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Start-up shear of spherocylinder packings: Effect of friction
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We study the response to shear deformations of packings of long spherocylindrical particles that interact via
frictional forces with friction coefficient μ. The packings are produced and deformed with the help of molecular
dynamics simulations combined with minimization techniques performed on a GPU. We calculate the linear
shear modulus g∞, which is orders of magnitude larger than the modulus g0 in the corresponding frictionless
system. The motion of the particles responsible for these large frictional forces is governed by and increases with
the length � of the spherocylinders. One consequence of this motion is that the shear modulus g∞ approaches a
finite value in the limit � → ∞, even though the density of the packings vanishes, ρ ∝ �−2. By way of contrast,
the frictionless modulus decreases to zero, g0 ∼ �−2, in accordance with the behavior of density. Increasing the
strain beyond a value γc ∼ μ, the packing strain weakens from the large frictional to the smaller frictionless
modulus when contacts saturate at the Coulomb inequality and start to slide. In this regime, sliding friction
contributes a “yield stress” σy = g∞γc and the stress behaves as σ = σy + g0γ . The interplay between static and
sliding friction gives rise to hysteresis in oscillatory shear simulations.
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I. INTRODUCTION

In this work we deal with the linear elastic properties of
packings of long rodlike particles. Assemblies of this sort
occur in a variety of different systems from wool fibers in
felt and other textiles, rods in filter applications, or as re-
inforcement, to micro- and nanosized systems, like fd-virus
colonies or semiflexible biopolymers in tissue and the cy-
toskeleton. Aspect ratios and interaction forces are manifold.
In macroscopic systems, frictional forces are essential (e.g., to
hold textiles together). In cytoskeletal systems one has Brow-
nian forces and protein-mediated adhesion (bonding) between
the fibers.

Here, we are interested in the effects of frictional forces
on the elastic shear modulus of a packing of non-Brownian
spherocylindrical particles (see Fig. 1). A spherocylinder (SC)
consists of a cylinder and two hemispherical caps at the two
ends. In a previous publication [1] we have dealt with the same
system, but in the absence of friction. Steric hindrance plays
a crucial role for the motion of particles, which are tightly
caged by their neighbors. Motion along the long cylinder axis,
however, is not restrained by the surrounding. This motion
induces sliding of the contacts on the surface of the cylinders
and is expected to give rise to large frictional forces. We there-
fore expect friction to modify the shear modulus dramatically.

Packings of nonspherical particles have received consid-
erable attention in recent years. In particular, the question of
maximally dense packings has been the subject of works on
particles of various shapes [2]. Most of these particles are
rather compact and more or less spherelike, quite different
from the long, thin rods discussed in this contribution. In-
creasing the length of the rods from zero, packing densities
reach a maximum [3,4] before dropping steadily. Assembled

in random fashion, long rods make rather dilute packings, with
the density decreasing with particle length as ρ ∝ �−2 [5]. In
terms of particle volume fraction φ = ρVsc the dependence
is φ ∝ �−1. This is a consequence of the different scaling of
particle volume Vsc and excluded volume [6] with diameter d
and length � of rodlike particles

Vsc ∼ d2�, Vexcl ∼ d�2. (1)

Neglecting correlations between particles (random contact
model, Ref. [5]) the average number of contacts of a particle
is

z ∼ N
Vexcl

V
= φ

Vexcl

Vsc
. (2)

With the number of contacts fixed at the jamming threshold zc

one gets for the jamming density

φ ∼ zcd

�
. (3)

Measured values for zc range from approximately 8 to 10
[4,5,7,8]. The latter value represents the classical Maxwell
counting [9] for particles with one rotational symmetry. The
reduced value of 8 results when translations along the long
axis are also regarded as a symmetry [1]. In that paper it was
shown that these two limiting cases can be combined by a
more general counting procedure that accounts for the fraction
f of spherocylinders with end contacts (both ends need to be
constrained). This can be written in analogy to Eq. (2) as

f ∼
(

N
Vsc

V

)2

∼ φ2. (4)

End contacts break the translational symmetry such that the
jamming threshold in terms of the contacts is zc = 8 + 2 f .
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FIG. 1. Top: packing of 6144 spherocylinders with aspect ratio
α = 40. Volume fraction φ = 0.1, i.e., 90% of space is empty. Zoom
into packing illustrates these large voids. Color signals orientation.
Pictures prepared with OVITO. Bottom: sketch illustrating the in-
teraction between spherocylinders. Particle i is projected into the
drawing plane, while particles j and k are oriented perpendicular
to this plane. Therefore, they appear as circles. Particle j is a side
contact to i, particle k an end contact.

