diffusion constant, along the three
orthogonal directions may be expected. However, in this work
we intend to focus only on the nonlocal velocity correlation
along the x direction and its associated implications.

B. Numerical solution of the HMs with modulated
boundary condition

To obtain the HMs with periodically modulated bound-
ary condition, we introduce the scalar potential φ(x, z, t )
to represent the 2D velocity field �u(x, z, t ), and rewrite the
hydrodynamic variables in anticipation of the exponential
time-decay form,

ux(x, z, t ) = ∂φ(x, z, t )

∂z
, uz(x, z, t ) = −∂φ(x, z, t )

∂x

�u(x, z, t ) = �u(x, z)e−λt , p(x, z, t ) = p(x, z)e−λt . (1)

The incompressible NS equation can be expressed in its
eigenfunction form,

(∇2 + λR)�u(x, z) = ∇p′(x, z), (2)

where R = ρ/η, ρ is the fluid density, η the shear viscos-
ity, p′(x, z) = p(x, z)/η, and λ denotes the eigenvalue which
should be a positive real number characterizing the rate of
decay. By taking the curl on both sides of Eq. (2), we eliminate
the pressure field and obtain a biharmonic equation for the
velocity scalar potential,

(∇2 + λR)∇2φ(x, z) = 0. (3)

Equation (3) can be numerically solved by using the fi-
nite difference method with a fourth-order accurate central
difference scheme. Numerical computations are based on LA-
PACK [2] and EIGEN [3] package libraries. Detailed procedures
are given in Appendix A [4]. In Fig. 2 we give two examples
of velocity eigenmodes with ls(x) given as

ls(x) =
{

1.5 x ∈ [−32,−16)
⋃

[0, 16)
0.1 x ∈ [−16,−0)

⋃
[16, 32]

, (4)

where the scale of length is given in the Lennard-Jones unit σ

used in MD simulations.

FIG. 2. Two velocity eigenmodes under the periodically modulated slip boundary condition with L = 32 and H = 8 in the Lennard-Jones
length unit σ = 0.34 nm. Two different colors label the two different regions of slip length, as indicated in Fig. 1. (a) A plot of the velocity
field for an eigenmode with λ = 0.117 in the Lennard-Jones unit of inverse time

√
ε/mσ 2, where ε is the energy unit and m is the mass unit.

The length of the vector denotes the velocity magnitude. (b) A plot of the velocity field for an eigenmode with λ = 0.132. In both cases the
modulated slip length is a piecewise constant function, given by Eq. (4). It is apparent that the velocity in the near-boundary region has a larger
magnitude in the larger slip length segment (colored yellow).
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C. Recapitulation of the approach for obtaining
the slip length from MD

In the numerical solution approach described above, it is
necessary to input the values of the slip length in the two
regions of the periodic boundary condition modulation [5–8].
Since we would like to compare our theoretical results with
those of MD simulations, there is a necessity for consis-
tency between the two. Since our approach of getting the
slip length from MD [1,9] differs from those better-known
previous methods in the literature [10–12], here we briefly
recapitulate our approach so as to make the present work more
self-contained [1].

In order to obtain the two slip lengths as inputs to the
numerical calculations, we use the analytical solution form
(for the uniform boundary condition) obtained for the 2D
channel [1] as the starting point, in which the slip length is
a parameter in the solution form, appearing in the dispersion
relation of the HMs:(

k2
x + k2

z

)

s + kx tanh (kxh) + kz tan (kzh) = 0. (5)

Here kx, kz are the spatial wave vectors for the Fourier
basis along the two directions; hyperbolic tangent and tan-
gent functions are particular to the analytic solutions that are
antisymmetric with respect to the center line of the channel,
z = 0. Here h < H denotes the position of the hydrodynamic
boundary [6,7,9,13], which always exists implicitly in MD
simulations, so that 2h denotes the domain of the HMs over
which they must be orthogonal to each other. Also, it should
be noted that k2

x + k2
z = λR for the analytic solutions of the

HMs.
The approach for obtaining the two values of the slip length

is simply to rely on the consistency between the ensemble-
averaged MD simulation results with the solution of the NS
equation. In order to get from Eq. (5) the slip length, the
aim is to obtain from MD the values of kz and h for a given
value of kx, so that 
s can be directly solved from Eq. (5).
How this can be achieved is briefly described below. As 
s is
a physical parameter, it should be independent of kx, which
has indeed been verified [1], so for simplicity we will use
kx = 0. Also, since we intend to use two different molecular
interaction potential values between the solid and liquid in
MD simulations, the above approach is to be used twice, so
as to extract the two different slip length values from the MD
simulations.

