
PHYSICAL REVIEW E 103, 053104 (2021)

Influence of Knudsen and Mach numbers on Kelvin-Helmholtz instability
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The combined influence of rarefaction and compressibility on classical Kelvin-Helmholtz instability is
investigated with numerical simulations employing the unified gas kinetic scheme. Five different regimes in
the Reynolds-Mach-Knudsen number parameter space are identified. The flow features in various Mach and
Knudsen number regimes are examined. Stabilizing action of compressibility leads to suppression of perturbation
kinetic energy and vorticity and/or momentum thickness. The suppression due to rarefaction exhibits a different
behavior. At high enough Knudsen numbers, even as the perturbation kinetic energy is suppressed, the vorticity
and/or momentum thickness grows. The flow physics underlying the contrasting mechanisms of compressibility
and rarefaction is highlighted.
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I. INTRODUCTION

Mixing layers fall in the category of free-shear flows,
which include jets and wakes. These flows are susceptible to
the Kelvin-Helmholtz (KH) instability due to inflection points
present in the velocity profile. In the classical instability, the
shear layer rolls up into vortices or billows about the inflection
line entraining fluid from the freestream. In this paper, we
examine the effect of rarefaction and compressibility on the
onset of KH instability. Such a study is of practical value
in understanding the rarefied jet plumes of satellite thrusters,
slipstreams formed behind a Mach stem, and many other
engineering and astrophysical flows. At the low Mach number
limit, the effects of rarefaction can provide insight into mixing
in micromechanical devices.

Based on the parallel-flow Orr-Sommerfeld equation, mix-
ing layers are shown to be unconditionally unstable [1],
leading to the inference that the critical Reynolds number
(Recr) is zero for the onset of the instability. Villermaux [2]
accounts for the diffusive growth of the base flow in the
Orr-Sommerfeld equation, and provides a modification to
the marginal stability curve of [1]. Inclusion of nonparallel
effects [3] for a spatially developing laminar incompress-
ible mixing layer base flow further increases the Recr to
approximately 30. Convective Mach number [4], defined as
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Mc = (U1 − U2)/(c1 + c2), where U1 and U2 are velocities
of two streams with respective sound velocities c1 and c2,
quantifies the compressibility effects in high-speed mixing
layers. Lessen et al. [5] show that compressibility enhances
the stability of mixing layers and that oblique waves are
more unstable than streamwise waves at high convective Mach
numbers. Sandham and Reynolds [6] show using linear stabil-
ity analysis of inviscid compressible mixing layers that for
Mc > 0.6, the disturbances became three dimensional. Nu-
merical simulations of Navier-Stokes equation show that at
higher Mc, the vortical structures are more oblique. Linear
stability analysis on compressible mixing layers by Ragab and
Wu [7] show that reducing the Reynolds number reduces the
perturbation growth rate at all frequencies. The growth cal-
culated from their analysis for three-dimensional disturbances
matched with experimental growth rate at low Mach numbers.
Jackson and Grosch [8] have also conducted linear stability
analysis of the mixing layer, and showed that beyond a critical
Mach number there exist two groups of unstable waves, a fast
mode and a slow mode.

