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Geometrically induced localization of flexural waves on thin warped physical membranes
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We consider the propagation of flexural waves across a nearly flat, thin membrane, whose stress-free state
is curved. The stress-free configuration is specified by a quenched height field, whose Fourier components are
drawn from a Gaussian distribution with power-law variance. Gaussian curvature couples the in-plane stretching
to out-of-plane bending. Integrating out the faster stretching modes yields a wave equation for undulations in
the presence of an effective random potential, determined purely by geometry. We show that at long times and
lengths, the undulation intensity obeys a diffusion equation. The diffusion coefficient is found to be frequency
dependent and sensitive to the quenched height field distribution. Finally, we consider the effect of coherent
backscattering corrections, yielding a weak localization correction that decreases the diffusion coefficient
proportional to the logarithm of the system size, and induces a localization transition at large amplitude of
the quenched height field. The localization transition is confirmed via a self-consistent extension to the strong
disorder regime.

DOI: 10.1103/PhysRevE.103.053002

I. INTRODUCTION

Thin, elastic shells (also known as crystalline membranes)
whose lateral size is much larger than their thickness, arise in a
diverse array of contexts and across systems spanning several
orders of magnitude in length [1–3]. Though the initial theory
was formulated more than a century ago, shells that retain
curvature in the stress-free state exhibit complex solutions due
to geometrically induced nonlinearity, which has continued
to inspire research [4–6]. The mechanical properties of shells
with curved stress-free states is vital to the functionality of a
number of biological applications, including red blood cells
[7–9], viral capsids [10–14], and plant morphogenesis [15].
Though these latter examples lack well defined elastic con-
tinua, they have nevertheless been successfully studied using
thin shell theory.

The mechanics of thin shells are determined by a com-
bination of geometry and elasticity, and shells of different
curvature in the stress-free state can exhibit wildly different
characteristics [16–25]. Due to Gauss’ theorema egregium,
Gaussian curvature couples the typically soft bending undula-
tions to the much stiffer stretching deformations. As a result,
areas of positive Gauss curvature suppress bending undula-
tions [4], which can lead to spatially heterogeneous pockets
of large undulations separated by boundary curves of zero
normal curvature, as has been observed in the fluctuations of
red blood cells [26]. As undulations typically represent the
softest elastic modes, these can have serious consequences on
the ability for shells to equilibrate, which has applications for
the stability of cell membranes with actively driven pumps.

An examination of undulatory waves in the geometric
optics limit shows that Gauss curvature scatters undulatory

waves, and can even lead to total internal reflection at bound-
aries where the sign of the Gauss curvature changes [27]. This
suggests that for thin shells with random stress-free curvature,
energy transport could be severely slowed, if not localized,
purely as a consequence of geometry and the shell’s underly-
ing elasticity.

The implications of our calculations are germane to myriad
other systems with both curvature and elasticity. Since the
discovery of atomically thin graphene sheets [28], there has
been increased attention paid to graphene and graphenelike
materials [29,30]. These systems can possess the curvature
necessary to create linear elastic coupling between in-plane
and out-of-plane modes [31]. The interplay of out-of-plane
undulations and quenched background curvature is crucial to
the study of ripples in graphene sheets [32,33]. In biological
contexts, polymerized lipid membranes and red cell mem-
branes present other examples of systems combining elasticity
and curvature [16,34]. Another important application is the
emerging field of flexible nanoelectronics [35–37].

In this paper we present an analysis of the propagation of
undulatory waves through randomly curved thin shells that, in
contrast to the large literature of wave propagation in random
media [38], is driven entirely by geometry. Wave propagation
in random media has been extensively studied [39–43] across
a broad array of subjects [44–46], which we use as a guide.

The outline of this paper is as follows. First, a general
consequence of random scattering is to shift energy prop-
agation from ballistic to diffusive, which we quantitatively
compute in the weak scattering limit. This is done via a hy-
drodynamic derivation, looking at the long length and time
limits of energy transport [42,47,48]. In Appendix D we
present an alternative diagrammatic derivation in terms of the
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well-known ladder diagram approximation [39–43]. Time-
reversal invariant systems possess an additional contribution
in the hydrodynamic limit, weak localization [49–51], that
serves to inhibit diffusion. After computing the weak lo-
calization correction, we consider the behavior of waves in
the strong scattering regime. At strong scattering, waves can
undergo a localization transition [52,53], whereby they are
spatially localized even in the absence of energy barriers.
We extend our weak localization result to the strong scat-
tering limit via a self-consistent condition [47], where we
find that undulatory waves exhibit the same exponentially
large localization length endemic to other two-dimensional
systems, such as electrons in a random potential [42]. Finally,
we summarize our results in the limits of waves propagating
through large and small disorder where the weighty expres-
sions simplify.

II. GENERALIZED DONNEL-MUSHTARI-VLASOV
LINEARIZED SHALLOW SHELL THEORY

We define membranes as a particular class of thin shells.
Membranes are elastic media with two internal dimensions
describing in-plane stretching deformations, and dc surface
normals describing the direction of bending undulations, em-
bedded in a dc + 2 dimensional space. Throughout this paper
we employ the convention that Greek indices correspond to
the dc normal directions, and Latin indices to the two internal
dimensions. Boldface letters refer to vectors in the (dc + 2)
dimensional embedding space.

The purpose of this generalization to arbitrary embedding
dimension is to later allow us to use the self-consistent screen-
ing approximation (SCSA) to partially resum perturbation
series encountered upon disorder averaging (see Appendix A)
[54,55]. Ultimately we are interested in the physically realiz-
able case of dc = 1, which we hereafter refer to as physical
membranes.

To isolate the role of geometry, we focus our analysis on
warped membranes [54,55] (for behavior of these membranes
under thermal fluctuations see Refs. [22–25]). We choose to
study this system for several reasons. First, it is the simplest
system that one may construct in which curvature and elas-
ticity conspire to affect the dynamics of undulatory waves. In
this system, to lowest order we may neglect curvature effects
in the differential operators, leaving only the residual coupling
between in-plane and out-of-plane displacements. To this end,
over small enough patches of a surface, a generally curved sur-
face locally looks flat. Such an approach has been shown to be
successful in understanding the thermal fluctuation spectrum
of red blood cells [26].

Second, as briefly mentioned in the Introduction, several
systems can be viewed as nearly flat crystalline mem-
branes, including fixed connectivity lipid membranes and
thin graphene sheets. The dynamics of such systems are in-
formed by their geometry. As an example of the former, it has
been observed that the transport of undulatory waves across
the surface of cell membranes is heavily influenced by the
membrane’s underlying curvature [27]. At the intersection of
regions having the opposite sign of their Gauss curvature,
one may find total internal reflection of undulatory waves
impinging on that boundary. In the latter system, quenched
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FIG. 1. Parametrization of a physical membrane middle surface
X0 in the Monge representation, with small deformations f , u1, and
u2 given in normal coordinates. Displacements u1, u2 (in blue) are
along the local surface tangent of the curved background surface,
while displacements f (in red) are in the direction of the local surface
normal. Misalignment of the local surface normal with the global ẑ
direction is responsible for additional curvature terms in the strain
[see Eq. (8)].

out-of-plane disorder can lead to the formation of ripples on
graphene sheets [33]. An analysis of the dynamics of this
particular type of membrane with fixed short-range disorder
shows that a sufficiently strong disorder can stabilize the rip-
pled phase [56].

Warped membranes represent both a simple idealization of
these more complex curved surfaces, and also a particularly
good model of elastic membranes as encountered in biology.
Finally, a crucial difference between warped membranes and
membranes disordered via other mechanisms, such as topo-
logical defects or spatially varying thickness, is that warped
membranes exhibit only geometry-induced disorder. We focus
solely on this effect that might be realized by freezing the
membrane about a curved background configuration. Other
examples of disordered membranes have been examined in-
cluding local mass density variations, see Ref. [57].

Warped membranes are more precisely defined as nearly
flat crystalline membranes of internal volume L2, with stress-
free local height configuration that can be given in the Monge
representation [17] by a quenched, random background height
field hβ (x). Specifically, the stress-free membrane is described
by the vector

X0(xa) = xata + hβnβ, (1)

where ta represent the local surface tangents, and nβ is the
local surface normals—see Fig. 1 for details. The total dis-
placement field after small deformation is denoted X(xa).
There are, in principle, many ways to select the statistics of the
quenched random height field describing the geometry of the
unstressed membrane. Here we choose to treat these quenched
random variables through their Fourier modes:

h(p) = 1

L2

∫
d2x h(x)e−ip·x, (2)
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such that the amplitudes are taken from a Gaussian distribu-
tion with zero mean and with a variance given by

〈hα (p)hβ (p′)〉 = γ δαβδp,−p′

L2p2dH
. (3)

In this formulation, the parameter γ specifies the amplitude of
the quenched height field and determines the strength of disor-
der. We focus on what we expect to be experimentally relevant
cases dH = 0, 1, 2, which may be realized in biological con-
texts by rapid polymerization of fluctuating lipid bilayers
[54,58,59]. We ignore here corrections to scaling associated
with membrane self-avoidance [17,60]. The following calcu-
lations, however, can be performed with any power-law decay
of the Fourier modes of the disorder field.

We assume isotropic elasticity in the tangent space of the
membrane. To quadratic order, the change in potential energy
about a particular configuration X(xa) is [54]

E = 1

2

∫
d2x{2μ(Uab)2 + λ(Ucc)2 + κ (Kcc)2}. (4)

The tensors Uab and Kab represent the variation in the metric
tensor and generalized bending tensor, respectively, from their
background configurations;

Uab = ∂aX · ∂bX − δab, Kab = ∂a∂bX − dab, (5)

and we have defined the quenched background curvature
tensor

dab = (∂a∂bhβ )nβ. (6)

Ignoring small deformations of O[(∂ahβ )2], the background
metric tensor is flat (δab). The background curvature tensor
(second fundamental form [61,62]) then encodes all effects of
the disordered geometry.

We decompose the deformation vector X = X0 + δX into a
background configuration X0 plus small deformation δX. The
latter is parametrized in normal coordinates [17], separating
local strain into in-hyperplane displacements ua(xa) and out-
of-hyperplane displacements fβ (xa) via

δX = uata + fβnβ. (7)

The equations of motion derived from Eq. (4) are formidable.
We work in the limit where variations in curvature are slow
on the scale of characteristic deformation wavelength. This is
summarized as the condition w � λ0 � |R|, for w the mem-
brane thickness, λ0 the characteristic deformation wavelength,
and R the average radius of curvature. Utilizing the definition
of the tangent vector ta = ∂aX, this leads to the linearized
strain fields

Uab = 1
2 (∂aub + ∂bua) − fα∂a∂bhα, Kab = (∂a∂b fα )nα.

(8)

This is the lowest order coupling of bending undulations to
Gauss curvature. Deformations fβ are considered small com-
pared to hβ , and hence nonlinear terms may be neglected. In
terms of the fields ua, fβ , the elastic energy now reads

E = 1

2

∫
d2x
{
κ (∇2 fβ )2 + ua∇2[(λ + 2μ)P̂L

ab + μP̂T
ab

]
ub

+ 2μTr
[(

P̂T
ab fα∂b∂chα

)2]+ λ
(
P̂T

ab fα∂a∂bhα

)2
+ 2λ∂aua

(
P̂T

bc fα∂b∂chα

)}
, (9)

where we have defined the projection operators

P̂L
i j = ∇−2∂i∂ j, P̂T

i j = δi j − P̂L
i j . (10)

Since we will ultimately integrate out the field ua, we have
taken the additional step of removing the longitudinal compo-
nents of fα∂a∂bhα via a shift of ua [17], which precludes the
term coupling ∂aub to the background height field.

The first line of Eq. (9) is the elastic energy of a flat
plate. In-hyperplane deformations split into longitudinal and
transverse components. The second line penalizes bending
in regions of positive Gauss curvature. The third line is the
linear coupling between bending and stretching, which can
allow undulations to tunnel through regions of positive Gauss
curvature [63]. Only the longitudinal component of ua(xa)
couples to the undulatory field f .

To find dynamical solutions, we must form an action
by including a kinetic energy density. Since in-hyperplane
displacements relax much faster than bending undulations,
we make the approximation that the ua fields respond in-
stantaneously to deformation. We therefore include only an
undulatory kinetic energy density (σ/2)(∂t fβ )2, for the sur-
face mass density of the membrane σ . Furthermore, since
ua is simply a constraint field, we may eliminate it using its
equation of motion, yielding an effective action describing the
dynamics of undulatory waves subject to a long range poten-
tial. As the membrane length L is considered to be large, its
bulk properties do not depend on boundary condition, which
we will assume to be periodic. We switch to and from Fourier
space via

f (x) =
∑

p

fpeip·x, (11a)

fp = 1

Ld

∫
dd x f (x)e−ip·x. (11b)

Here, and for the remainder of the paper, boldface refers to
vectors in the internal two-dimensional space. The summa-
tions run over p1, p2 = 2πn/L, for n ∈ Z.