Since the parameters kz and h are always implicit in MD
simulations, to obtain them we first use the analytic form
of the HM for a given set of (kx, kz) to project it onto an
equilibrium configuration of MD, where kx is always given a
priori and kz is treated as a continuously varying parameter.
The projected configuration is then followed in time so as
to evaluate its time correlation behavior. Invariably, an ex-
ponential decay was observed, and from the inverse of the
slope a decay time can be obtained. Since only those discrete
special values of kz can satisfy the boundary condition, we
expect that when the decay time is plotted as a function of kz,
at such values of kz, that satisfy the boundary condition, the
decay time should display a local maximum. This is expected
from the fact that the Stokes equation can be derived from
the principle of minimum energy dissipation [14]; hence any

value of kz that does not satisfy the boundary condition should
display a faster decay, i.e., a shorter decay time. This indeed
turned out to be true in practice. Once multiple kz values are
determined, the orthogonality property between any pairs of
the analytic HMs can determine the value of h. This is easily
done by integrating the product of two different HMs from
z = 0 towards the solid boundary. Due to orthogonality, this
integral invariably vanishes at a point some distance h < H
from z = 0. Surprisingly, the value of h for any two pairs of
HMs determined in this manner is very consistent; i.e., h can
be overdetermined [9].

III. MOLECULAR DYNAMICS SIMULATIONS

We would like to verify the observable spatial correlations
by carrying out the MD simulations for a configuration-
matched microfluid channel where its hydrodynamic parame-
ters determined from MD trajectories are consistent with the
hydrodynamic equations in the continuum limit [15–18]. We
use GROMACS [19] to simulate a fluid with Lennard-Jones (LJ)
potential [15,16] confined between two parallel solid walls.
Detailed technical details of the MD simulations are given in
Appendix B [4]. Here we give an overall view. The length unit
σ = 0.34 nm, energy unit ε = 0.997 kJ/mol, and mass unit
m = 1.660 × 10−27 kg were chosen as the reduced units of
measurement. The equipartition theorem in our current system
is fixed at 〈�vi · �vi〉 = 0.201ε/m [16,20]. There are two types
of atoms in the MD system, the fluid atoms and the solid wall
atoms. The solid wall has three layers of atoms arranged in
the face centered cubic (fcc) lattice, and the modulation of the
slip boundary condition is achieved by interlacing two types
of solid atoms in a piecewise manner along the wall. Both
wall atoms interact with the fluid atoms via the LJ potential
ui j (�r) = 4εi j[(σi j/r)12 − δi j (σi j/r)6] where i,j refer to either
the fluid or the wall atom. Here “solid” is denoted by subscript
w and “fluid” by subscript f . Since we have adopted the
combination rule 1 for nonbonded interactions in GROMACS,
their parameters have the corresponding relation with those
in the LJ potential model given by C12 = 4εi jσ

12
i j and C6 =

4δi jεi jσ
6
i j . The two different solid-fluid intermolecular poten-

tials are distinguished by parameters δ
(k)
w f , k = 1, 2. In MD

simulations ls and the precise position of the hydrodynamic
boundary are implicit parameters, not known a priori. Our
strategy is to first carry out the MD simulations on uniform
slip length configurations and project the resulting (analytic)
HMs of constant slip length onto MD trajectories with spec-
ified δ

(k)
w f , k = 1, 2. As a result of the eigenmodes projection

method [1], the hydrodynamic boundary position h(k) as well
as the corresponding slip length l (k)

s can be uniquely de-
termined and mapped to δ

(k)
w f . Details of this approach are

given in Appendix A [4]. In this manner and by interlacing
two different constant fluid-solid intermolecular potentials
along the x axis, we have implemented the hydrodynamic
boundary condition of piecewise constant modulation of slip
length ls(x). The channel’s solid walls are divided into four
different regions as shown in Fig. 1 and regions with the
same color have exactly the same δw f . We list the relevant
MD parameters as well as their corresponding slip length ls
in Table I.

053106-3



XIAOHUI DENG, XIAOPING WANG, AND PING SHENG PHYSICAL REVIEW E 103, 053106 (2021)

TABLE I. The interaction parameters used in GROMACS. C12 and C6 are the two coefficients of the nonbonded intermolecular potential
model used for combination rule 1. Same basic units with GROMACS are used here.