In his pioneering work, Chapman [9] shows, using self-
similar analysis of laminar compressible mixing layers, that
the growth rate for a constant Reynolds number would de-
crease with increasing Mc. A similar inference is made in
turbulent mixing layers as the turbulent kinetic energy pro-
duction reduces as the Mc increases [10–12]. Karimi and
Girimaji [13] showed that spanwise perturbation in the incom-
pressible mixing layers which induces lift-up instability [14]
were unaffected by Mc. Streamwise perturbations, however,
were shown to stabilize with increase in Mc. The stability
of streamwise perturbations at larger Mach number was due
to the wavelike nature of pressure, leading to winding and
unwinding of roll-up billows [15].
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The degree of rarefaction is parametrized by Knudsen
number Kn = λ/L∞, where λ is the mean-free path, and L∞
is the characteristic length scale. Most studies on the effect
of slight rarefaction in canonical flow instability, such as in
Rayleigh-Bénard (RB) [16], Taylor-Couette [17], and Kol-
mogorov flow [18], have examined the effect of slip at the
wall. These studies investigate flow stability using the Navier-
Stokes equation with modified boundary conditions due to the
slip at the wall. Numerical studies using the direct simulation
Monte Carlo approach have also been performed by Stefanov
et al. [19] and Stefanov and Cercignani [20] on such flows.
Ben-Ami and Manela [16] found that the constant heat flux
boundary condition is more destabilizing than the constant
temperature boundary condition, as it increases the range
of Knudsen number at which the flow is unstable. Stefanov
et al. [19] identified a hysteresis between two attractors of
RB flow. Both of the works mentioned above show that at
lower Froude number compressibility effects force the con-
vection cells to the vicinity of the colder wall. Manela and
Frankel [17] find that the critical Reynolds number, defined in
a way that accounts for the variation of temperature changes,
remains the same at higher Mach number as well. However,
the effect of rarefaction on the KH instability is less under-
stood. The objectives of this paper are to (a) investigate the
combined effects of Mach and Knudsen numbers on the stabil-
ity of two-dimensional mixing layers and (b) characterize the
flow physics at various Re-Kn-Mc regimes. Direct numerical
simulations of mixing layers for various combinations of Mc

and Kn are performed by solving the Bhatnagar-Gross-Krook
(BGK) Boltzmann equation.

II. NUMERICAL METHOD AND VALIDATION

The finite-volume-based unified gas kinetic scheme
(UGKS) [21] is used to solve the BGK-Boltzmann transport
equation [22]:

∂ f

∂t
+ ci

∂ f

∂xi
= ν( f0 − f ), (1)

where f is the particle distribution function, ci is the particle
velocity, f0 is the Maxwellian equilibrium distribution func-
tion, and ν is called the collision frequency. The Maxwellian
equilibrium distribution f0 is given as

f0 = ρ
( m

2πkT

)3/2
exp

(
− m

2kT
((ci − Ui )

2)
)
. (2)

In the UGKS, the velocity space is also discretized, un-
like other continuum solvers. The fluxes are computed using
analytical solution of the BGK-Boltzmann equation. The par-
ticle distribution functions at the cell interface are obtained
using a third-order weighted essentially non-oscillatory re-
construction [23], to study rarefaction effects in cavity flow
by Venugopal et al. [24]. Ragta et al. [25] showed that the
three-dimensional (3D) UGKS scheme could accurately cap-
ture turbulence at low Reynolds number. The two-dimensional
(2D) flow domain, mean flow velocity field, and boundary
conditions used in this study are shown in Fig. 1. The parame-
ters which govern the evolution of the mixing layer in addition
to Mc, Kn, and Re are Prandtl number (Pr = 1), and the ratio
of specific heat capacity (γ = 1.667). Since monatomic gas

Lx

0 u)tanh (y)
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D
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FIG. 1. Computational domain showing the initial averaged ve-
locity profile and boundary conditions.

has been considered, the bulk viscosity is zero. The effects
of nonzero bulk viscosity on turbulent compressible flow
have been discussed in a few recent investigations [26–28].
According to the work of Boukharfane et al. [26], wherein
they considered a nonreactive two-species mixing layer for
zero and nonzero bulk viscosity in the presence of an oblique
shock, the development of turbulent kinetic energy was unaf-
fected by the presence of bulk viscosity. However, it was also
shown by Chen et al. [27] and Pan et al. [28] that for homo-
geneous turbulence, the flow approaches the incompressible
regime as bulk viscosity increases. This can be attributed to
the macroscopic effect of bulk viscosity at resisting dilatation.
It was shown by Jackson and Grosch [29] that upon changing
Prandtl number, the qualitative results obtained for the com-
pressible mixing layer remain unchanged. While this work has
been for Pr = 1, the inferences are expected to be qualitatively
similar for a different Prandtl number.