In Fourier space we find the effective undulation action
[22,55]

Stot = S0 + Sint, (12)

S0 = L2

2

∑
q

(
κq4 − σω2

)
fq f−q, (13)

Sint =
∑

q2+q4=−q
q1+q3=q

L2

dc
qi

1q j
1Ri j,kl (q)qk

2ql
2hα

q1
hβ

q2
f α
q3

f β
q4

, (14)

where we have defined the interaction tensor

R̂i j,kl = μ̃

2

(
P̂T

ik P̂T
jl + P̂T

il P̂T
jk + 2λ̃

λ̃ + 2μ̃
P̂T

i j P̂T
kl

)
. (15)

This form is valid for arbitrary internal dimensions. For phys-
ical membranes with two internal dimensions, we can write a
simpler form

Ri j,kl (q) = Y

2dc
PT

ik (q)PT
jl (q), (16)
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where Y is the two-dimensional Young’s modulus

Y = 4μ(λ + μ)

λ + 2μ
. (17)

The equations of motion are typically written including the
displacements ua, and are derived by variation of the elastic
energy in Eq. (9). These, in turn, are further reduced by elim-
inating ua in terms of a scalar Airy stress function χ , defined
by its relation to the stress tensor δE/δUab = εacεbd∂c∂dχ .
In terms of χ and f we find the Donnell-Mushtari-Vlasov
(DMV) linearized shallow shell equations [4,27,61]

1

Y
∇4χ + L̂ f = 0, (18)

κ∇4 f − σ
∂2 f

∂t2
− L̂χ = 0. (19)

The operator

L̂ = εacεbd (∂a∂bh)∂c∂d (20)

contains the quenched random height field, and encodes undu-
latory scattering due to curvature. Though for elastic continua
Y represents a Young’s modulus and κ a bending rigidity,
these may alternatively be viewed as phenomenological pa-
rameters governing the strength of stretching and bending,
respectively, when the membrane is not derivable from elastic
continua. Equations (18) and (19) represent the main equa-
tions of motion for physical membranes in linearized shallow
shell theory.

By formally integrating out the fields χ , we find the f
field experiences an effective potential V̂ = L̂∇−4L̂. Via the
Gauss-Bonnet theorem [17], the Riemann curvature is equal to
twice the Gauss curvature. The total Gauss curvature is then
given by the determinant of the total bending tensor dab + Kab

(these are dc + 2 dimensional vectors). To linear order in f ,
δR(x, t ) = L̂ f represents the local change in Gauss curva-
ture. Geometry can be viewed as inducing a two-body ∇−4

potential acting between different regions of Gauss curvature,
attractive and repulsive between opposite and same sign, as a
response to the membrane trying to flatten [34].

III. SIGNATURES OF LOCALIZATION

We now illustrate several quantities that measure the
degree of localization and diffusion for undulatory waves.
Conserved quantities are particularly useful, as they retain
information about an initial injected disturbance at both long
times and after disorder averaging, and have the potential for
diffusive dynamics. Their propagation through the membrane
(or lack thereof) acts as a marker for the spatial localization of
waves.

We give two examples. First, the equations of motion are
time-reversal invariant, indicating total energy is conserved.
Transport of energy across the membrane gives information
on heat transfer and the thermal conductivity of the system,
both of which are of interest in mechanics of cellular mem-
branes [26]. Second, the Gauss-Bonnet theorem stipulates that
the integral of the Riemann curvature over the membrane
is a fixed, topologically controlled value, identical over all
instances of disorder. For physical membranes, the Gauss

curvature is proportional to the Riemann curvature and hence
can play the role of a conserved quantity.

An additional quantity to study is the kinetic energy, which
for monochromatic waves is proportional to the disorder av-
eraged local intensity 〈| fβ (x)|2〉. We will find that undulation
intensity obeys diffusive dynamics, and is the primary cause
of diffusive energy and curvature transport. We thus focus our
efforts on intensity, which is fortunate, as working with the
total energy is analytically challenging.

In order to describe wave propagation, we translate the
problem into the language of Green’s functions [57,64]. We
consider a physical membrane (dc = 1) for ease of notation,
with generalization to higher dimensionality straightforward.
Without loss of generality, the equation of motion may be
written as (∂2

t − Â) f (x, t ) = j(x, t ), for some operator Â
derived from minimization of the action in Eq. (12), and
arbitrary undulation source j(x, t ). Associated with this is
a Green’s function G(x, x′; t, t ′) that satisfies the equation
(∂2

t − Â)G(x, x′; t, t ′) = δ(x − x′)δ(t − t ′).
We are interested in the source-free situation where at

times t < 0, the membrane is in mechanical equilibrium
[ f (x, 0) = 0], then at t = 0 it is plucked [∂t f (x, 0) = 1]
with unit velocity at the origin, thereby injecting energy
into the system localized at the origin. This is accomplished
in the Green’s function formalism by imposing initial con-
ditions [64]

∂t G
+(x, x′; 0) = δ(x − x′), (21)

G+(x, x′; t < 0) = 0. (22)

Provided the initial pluck is truly δ-like, the main result is that
we can everywhere replace the time-dependent amplitude by
a Green’s function via

f (x, t ) = G+(x, 0; t ). (23)

We now define the disorder averaged quantity φ(x, t ), which
represents the intensity of undulations across the membrane
in response to an initial pluck at the origin:

φ(x, t ) = 〈G+(x, 0; t )G−(0, x; t )〉. (24)

Here and throughout, angular brackets refer to disorder aver-
aging over the quenched random height field. Our principle
object of study is the four-point function

φpp′ (q,�) ≡ 〈G+
ω+ (p+, p′

+)G−
ω− (p−, p′

−)〉, (25)

which gives the Fourier components of φ(x, t ) upon summa-
tion over p, p′ and integration of ω. We have introduced the
shorthand p± ≡ p ± q/2 and ω± ≡ ω ± �/2. We refer to ω

as the internal frequency, and � as the external frequency.
The four-point function is the product of an advanced and
retarded propagator, and has the necessary phase cancellation
to propagate across multiple scattering processes. In terms of
the four-point function, the disorder averaged kinetic energy
density is

T (x,�) = 1

2

∫
dω

2π
(ω2 + �2/4)

∑
pp′q

eiq·xφpp′ (q,�). (26)

We measure the degree of localization by the normalized
spatial variance of kinetic energy in the long-time limit. For
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diffusive waves, the variance grows linearly in time, while
for propagating waves it grows quadratically. This leads us
to define the kinetic energy diffusion coefficient [57]

DE = lim
t→∞

1

t

∫
x2T (x, t )dx∫
T (x, t )dx

. (27)

We enact the long time limit by means of the identity [65]

lim
t→∞ f (t ) = lim

η→0
η

∫
f (t )e−ηt dt . (28)

Upon Fourier transform we obtain

DE = lim
η→0

−2η2
∫

dω
2π

ω2∇2
q|q=0

∑
kk′ φkk′ (q,−2iη)

η
∫

dω
2π

ω2
∑

kk′ φkk′ (q,−2iη)
. (29)

In general, the frequency integrations will diverge as a
consequence of the δ-function singularity of the initial spike.
This can be regulated by replacing the δ function with a
Gaussian impulse at t = 0 of width �t . The integrations are
regulated by simply adjusting the measure dω → dωe− 1

2 ω2�t .
If the disorder is short ranged, corresponding to dH = 0, high
frequencies are cutoff as a consequence of a finite lattice
spacing, and this may control the response of the system to
short-duration impulses.

We can further simplify DE by anticipating that, at small
external frequency �, the four-point function is diffusive.
Indeed, borrowing the later result in Eq. (55),∑

pp′
φpp′ = πν/(2σ 2ω2L2)

−2η + D(ω)q2
. (30)

We obtain the much simpler form

DE = 4

∫
dω ν(ω)D(ω)∫

dω ν(ω)
, (31)

where the frequency dependence of ν has been made explicit.
The function ν represents the density of states, and suggests
the quantity D(ω) is a frequency dependent intensity diffusion
coefficient.

In fact, D(ω) corresponds precisely to the diffusion co-
efficient of intensity in response to a harmonic, normal load
applied at the origin. To show this, we note that the four-point
function corresponding to harmonic loading at the origin is
equivalent to that of Eq. (25), so long as we take � → −2iη
and pin the internal frequency to ω as opposed to integrating.
The variance in intensity is then given by Eq. (29) if we
apply the same conditions, which after simplification, yields
the frequency-dependent diffusivity

The calculation of D(ω) is a point of contact with nu-
merical simulations that are solved in the frequency domain.
Specifically, given knowledge of the solution f (x, ω) in re-
sponse to harmonic loading, one identifies

D(ω) = −1

2
lim
η→0

η

∫
d2xx2| f (x, ω − iη)|2∫
d2x| f (x, ω − iη)|2 . (32)

IV. HYDRODYNAMICS

The four-point function defined in Eq. (25) is the funda-
mental quantity governing diffusion and localization. In this
section we present a derivation of its diffusive behavior at long

length and timescales. The four point function is a disorder
averaged object, which may, in general, be decomposed into
a sum of independently averaged Green’s functions, plus all
connected averages. Implementing this procedure leads to the
Bethe-Salpeter (BS) equation [47]:

φpp′ (q,�) = 〈G+
p+ (ω+)〉〈G−

p− (ω−)〉

×
(

δpp′ +
∑

k

Upk (q,�)φkp′ (q,�)

)
. (33)

The absence of a summation over frequencies is a conse-
quence of quenched disorder. The frequency dependence can
be grouped into a single three-vector (p, ω). When not ex-
plicitly written, the three-vector is implied: (p, ω) → p. The
function Upk (q,�) represents the irreducible vertex, and con-
tains all information on connected averages between retarded
and advanced Green’s functions.

The utility of the BS equation is that it allows us to work
in terms of only disorder-averaged Green’s functions. Thus,
for ease of notation, we drop the 〈·〉 brackets, and assume that
all Green’s functions are replaced with their disorder averaged
values, unless otherwise specified.

〈Ĝ〉 is the Green’s function corresponding to the full action
of Eq. (12). In order to compute this, we first separate Stot

into a part S0 whose Green function is readily solvable, plus
a perturbative piece Sint that contains the disorder field. It is
well known that the configurational average of a translation-
ally invariant Green’s function for such a system can then
be written in the Fourier basis as the inverse of the sum of
the bare Green’s function pertaining to S0, and a self-energy
operator �̂, as in Ref. [42]:

〈G±
p± (ω±)〉−1 = L2

(
κ p4

± − σω2
±
)− �±

p± (ω±). (34)

We have not yet solved for 〈Ĝ〉. Instead, all effects of dis-
order averaging have been moved onto 〈�̂〉. The real part of
�̂ renormalizes the phase velocity, while the imaginary part
introduces a mean free path length, beyond which the phase
information of a single monochromatic wave has been erased
by scattering processes. We will find that the self-energy does,
in fact, have an imaginary part, which implies that 〈Ĝ〉 is
a short-ranged object, i.e., its disorder average vanishes ex-
ponentially with respect to length. For the remainder of the
paper, unless otherwise specified, we assume that we are in
the weak scattering limit, whereby the imaginary part of the
self-energy is small.

The self-energy obeys the useful relation �̂+ = (�̂−)
∗
.

Using this in combination with the identity AB = (A−1 −
B−1)−1(B − A), we can rewrite the BS equation to arrive at
the Boltzmann equation [47](

−� + (vp · q) − 1

L2

��p(q)

2σω

)
φpp′ (q)

= −�Gp(q)

2σωL2

(
δpp′ +

∑
k

Upk (q)φkp′ (q)

)
. (35)

The velocity

vp = 2κ p2

σω
p (36)
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contains an additional term ∼q2q that we have discarded
in anticipation of later taking the diffusive limit. The �

symbol means the difference between retarded and advanced
quantities. We will only be concerned with its action on the
self-energy and Green’s function, namely

��p(q) = �+
p+ (ω+) − �−

p− (ω−), (37a)

�Gp(q) = G+
p+ (ω+) − G−

p− (ω−). (37b)

For ease of notation, when the q dependence of a quantity is
not explicitly written, it is evaluated at q = 0, but not at � =
0. For example, �Gp = G+

p (ω + �/2) − G−
p (ω − �/2).

We may also consider the group velocity of undulatory
waves. This depends on the self-energy and can be written

vG
p = vp

1 − δ1

1 + δ2
, (38)

where we have defined the dimensionless quantities

δ1 = 1

4κ p3

∂Re�

∂ p
(39)

and

δ2 = 1

2σω

∂Re�

∂ω
. (40)

We will encounter the function δ1 frequently in our calcula-
tions.