Case I Case II

δw f 1.2 0.2

C12( kJ
mol nm12 ) Fluid-solid: 1.76750 × 10−5 Fluid-solid: 1.76750 × 10−5

Fluid-fluid: 9.51704 × 10−6 Fluid-fluid: 9.51704 × 10−6

C6( kJ
mol nm6 ) Fluid-solid: 0.010851 Fluid-solid: 0.001808

Fluid-fluid: 0.006161 Fluid-fluid: 0.006161

Slip length ls (σ ) 0.1 1.5

We have purposely chosen the two values of δw f that differ
by a fairly large factor of 6, so as to accentuate the different
slip length values in the two regions of the boundary condition
modulation. These values were obtained by trial and error,
after multiple tries. It can be seen that for the larger value of
δw f the slip length is so small that it is essentially nonslipping.

IV. RESULTS

HMs reflect the properties of collective motions of moving
fluid particles as a function of time t [21,22]. However, the
collective motion behavior of the HMs cannot be manifest
under the normal condition of uniform boundary conditions,
since the translational symmetry along the x direction allows
random phase additions as a function of time, leading to
velocity correlations governed only by the scales of molecular
collisions. In the present case, however, periodic modulation
of the slip boundary condition can selectively phase lock the
velocity eigenmodes by breaking their translational symmetry.
Thus there can be dynamical correlations extending across the
regions with different slip lengths. As a manifestation of such
effect, thermal fluctuations should also exhibit mesoscopic-
scale spatial correlations that are beyond the range of ballistic
collisions. Below we show such manifestations from both the
MD and HM perspectives, with good agreement between the
two.

A. Mesoscopic correlation in the average absolute
value of the velocity

Owing to the fact that the discretized matrices of both the
Laplacian operator and biharmonic operator in Eq. (3) are real
symmetric matrices, they admit orthonormal and complete
basis functions set {�uβ} which satisfies the relation∑

β

�uβ (�r)�uβ (�r′) = δ(�r − �r′)
∫

|�uβ (�r)|2d�r. (6)

At any instant t the molecular velocity field �v[�ri(t )] can
be expressed by superposing the continuum hydrodynamic
velocity eigenmodes in terms of the eigenmode projection
coefficient Aβ (t ) via

Aβ (t ) =
∑N

i �v[�ri(t )] · �uβ[�ri(t )]∑N
i �uβ[�ri(t )] · �uβ[�ri(t )]

, (7a)

�v[�ri(t )] ∼=
βmax∑
β

Aβ (t )�uβ[�ri(t )] , (7b)

where �v[�ri(t )] denotes the velocity of the ith atom in MD
simulations at position �ri(t ) at time t , �uβ[�ri(t )] denotes the
velocity of the βth eigenmode at position �ri(t ), and N is the
total number of fluid atoms. The maximum eigenmode index
βmax corresponds to the minimum decay time required for the
molecular collisions to establish the diffusive behavior. The
value of this minimum decay time can be established from
MD simulations by plotting the mean square displacement
versus t , in which there is inevitably a quadratic region, in-
dicating ballistic behavior, before entering the linear diffusive
regime [16,21–23].

On the right-hand side of Eq. (7b) we have an additive sum
of the velocity eigenmodes, each one of which displays meso-
scopic velocity correlations inherent in the collective motion
of the fluid. It is a legitimate expectation to see if �v[�ri(t )] can
display some trace of such nonlocal correlations.

To see explicitly whether such nonlocal correlations exist,
we employ MD simulations to evaluate the time series in
the difference in velocity squared—d (t ) := 〈v2

r −v2
l 〉spatial(t ).

Here v2
l denotes the velocity squared of the molecules located

inside the left-hand side sampling region shown in Fig. 1, col-
ored red, and v2

r denotes the velocity squared of the molecules
located inside the sampling region located inside the right-
hand side sampling region that is colored pink. Two cases
were examined—one with the periodic modulation of the
boundary condition and the other one with the uniform bound-
ary condition. To smooth the large oscillations in the time
series d (t ), we used a moving time window of length Nw =
1000 time steps to average out the fluctuations. The results
are shown in Fig. 3(a) for the case where the slip boundary
condition is uniform, i.e., no modulations. The red curve
denotes the window-averaged velocity square difference. The
value of 〈d (t )〉 is close to zero as expected. Here the error
bar is obtained by evaluating 4000 different time series, each
with a relatively short duration to obtain the variance from the
mean. Figure 3(b) shows the same results for the case when
the boundary condition is periodically modulated, as shown in
Fig. 1 with the parameters given in Table I. There is clearly a
nonzero correlation over mesoscopic scales. This comparison
clearly indicates the existence of partially detectable nonlocal
correlations in the average absolute value of the velocity field
in the case of the modulated boundary condition.