Using the hard-sphere model [25], Mc, Re, and Kn are
related as

Re = 16

5

Mc

Kn

√
γ

2π
. (3)

We examine the effect of Mc and Kn on mixing lay-
ers using three indicators, namely, vorticity thickness (δ =
	u/ωmax), momentum thickness [δm = 1/ρ∞

∫ ∞
−∞ ρ̄(1/4 −

ũ2
x/	u2)dy], and volume-averaged perturbation kinetic en-

ergy [k = (1/V )
∫ ∞
−∞

1
2 u′′

i u′′
i dV ]. Here, ωmax = max(∂ ũx/∂y)

represents the maximum vorticity computed using the Favre-
averaged streamwise velocity, ũx. The Favre average of a
variable q is given as q̃ = (ρq)/(ρ̄), with the overbar rep-
resenting Reynolds averaging, and corresponding velocity
perturbation is obtained as u′′

i = ui − ũi.
All the variables are nondimensionalized using the

freestream temperature T∞, freestream density ρ∞, most
probable speed c∞ = √

2RT∞, and initial vorticity thickness
δ0. The mean velocity is given by ũ(x, y) = 0.5(	u) tanh(y),
which is seeded with harmonic (kxδ0 = 0.628, wavelength
equal to half the domain length in the streamwise direc-
tion) and subharmonic (kxδ0 = 0.314, wavelength equal to
the domain length in the streamwise direction) solenoidal
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FIG. 2. Comparison of present work against Sandham’s [30] re-
sult (S94) for Mc = 0.2–0.8 and Re = 200.

perturbations, following Sandham [30]. These perturbations
are also close to the minima of the marginal stability curve
reported by Bhattacharya et al. [3].

The initial temperature distribution follows the Crocco-
Busemann relationship and the pressure is kept constant
throughout the domain. The initial densities of both the
freestreams are equal. The particle distribution function is
initialized as a Maxwellian distribution function. The UGKS
computation has been validated for Re = 200.0 for various Mc

at Kn ≈ 10−3. The evolution of the vorticity thickness with
time (scaled by 2δ0/	u) is compared against the continuum
results of Sandham [30] in Fig. 2. A grid independence study
has been conducted for all the cases presented in the present
problem.

III. RESULTS

Simulations are performed by varying the Mc and initial
Knudsen number, Kn0. As the mixing layer develops, the
instantaneous Knudsen number, Kn(t ) = Kn0δ0/δ, changes
since the thickness of the mixing layer evolves with time.
The Reynolds number correspondingly changes according to
Eq. (3). The evolution of mixing layer thickness and perturba-
tion kinetic energy are computed and analyzed.

A. Perturbation kinetic energy

The time evolution of k/k0 for Mc = 0.2 and 0.8 at various
Kn0 are plotted in Fig. 3. Low Kn0 cases exhibit the canon-
ical instability. For other cases the ultimate k/k0 decay rate
increases with increase in Kn0. It can also be seen that the
decay rate is faster at lower Mc for a given Kn0. From Eq. (3),
at a given Kn, an increase in Mc implies an increase in Re.
Thus, the reduced decay rate of k may be due to the increase
in Reynolds number, which reduces viscous effects. This is
consistent with the findings of Betchkov and Szewczyk [1],
that decreasing the Reynolds number reduces the growth rate
for an incompressible flow, even though the inception of KH
instability is due to an inviscid mechanism.

It is also interesting to note that for Mc = 0.2, the k/k0

time evolution is nonmonotonic for Kn0 < 0.05 and monoton-
ically decaying for Kn0 > 0.05. A similar observation can be
made from Fig. 3(b) as well, where the flow starts decaying
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FIG. 3. Development of normalized perturbation kinetic energy
at (a) Mc = 0.2 and (b) Mc = 0.8. The legend symbol (*) is for
(a) Kn0 = 1.65 × 10−3 and (b) Kn0 = 6.6 × 10−3.