Inspecting Eq. (35), we see that the p′ index can be freely
summed. Doing so allows us to work with the simpler function

φp(q) ≡
∑

p′
φpp′ (q). (41)

The right-hand side of Eq. (35) is proportional to �Gp. In
the weak scattering limit, the imaginary part of �̂ is small and
so �Gp as a strongly peaked Lorentzian around some value
p = pF determined by the condition

ReG−1
pF

= 0. (42)

In alignment with the terminology appearing in hard con-
densed matter [66], we refer to this wave number pF as the
Fermi wave number, though our system is purely classical.
From Eq. (36) we additionally define the associated Fermi
velocity vF = 2κ p3

F /σω. The sharpness of �Gp around pF

suggests that we may approximate it as a δ function pinning
the wave number magnitude to p = pF . Using the large L limit
to replace summations with integrations, we find the identity

∑
p

�Gp(· · · ) −−−−−−−→
weak scattering

iπν

σω

∫ 2π

0

dθ

2π
(· · · )|p=pF , (43)

which we will make extensive use of. We have further defined
the density of states per unit volume:

ν = pF

2πvF (1 − δ1)
. (44)

Combining Eqs. (33) and (43) we notice that φp(q) is
strongly peaked around the forward direction, i.e., p̂ · q̂ = 0.
This suggests that φp(q) is approximately given by the first

couple moments of its Legendre expansion. We define

S ≡
∑

p

φp(q), J ≡
∑

p

vpφp(q). (45)

These represent the intensity propagation density S, and cur-
rent density J. The velocity vp is the zero curvature group
velocity of undulations. It is proportional to, yet not neces-
sarily equal to, the transport velocity, i.e., the average velocity
of intensity across the membrane. Solutions S and J are found
by taking the first two moments of the Boltzmann equation
[Eq. (35)].

The first moment is found by summing both sides of the
Boltzmann equation over p, p′. We obtain

−�S + q · J = πν

iσωL2
+ 1

2σωL2

×
∑
pp′k

[��p(q)δpk − �Gp(q)Upk (q)]φkp′ (q).

(46)

In order for S to exhibit diffusive behavior, all terms ∼S in the
equation must vanish in the limit q, � → 0. The existence of
a diffusive solution is thus contingent on the vanishing of the
final term. This is indeed the case, as is ensured by the Ward
identity (WI)

��p(q) =
∑

p′
Upp′ (q)�Gp′ (q). (47)

In the limit q,� → 0, we can replace ��p → 2iIm�p so
that the WI relates the imaginary part of the forward scat-
tering amplitude to the total cross section. The WI is thus a
generalized optical theorem [42], and depends on the type of
wave equation studied [67–69]. The derivation of the WI is
nontrivial and presented in Appendix C.

Implementing the WI yields the continuity equation

−i�S + iq · J = πν

σωL2
+ O(q2). (48)

In position space, Eq. (48) is of the form ∂t S + ∇ · J =
πν/σωL2, hence the name continuity equation.

In order to obtain a closed set of hydrodynamic equations,
we must relate J to S. If the intensity is to exhibit diffusive
behavior, then the current J must obey Fick’s law J = −D∇S,
with D(ω) some diffusion coefficient to be determined. The
coefficient D can, and will, depend on the internal frequency
ω.

We begin by taking the second moment of the Boltz-
mann equation, i.e., applying

∑
p(vp · q̂)(· · · ) to both sides

of Eq. (35). As we are interested in the long length and time
limit, we retain only the lowest terms through O(�, q). We
obtain

q
∑

p

(vp · q̂)2φp(q) = 1

2σωL2

∑
pk

(vp · q̂)[��p(q)δpk

−�Gp(q)Upk (q)]φk (q). (49)

The left-hand side (LHS) is the third moment of φp(q), and
prevents a closed solution in S and J. This is remedied in the
usual way, by everywhere replacing φp(q) with its truncated
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Legendre expansion

φp(q) = �Gp

iπν/(σω)

(
S + 2

v2
p

(vp · q̂)(q̂ · Ĵ)

)
. (50)

The LHS is evaluated using the identity �−1
d

∫
d�d (a · p̂)(b ·

p̂) = d−1a · b, valid for arbitrary vectors a and b, in any
dimension d , with solid angle �d . As a result, this term is
simply

LHS = q
v2

F

2
S. (51)

The right-hand side (RHS) of Eq. (49) is more difficult to
simplify than it was when deriving the continuity equation, as
the angular dependence in (vp · q̂) prevents direct application
of the WI. Inserting the Legendre expansion of φk (q) and
using Eq. (43) to perform the k summation, we find that the
term ∼S on the RHS vanishes by means of the WI. Computing
the remaining terms we find

RHS =
(

iIm�pF

σωL2
− M0

)
(q̂ · J), (52)

where

M0 = 1

iπνv2
F L2

∑
pp′

�Gp(vp · q̂)Upp′ (vp′ · q̂)�Gp′ . (53)

Collecting all terms and rearranging, we arrive at Fick’s
law

J = −iq
(

L2σω

Im�pF

v2
F /2

1 − σωL2M0/[iIm�pF (ω)]

)
S. (54)

The term M0 in the denominator encodes the effects of co-
herent scattering, and is also responsible for weak and strong
localization. Equations (48), (50), and (54), and complete the
hydrodynamic description.

V. DIFFUSION AND WEAK AND STRONG LOCALIZATION

The hydrodynamic equations contain a wealth of infor-
mation about undulatory wave propagation, whose physical
meanings are hidden in M0 and �̂. Before directly computing
the diffusion coefficient and weak localization correction, we
briefly discuss computation of disorder averages in general.
This has the additional benefit of laying the groundwork for
analysis beyond the average intensity, for example, comput-
ing the fluctuations in intensity transport known as speckle
correlations [41].

The well-known particle and wave duality in quantum
mechanics affords a fruitful language for describing the prop-
agation of an undulation on a membrane. A single undulatory
wave packet can be viewed as a particle that is scattered by
a random potential resulting from Gauss curvature. In this
language, the disorder averaged retarded (advanced) Green’s
function 〈Ĝ±(x, x′; t )〉 gives the amplitude for one particle
initially at position x′ to propagate forward (backward) in time
t to point x. In the weak scattering limit, this average can be
computed by considering the path as consisting of a series of
scattering events with the random potential. The perturbative
series is ordered by the number of scatterings, which, at a fixed
distance |x − x′|, becomes smaller with weaker curvature.

In the particle formulation, 〈Ĝ±〉 contains only single-
particle information. Scattering events are independent, and
there are no interference effects between undulatory waves. In
contrast, the four-point function defined in Eq. (25) contains
two-particle information. It is the disorder average of two
particles, one moving forward in time and one moving back-
ward in time (called a hole or antiparticle) to the same initial
and final positions. The two particles have the potential to
constructively interfere with one another, which is the source
of the long-range nature of the four-point function. Viewed as
waves, two-particle information encodes coherence effects in
the system.

Schematically, the two particles interfere constructively
when they encounter the same sequence of scattering paths.
This results in a long range object for intensity transport called
the diffuson. In the special case of return to the origin (x = x′),
time-reversal invariance in the action permits another solution
whereby one of the particle’s trajectories is traversed back-
wards in time. This leads to another long-range object that
reduces diffusion, called the cooperon. Analysis of intensity
transport in terms of diffusons and cooperons is given in
Appendix D, where we provide a diagrammatic derivation of
the hydrodynamic equations in Sec. IV. The diagrammatic
analysis allows one to extend beyond the level of analysis in
this paper. In particular, one can use the formalism to describe
fluctuations in intensity, which arise from diffuson-diffuson
scattering [39].

All of the information regarding diffusion is contained in
the long length and time limit of the four-point function, to
which we now turn. By combining the continuity equation
with Fick’s law [Eqs. (48) and (54)], we arrive at

φpp′ (q) =
( −1

2πνL2

)
�Gp�Gp′

−i� + Dq2
, (55)

which has the diffusive form postulated in Sec. III. The coef-
ficient D is precisely that appearing on the right-hand side of
Eq. (31). From our hydrodynamic analysis we further obtain

D−1 = D−1
0 + D−1

0 iτM0, (56)

where D0 is the Drude-Boltzmann diffusion coefficient [70],
given by

D0 = 1

2
v2

F τ, (57)

and τ is the scattering time given by

τ−1 = Im�pF

σωL2
. (58)

The diffusion coefficient of Eq. (57) takes the standard form,
implying the intensity transport velocity vt is equivalent to the
group velocity evaluated at the Fermi wave number:

vt = vF . (59)

Both D0 and τ depend only on the self-energy, which can
obtained by computing the disorder average of only a single
Green’s function. By combining vt and τ we determine the
mean free path

� = vtτ = vF τ. (60)
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The scattering time and mean free path represent the average
time and length before an undulation wave packet is scattered
by Gaussian curvature. In position space, this correspond to
an exponential decay 〈G+(x, 0; ω)〉 ∼ e−|x|/�.

Per Eq. (57), D−1 is a sum of two pieces: single-particle
effects coming from D0, and two-particle effects mediated
via the irreducible vertex Upp′ . Setting Upp′ (q) = 0 (and
thereby M0), is the Drude-Boltzmann approximation, whereby
〈Ĝ+Ĝ−〉 is replaced by the product of its averages 〈Ĝ+〉〈Ĝ−〉.

In order to proceed further, we must further specify the
irreducible vertex. Our arguments at the beginning of the
section suggest coherent scattering will primarily lead to two
effects: diffusion and weak localization. Anticipating this, we
decompose Upp′ (q) into the sum of two terms

Upp′ (q) ≈ U 0
pp′ (q) + U (MC)

pp′ (q), (61)

called the bare vertex U 0
pp′ (q), and the maximally crossed

vertex U (MC)
pp′ (q). These are responsible for diffusion and weak

localization, respectively. Likewise, we decompose the diffu-
sion coefficient into a sum of two pieces:

D−1 = D−1
c + D−1

× . (62)

Dc represents the coherent diffusion coefficient found by
choosing Û = Û 0. Inserting Û 0 into Eq. (56) and rearranging,
we identify

Dc = D0(1 + δc)−1, (63)

where we have defined the reduction factor

δc = iτM0|Upp′ (q)=U 0
pp′

. (64)

The calculation of δc is presented in Appendix B.
D× is the maximally crossed diffusion coefficient found by

choosing Û = Û (MC), and ignoring the D−1
0 contribution that

has already been counted. It is explicitly given by

D−1
× = D−1

0 iτM0

∣∣
Û=Û (MC) . (65)

We begin by first studying the Û 0 contribution to D−1.
The bare vertex is defined as the minimally disorder

averaged vertex connecting two pairs of retarded and ad-
vanced propagators. For an explicit representation of U 0

pp′ (q)
in terms of diagrammatic perturbation theory (Appendix A)
see Fig. 11. The bare vertex represents a single particle-hole
scattering event. Inputting U 0

pp′ (q) into the BS equation gener-
ates all trajectories where the particle and hole scatter off the
same sites, in the same order. In the diagrammatic derivation
of Appendix D, these trajectories correspond to summing over
the set of all box diagrams with uncrossed disorder lines, the
so-called ladder approximation [39].

The hydrodynamic analysis has thus shown that long-range
contributions to the four-point function come from summa-
tions over ladder-type diagrams, or, in the position space
representation, a summation over scattering events where the
particle and hole traverse the same trajectory in the same
order. If the system is time-reversal invariant (as is the case
here) there exists an additional long-range contribution to the
four-point function, found by reversing the order of scattering
for one of the particles (i.e., running backwards in time).
Using time-reversal symmetry, we can additionally change the

Uncross by 
flipping all 
lower 
arrows and 
their order. 

p+ p+

p− p−

QQ

p+ p+

p−p−

q q

p+ p+

−p−−p−

QQ

p̃+

p̃− p̃−

p̃+

k+ k+

k−k−

QQ

TRS sends 
pi → −pi

p̃ =
1
2
(p − p + q)

Relabel: 

p̃ =
1
2
(p − p + q)

U
(MC)
pp (q) =

Q = p + p .

U0 U0

U0 U0

U0 U0

U0 U0 A± = A ± Q/2

FIG. 2. Diagrammatic construction of the maximally crossed ir-
reducible vertex. White boxes represent the bare irreducible vertex
Û 0; the shaded box represents the diffusive four-point function in
Eq. (55). Crossing refers to overlap of Û 0 vertices. The summation
over maximally crossed diagrams can alternatively be viewed as
summation over uncrossed diagrams with all lines on the lower rung
reversed. Time-reversal symmetry allows us to flip arrow orientation
bringing it to standard form.

signs of the hole wave number to obtain the identity

φ(p+, p′
+; p−, p′

−) = φ(p+, p′
+; −p′

−,−p−), (66)

where we have explicitly written the dependence on all four
wave numbers. Reducing to a function of only three wave
numbers we find

φpp′ (q) = φ 1
2 (p−p′−q), 1

2 (p′−p−q)(p + p′). (67)

This identity allows us to sum over all maximally crossed
diagrams, by mapping them onto a summation over uncrossed
diagrams. Furthermore, we know that this must be a long-
range object that becomes divergent for some combination of
p, p′, and q as � → 0, and hence can have an appreciable
effect.

In Fig. 2 we compute Û (MC) diagrammatically. The pro-
cedure is as follows: write the maximally crossed irreducible
vertex by crossing two bare irreducible vertices and insert-
ing the full four-point function between them, uncross the
diagram, then use time-reversal symmetry to reverse wave
numbers, bringing it into a standard form. We find the equa-
tion [42]

U (MC)
pp′ (q) =

∑
k,k′

Up̃k (Q)φkk′ (Q)Uk′ p̃′ (Q), (68)
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where p̃, p̃′ and Q are defined in Fig. 2. As expected, Û (MC)

diverges as �, Q → 0, per Eq. (55). Working in the divergent
limit where Û (MC) is appreciable, we discard all terms O(Q)
and perform the summations using the WI [Eq. (47)] to obtain

U (MC)
pp′ (Q,�) =

( −1

2πνL2

)
�� p̃�� p̃′

−i� + DcQ2
. (69)

The definition of Q tells us that Û (MC) is maximal when p′ ≈
−p. In the wave number representation, p and p′ correspond to
the incoming and outgoing wave numbers for an initial wave
incident on the disordered media. p ≈ −p′ thus corresponds
to backscattering, which, in position space, corresponds to
particle trajectories that return to the point of departure.