B. Spatially varying diffusion constant

As pointed out by Onsager [24], the time correlation of
equilibrium fluctuations is governed by the same transport
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FIG. 3. (a) Difference in the square of the velocity in two slip regions shown in Fig. 1, 〈v2
l −v2

r 〉spatial (t ), plotted as a function of time t . The
red curve represents the result from the moving window averaged over 1000 time steps. (a) In the uniform hydrodynamic boundary case the
mean value is close to 0 as expected. The mean value is labeled by the blue straight line. (b) In the modulated hydrodynamic boundary case
there is a clear nonzero collective correlation between the fluid motions over mesoscopic separations.

coefficient, e.g., the viscosity, as that governing the relaxation
process exhibited by the solution of the NS equation. One of
its representative dynamic implications is the diffusion con-
stant D which describes the ratio between the diffusive flux
and its local concentration gradient. According to the Kubo
formula [25,26],

D = 1

2

∫ ∞

0
〈�vi(0) · �vi(τ )〉dτ. (8)

Equation (8) can be expressed in terms of the HMs by
using Eq. (7). By invoking the equipartition theorem for each
eigenmode as an independent degree of freedom, we obtain
the diffusion constant distribution as

D(x, z)

= 1

2

∫ ∞

0

〈∑
β

∑
α

Aβ (0)Aα (τ )�uβ (0) · �uα (τ )

〉
dτ

= 1

2

βmax∑
β

1

λβ

〈
A2

β (0)
〉|�vβ (x, z)|2

= 1

2

kBT

ρ

βmax∑
β

1

λβ

1∫ [
u2

β,x(x, z)+ u2
β,z(x, z)

]
dxdz

|�uβ (x, z)|2.

(9)

From Eq. (9) it is clear that even when the system is under
the same temperature, there can still be nonlocal spatial cor-
relations introduced by the HMs as shown by Fig. 3. In other
words, the usual kinetic theory has to be modified in this case;
instead of each molecule having a fixed amount of thermal
kinetic energy, now the spatial unit of accounting should be
the HM.

By focusing on the statistical spatial correlations along the
x direction, we spatially average with respect to z:

D(x) = 1

2H

∫
D(x, z)dz ≈ 1

Ns

∑
k

D(x, zk ). (10)

From Fig. 1, it is expected that D(x) may exhibit spatial
variations on the mesoscopic scale that is commensurate with
the periodic modulation of the boundary condition; i.e., the

collective motions of the HMs should be partially manifest in
both thermal fluctuations as well as the diffusion constant.

To measure the local diffusion constant in the MD sim-
ulation so as to compare with that evaluated from Eq. (10),
we simply plot the square of displacement versus time and
measure half the slope of the straight line region [16]. The
displacement is within a single region of the slip bound-
ary condition, which is done by choosing an appropriately
large-sized box at different positions along the x axis as our
monitoring window, and limit the time interval to be small
enough so that the measured atom within the box does not
drift out. To perform the average along the z axis as shown in
Eq. (9), we choose z = 0, 3.0, 6.0, 6.9 σ as the four starting
positions and carry out the Einstein relation measurements.
Then D(x) is obtained by averaging the four measured values.

To compare the region-averaged diffusion constant D com-
puted by HM superpositions, i.e., Eq. (10), with that evaluated
from MD simulations by using the Einstein relation, we plot
the diffusion constant as evaluated from the HM data points
as blue lines in Fig. 4 and the MD results as red dots. Good
consistency can be seen, in which the spatial variations along
the x direction reveal that the hydrodynamic boundary modu-
lation has indeed led to observable consequences beyond the