Previous work on packings of fibers and rods is mainly
computational. Statistical properties of packings of rods are
calculated in [3,4,10]. Meng et al. [11] highlight the depen-
dence on the amount of order in the packing, while [12]
shows that order may develop in response to repeated tapping.
Bending flexibility is introduced either within bead-spring
models [7,13] or by coupling rigid rods together [14,15].

Experimental approaches to measure density in rod pack-
ings are presented in [5,16]; Ref. [8] even manages to
determine the number of contacts. Ekman et al. [17] high-
light a correlation effect that goes beyond the random contact
model of Ref. [5] and that shows up in the distribution of
contacts.

Going beyond static packings rheological properties are
discussed in a variety of contexts. Some computational ap-
proaches are reviewed in [18]. Steady shear in systems of
short spherocylinders has been studied in Nath et al. [19].
A key finding was that frictional interaction forces suppress
alignment during shear. Similar systems have been stud-
ied in three [20,21] and two spatial dimensions [22–24].
Experimental work frequently considers the interplay of
(frictional) contact and hydrodynamic forces in suspensions
[25–28].

Here, we are concerned with the response of rod packings
to small deformations, within the linear regime. Particular
emphasis is put on the relevance of frictional forces. A related
study was presented in Ref. [15] that deals with compressed
packings of elastic fibers that can bend and stretch. It turns out
that packings without friction have a negligible shear modulus
as compared to frictional packings. In the following, we will
present a similar phenomenon in packings of rigid rods. By
carefully evaluating the dependence on rod length, we find the
origin of the large frictional modulus, and explain it in terms
of the dominant deformation modes.

II. MODEL

We study three-dimensional (3D) packings of spherocylin-
drical particles i = 1 . . . N of length �i and diameter di. All
particles of the packing have the same aspect ratio α = �i/di.
The particles interact via repulsive contact forces similar to
those from models for spheres. A contact between particles i
and j is established whenever the shortest distance between
the backbones, ri j = |ri j |, is less than their average diameter
di j = (di + d j )/2.

The distance vector can be written as

ri j êi j = Ri + n̂isi − (R j + n̂ j s j ), (5)

where Ri is the position of the center of mass of particle
i, n̂i represents the direction of the particle backbone, and
si ∈ [−�i/2, �i/2] is the arclength parameter along the back-
bone that specifies where the shortest distance between i and
j is reached. By definition the direction of the contact êi j is
perpendicular to both backbones (êi j · n̂i/ j = 0), except for
cases where the shortest distance is reached at an end of one
or both of the SC (i.e., si = ±�i/2). The actual force is applied
halfway along the vector ri j at yi j = n̂isi + ri j/2 away from
the center of mass (with a small correction for unequal-sized
particles). This is, in general, very close to the surface of the
two particles.

The force fi j on particle i from the contact with j has com-
ponents normal fn

i j and tangential f t
i j to the particle surface.

They are calculated as in the Cundall-Strack model [29]

fn
i j = [−knδi j êi j − cnvn

i j

]
,

f t
i j = [−ktξ

t
i j − ct vt

i j

]
. (6)

Here, the normal direction êi j = ri j/ri j points from particle
j to i at the point of application of the force. The normal
overlap δi j = di j − ri j is a positive quantity. The tangential
overlap ξt

i j is the displacement tangential to the surface of
the SC, which accumulates during the lifetime of the con-
tact. The relative velocity vcon

i j at the contact is split into
normal vn

i j and tangential components vt
i j . It derives from the

center-of-mass translational vi and rotational motion ωi as
vcon

i j = (vi − v j ) − yi j × ωi + y ji × ω j .
The parameters kn and kt are spring constants; cn and ct are

viscous damping constants. Solid sliding friction is taken into
account replacing f t by μ|fn|(f t/|f t |), whenever the Coulomb
inequality

|f t | < μ|fn| (7)

is violated. We also consider the frictionless limit μ = 0, in
which case we still keep the tangential viscous force ∝ct .