We continue the calculation of D× by inserting Û (MC) into
M0 [Eq. (53)]. We work in the Q → 0 limit, approximating
the summation by everywhere replacing p′ = −p. This yields
the intermediate expression

M0 = 1

2iπ2L4ν2v2
F

∑
p,Q

(�Gp)2(vp · q̂)2 �� p̃�� p̃′

−i� + DcQ2
. (70)

In the weak scattering approximation we may ignore terms
containing (Ĝ±)2 inside the summation, allowing us to use
(�Gp)2 ≈ −2�Gp/��p [39,42]. In the diffusive limit, q is
also small and we can replace p̃, p̃′ with p, p′. Using Eq. (43)
to perform the p summation and adding a factor of (1/2) from
the remaining angular integration, we find

M0 = 1

2πν

��pF

σωL4

∑
Q

1

−i� + DcQ2
. (71)

Inserting M0 into Eq. (65) and using the definition of τ

[Eq. (58)] we obtain the maximally crossed diffusion coef-
ficient

D−1
× = D−1

0

1

πνL2

∑
Q

1

−i� + DcQ2
, (72)

and from Eq. (57), the total diffusion coefficient [47]

D−1 = D−1
c + D−1

0

1

πν

∫
d2Q

(2π )2

1

−i� + DcQ2
. (73)

In the last line we have taken the continuum limit. The limits
of integration over Q must be limited to the domain where
diffusive transport is applicable. The upper bound is set by
the inverse mean free path �−1 defined in Eq. (60), while the
lower bound is set by the inverse system size L−1.

In the weak disorder limit D ≈ Dc, and so the rightmost
term of Eq. (73) may be considered small. Taking the long
time � → 0 limit, performing the integration, and using the
definition of ν in Eq. (44) we find

D = Dc − δD, (74)

where we have defined the weak localization correction:

δD = 2κ p2
F (1 − δ1)

πσω(1 + δc)
ln

(
L

�

)
. (75)

This is one of our main results. The summation of maxi-
mally crossed diagrams has led to a reduction in the diffusion
coefficient, which diverges like ln L as L → ∞. The loga-
rithmic dependence on system size is a universal result for

2D mesoscopic systems [39], and appears in our model as
well. Formally, in the L → ∞ limit, all states are local-
ized, however, since the weak localization correction is only
logarithmic, it may be difficult to observe localization in
finite-sized systems.

All of the quantities appearing in δD have been com-
puted elsewhere already (�, pF , and δ1 in Appendix A, δc in
Appendix B), and can be determined immediately. In
Appendix E we give the full analytic expressions in dH =
0, 1, 2 for δD, as well as the other main quantities in this paper.

The weak localization correction breaks down near the lo-
calization transition (δD ≈ Dc). In order to probe the onset of
localization, we treat Eq. (73) self-consistently, replacing Dc

under the integration on the right side with the full diffusion
coefficient D [47]. This has the effect of renormalizing each of
the two-particle propagators appearing in the ladder diagrams
of Dc with maximally crossed vertices, and vice versa for
those appearing in D×. In the diagrammatic language, this
corresponds to renormalizing the diffuson with all numbers
of insertions of cooperons. In the localized regime we expect
the diffusion coefficient to vanish at long times. We can then
posit a localization length [42,47]

ξ 2 = lim
�→0

D(�)

−i�
. (76)

The localization length ξ determines the length beyond which
all states are localized. Assuming such a length exists in
the system, we no longer need to restrict the wave number
integration over Q to be larger than L−1, as ξ will regulate
the low wave number divergence. Solving the self-consistent
extension of Eq. (73) we find

ξ/� = (e4π2νD0 − 1)1/2. (77)

The localization length describes transport in the strong
scattering regime. This result, combined with the weak lo-
calization solution of Eq. (75), and the coherent diffusion
coefficient Dc of Eq. (63), completes our description of un-
dulatory transport on a warped membrane.

VI. RESULTS

There are two fundamental quantities to compute: the self-
energy �̂ and the coherent diffusion reduction factor δc, from
which all other quantities may be derived. Calculation of
these quantities must be done starting directly from the DMV
equations for physical membranes, Eqs. (18) and (19), or the
action in Eq. (12), if working with generalized membranes.
Computation of �̂ is lengthy, so to simplify matters we shall
immediately switch to working with dimensionless quantities.

We measure lengths in units of
√

κ/Y and time in units of√
κσ/Y . Henceforth, we redefine wave number and frequency

p → p/
√

κ/Y , (78a)

ω → ω/
√

κσ/Y, (78b)

so that p, ω refer to the dimensionless wave number and
frequency. These, in turn, lead us to define the dimensionless
self-energy

�̄p = �p

κL2(Y/κ )2
, (79)
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TABLE I. Dimensionless scattering time τ = ω/Im�pF , and dimensionless transport velocity vt , in each of dH = 0, 1, 2. These are
calculated within the SCSA (see Appendix A for more details). We have further used the weak-scattering approximation to determine Im�pF ,
and hence τ . For dH < 2, the continuum picture breaks down and quantities depend on the underlying lattice. This is taken into account by
restricting wave numbers to lie below an upper cutoff � ∼ 1/a, for a the lattice spacing.

τ vt

dH = 0 : ( 3
2 )

2/3 �4/3

πω2α1/3 2
√

ω

√
2

3α�2

dH = 1 : 6
19πα2ω

(
1 + 3α/2+12α ln(�/

√
ω)+1√

3α+12α ln(�/
√

ω)+1

)
2
√

ω
(

2

1+
√

12α ln
(

�√
ω

)
+3α+1

)3/4

dH = 2 : 2ω

3πα2

[
1 + 3

2 ln(1 + α

ω
)
]

2
√

ω
(√

9α2

4ω2 + 1 − 3α

2ω

)3/2
,a 2

√
ω
(

2
√

2

(6 ln ( α
ω )+7)3/4

)
b

aα � ω.
bα � ω.

and disorder amplitude

α = γ

16π

(
Y

κ

)2−dH

. (80)

This choice of length and time conveniently allows us to set
Y, κ, σ = 1 in the DMV equations.

From Eq. (34), the self-energy is found via a disorder
average of the DMV Green’s function. For any given real-
ization of the quenched background height field, the DMV
equations represent a well-defined, albeit intractable, pair of
partial differential equations. To overcome this, one typically
decomposes the Green’s function into a zero disorder contri-
bution with known solution, plus corrections that tend to zero
as the amplitude of the quenched height field vanishes. Such
a decomposition was given in Eqs. (12)–(14). The interaction
term Sint carries a prefactor of 1/dc, and such a decomposition
lends itself to a 1/dc perturbation expansion.

In Appendix A 1 we compute the first order correction to
�p. We find that the perturbation series is more accurately
governed by a dH -dependent parameter Y h2

eff(p)/κ [defined
in Eq. (A7)] [54], which is system-size dependent for dH�1
and divergent at p = 0 for dH > 1. The perturbation series
fails, and any perturbative computation must include a partial
resummation of some set of terms.

To remedy the failure of the perturbation series, we em-
ploy the self-consistent screening approximation (SCSA)
[24,71–74]. Although the SCSA is an uncontrolled approx-
imation, it has proven remarkable successful. The SCSA
has found success in determining the renormalized elastic
constants of both athermal [54] and thermal [55] warped
membranes. Also, the predicted SCSA scaling exponents for
elastic moduli agree closely with those observed in graphene
sheets [75–77]. As yet another example, quantum extensions
of the SCSA [78] to suspended graphene have been able to
describe its observed ripples [32].

As applied to membranes, the SCSA is exact in three
separate limits: dc → ∞ [18,19], dc = 0 [74], and as ε → 0
in an ε expansion about internal dimension 4 − ε [20,21].
Yet, the SCSA encompasses all of these limits. More recent
calculations at next to leading order in both ε and 1/dc have
also come close to those of the SCSA [79–81].

In terms of generalized membrane with two internal di-
mensions and dc normals, the SCSA can be thought of as as
promoting the leading order terms in a d−1

c expansion of the

self-energy to a self-consistent set of equations. The SCSA
naturally misses some terms of higher order in O(1/dc), which
can be shown to lead to the stability of the rippled phase in
graphene sheets with short-range disorder [56].

The self-energy is computed in Appendix A, where we
also develop the diagrammatic perturbation theory and make
the details of the SCSA more precise. The remaining quan-
tity to calculate the reduction coefficient δc is computed in
Appendix B. We hereafter discuss the results, and refer the
reader to the appropriate Appendix for further details.

Beginning with one-particle quantities, in Table I, we
present results for vt and τ in dH = 0, 1, 2. The Drude-
Boltzmann diffusion coefficient and mean free path can easily
be found from these two quantities using Eqs. (57) and (60),
respectively.

For membranes that are flat in the stress-free state, the
transport velocity is equal to the group velocity 2

√
ω. The

frequency dependence is a consequence of the biharmonic ∇4

term appearing in the DMV equations. For all values dH , and
at fixed frequency, both the transport velocity and scattering
time decrease due to geometrical disorder. The former is a
consequence of random scattering, which prevents undulatory
waves from propagating along a straight line. The latter is due
to an increased density of scatters with increasing disorder.
Generally, the slowing down of waves due to multiple scatter-
ing gives rise to diffusive transport.

In Table II we give asymptotic results at small and large α

for the mean free path �. We find at small α that � ∼ α−5/6

in dH = 0 and α ∼ α−2 for both dH = 1, 2. As expected,
increased disorder leads to a reduction in �, and as a result,
phase information of an undulatory wave is lost at shorter
distances from the point of force application.

The frequency dependence of � is more interesting. For
dH = 2, � ∼ ω3/2 increases with frequency, while for dH <

2 it decreases. While waves with high frequency (and thus
shorter wavelength) can better resolve the geometry of the
surface, one would expect that, at higher frequency, the effect
of curvature on the waves would be smaller since the surface
appears flatter on the scale of a wavelength. This should lead
to fewer scattering events and a longer mean free path. But
this is not so.

The above explanation is incomplete for dH < 2 due to the
lack of a well-defined curvature at short length scales. That
curvature depends on two spatial derivatives of the quenched
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TABLE II. Asymptotic limits of the primary quantities contributing to localization: the coherent diffusion coefficient Dc, the weak
localization correction δD, and the mean free path �, in each of dH = 0, 1, 2.

α � 1 α � 1

Dc δDa � Dc δDa �

dH = 0 : 2
π

(2/3)1/3

α4/3ω�2/3
1
π

(
3
2

)4/3
α1/3�2/3 ln

(
L
�

) (96)1/6

π

�1/3

α5/6ω3/2 –b –b –b

dH = 1 : 48
(11+76π )α2

(
152

11+76π
+ O(α ln �)

)
ln
(

L
�

)
12

19πα2√
ω

∼α−9/4 ln−1/4
(

�√
ω

) ∼ ln(L/�)
α1/8 ln1/8(�/

√
ω)

∼ ln5/8(�/
√

ω)
α11/8√

ω

dH = 2 :c 16ω2

3(1+4π )α2
8

1+4π
ln
(

L
�

)
4ω3/2

3πα2 ∼ ω2

α2 ∼ ln
(

L
�

) ∼ ω3/2

α2

aThe weak localization correction δD is only defined for L > �, i.e., when the argument of ln is greater than one.
bThese are the same as the α � 1 limit, as � is the dominant parameter.
cThe precise limits here are instead (α/ω) � 1 and (α/ω) � 1.

height field. For the case in question, there is no meaningful
derivative that can be assigned to the quenched height field, as
the derivatives of the height field become arbitrarily large as
the lattice spacing tends to zero. The continuum picture breaks
down and quantities depend on the underlying lattice spacing
a. This is taken into account by restricting wave numbers to
lie below an upper cutoff � ∼ 1/a [this is an inverse length,
and per Eq. (78a), written in units of

√
κ/Y ]. The decrease in

mean free path with respect to frequency for dH � 1 can be
understood as the wave scattering off the now-resolved short-
distance roughness, which would otherwise be smoothed over.

dH = 1 is the marginal case; the system develops logarith-
mic dependence on �. The dH = 0 case (white noise disorder)
however, is more extreme. Here we find that � dominates
the behavior of the system; indeed, from Table II, the co-
herent diffusion coefficient Dc ∼ (α2�)−2/3. Though we have
studied the properties of the dH = 0 membrane (and list the
corresponding results), we now restrict our analysis to the
more physical cases of dH = 1, 2. We consider, in particular,
two-particle quantities, i.e., the diffusion coefficient and local-
ization length.

In Appendix E we list the full analytic expressions for
Dc, δD, ξ , � and ν, which in combination with the contents
of Table I, comprise the main results of our paper. In Table II
we give asymptotic limits at small and large α of the quantities
of interest, namely the coherent diffusion coefficient and weak
localization correction.