FIG. 4. Comparison of region-averaged diffusion constant D cal-
culated by HM superposition (blue lines) and data points measured
from MD trajectories (red dots). There is ∼5% relative error between
the two results.
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FIG. 5. A schematic plot of three different representative Einstein relations under the modulated boundary conditions. (a) A small group of
fluid particles, i.e., one or two which are located in the region x ∈ [−L,−L/2], are monitored for their long-time diffusion behavior. It is seen
that at first the Einstein linear relation holds, but later an apparent drop in slope can be seen as it drifts into the neighboring region in which
the diffusion constant is smaller. (b) A case where a small group of fluid particles is selected in the region x ∈ [−L/2, 0] and the mean square
displacement curve retains a near-constant asymptotic slope. (c) Contrary to case (a), an apparent rise in slope is seen after the particles drift
into a neighboring region in which the diffusion constant is larger.

molecular collision length scale. In view of velocity eigen-
modes, it is not surprising that the mobility within the larger
slip length region is larger than that of the neighboring re-
gions, hence a slightly larger diffusion constant.

C. Einstein relation

As a manifestation of the different diffusion constant val-
ues in different spatial regions, the dynamic behavior of the
fluid particles as evaluated by the mean squared displacement
〈(�x)2〉 as function of t should exhibit nonlinear asymptotic
behavior when t is large enough so that the particle can drift
into different modulated regions. Figure 5 presents three dif-
ferent representative Einstein relations under the modulated
boundary conditions. Due to the different mobilities in differ-
ent regions and depending on whether the fluid atoms drift
into the region with a larger or smaller diffusion constant,
the tail part of the displacement curve can display a larger or
smaller asymptotic slope, as delineated in Fig. 5 by straight
dashed lines. Of course there is the possibility of the fluid
particles staying within one region for a long time, so that the
linear asymptotic slope can be maintained over the measure-
ment timescale as shown in Fig. 5(b).

V. SUMMARY

To recapitulate, we show that with the modulated slip
boundary condition in a mesoscopic fluid channel, there can
be spatial correlations in thermal fluctuations that extend be-
yond the microscopic ballistic collision scales. This is due to
the breakdown of translational symmetry by the periodic mod-
ulations of the slip boundary condition along the channel’s
walls, leading to phase locking of the HMs. We demonstrate
the existence of mesoscopic-scale spatial correlations by us-
ing MD simulations, which show good agreement with the
predictions of the phase-locked HMs through the fluctuation-
dissipation theorem.
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APPENDIX A

Here we present the detailed numerical procedures of com-
puting the eigenfunctions of the biharmonic equation of the
scalar potential φ(x, z),

(∇2 + λR)∇2φ(x, z) = 0. (A1)

The rectangular channel is discretized by an evenly dis-
tributed mesh with Nx grid points along the x direction and Nz

grid points along the z direction. Integer pairs (i, j) are used
to index the grid points of the function φ(x, z) at positions
−L + (i−1)�x,−H + ( j−1)�z where i denotes the index
along the x axis and j denotes the index along the z axis,
shown in Fig. 6. By using this notation, the biharmonic differ-
ential operator can be discretized by using the finite difference
method (FDM) with a fourth-order accuracy central difference
scheme as [27]

∇2∇2φ = ∂4φ

∂x4
+ 2

∂4φ

∂x2∂z2
+ ∂4φ

∂z4

= 1

(�x)4 φi−2, j −
[

4

(�x)4 + 4

(�x)2(�z)2

]
φi−1, j

+
[

6

(�z)4 + 6

(�x)4 + 8

(�x)2(�z)2

]
φi, j

−
[

4

(�x)4 + 4

(�x)2(�z)2

]
φi+1, j + 1

(�x)4 φi+2, j

+ 1

(�z)4 φi, j−2 −
[

4

(�z)4 + 4

(�x)2(�z)2

]
φi, j−1

−
[

4

(�z)4 + 4

(�x)2(�z)2

]
φi, j+1 + 1

(�z)4 φi, j+2

+ 2

(�x)2(�z)2 (φi−1, j+1 + φi+1, j+1

+φi−1, j−1 + φi+1, j−1), (A2)
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FIG. 6. A schematic representation of the uniformly discretized
mesh. Here i = 1 and i = Nx correspond to the left and right sides
of the hydrodynamic boundary x = −L, x = L, respectively, while
j = 1 and j = Nz correspond to the lower and upper hydrodynamic
boundary z = −H , z = H , respectively. Blue arrows indicate the
natural index sequence when assembling the eigenmode vectors φ̂

as well as the coefficient matrix L and B. From the Navier slip
boundary condition uz(x, ±H ) = 0, stream function φ(x, z) should
be constant at grid points (i, 1), (i, Nz ), while the equality φ1, j =
φNx , j holds at the hydrodynamic boundary at x = ±L owing to the
periodicity of the boundary condition along the x axis. Therefore
the grid points for the unknown values of φ(x, z) only cover the set
{φi, j |i = 1, 2, . . . , Nx − 1, j = 2, 3, . . . , Nz − 1} which we denote
as the “interior points.” The “interior points” are to be solved from
the discretized matrix equations.