The equations of motion for particle i are

mR̈i =
∑

j

fi j, (8)

Ii · ω̇i =
∑

j

yi j × fi j, (9)

where Ii is the moment of inertia of particle i calculated for a
spherocylinder with a homogeneous mass density.

We have set kn = 1, kt/kn = 2/7, cn = 0.5, and ct/cn=0.1.
These values are standard choices. In particular, cn is
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chosen such that damping is sufficiently strong without lead-
ing to overdamped motion. For truly elastic response, the
values of the dissipative coefficients do not matter. All parti-
cles have the same mass m = 1 and aspect ratio α = �/d . Half
of the particles have d = 1 and the other half have d = 1.4.
System sizes are chosen such that the linear dimension of
the simulation box is at least three times the length of the
simulated SC. The unit of energy density (stress or modulus)
is kn/d . Times are expressed in units of the elastic collision
time

√
m/kn.

III. RESULTS: RESPONSE TO SHEAR

A. Preparing packings for shear deformation

A stable, i.e., force-equilibrated, packing of SCs of a given
aspect ratio (see Fig. 1) is produced with the help of the FIRE
minimization [30]. During this initial minimization no dissi-
pative nor frictional forces are present, i.e., kt = ct = cn = 0.
The response of such frictionless packings to quasistatic shear
has been studied in Ref. [1]. Here we are interested in how
frictional forces modify the response. Thus, after minimiza-
tion, frictional forces with parameters specified above are
turned on, while the simulation box is deformed at a constant
strain rate γ̇ = 10−7. Lees-Edwards boundary conditions [31]
are used here. The strain rate needs to be chosen small enough
to reproduce the quasistatic results at zero friction, μ = 0.
We have checked that this is the case; see, e.g., Fig. 6. For
the linear response properties only small strains 	γ ≈ 10−4

are needed.

B. Large friction limit: μ → ∞
If μ is infinite, the Coulomb inequality, Eq. (7), is ineffec-

tive and provides no restriction on the frictional forces f t . A
frictional interaction force at a contact then acts similar to a
conservative force from an elastic bond with spring constant
kt (neglecting a small effect from ct ). The magnitude of the
tangential displacement ξt then represents the extension of
this spring. This limit is achieved when the response does not
change anymore with μ. Here we use μ = 10.

The stress is calculated from the virial expression [23,32]

σ = 1

V

∑
k<l

f x
klR

y
kl = Nz

2V
〈 f xRy〉c, (10)

where the latter expression denotes an average over all
contacts Nc with z = 2Nc/N the average number of contacts
per SC. Due to the relation Rkl = Rk − Rl = ykl − ylk one
may also write the stress in terms of the lever arms as σ =
1
V

∑
k,l f x

kl y
y
kl . From the stress-strain relation σ (γ ) at small

strains the linear shear modulus is calculated as the slope,
g = dσ/dγ . In Fig. 2, g∞ = g(μ → ∞) is plotted for vari-
ous configurations with different spherocylinder aspect ratio
α = �/d and volume fraction φ. As the control parameter the
contact number z is used.

The moduli can be fit to the form g ∼ z − z0 with z0 rang-
ing between 6 and 6.5 depending on the aspect ratio. However,
it is also possible to fit all different α with one z0 ≈ 6.5.
This threshold value is larger than the frictional jamming limit
zJ = 4. As our packings are produced by energy minimization
in the absence of friction, they necessarily have a contact num-
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FIG. 2. Shear modulus g∞ vs contacts z for infinite friction
μ → ∞ and various aspect ratios. Line is a fit g ∼ (z − z0) to the
data with α = 40. The data points at nearly zero correspond to
the frictionless limit (α = 40), where the modulus is on the order
of 10−4.

ber z > 8. As soon as the coordination drops markedly below
this value, energy minimization takes the packing to z → 0.
Thus the threshold z0 cannot be reached by using our protocol.
It might be interesting to study different packing-generation
protocols in order to reach to lower z.

Comparing with the frictionless limit μ = 0 (see data
points at nearly zero, or Fig. 6 in Ref. [1]), the infinite-friction
modulus is two to three orders of magnitude larger. Similarly
large differences between frictional and frictionless moduli
have been observed in simulations of nonbonded fibrous
materials [15].