Beginning with dH = 2, in Fig. 3 we plot the total diffu-
sion coefficient D as a function of both α and ω. D depends
only on the ratio α/ω, and so its frequency dependence
is simply the inverse of its disorder dependence. Focusing
on the case of fixed disorder, we see that at low ω that
the diffusion coefficient sharply drops to zero. This occurs
near Dc ≈ δD and corresponds to the localization transition.
The localization transition frequency grows linearly with α,
telling us that, as disorder increases, the low frequency states
are the first to localize. In the weak disorder regime, we
find that D decreases ∼α−2 and, conversely, at fixed α in-
creases ∼ω2. The increase of D with ω indicates disorder
acts like a high-pass filter, trapping low frequency undulatory
waves.

In Fig. 4 we plot the dH = 1 diffusion coefficient versus
both α and ω. As a function of α, dH = 1 behaves similarly
to dH = 2. D ∼ α−2 at low α, and there is a localization
transition at high disorder. In contrast to the previous case
of dH = 2, when dH = 1 the diffusion constant has only log-

arithmic frequency dependence. Increasing the frequency by
orders of magnitude marginally decreases the value α at which
the waves localize. The logarithmic frequency dependence of
D is shown clearly in the lower panel of Fig. 4, where in a
log-log plot it appears as a flat line. At fixed α, increasing the
frequency over several orders of magnitude does not signif-
icantly alter D, even as ω approaches its upper limit �2. D
is not entirely independent of frequency. In the upper panel
of Fig. 4 we see that increasing ω lowers the disorder ampli-
tude at the localization transition. Though the transition point
only decreases logarithmically with frequency, this behavior is
still distinct from that observed for dH = 2, where increasing

FIG. 3. Diffusion coefficient as a function of both disorder α

(top) and frequency ω (bottom). In both cases, dH = 2 and L = 103.
D decays ∼α2 at small α, and grows like ω2 at large α. At low ω

there is a localization transition where D vanishes. At smaller system
size L, the localization transition is pushed to smaller and larger
frequencies and disorder.
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FIG. 4. Diffusion coefficient in dH = 1 versus both disorder am-
plitude (top) and frequency (bottom). In the top figure, L = � = 106,
and in the bottom figure, L = � = 103. As for dH = 2, D ∼ α−2 at
low α, and reaches a localization transition at large α. The transition
decrease logarithmically in frequency. If the system localizes, it
occurs first at high frequency. In the lower panel, the weak frequency
dependence of D is shown to hold ten orders of magnitude, and even
up to the upper limit ω ≈ �2.

frequency raises the localization transition disorder amplitude.
This analysis at large α may be questioned as the calculation
of D assumes we are in the weak scattering regime. Despite
this, a strong scattering calculation of the localization length
(shown in Fig. 6) confirms that for dH = 1, high frequency
waves are first to localize.

The computation of D is valid only in the weak scattering
approximation α � 1. The vanishing of D in both dH = 1, 2
above a certain value of α signals a transition to the localiza-
tion regime. To probe this, we consider the localization length
ξ defined in Eq. (77), and its size relative to the mean free
path �.

In Fig. 5 we plot ξ and � as functions of both α and ω

for dH = 2. Localization occurs approximately when ξ < �:
in other words, when the wave has not yet had a chance to
scatter before being localized. In agreement with the high α

prediction of Fig. 3, at large enough disorder, the localiza-
tion length becomes shorter than the mean free path. When
frequency is decreased, the the disorder amplitude at the local-
ization transition decreases as well. The lower panel of Fig. 5
shows that ξ transitions from ∼ω5/2 to ∼ eω2

dependence near
the transition. The exponential increase of localization length

FIG. 5. Top: Localization length and mean free path as a function
of disorder in dH = 2. Solid (dashed) lines refer to ξ (�). Black is
for ω = 10−3, red is for ω = 0.1. Bottom: ξ and � as a function of
frequency at fixed α = 10−3 (black) and α = 0.1 (red) in dH = 2.
Localization occurs at both high disorder and low frequency.

tells us that undulatory waves are sharply divided between
extended and localized.

In Fig. 6 we perform the same analysis of ξ and � in
dH = 1 as we did for dH = 2. As expected, the localization
length decays with increasing disorder (∼α−19/8) faster than
the mean free path at both small (∼α−9/4 and large (∼ α−11/8)
disorder. In contrast to dH = 2, the ratio ξ/� is frequency inde-
pendent in dH = 1. The lower panel of Fig. 6 shows the mean
free path is a decreasing function of frequency (∼ω−1/2). At
fixed disorder, ξ ∼ � and so the localization length will run
parallel to the mean free path. Frequency does not affect the
localization transition.

Though we can take the strong scattering limit via our self-
consistent treatment of D leading to ξ , these results should be
interpreted with caution for two reasons. First, at high α, the
quenched height field may produce stronger curvature. Our
derivation of the warped membrane equations assume that
derivatives |∇h|2 were small, thus allowing us to use the flat
metric. A proper extension to strong curvature would require
the use of covariant derivatives and a nonflat metric. Second,
the underlying DMV equations assume that the characteristic
wavelength of deformations is much smaller than the radius of
curvature [see discussion following Eq. (7)]. When this does
not hold, there are additional contributions to the change in the
curvature tensor Kab [see the definition in Eq. (8)] that couple
stretching to bending [61].
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FIG. 6. Localization length ξ and mean free path � in dH = 1 and
� = 103 as a function of both disorder amplitude (top) and frequency
(bottom). In the top panel, black (red) lines correspond to ω = 1
(ω = 10−4). Solid (dashed) lines refer to ξ (�). The wave localizes
when ξ falls below �. This occurs at weaker disorder (smaller α) with
increasing frequency. In the lower panel we show the ω−1/2 decay of
the mean free path. The localization length is ω independent, and not
shown.

VII. CONCLUSION

We analyze the transport of undulatory waves on a mem-
brane whose stress-free state is curved. Due to Gauss’
theorema egregium, curvature couples in-plane stretching
deformations to the much softer our-of-plane bending undu-
lations. As a result, undulatory wave are scattered by changes
in Gauss curvature, a purely geometric mechanism.

We study a particular class of curved surfaces called
warped membranes [54]. The stress-free state of these mem-
branes is nearly flat, and can be parametrized by a quenched
height field h(x) drawn from a Gaussian ensemble with vari-
ance set by Eq. (3). By considering ensemble averages over
membrane realizations, we can compute general transport
quantities, independent of a particular realization of disorder.

The elastic equations of a nearly flat membrane are de-
scribed using the linearized DMV equations. This isolates
the effects of curvature, which can be appreciable before
nonlinearities need be accounted for. Typically, membranes
are much stiffer to stretching than bending so the in-plane
deformations relax much faster than out-of-plane undulations.
Integrating out these in-plane modes, we arrive at an effective,
linear field theory of undulatory waves. The resulting undu-
latory equations of motion appear similar to those describing

wave propagation in random media, albeit with a complicated,
nonlocal potential and a biharmonic term.

As undulations obey a linear partial differential equation,
the amplitude of undulations in response to a normal applied
load can be described by a Green’s function. We consider
an experiment whereby an initially undeformed membrane is
suddenly plucked at the origin, thereby injecting energy into
the system. On average, the amplitude at any point is the sum
of many random phases, and averages to zero. The disorder
averaged Green’s function is thus a short range quantity. In
contrast, the energy is a conserved quantity, and it must sur-
vive disorder averaging. Its propagation or not through the
membrane is an indicator for diffusion and localization. We
find that the kinetic energy alone, and more specifically the
undulation intensity (a product of a retarded and advanced
Green’s function), is a long-range object capable of describing
diffusion and localization. We focus on studying undulation
intensity transport in response to an applied normal load
at fixed frequency at the origin. This defines a frequency-
dependent diffusion coefficient D(ω), from which we can
determine the diffusion coefficient of any finite sized wave
packet.

Our theory obeys a Ward identity (WI) relating the self-
energy to the irreducible four-point function. Using the WI,
we derive diffusive dynamics of undulation intensity for long
times and lengths. The resulting expression for the diffu-
sion coefficient is found to depend critically on the type
of quenched randomness under consideration, as well as
the frequency of the applied load. For Gaussian noise with
power-law variance in wave number space, we find that only
membranes with variance 〈|hq|2〉 ∼ q−2dH with dH > 1 are
well defined and independent of the short distance cutoff, with
being dH = 1 the marginal case.

For all types of noise, the random geometry of the elastic
reference state is found to decrease both the transport velocity
and scattering time. The strength of the effect increases with
amplitude of the quenched height field. The combination of
random scattering and slowed propagation is responsible for
diffusive behavior of disorder averaged intensity transport.

Considering the effect of coherent scattering on intensity
transport, we compute the diffusion coefficient and its weak
localization correction in the limit of weak scattering (small
quenched height field amplitude). The weak localization cor-
rection is found to behave similar to those in other 2D systems,
lowering the diffusion coefficient ∼ ln L, which is logarithmi-
cally dependent on the system size [39,42,47].

For membranes belonging to the dH = 2 ensemble, we
find at fixed frequency the diffusion coefficient decrease like
α−2, for α being the dimensionless amplitude of the quenched
height field. At large enough α, the system undergoes
a localization transition, whereby the diffusion coefficient
vanishes. The weak scattering prediction is confirmed by self-
consistently extending the weak localization correction to the
strong scattering regime, where we find the localization length
ξ to decrease with α. At fixed α, waves first localize at low
frequency. Away from the localization transition, the diffusion
coefficient grows ∼ω2 with increasing frequency. Thus, the
effects of random geometry are mitigated at high frequency.

For dH = 1, the diffusion coefficient decreases ∼α−2 un-
til a localization transition at high α, just like for dH = 2
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membranes. However, for dH = 1, both the diffusion co-
efficient and localization length are only logarithmically
frequency dependent. Increasing the frequency over n orders
of magnitude, we observe that the value α at the localization
transition is reduced by a factor of n. In contrast to dH = 2,
this suggests that the localizing effects of random geometry
are enhanced at high frequency (though exponentially small).

For dH = 0, we find that transport is completely deter-
mined by the short-distance cutoff of the theory, where the
continuum description breaks down. Upon further analysis,
this failure can be traced back to the unphysical nature of
dH = 0 membranes. Since there is no correlation in amplitude
of the quenched height field between arbitrarily close points
in space, derivatives can become arbitrarily large as the lattice
spacing goes to zero, resulting in a lack of a well-defined
curvature. We can still analyze the theory, however, and we
find the diffusion coefficient to be ∼ω−1. This supports the
claim that dH = 1 is the marginal case; for short range disor-
der (dH < 1) geometry acts as a high-pass filter, and for longer
range disorder (dH > 1) it acts as a low-pass filter.

The unphysical dependence on � plaguing the dH = 0 case
also appears to an extent for dH = 1. An alternative way to
express the claim that dH = 1 represents the marginal case
is by looking at the dependence of its perturbative parameter
on �, see Eq. (A7). For membranes belonging to the dH = 0
ensemble, this is ∼�2, in the dH = 1 ensemble this is ∼ ln �,
and in the dH = 2 ensemble this is � independent. In all
cases of disorder, the localization length is found to depend
exponentially on α and ω. This is a feature of two-dimensional
systems, and indicates that the divide between localized and
extended states is sharp.

There are several areas that warrant further research. In
particular, the interaction of the quenched geometric disor-
dered studied here with thermal undulations of the membrane
remains an open question. Previous work on those thermal
undulations reported a structure factor consistent with three
scaling regimes of surface roughness in the spectrum network
of red blood cells [82], which we assume to have little or
no quenched geometric disorder. Exploring the interaction
of these thermal fluctuations in more geometrically complex
structures presents new challenges in that the localization
length obtained here may cross over from one of the previ-
ously observed scaling regimes to another.

There has also been a flurry of recent activity on revisiting
the fluctuations of crystalline membranes [79–81]. Reconcil-
ing the compatibility of the dynamical effects of quenched
disorder studied here with these works is another goal of fu-
ture work. The long-scale dynamics of crystalline membranes
in the absence of disorder, but in the presence of out-of-plane
anharmonicity, have been previously studied. We would like
to better understand how our results fare in the presence of
such anharmonic terms. Studies including both short-range
disorder and anharmonicity have been carried out [56], but
not with the focus of understanding localization behavior.

Finally, it would be interesting to study the intensity of
thermally generated undulatory fluctuations in the localized
regime or diffusive limit to see if the system obeys a type of
geometrical speckle correlation. Additionally, we would like
to understand the sensitivity of our results to inelastic scatter-
ing. In biological applications, membranes are immersed in

viscous fluid. Whether or not localization effects persist in the
overdamped limit is a question of interest.
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APPENDIX A: SELF-ENERGY CALCULATION

The reader primarily interested in the results, is encouraged
to skip directly to Table IV.