and the Laplacian operator can be discretized as

(∇2φ
)

i, j
= ∂2φ

∂x2
+ ∂2φ

∂z2

= − 1

12

1

(�x)2 φi−2, j + 16

12

1

(�x)2 φi−1, j

− 30

12

[
1

(�x)2 + 1

(�z)2

]
φi, j + 16

12

1

(�x)2 φi+1, j

− 1

12

1

(�x)2 φi+2, j − 1

12

1

(�x)2 φi, j−2

+ 16

12

1

(�x)2 φi, j−1 + 16

12

1

(�x)2 φi, j+1

− 1

12

1

(�x)2 φi, j+2. (A3)

For simplicity the Navier slip boundary condition is dis-
cretized by using the second-order accuracy central difference
scheme as

ls[i]
φi,2 − 2φi,1 + φi,0

(�z)2 = φi,2 − φi,0

2�z
,

ls[i]
φi,Nz+1 − 2φi,Nz + φi,Nz−1

(�z)2 = −φi,Nz+1 − φi,Nz−1

2�z
,

φi,1 = φi,Nz = 0, (A4)

from which we can express the ghost points in terms of the
interior points:

φi,0 = �z − 2ls[i]

�z + 2ls[i]
φi,2, φi,Nz+1 = �z − 2ls[i]

�z + 2ls[i]
φi,Nz−1,

(A5)

where ls[i] denotes the value of the slip length ls(x) at grid
points −L + (i−1)�x, 1 and −L + (i−1)�x, Nz. In this man-
ner, we transform the differential operator ∇2∇2 and ∇2 to the
discretized coefficient matrices B and L, respectively, from
which we would like to obtain the eigenvectors of Bφ̂ =
−λRLφ̂. A schematic illustration of the solution procedures
is listed in the flow chart, Fig. 7, where the arrows indicate the
flow sequence. Our basic strategy is to transform the general-
ized eigenvector problem to the standard eigenvalue problem
form Ax̂ = λ̂x. Here the constant R = ρ/η is grouped into the
eigenvalue λ.

Solution procedure

Step I. In order to match the standard form of general-
ized eigenvalue problem, multiply −1 on both sides of Bφ̂ =
−λLφ̂ and denote B′ = −B. The new generalized eigenequa-
tion is therefore B′φ̂ = λLφ̂.

Step II. Compute the split Cholesky factorization of a real
symmetric positive definite matrix L and record its factor
matrix S, L = ST S. In order to save storage memory, we use
the band matrix form to present the sparse matrix L and the
factor S is also returned in the band matrix form with the
same bandwidth as L. This step is implemented by the DPBSTF

routine provided by LAPACK [2].
Step III. Following Step II the generalized eigenequation

has been transformed to B′φ̂ = λST Sφ̂. Multiply S−T on both
sides; then we have

S−T B′S−1Sφ̂ = λSφ̂, (A6)

where the identity matrix I = S−1S is inserted to make the
coefficient matrix S−T B′S−1 on the left-hand side (LHS) sym-
metric. Generally S−T B′S−1 is not a sparse matrix which will
make the subsequent computation less effective. To solve this
problem, we perform a similarity transformation by introduc-
ing an orthogonal matrix Q1:

QT
1 S−T B′S−1Q1QT

1 Sφ̂ = λQT
1 Sφ̂, (A7)

where we denote C = QT
1 S−T B′S−1Q1 and ŷ = QT

1 Sφ̂. Here
Q1 is chosen to preserve the bandwidth of the matrix B. This
procedure is implemented by the DSBGST routine provided by
LAPACK.

Step IV. The matrix Q2 is introduced to further transform
C to a tridiagonal matrix:

QT
2 CQ2 = C′, (A8)

where I = QT
2 Q2. This procedure uses a sequence of elemen-

tary reflections to transform the matrix C. The transformations
are applied to the matrix both from the right and from the
left, preserving the matrix symmetry on each stage and se-
quentially removing nondiagonal elements. Numerically, this
procedure is implemented by the DSBTRD routine provided by
LAPACK.