(although not monotonically) for Kn0 > 0.025. Indeed, the
stabilization depends on Re and wavenumber, as shown by
Bhattacharya et al. [3], and there exists a critical Re below
which there is no amplification of perturbation kinetic energy,
which depends on Mc and Kn as given in Eq. (3).

In high Mc flows, Karimi et al. [15] have demonstrated that
due to the dilatational nature of velocity there is a delay in
the development of KH instability, as it leads to the rolling
and unrolling of the vortex. It is important to note that the
effect of increasing Kn0 is to stabilize the flow irrespective
of Mc or compressibility. The nonmonotonic behavior will be
examined later.

B. Mixing layer thickness

Next the evolution of mixing layer thickness is examined
for various Kn0 and Mc. Figures 4 and 5 show the develop-
ment of vorticity thickness and momentum thickness of the
mixing layer with time. Ragab and Wu [7] showed using
3D linear stability of the compressible mixing layer that the
growth rate decreases with increase in Mc. At small Kn0,
Fig. 4(a) shows that the mixing layer thickness exhibits a
nonmonotonic increase with time. The mixing layer thickness
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FIG. 4. Development of vorticity thickness. The legend is the
same as in Fig. 3.
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FIG. 5. Development of momentum thickness. The legend is the
same as in Fig. 3.

has an initial exponential growth followed by a decrease. It is
seen that at these small Kn0, the peak mixing layer thickness
decreases with increase in Kn0, in effect implying that the
growth rate decreases with increase in Kn0 [shown by the
downward pointing red arrow in Fig. 4(a)]. At larger Kn0,
the growth rate is monotonic, and it increases with increase
in Kn0, which is shown by the upward pointing blue ar-
row. The nonmonotonic growth in the mixing layer thickness
is seen for cases which show amplification in the pertur-
bation kinetic energy, i.e., the unstable cases. Interestingly,
the monotonic mixing layer growth is seen for cases which
show decay in perturbation kinetic energy, i.e., the stable
cases.

For Mc = 0.8, it is seen that at high Kn0 (stable cases),
the growth rate is monotonic and increases with increase in
Kn0; however, it is slower in comparison to Mc = 0.2. At
low Kn0 (unstable cases) as well, it is seen that the growth
rate is slower than Mc = 0.2, but, similar to what was seen
in Mc = 0.2, the growth rate decreases with increase in Kn0.
From Fig. 4 and Fig. 5, both the vorticity thickness and
the momentum thickness are of a similar order of magni-
tude, and they follow similar trends as the mixing layer
develops. The conclusions drawn from the vorticity thickness
plots are applicable for momentum thickness development as
well.

C. Regimes of mixing layer

All the computations above are initiated with a particular
Re0, and Re evolves with time since δ increases with time. The
rate of change of k/k0 against instantaneous Reynolds num-
ber, Re(t ) = Re0δ/δ0, for various Kn0 is shown in Figs. 6(a)
and 6(b) for Mc = 0.2 and 0.8, respectively. It is seen that the
flow becomes unstable (dk/dt > 0) only if Re(t ) > Recr at
some stage of the evolution. Here, Recr refers to the Reynolds
number at which marginal stability is obtained. The Reynolds
number at which the flow starts showing positive dk/dt is
noted as Recr for each convective Mach number. We ex-
amine only the initial unsteady development in this paper.
The computed values of Recr obtained for various Mc are
tabulated in Table I. For larger Mc, due to the oscillations
in the perturbation kinetic energy mentioned in Sec. III A,
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FIG. 6. Evolution of perturbation kinetic energy for various Kn0

for (a) Mc = 0.2, (b) Mc = 0.8. The blue triangle is (a) Kn0 = 0.5
and (b) Kn0 = 0.1. The green asterisk is (b) Kn0 = 6.59 × 10−3.

smoothening needs to be applied to the time derivative and
hence the exact value of Recr cannot be deduced. For the
incompressible regime, Recr is approximately constant; how-
ever, in the compressible regime, Recr increases with increase
in Mc. The corresponding Kncr can be obtained from Eq. (3).