We compute the disorder averaged Green’s function 〈G+〉
and thereby, via Eq. (34), the self-energy. The field theory is
defined by the action in Eq. (12), and the perturbation the-
ory by the subsequent decomposition of Stot into a Gaussian
piece S0, and an interacting piece Sint. The dimensionless
parameter regulating the perturbation series is determined
post factum after computing the first order correction. The
elementary propagators and vertices are shown diagrammat-
ically in Fig. 7. All calculations are performed using the large
L limit, whereby we replace summations L−2∑

p(· · · ) with

integrations
∫ d2 p

(2π )2 (· · · ). The projection operators appearing
in the disorder vertex can alternatively be written as the cross
product of two two-dimensional vectors projected in to three
dimensions as

piP
T
i j (q)p j = |p × q|2

q2
, (A1)

which will prove useful. Since p and q are not actually three
vectors, we omit the boldface, with the understanding that
cross products are shorthand for Eq. (A1).

The rule for contracting lines is slightly different than for
typical field theories due to the nature of the disorder average.
In any diagram, one must first contract all solid lines in order
to build the propagators Ĝ+, Ĝ−, then afterwards contract the

=
Y L2

dc
δ( iqi)δq,−q δαβ

×q1
i q

2
jq

3
kq

4
l P

T
ij (q)PT

kl(q)

=
1
L2

δq,−q δω,−ω δαβ

κq4 − σω2

q
α β

βα

(q, ω, α) (q , ω , β)

(q, α) (q , β)

q1
i

q2
j q3

k

q4
l

=
γ

L2

δq,−q δαβ

q2dH

FIG. 7. Straight (wavy) lines represent propagators for the undu-
lation (disorder) fields. The effective disorder vertex corresponding
to Eq. (14), is on the third line. The vertex carries factors of wave
number that can be accounted for by the following rule: each line
(both wavy and solid) carries one factor wave number for each in-
tersection that it terminates at. Only diagrams that remain connected
when disorder lines are cut contribute to disorder averages.
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FIG. 8. (a) The first order correction to the self-energy and
Green’s function. The absence of an internal propagator makes this
contribution purely real. (b) Second order correction of higher order
O(1/d2

c ). (c) Second order term in SCSA and first order term for the
imaginary component of self-energy. (d) An example of forbidden
diagrams, in which a horizontal cut across disorder lines leaves the
graph disconnected. Double solid lines indicate fully dressed Green’s
function. (e) Third order term in SCSA, but left out by the NCA. (f)
An example of a crossed diagram, whose phase space is restricted,
leading to a result of higher order in 1/(pF �). These diagrams are
small in both the SCSA and NCA approximations.

remaining wavy lines to perform the disorder average. This is
accounted for by implementing the additional rule that only
diagrams that remain fully connected when all disorder lines
are cut may contribute to any given calculation. An example of
a particular class of forbidden diagrams is shown in Fig. 8(d).

As usual, the self-energy is given by the set of one-particle
irreducible diagrams, i.e., diagrams that remain connected
after an solid line is removed. Per the disorder rules, dashed
lines and solid lines count toward connectivity, but wavy lines
do not.

1. Perturbation series

The lowest order term for the self-energy, shown in
Fig. 8(a), is equal to the equation

�(1)
p = −γY L2

dc

∫
d2q

(2π )2

|p × q|4
q4(q − p)2dH

. (A2)

Since there is no imaginary part or ω dependence, there is
no distinction between advanced and retarded and we thus
omit the ± index. Counting powers of q we see that the
integrand ∼q2−2dH , which indicates a divergence at high (low)
wave number for dH less (greater) than one. We regulate the
high wave number divergence by imposing an upper cutoff
� beyond which the continuum model breaks down. If the
membrane possess an underlying lattice structure, � is on
the order of the inverse lattice spacing (or grid spacing in
numerical calculations). Integrating the angular components
we find

�(1)
p = −γY L2 p6−2dH

4π2dc

∫ �/p

0
qIdH (q)dq, (A3)

where we have defined the commonly occurring function

IdH (p) =
∫ 2π

0

sin4 θ dθ

(p2 + 1 − 2p cos θ )dH
. (A4)

IdH is easily solved by substitution z = eiθ , followed by a
contour integration around the unit circle. The results for
dH = 0, 1, 2 are summarized in Table III.

TABLE III. Values of IdH (q) for dH = 0, 1, 2.

dH = 0 dH = 1 dH = 2

IdH (q) 3π

4
3π

4 max(q,1)2

(
1 − min(q,1)2

3 max(q,1)2

)
3π

4 max(q,1)2

Substituting and performing the radial integration we find

�(1)
p = −3γY L2 p4

16πdc
×

⎧⎪⎪⎨
⎪⎪⎩

�2/2, dH = 0,

p2

6�2 + ln
(

�
p

)+ 1
4 , dH = 1,

1
p2 − 1

2�2 , dH = 2.

(A5)
The � divergence is due to the lack of a well-defined curvature
tensor for surfaces dH < 2, which can be inferred from the
large p limit of 〈|∇2h|〉 ∼ p2−dH . This suggests that the weak
scattering approximation is only realizable (and physically
meaningful) for dH � 1.

We infer that the perturbation series is regulated by the dH -
dependent parameter [54]

Y h2
eff

κ
< 1, (A6)

where heff denotes an effective averaged height field

h2
eff(q) ∼

⎧⎪⎨
⎪⎩

q2−2dH , dH � 2,

ln �/q, dH = 1,

�2−2dH , dH < 1.

(A7)

The strong dependence on dH has dramatic consequences
for the effective elastic constants of warped membranes, lead-
ing to a system size dependent rigidity κ ∼ L for dH = 2,
compared to only a weak logarithmic κ ∼ ln L and system
size independent scaling for dH = 1 and dH = 0, respectively
[54].

Keeping only the lowest order contribution to the self-
energy is plagued by two issues. The first is the dependence on
the of short distance cutoff �, which causes the perturbation
series to diverge. The second, and more important, is the lack
of an imaginary component, which is necessary to describe
scattering. The lowest order contribution to Im� occurs at
two loop order [see Figs. 8(b) and 8(c)]. Both of these prob-
lems are treated by performing a partial resummation of the
perturbation series known as the self-consistent screening ap-
proximation (SCSA) [54,55,71]. We now turn to a calculation
of the SCSA self-energy.

2. Self-consistent screening approximation

The SCSA has proven successful in describing the thermal
fluctuations of warped membranes [54,55,71]. It has also held
up well in regards to more recent work [79–81]. It can be
derived by first enumerating the diagrams to O(d−1

c ), then de-
veloping a self-consistent extension. In the example diagrams
shown in Figs. 8(c) and 8(e) are O(d−1

c ) and contribute to
the SCSA, while Figs. 8(b) and 8(f) are O(d−2

c ) and O(d−4
c ),

respectively, do not. The latter two admit crossed-disorder
lines. The SCSA can be viewed as a generalization of the non-
crossing approximation used in electron transport calculations
[40].
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= +

+=
FIG. 9. The full disorder averaged propagator is represented by

a double solid line, and the full vertex by a shaded bubble with two
wavy lines and two solid lines attached. Top: The SCSA for the fully
dressed Green’s function. Bottom: The SCSA for the renormalized
vertex function.

The resummation of diagrams is done diagrammatically in
Fig. 9. This is equivalent to the set of self-consistent equations

G±
p = L−2(κ p4 − σω2 ∓ iε)−1 − 2d−1

c L−2

κ p4 − σω2 ∓ iε

×
∑

q

pi p jRSCSA
i j,kl (q)pk pl

(q − p)2dH (κ p4 − σω2 − L−2�±
p )

,

(A8a)

RSCSA
i j,kl (q) = Ri j,kl (q) −

∑
p

2L2Ri j,mn(q)pm pn pr psRSCSA
rs,kl (q)

(p − q)2dH (κ p4 − σω2 − �±
p )

,

(A8b)

describing the dressed propagator and vertex.
We simplify these equations as follows. We first rewrite

Eq. (A8a) in terms of the self-energy by multiplying both
sides by L2(κ p4 − σω2 ∓ iε)(G±

p )−1 and using the definition
in Eq. (34). Rearranging leads to

�±
p = −2

dcL2

∑
p

pi p jRSCSA
i j,kl (q)pk pl

(p − q)2dH
. (A9)

The tensor indices appearing in RSCSA
i j,kl are removed by assum-

ing a solution of the form

RSCSA
i j,kl (q) = YR(q)PT

i j (q)PT
kl (q), (A10)

which amounts to a renormalization of the Young’s modulus
Y . Insertion into Eq. (A8b) immediately yields the solution

YR(q) = Y

1 + �q
, (A11)

where we have defined the function

�q = γY

L2

∑
q′

[
q′

iP
T
i j (q)q′

j

]2
(q − q′)2dH (κq′4 − σω2 − �q′L−2)

. (A12)

Inputting Eq. (A10) into Eq. (A9) we complete our setup of
the SCSA. This has been reduced to solving the set of self-
consistent equations

�p = −γY

dc

∑
q

|p × q|4
q4(q − p)2dH (1 + �q)

, (A13a)

�q = γY

L2

∑
q′

|q × q′|4
q4(q − q′)2dH (κq′4 − σω2 − L−2�q′ )

,

(A13b)

where we have made use of Eq. (A1). These equations must
be solved for each of the cases dH = 0, 1, 2.

For the remainder of the section, ω, p refer to their dimen-
sionless versions defined in Sec. VI, Eq. (78). We further work
with the dimensionless self-energy �p defined in Eq. (79) and
the dimensionless disorder amplitude α defined in Eq. (80).
The upper cutoff has units of inverse length and is also nondi-
mensionlized. The dimensionless SCSA equations are now

�p = 16πα

∫
d2q

(2π )2

|p × q|4
p4(p − q)2dH (q4 − ω2 − �q)

,

(A14a)

�p = −16πα

dc

∫
d2q

(2π )2

|p × q|4
q4(p − q)2dH (1 + �q)

. (A14b)

We can further perform the angular integrations to arrive at

�p = 4α

π

∫ �/p

0

q5−2dH IdH (q) dq

q4 − ω2 − �q
, (A15a)

�p = −4αp4−2dH

πdc

∫ �/p

0

qIdH (q) dq

1 + �q
. (A15b)

This form is suited for numerical evaluation, and is used to
provide a check on our analytical solutions. The imaginary
part of the self-energy

Im�p = −4αp4−2dH

πdc

∫ �/p

0

qIdH (q)Im�q

|1 + �q|2 dq (A16)

is � dependent. In the weak scattering limit we expect YR(pF )
is not significantly renormalized, which implies that �(pF )
is small. We thus approximate Im(1 + �)−1 ≈ Im�. This ap-
proximation ignores vertex renormalization and is equivalent
to the self-consistent diagrammatic equation

ImΣp ≈ Im . (A17)

In the weak scattering approximation, Im�(q) can be
simplified using Eq. (43) to eliminate the radial q′ inte-
gration. We focus on the particular solution when p = pF

which is relevant for the scattering time and mean free path.
We obtain

Im�pF = −4α2 p8−4dH
F

πdc(1 − δ1)

∫ �/pF

0
qI2

dH
(q)dq. (A18)

Explicitly for dH = 0, 1, 2:

Im�pF = πα2

dc(1 − δ1)
×
⎧⎨
⎩

9�2 p6
F /8, dH = 0,

19p4
F /12, dH = 1,

3/2, dH = 2.

(A19)

The Fermi wave number pF and δ1 both depend on the real
part of the self-energy, and hence must be checked to be
consistent with the SCSA. In the following sections we solve
the SCSA equations to determine the self-energy. The main
results are collected in Table IV.
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TABLE IV. We tabulate the main results of the SCSA. The imaginary part of the self-energy is given in the weak scattering limit.

dH pF Re� p Im� pF

0 ω1/2(3α�2/2)−1/6 −(3αω/2)1/2�p3 9πα2�2 p6
F /8

1+ 1
2 (3/2)3/2�α1/2ω1/2/p2

F

1 21/4√
ω

(1+
√

1+12α[ln(�/
√

ω)+1/4])
1/4

q4

2 (1 − √
1 + 12α[ln(�/q) + 1/4])

19πα2 p4
F /6

1+ 3α/2+12α ln(�/pF )+1√
3α+12α ln(�/pF )+1

2
√

ω,a
√

ω

4
√

3
2 ln ( α

ω )+ 7
4

b −3αp2

2

(
1 − α

p2 ln
(
1 + p2

α

)+ p2

α
ln
(
1 + α

p2

)) 3πα2/2
1+ 3

2 ln(1+α/p2
F )

aIn the limit α � ω.
bIn the limit ω � α.

a. Iterative solution

In principle, the SCSA Eqs. (A15b) and (A15a) can be
solved via iteration. This is done by first guessing zeroth
order solutions (we say order, though there is no formal order

parameter governing the iteration) �
(0)
p ,�(0), then performing

the integrations on the right hand side to obtain new solutions

�
(1)
p ,�(1)

p . These, in turn, are put into the right-hand side and

integrated over yielding another set of solutions �
(2)
p ,�(2)

p .
The process is repeated ad infinitum until a stationary solution
is reached, i.e., the nth order solution is equal to the (n − 1)th
to within some desired tolerance. We make use of this method
to develop an approximate solution after only a couple of
iterations.