Step V. After Step IV, Eq. (A7) becomes

C′ŷ′ = λŷ′, (A9)

where ŷ′ = QT
2 ŷ. This is a standard eigenvalue problem. The

eigenvalues λ can be calculated according to the increasing
magnitude, and the corresponding eigenvectors {ŷ′

n} are ful-
filled by the DSTEVR subroutine provided by LAPACK.
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FIG. 7. A schematic flow chart for the solution procedure. The main purpose is to transform the required eigenvector φ̂ to the intermediate
variable ŷ

′
, which satisfies φ̂ = S−1Q1Q2ŷ

′
. After obtaining the eigenvectors {ŷ′

n}, we retrieve the original scalar potential eigenvectors {φ̂n}
through a linear transformation.

Step VI. Since the above transformations do not change the
eigenvalues, we only need to restore the original eigenvectors.
Combining all the above linear transformations we have

φ̂ = S−1Q1Q2ŷ′, (A10)

where the intermediate coefficient matrix X = S−1Q1 and Q2

need to be saved during the calculation.

APPENDIX B

In this Appendix we present the implementation details
of MD simulation with the modulated slip boundary condi-
tion. Molecular dynamics simulations of the Lennard-Jones
(LJ) potential fluid [16] confined between two parallel solid
walls are carried out to numerically verify the spatial correla-
tions induced by phase lock of HMs. There are two types of
atoms in the MD system: fluid atoms and solid wall atoms.
Here we choose the length unit σ = 0.34 nm, energy unit
ε = 0.997 kJ/mol, and mass unit m = 1.660 × 10−27 kg as
reduced units of measurement.

The solid wall has three layers of atoms arranged in a
face centered cubic (fcc) lattice, and the modulation of the
boundary condition is achieved by interlacing two types of
solid atoms in a piecewise manner along the wall. Both
wall atoms interact with the fluid atoms via the LJ potential
ui j (�r) = 4εi j[(σi j/r)12 − δi j (σi j/r)6] where i, j refer to the
either the fluid or the wall atom. Here “solid” is denoted
by subscript w and “fluid” by subscript f . The solid wall
atoms and fluid atoms are coupled to separate thermostats
with different temperatures. Here the degree of freedom of the
solid wall atoms is frozen for simplicity. Periodic boundary
conditions were applied along all three directions with the
periodicity along the y axis being as short as 2.176 nm (6.4σ ).
The reason for this choice is due to the requirement that
the periodicity must be at least twice as larger as the cutoff
radius σc = 2.53σ of the LJ potential. Here we set εw f =
1.16ε, σw f = 1.04σ , and ε f f = ε, σ f f = σ , δ f f = 1. The two
different solid-fluid intermolecular potentials are distin-

guished by parameters δ
(k)
w f , k = 1, 2. The average number

density of the fluid is set at ρ = 0.824/σ 3. To keep the MD
system at a constant temperature equilibrium state we use the
Nosé-Hoover chain algorithm [16,20,28] with chain length
lc = 2 as the fluid atoms’ thermostat. The default time unit
in GROMACS [19] is 1 ps and throughout the MD simulation
the equations of motion are integrated with time a step of
�t = 0.0001 ps. Center of mass motion was removed at a fre-
quency of 10 000 steps. We save the coordinates and velocity
data to the trajectory file every 50 time steps.

We perform MD simulations at NVT ensemble constraints;
i.e., the number of atoms, volume, and temperature of the
system are all fixed. At the initial time step all fluid atoms
were put at evenly distributed lattice sites with appropriate
intervals. Then we added three layers of solid atoms arranged
with face centered cubic structure both above and beneath
the inserted fluid atoms. The geometric size of the channel
is 2L × 2H × 2W with 2H = 16σ , 2L = 64σ , 2W = 6.4σ .
Here H denotes the fluid-solid interface in the MD con-
figuration rather than the hydrodynamic boundary position
h [9]. We evolve a total of 3 000 000 time steps starting from
the initial configuration in order to attain the equilibrium
state.

Before carrying out simulations of the microfluid system
with the modulated boundary condition, we need to first per-
form MD simulations with the uniform boundary condition,
i.e., constant slip length, in order to obtain the necessary slip
length to be used in the HM calculations. By carrying out two
such simulations, each with a different wall-fluid interaction
potential, we can obtain two different slip lengths. These
slip length values are the ones used in the HM calculations
with the modulated slip boundary condition. The two different
wall-fluid interaction potential values are also implemented in
the MD simulation as interlaced periodic wall-fluid interaction
potential as shown in Fig. 1 in the main text.