In the earlier discussion, it was shown that the effect of
compressibility on the evolution of k/k0 is nonmonotonic.
It was also seen that the Kn has a stabilizing effect. Based
on this, five different regimes in the Kn-Re-Mc parameter
space are proposed. The flow physics of these regimes will be
analyzed in detail in a full paper. The present paper discusses
only the important features.

Low-Kn, low-Mc regimes. Figures 7(a)–7(c) show the vor-
ticity contours at three instants, as the mixing layer develops
in this regime for the case of Mc = 0.2 and Kn0 ≈ 10−3. In
this regime, the flow is unstable and exhibits classical KH
instability. Since the Mach number is low, the velocity field
is solenoidal in nature [15]. The perturbation kinetic energy
amplifies without any oscillations. The mixing layer thickness
shows a nonmonotonic growth, with the growth rate of the
mixing layer thickness decreasing with increase in Knudsen
number.

High Kn, low Mc. Figures 7(d)–7(f) show the vorticity
contour of the mixing layer in this regime for Mc = 0.2 and
Kn0 = 0.1 at different instants. Since O (Re) = 1, the flow is
dominated by viscous effects, and since the Mach number
is low, the velocity field is solenoidal in nature. At high
enough Knudsen number, ballistic effects of rarefaction occur.
Ballistic effect refers to the phenomenon in which collision
between molecules becomes less frequent than in continuum
cases [24]. This has two consequences: increased mean-free
path and increased effective viscosity. The increased effective
viscosity leads to a monotonic decay in the perturbation ki-
netic energy. On the other hand, the increase in the mean-free

TABLE I. Variation of critical Reynolds number with Mc.

Mc 0.1–0.4 0.5 0.6 0.7 0.8 0.9 1.0

Recr 20 35–40 45–50 70–80 120–150 190–200 300–350
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FIG. 7. Contour of vorticity for Mc = 0.2 and (a–c) Kn0 =
1.65 × 10−3 and (d–f) Kn = 0.1. The black contour line is for ω =
−0.1 (top) and 0.02 (bottom).

path causes the momentum and vorticity thickness to grow.
It can be seen in the figure that the vorticity merely diffuses
away without the formation of roll-ups. In this regime, the
mixing layer thickness growth rate is extremely high and
increases with increase in Knudsen number.

Low Kn, intermediate Mc. Figures 8(a)–8(c) show the vor-
ticity contour in this regime for the case of Mc = 0.8 and
Kn0 ≈ 10−3. This regime also exhibits KH instability. The
Reynolds number is higher than the Recr , implying that the
flow is unstable. Since the Mach number is higher, both dilata-
tional (delay in vortex formation due to the wavelike nature of
pressure) and solenoidal (formation of vortex roll-up billow)
effects are seen, consistent with [15]. It is seen that the vortex
roll-up is delayed, and the vortices are stretched, as compared
to Mc = 0.2 at low Kn0. It is seen that only one roll-up billow
is formed instead of two seen in Fig. 7. The perturbation
kinetic energy increases with time, although this growth is

FIG. 8. Contour of vorticity for Mc = 0.8 and (a–c) Kn0 =
8.24 × 10−3 and (d–f) Kn0 = 0.05. The black contour line is for
ω = −0.5 (top) and −0.9 × ωpeak (bottom).
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FIG. 9. Map indicating low Kn and low Mc (red circles), low
Kn and intermediate Mc (black diamond), high Kn and low Mc

(blue triangle), and high Kn and high Mc (green square) regimes in
(a) Mc-Re space and (b) Kn-Re space.

delayed. The growth rate of the mixing layer thickness at this
regime is much slower than the lower Mach number regime.