Our first task is to determine a reasonable zeroth order
solution. The simplest function we can construct is a power-

law �
(0)
q ,�(0)

q ∼ qηs,ηp . The solution is ω independent, and
the exponents ηs, ηp can be determined by power counting.
If 0 � ηs � 4, then Eq. (A14a) implies �(0)

q ∼ q2−2dH , i.e.,
ηp = 2 − 2dH .

For dH � 1, �(0)
q is a decreasing function which does not

contribute to power counting on the right side of Eq. (A14b)
at large q. Since the integral is peaked around the value q ≈ p,
the small q divergence of �(0)

q will not significantly alter the
integration so long as p is not much less than one. The scaling

of � is then �
(0)
q ∼ q6−2dH , which is indeed self-consistent.

For dH < 1, the integration on the right side of Eq. (A14a)
diverges unless ηs > 4. However, since the integration on the
right side of Eq. (A14b) cannot push ηs greater than four, it
must be the case that �(0)

q depends on the upper cutoff as
�(0)

q ∼ �2−2dH . Likewise, the integration on the right side of
Eq. (A14b) also depends on the upper cutoff ∼�2−2dH . We

then find the set of self-consistent solutions �
(0)
q ∼ q4�2−2dH

and �(0)
q ∼ �2−2dH .

The zeroth order solutions for each case of dH are sum-
marized in Table V. Next, we insert these into Eq. (A14)

TABLE V. The zeroth order trial solutions in the iterative method
of solving the SCSA equations [Eq. (A14)]. Imaginary parts appear
at first order in the iterative solution.

dH �
(0)
q �(0)

q

0 ∼q4�2 ∼�2

1 ∼q4 ∼ ln �/q
2 ∼q2 ∼q−2

and perform the integrations to obtain the first order solutions

�
(1)
q ,�(1)

q , at which point we terminate the iteration. This
step is performed individually for each of the three cases
dH = 0, 1, 2. Finally, the first order solutions are inserted into
Eq. (A15) numerically evaluated to assess how closely they
satisfy the SCSA.

b. dh = 2

Per Table V we use �(0)
q ∼ q−2 and �

(0)
q ∼ q2. Since �(0)

q

does not scale with a power higher than q4, we expect the eval-
uation of the integrand in Eq. (A14a) to depend only weakly

on �
(0)
q , and thus solve for �(1)

q by setting �
(0)
q = 0. The

second term in the denominator of Eq. (A14a) is a completed
square, which we factorize into

�(1)
q = 16πα

p4

∫
d2q

4π2

pa pb pc pdεaiεb jεcmεdnqiq jqmqn

(q − p)4(q2 − ω ∓ iε)(q2 + ω ± iε)
.

(A20)

Here εi j represents the two-dimensional antisymmetric Levi-
Civita symbol, and iε is an infinitesimal imaginary parameter
taken to zero at the end of the calculation that keeps track of
the retarded and advanced distinction. The remaining integral
can now be performed via the method of Feynman parameters
[83]. We obtain

�(1)
q = 3αω

4q4

[
iπ + 2q2

ω
+
(

q4

ω2
− 1

)
ln

(
q2 + ω

q2 − ω

)]
.

(A21)

The zeroth order divergence at small q is now cured at first
order, with Re�(1)

q→0 ∼ q2/ω2. For large q, the leading term

is Re�(1)
q→∞ = 3/q2. This has the same behavior as the zeroth

order ansatz, and we shall use this to fix the proportionality
constant, i.e., �(0)

q = 3/q2.
The integral in Eq. (A14b) is performed using the same

techniques as before, with the result

Re�
(1)
q = −3αq2

2dc

[
1 − α

q2
ln

(
1 + q2

α

)
+ q2

α
ln

(
1 + α

q2

)]
.

(A22)

From this we may solve for renormalized group velocity
and Fermi wave number [see Eqs. (38) and (42), respectively].
Trivially, δ2 = 0 and

δ1 = −3

2dc
ln

(
1 + α

q2

)
. (A23)
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The Fermi wave number pF is given by the solution to the
nonlinear equation p4

F − ω2 = Re�pF . We can find a solution
in two limits. For α � ω, Re� = −3αp2 yielding a quadratic
equation for p2

F . In this limit we use

pF (α � ω) =
√

1

2
(
√

9α2 + 4ω2 − 3α). (A24)

In the opposite limit we find that Re�p →
−3
4 [q4 + 2q4 ln (α/q2)]. This yields an approximate solution

pF (α � ω) =
√

ω

4

√
7
4 + 3

2 ln
(

α
ω

) . (A25)

c. dH = 1

Per Table V we use zero order solutions

�(0)
q = (cπ − 1), �

(0)
q = (1 − c4

s

)
q4, (A26)

for some constants cπ , cs to be determined. Both integrals of
the SCSA are logarithmically divergent and depend on the
upper cutoff �. Assuming � � 1, we discard terms O(�−1).

�
(1)
q is evaluated easily from Eq. (A15b), giving

�
(1)
q = −3αq4

cπdc
[ln(�/q) + 1/4]. (A27)

�(1)
q is calculated from Eq. (A14a) using the method of

Feynman parameters as was done for the dh = 2 case. We find

�(1)
q = 3α

c4
s

∫ 1

0
(1 − x1)

[
ln

(
c2

s �
2

�2ω

)
− 3

2

]
dx1dx2, (A28)

where we have defined

�2 = (1 − x1)

(
c2

s q2

ω
x1 + (2x2 − 1)

)
. (A29)

The remaining integrations over Feynman parameters x1 and
x2 may be carried out to give

�
dH =1
1 (y) = α

4c4
s y4

{
− ln(y4 − 1) − 6y2 tanh−1 (y2)+ y4

[
3 ln

(
c4

s �
4/ω2

y4 − 1

)
+ 5

]
− 2y6 coth−1 (y2)+ iπ (1 − 6y2)

}
, (A30)

with y = csq/ω1/2. We use this expression only insofar as to
perform numerical checks on our calculation, since we are
principally interested in the calculation of �p. We can con-
struct an approximation of this function as follows. First, we
note that the integrand of Eq. (A28) is most strongly peaked at
q = 0 and at q = �. In the former limit, the integrand is deter-
mined primarily by the larger of q2, ω. This suggests that we
may approximate �1(q) as a piecewise function transitioning
from the low q to high q behavior near q ∼ ω1/2. Specifically,
Taylor expanding Eq. (A28) at low and high q then solving for
the value q∗ at which the difference between the two solutions
is minimized, we find a transition point q∗ = 61/4ω1/2. This
yields the approximate solution

Re�(1)
q ≈ 3α

c4
s

{
ln (cs�/ω1/2) − c4

s q4

24ω2 , q < 61/4ω1/2/cs,

ln(�/q) + 1/4, q � 61/4ω1/2/cs.

(A31)
The constants cπ , cs are determined by matching the first

order solution to the zeroth order solution, which is most
easily accomplished in limit q → �. Critically, our power-law
analysis of the zeroth order solution omitted nonanalytic func-
tions. Equation (A31) suggests cπ , cs are not strictly constant,
but can admit logarithmic dependence on q. Matching the
q → � limit of Eqs. (A31) and (A27) to Eq. (A26) yields the
set of equations

cπ − 1 = 3α

dcc4
s

[ln(�/q) + 1/4], (A32a)

1 − c4
s = −3α

dccp
[ln(�/q) + 1/4]. (A32b)

These have the solution

c4
s = 1

2
(1 ±

√
1 + 12αd−1

c [ln(�/q) + 1/4]). (A33)

The condition c4
s = 1 at α = 0 requires that we choose the

(+) solution. Finally, we can quickly find �
(1)
q by using the

matching condition �
(1)
q = (1 − c4

s )q4 to find

Re�
(1)
q = q4

2

(
1 −

√
1 + 12α

dc
[ln(�/q) + 1/4]

)
. (A34)

We solve for the Fermi wave number by evaluating Re�p

at p = ω1/2. This approximation is increasingly accurate as
either α → 0 and/or � → ∞. We obtain

pF = 21/4ω1/2

(
1 +

√
1 + 12α

dc
[ln(�/ω1/2) + 1/4]

)−1/4

.

(A35)

The group velocity constant δ2 = 0, and

δ1 = 1

2
− 3α/2 + 12α ln

(
�

ω1/2

)+ 1

2
√

3α + 12α ln
(

�
ω1/2

)+ 1
. (A36)

In the numerical calculations of Fig. 10, the obtained value for
cs is input back into Eq. (A30) to determine �(1)

q .

d. dH = 0

We start with Eqs. (A15a) and (A15b). The zero order
solutions are

�(0)
q = cπ , �

(0)
q = csq

4, (A37)

as for dH = 1. The integrations are quadratically divergent,
and dominated by the upper wave number cutoff. To lowest
order in �−1 we find the SCSA equations

cπ = 3α�2

2

1

1 − cs
, (A38a)

cs = −3α�2

2

1

dc(1 + cp)
. (A38b)
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FIG. 10. Data points represent the numerical integration result
for Re�q and �q, using the numerical integrations defined in
Eqs. (A15a) and (A15b). Curves represent the analytic result. Figures
on the left column use dH = 2, and figures on the right column
use dH = 1 and �/

√
ω = 100. The colors black, blue, and red,

and the shapes square, triangle, and circle, represent parameters
α = 10−1, 10−2, 10−3 respectively. We consider the cases dH = 1, 2,
where the solutions for �q,�q are nontrivial functions. Beyond
weak scattering we find our analytic approximations to be inaccurate,
however, the shape of the curves is still accurate, which we need for
deriving the diffusion coefficient.

These have the solution

c±
s = 1

2dc

⎛
⎝1 − 3�2αω

2q2
(1 − dc)

±
√(

1 − 3�2αω

2q2
(1 − dc)

)2

+ 6�2αω

q2
dc

⎞
⎠. (A39)

In order to choose the correct branch, we consider the limit
α → 0. This corresponds to zero disorder, i.e., γ → 0. In
this limit, the self-energy should vanish and so cs → 0. This
uniquely singles out the (−) solution c−

s .
Now we consider the limit � � 1. For physical mem-

branes we also set dc = 1, which we do first, noting that the
limits dc → 1 and � → ∞ do not commute. To leading order
in � we find

cs =
⎧⎨
⎩

−�
q

√
3αω

2 : dc = 1,

1
2dc

: dc �= 1.
(A40)

cs is a renormalization of the bending rigidity κ → κ (1 + cs).
Since by definition � > q for all q, cs dominates the effective
bending rigidity for all but very small disorder and very low
frequency. Assuming that q � � (which is consistent with
linearized shallow shell theory), the renormalized dimension-
less propagator is

(G±
q )−1 ∼ 1√

3αω/2�q3 − ω2 − iIm�±
q

. (A41)

We easily determine the Fermi wave number

pF = ω1/2

(
2

3α�2

)1/6

. (A42)

The assumption pF � � is self-consistent, as pF is dampened
by a factor of �1/3. The group velocity can be found directly,

vG = (12α)1/3�2/3q. (A43)

The function,

δ1 = −3

4

(
3αω

2

)1/2
�

q
, (A44)

in combination with Eq. (A19), gives the intermediate expres-
sion for the imaginary part of the self-energy

Im�pF = 9πα2�2 p6
F /8

1 + 3
4

�
pF

√
3αω

2

. (A45)

Inputting Eq. (A42) for pF then taking the large � limit we
obtain

Im�pF = (2/3)2/3πω3α1/3�−4/3. (A46)

e. Numerical checks

In Fig. 10 we numerically test the accuracy of the first

order SCSA solutions. This is done by inputting �
(1)
q ,�(1)

q
into Eq. (A15) for the real part of the self-energy, and using
Eq. (A19) for the imaginary part. The numerical integration
is performed at fixed p and compared to the analytic so-
lution. With the exception of dH = 0, the self-energy is a
p-dependent function, so the comparison is done over a range
of wave numbers. For dH = 0 we find a single value for cs, cπ ,
in good agreement with the analytical result. For dH = 1, 2
we find good agreement in the weak scattering approximation
for α = 10−3, with increasing precision for wave numbers
q >

√
ω on the order of a percent difference.

APPENDIX B: δc CALCULATION

We begin with the definition of the coherent diffusion co-
efficient Dc in Eq. (63). The parameter δc is

δc = iτM0. (B1)

The scattering time τ was found earlier in Appendix A (and
tabulated in Table I), so we need only evaluate M0, which was
defined in Eq. (53).

Dc is found by replacing the irreducible vertex U with the
bare vertex U 0, defined in Fig. 11. U 0 is evaluated at q = 0
and affords the simpler representation

U 0
pp′ = γ 2Y 2

2dc

∑
k

|p × k|4|k × p′|4
(k − p)2dH (k − p)2dH k8

, (B2)

where the cross product is as defined in Eq. (A1). We insert
this into the definition of M0 then evaluate the corresponding
integrals. In the weak scattering approximation, the radial
integrations are performed using Eq. (43), leaving only the
angular integrations:

M0 = iπν

σ 2ω2

∫ 2π

0
d p̂d p̂′(q̂ · p̂)Up̂p̂′ (q̂ · p̂′), (B3)
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p +
q

2 p +
q

2

p − q

2 p − q

2

p +
q

2
p +

q

2

p − q

2
p − q

2

k +
q

2

k − q

2

(k − p) (k − p )=U0

FIG. 11. The bare irreducible vertex. This is the simplest four-
point vertex that can be constructed that remains fully connected after
cutting all wavy lines.

and d p̂ is understood to mean the angular integration on p̂.
There are four unit vectors to consider, and a total of 4! angles
to consider. We define angles according to Fig. 12.