For the uniform slip boundary condition, analytic solution
of the HMs can be obtained [1]. We use this analytic form
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FIG. 8. Decay time τ plotted as a function of kz in the uniform hydrodynamic boundary case. (a) For δw f = 1.2, three black dots correspond
to the peak points of the red curves, which theoretically predict the hydrodynamic modes’ eigen wave vector kz as well as its decay time. The
upper blue curve corresponds to the relation τk2

z = ρ/η, where the viscosity η = 0.445
√

εm/σ 2. (b) For δw f = 0.2, three black dots correspond
to the peak points of the red curves in reduced units.

of the HMs, with constant slip length, for projection onto the
MD trajectories with specified δ

(k)
w f , k = 1, 2 so as to obtain

a mapping relation between the MD parameters and the slip
length ls, shown in Table I in the main text. This is achieved by
applying the eigenmode projection method [1], i.e., plotting
the decay time τ as function of kz in which the decay time
is defined as the inverse of the slope of the logarithm of the
transverse momentum autocorrelation function Cβ (kz,�t ), so
that when the kz value actually meets the boundary condition
requirement in MD simulations, the corresponding decay time
τ is expected to be a local maximum. In this manner, we
can select at least three kz values indicated by the peaks of
the τ ∼ kz curve and calculate the cross products of veloc-
ity eigenmodes for any two of them to observe their first

zero crossing as the hydrodynamic boundary position h(k).
Once h(k) is determined, the corresponding slip length l (k)

s
can be uniquely determined by solving the dispersion relation
tan(k(n)

z h) = −k(n)
z ls. In this context we will briefly describe

how to obtain the hydrodynamic parameters pair (h(k), l (k)
s ) for

δw f = 1.2, 0.2, respectively. More details of such procedure
can be found in Refs. [1,9].

1. Case I. δw f = 1.2

We project the one-dimensional HM with input series val-
ues of kz onto the MD simulation trajectory with δw f = 1.2
and evaluate its transverse momentum autocorrelation func-
tion Cβ (kz,�t ),

Cβ (kz,�t ) =
〈(∑N

i �v[�ri(t0)] · �uβ[�ri(t0)]
){∑N

i �v[�ri(t0 + �t )] · �uβ[�ri(t0 + �t )]
}〉〈(∑N

i �v[�ri(t0)] · �uβ[�ri(t0)]
){∑N

i �v[�ri(t0)] · �uβ[�ri(t0)]
}〉 . (B1)

By taking the inverse of the slope of lnCβ (kz,�t ), we
obtain the plot of decay time τ as a function of �t , shown
in Fig. 3(a). The reason of choosing the one-dimensional
(1D) mode [1,9] with kx = 0 is that for the kx �= 0 case, a
priori knowledge of hydrodynamic boundary position h is
necessary in the calculation of Cβ (kz,�t ). After selecting the
kz values of peak points of the τ ∼ kz curve, through invoking
the relation τk2

z = ρ/η, the fluid viscosity η could be simul-
taneously determined, here η = 0.445

√
εm/σ 2. In order to

determine the hydrodynamic boundary position h, by invoking
the mutual orthogonality of HMs we select three modes with
kz values indicated by the three black dots in Fig. 8(a), and
integrate the cross products of any two of them from z = 0
towards the solid-fluid interface, denoted as 12, 13, and 23.
If the continuous hydrodynamic equations are assumed to be
correct, then the integration of these three cross products must
vanish at the same location. This value of z is denoted as the
hydrodynamic boundary position h. Once h is determined, the

slip length ls can be simultaneously calculated by substituting
the eigenvectors k(n)

z and h into the dispersion relationships
tan(k(n)

z h) = −k(n)
z ls. When δw f = 1.2, the hydrodynamic pa-

rameters are h = 7.5σ and ls = 0.1σ .

2. Case II. δw f = 0.2

Following the same procedures with case I, we plot the
decay time τ as a function of time �t , shown in Fig. 8(b).
The first three peaks of kz values as well as its corresponding
decay time τ are selected as HMs satisfying the boundary
conditions. When δw f = 0.2, the hydrodynamic parameters
are h = 6.8σ and ls = 1.5σ .

It is to be noted that there is a very small difference in the
positions of the hydrodynamic boundary for the two cases.
This small difference is ignored in our continuum calcula-
tions.
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