Low Kn, high Mc. In these cases, O (Re) � 10, implying ad-
vective terms dominate the evolution of the mixing layer. The
velocity field is largely dilatational. These cases correspond to
Mc > 1, for which the figures are not included for the sake of
brevity. The vortices wind and unwind about the pivot point,
and the KH instability does not manifest [15]. In this regime,
there is no amplification in perturbation kinetic energy. The
growth rate of the mixing layer thickness is extremely slow as
viscous effects are minimal.

High Kn, high Mc. Figures 8(d)–8(f) show vorticity con-
tours for Mc = 0.8 and Kn0 = 0.05 as a sample case for this
regime, seen at high Knudsen number and convective Mach
number. In Figs. 8(d)–8(f), the vorticity contour lines are
chosen closer to the center of the mixing layer, and it clearly
shows that the mixing layer rolls, unrolls, and diffuses as it de-
velops. Due to the higher Knudsen number, viscous effects are
considerable. In this regime, the perturbation kinetic energy
shows an oscillatory behavior; however, it does not amplify
as the mixing layer develops [see the blue triangle curve in
Fig. 6(b)]. Due to viscous and ballistic effects, the mixing
layer thickness growth rate is high.

Based on the above discussions, we identify different
regimes of physics on the Mc-Kn-Re parameter space. The
map in Fig. 9 is made by grouping the different regimes men-
tioned above. From Fig. 9, the demarcations of these regimes
are evident. In Fig. 9(a), the solid black line demarcates values
of Re0, above which simulations are unstable and below which
simulations are stable.

Similarly, in Fig. 9(b), the simulations with Kn0 below
the solid black line are unstable, and above are stable. The
dashed black line gives the value (or range of values) of
Recr and Kncr . Figures 9(a) shows that in the incompressible
regime, the flow has Recr = 20, suggesting that at low Mc, the
only parameter affecting stability is Re. For the compressible
regime, as the Mach number increases, the Recr also increases.
In Fig. 9(b), it is seen that Kncr increases linearly with Mc for
incompressible cases and decreases for compressible cases.
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IV. CONCLUSION

Rarefaction profoundly affects the stability of two-
dimensional mixing layers. In the continuum incompressible
regime, these flows exhibit the classical Kelvin-Helmholtz
instability. A series of simulations is performed using the
UGKS methodology over a wide range of Mach and Knudsen
numbers to investigate rarefaction effects on the KH instabil-
ity and contrast them against compressibility effects.

The major contributions of the present work are discussed
below. Five distinct stability regimes in the Reynolds-Mach-
Knudsen number parameter space are demarcated. The first
is the low Mc, low Kn KH regime in which vortices roll up
about the pivot point, leading to the onset of the instability.
Along with the perturbation kinetic energy, the vorticity and
momentum thicknesses of the mixing layer grow exponen-
tially in the linear regime of evolution. The critical Reynolds
number, in this case, is about 20, which is within the range
established in the literature. The next regime identified is the
intermediate Mc, low Kn range. While the flow continues to be
unstable in this regime, the advent of dilatational fluctuations
renders the nature of the flow field distinctly different from

the purely incompressible regime. The instability growth rate
is distinctly slower than the incompressible regime, and the
critical Reynolds number increases with Mach number. The
third regime occurs in the high Mc range. In this case, the
wavelike dilatational fluctuations dominate. The growth of
kinetic energy and vorticity and momentum thicknesses are
completely suppressed. The final two regimes are character-
ized by high Kn. In these regimes, viscous-diffusive action
brought about by ballistic transport is most dominant. This
leads to two important outcomes: the suppression of pertur-
bation kinetic energy and diffusive growth of vorticity and
momentum thicknesses. These regimes are classified as stable
due to the suppression of perturbation kinetic energy, although
the momentum and vorticity thicknesses grow.
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