The angles β, β ′ can be eliminated in favor of φ, θ, θ ′, al-
lowing us to use q̂ · p̂ = cos(φ − θ ) and q̂ · p̂′ = cos(φ − θ ′).
Simplifying Eq. (B3) according to Fig. 12 we find

M0 = πνL2 p2−4dH
F

2σ 2ω2idc

∫ �/pF

0

kdk

4π2

∫ 2π

0
dφJ2

dH
(k; φ), (B4)

where we have defined

JdH (k; φ) =
∫

dθ
cos(θ − φ) sin4 θ

(k2 + 1 − 2k cos θ )2dH
. (B5)

JdH (k; φ) is computed via substitution z = eiθ followed by
contour integration. Performing the remaining integrations
yields M0, which is then trivially related to δc. The results for
both JdH (k; φ) and δc are shown in Table VI for dH = 0, 1, 2.

In terms of the dimensionless wave number, frequency, and
disorder amplitude, we find the final results

Dc = D0 ×

⎧⎪⎪⎨
⎪⎪⎩

1, dH = 0,(
1 + 11α2 p4

F τ

24ω

)−1
, dH = 1,(

1 + 3α2τ
8ω

)−1
, dH = 2.

(B6)

APPENDIX C: WARD IDENTITY

In this Appendix the vector nature of positions and wave
numbers are understood, and we omit boldface lettering. Ad-
ditionally, we deviate from the notation of the main text, and
use Ĝ± to refer to the unaveraged Green’s function. The WI is
most easily derived using a functional integral representation

q̂

k̂

p̂

p̂

φ

θ

θ

β
β

FIG. 12. Angles between unit vectors at fixed orientation in the
calculation of M0. Only q̂ is not integrated over. We first fix k̂, then
perform the integrations over d p̂ = dθ and d p̂′ = dθ ′. This yields a
function JdH (k; φ) that is then integrated over φ.

TABLE VI. Angular integration function JdH (k; φ) and δc for
each of dH = 0, 1, 2. We use dimensionless frequency, wave number,
and disorder amplitude.

dH δc JdH (k; φ)

0 0 0

1
11α2 p4

F τ

24ω

π min(k,1)[2 max(k,1)2−min(k,1)2] cos φ

8 max(k,1)5

2 3α2τ

8ω

π min(k,1) cos φ

2 max(k,1)5

for the Green’s function [65]. We define the moment generat-
ing function

Z[ j+, j−] =
∫

D f +D f −e− ∫ A[ f +, f −]− j+ f +− j− f −d2x, (C1)

where we have defined the total action as the sum of retarded
and advanced actions

A[ f +(x), f −(x)] = A+[ f +(x)] + A−[ f −(x)] (C2)

that, in turn, are decomposed into the sum of a Gaussian action

A±
0 = κ

2
(∇2 f ±)2 + σω2

+
2

( f ±)2, (C3)

and a disorder interaction

A±
int = Y

dc
(L̂ f ±)∇−4(L̂ f ±). (C4)

A±
0 and A±

int are the real space representations of the DMV
action in Eqs. (13) and (14). The operator L̂ was defined in
Eq. (20); for our purposes, it is most important to note that it
is Hermitian, i.e., for any two functions g and h, we have the
identity ∫

gL̂h d2x =
∫

hL̂gd2x. (C5)

For a fixed realization of disorder, we may obtain the un-
averaged Green’s function in the usual way, via functional
derivatives:

G+(x, x′) = δ2

δ j+(x)δ j+(x′)
ln Z[ j+, j−]

∣∣∣∣
j±=0

. (C6)

In this section we will use different notation from the main
text with respect to averaging. The functional integral method
first computes the Green’s function as the two-point func-
tion of f + with regards to the ensemble dictated by the
action. This is done at fixed disorder, and the resulting
Green’s function must subsequently be averaged over the
disorder. We use angular brackets 〈· · · 〉 to denote averag-
ing over the f + ensemble, and an overline . . . to denote
disorder averaging. In this notation, the Green’s function is
written as

G+(x, x′) = 〈 f +(x) f +(x′)〉. (C7)

The four-point function can similarly be written

φ(x, x′; y, y′) = 〈 f +(x) f +(x′)〉〈 f −(y) f −(y′)〉. (C8)

At zero external frequency �, the total action A possesses
an O(2) symmetry between retarded and advanced fields, and
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is invariant under the transformation(
f +
f −

)
→
(

cos θ sin θ

− sin θ cos θ

)(
f +
f −

)
. (C9)

For nonzero � we perform the change of variables

f + → f + + ε f −, (C10a)

f − → f − − ε f +, (C10b)

for ε an infinitesimal parameter. Since ε is small, we Taylor
expand the exponential and use invariance of the functional
integral change of variables to find the equation

〈−2σω� f + f − + j+ f − − j− f +〉 = 0. (C11)

In obtaining this equation, since the realization of disorder
is identical for both f + and f − fields, the variation δSint

vanishes. Taking two functional derivatives δ2

δ j+δ j− , setting
j+ = j− = 0, and then performing the disorder average we
find

2ω�φ(x, x′; y, y′) = [G+(x, x′) − G−(y, y′)]

× δ(x − y)δ(x′ − y′). (C12)

Using the position space definition of the Green’s function

G±(x, x′) = κ∇4 − σω2
± − �̂±, (C13)

we can formally divide by Ĝ+Ĝ− and use the BS equation to
find the solution

��̂± = Û �̂G±. (C14)

In the wave number basis, this takes the simpler form

��p(q) =
∑

p′
Upp′ (q)�Gp′ (q). (C15)

The WI is identical to the well-known result for electrons
in disordered media [47]. As a check, the WI can easily
be seen to hold for the choice of irreducible vertex U 0

pp′ (q)
[Fig. 11 and Eq. (B2)] and self-energy [Eq. (A17)] used in this
paper.

APPENDIX D: DERIVATION OF DIFFUSON
AND COOPERON

We begin with deriving the diffuson, which we denote as
�̂. In the position basis, the diffuson is a function of four
points �(x1, x2, x3, x4), and in the Fourier basis a function of
three wave numbers �pp′ (q) due to translational invariance.
The diffuson is an IR divergent four-point vertex that diverges
in the limit q,� → 0. This divergence ensures that even after
after disorder averaging, the diffuson is long-range object, and
hence represents a two-particle propagator associated with the
diffusive dynamics of the intensity field.

The Green’s functions G±(x, x′; ω) represent plane waves
of frequency ω propagating froward and backward (+,−) in
time from position x′ → x, and can be interpreted as particles
(see Sec. V). The four-point function is the disorder-averaged
quantity describing propagation of two, paired particles in
space. From this representation we can define the diffuson as
the contribution to this amplitude from all paths whereby the

+

p +
q

2 p +
q

2

p − q

2 p − q

2

== +++Γ(D) Γ(D)

=Γ(C)  +

p +
q

2 p +
q

2

p − q

2 p − q

2

=

++ +

Γ(D)

p̃ + Q/2 p̃ + Q/2

p̃ − Q/2p̃ − Q/2

FIG. 13. Dominant contributions to the four-point vertex in the
diffusive limit. Upper and lower lines carry retarded and advanced
propagators, each with frequency ω + (−)�/2. The frequency is a
passive index and is not integrated over since the disorder field is
quenched. Top: Diagrammatic representation of the Bethe-Salpeter
equation defining the diffuson contribution to the four point vertex
�̂. Bottom: Diagrammatic derivation of the cooperon. The new wave
numbers are p̃ = 1

2 (p − p′ + q), p̃′= 1
2 (p′ − p + q), and Q=p + p′,

in agreement with Fig. 2.

paired particles undergo identical scattering paths. In Fourier
space, these correspond to the ladder type diagrams of Fig. 13.

Summation over ladder diagrams is formally given as a
Bethe-Salpeter equation

�̂ = Û + Û : Ĝ+ ⊗ Ĝ− : �̂. (D1)

The colons indicate that Û and �̂ are contracted with the
tensor product of Ĝ+ ⊗ Ĝ−. We keep the same notation as
in the text that all Green’s functions represent their disorder
average. �̂ decomposes into the two-particle irreducible ver-
tex U (which is currently unspecified), plus the set of ladder
diagrams connecting additional vertices by a retarded and
advanced propagator. In Fourier space we find the less abstract
form

�pp′ (q) = Upp′ +
∑

k

UpkG+
k+q/2G−

k−q/2�kp′ (q). (D2)

Since we are interested in contributions to �pp′ (q) that diverge
in the limit �, q → 0, we have replaced the first Upp′ (q) on the
right with its q = 0 value Upp′ .

When all of the external legs of the reducible vertex �̂ are
put on a shell, we obtain the four-point function of Eq. (25).
Explicitly,

φpp′ (q) = G+
p+q/2G−

p−q/2�pp′ (q)G+
p+q/2G−

p′−q/2. (D3)

This relation allows us to directly use our results from
Sec. IV to solve for �pp′ (q). Looking at the small q, � limit,
we set q = 0 in the Green’s functions and use the iden-
tity G+

p G−
p = �Gp/2iIm�p. Comparing to the solution for
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φpp′ (q) in Eq. (55), we immediately find

�
(D)
pp′ (q) = 2

πνL2

Im�pIm�p′

−i� + Dc(ω)q2
. (D4)

The superscript (D) emphasizes this is not the full reducible
vertex, but instead its long time and length limit, the diffuson.
The appearance of Dc in the denominator is a consequence
of the choice U = U0 for the irreducible vertex, where U0

is the bare irreducible vertex defined in Fig. 11. This choice
generates the sum of all noncrossing box diagrams.

The cooperon is derived by first crossing all bare vertices
Û 0, then individually crossing the wavy lines within each Û 0

as shown in the lower half of Fig. 13. This is equivalent to

a summation over all maximally crossed box diagrams. By
left-right reflection of the lower lines (i.e., reversing all of the
arrows), we can uncross the box diagrams, thereby obtaining
an identical set of ladder diagrams as used for the diffuson.
The new wave numbers are reversed and of opposite sign. We
thus find the cooperon

�
(C)
pp′ (q) = �

(D)
1
2 (p−p′+q), 1

2 (p′−p+q)
(p + p′). (D5)

Finally, we note that, by including cooperon insertions into
the ladder diagrams defining the diffuson [47], we find cor-
rections to the diffusion coefficient Dc that recover the weak
localization calculation of Sec. V.

APPENDIX E: FULL ANALYTIC EXPRESSIONS

1. dH = 0

Dc = D0 = 2

π

(2/3)1/3

α4/3ω�2/3
, (E1)

� = (96)1/6�1/3

πα5/6ω3/2
, (E2)

δD = 1

π

(
3

2

)4/3

α1/3�2/3 ln
(L

�

)
, (E3)

ξ =
√

exp

(
4(2/3)5/3

α5/3�4/3ω

)
− 1, (E4)

ν = (2/3)4/3

2πα1/3�2/3
. (E5)

2. dH = 1

pF = 21/4√ω(√
12α ln

(
�√
ω

)+ 3α + 1 + 1
)1/4

, (E6)

Dc =
48p2

F

(
3α + 24α ln

(
�
pF

)+ 2
√

3α + 12α ln
(

�
pF

)+ 1 + 2
)

α2ω
(
33α

[
8 ln

(
�
pF

)+ 1
]+ 304π

√
3α + 12α ln

(
�
pF

)+ 1 + 22
√

3α + 12α ln
(

�
pF

)+ 1 + 22
) , (E7)

� =
3
(
3α + 24α ln

(
�
pF

)+ 2
√

3α + 12α ln
(

�
pF

)+ 1 + 2
)

19πα2 pF

√
3α + 12α ln

(
�
pF

)+ 1
, (E8)

δD =
152p2

F

(
3α + 24α ln

(
�
pF

)+ 2
√

3α + 12α ln
(

�
pF

)+ 1 + 2
)

ω
(
33α

[
8 ln

(
�
pF

)+ 1
]+ 304π

√
3α + 12α ln

(
�
pF

)+ 1 + 22
√

3α + 12α ln
(

�
pF

)+ 1 + 22
) ln

(
L

�

)
, (E9)

ν =
ω
√

3α + 12α ln
(

�
pF

)+ 1

π p2
F

(
3α + 24α ln

(
�
pF

)+ 2
√

3α + 12α ln
(

�
pF

)+ 1 + 2
) , (E10)

ξ =
√

e
12

19α2 − 1. (E11)
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3. dH = 2

pF (α � ω) =
√

1

2

(√
9α2 + 4ω2 − 3α

)
, (E12)

pF (α � ω) =
√

2ω

[6 ln
(

α
ω

)+ 7]1/4
, (E13)

Dc(α � ω) = 2
√

9α2 + 4ω2(
√

9α2 + 4ω2 − 3α)3

3α2ω[
√

9α2 + 4ω2 + 4π (
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, (E14)

Dc(α � ω) =
32ω2
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3 ln
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6 ln
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α
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∼ ω3/2

α2
, (E16)
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