Also the α dependence is different. The zero-friction mod-
ulus g0 vanishes in the long-SC limit, as g0 ∼ α−2 [1]. On the
other hand, g∞ shows hardly any dependence on α (Fig. 2), at
least in the large α limit.

SC length � = αd may enter the stress, Eq. (10), and
thus the modulus in various ways. The first contribution
comes from stress being an energy density. The normalization
with density N/V can be written as N/V = φ/Vsc and, using
Eqs. (1) and (3), as (d/�)/(d2�) ∼ �−2. This alone would
explain the result g0 ∼ �−2 of the frictionless system.

However, additional � dependence may come from the
force-position correlator part of the stress 〈 fxRy〉. One contri-
bution is the force, or the magnitude of the overlaps δ and ξt ,
and their change with strain; see Eq. (6). The normal overlaps
δ are the only contribution in the frictionless system, and give
rise to g0. In the frictional system also the tangential over-
laps ξt are present. They measure how much the positions of
contacts move on the surface of the SCs, in other words, how
strongly SCs are sliding relative to each other. Such sliding
motion gives rise to frictional forces and thus to g∞.

In Figs. 3(a) and 3(b) we display the mean-square tangen-
tial overlap δ2

t ≡ 〈ξt · ξt 〉. We find δt ∝ γ , such that frictional
contacts move at constant velocity vt = δt/t ∝ γ̇ . This veloc-
ity, at least for large α, is ∝� as Fig. 3(b) shows. Thus δt ∝ �γ

(vt ∝ �γ̇ ) and tangential displacements of contacts per unit of
strain grow with the length � of the SC. The displacements
are, in particular, independent of the SC diameter d , which is
the alternative length scale that might show up. On the other

052903-3



CLAUS HEUSSINGER PHYSICAL REVIEW E 103, 052903 (2021)

5

10

15

20

8 9 10 11 12

(a)

t2 /
2

z

0.01

0.012

0.014

0.016

0.018

8 9 10 11 12

(b)

t2 /(
)2

z

0.1

1

8 9 10 11 12

(c)

n2 /
2

z

=40
=35
=30
=25
=20
=15
=10

FIG. 3. (a) Mean-square tangential overlap (δt/γ )2 vs contacts z for infinite friction μ → ∞ and various aspect ratios. (b) Same data, now
rescaled by γ �; (c) mean-square normal overlap (δn/γ )2.

hand, the normal overlaps δ2
n = 〈δ2〉 are independent of SC

length, as panel 3(c) shows. They thus scale as δn ∝ dγ .
Finally, there is also an � dependence in the position part

of the correlator, which is the center-of-mass distance between
the two overlapping SCs [see Eq. (5)]

Ri j = ri j êi j − n̂isi + n̂ j s j, (11)

where the � dependency is carried by the arc-length
parameters si and s j .

In the case of pressure (p ∼ 〈f · R〉) it is easy to see
that this latter part does not contribute in the frictionless
scenario. There the force is normal to the surface, f ‖ ê, and
thus perpendicular to the long axis given by n̂. The si, s j

terms therefore drop out. The same result is expected for the
shear stress, as long as one assumes statistical independence
between the orientation of the SC, n̂, and the orientation of
the contact with its neighbors. In the frictional scenario, on
the other hand, the force is tangential to the surface; thus the s
terms survive.

Taking all these dependencies together one expects
g0 ∼ z(φ/d2�)knd2 ∼ (kn/d )(d/�)2 (Ref. [1]) and g∞ ∼
z(φ/d2�)kt�

2 ∼ (kt/d ) (Fig. 2).
Looking at Fig. 2 one may also get the impression that the

modulus slowly decreases with SC length. In fact, one can
approximately collapse the data assuming g∞ ∼ α−1/2. How-
ever, this apparent scaling is an artifact of the limited range
of available α. To justify this claim, we consider only the side
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FIG. 4. Shear modulus of the side contacts gs vs z for infinite
friction μ → ∞ and various aspect ratios. Thin solid line full shear
modulus (from Fig. 2) for the longest SC with α = 40. Thick solid
line fit to the data with α = 40.

contacts in the calculations of the modulus. This modulus gs is
displayed in Fig. 4. In the limit α → ∞ the side contacts make
the only contribution to the modulus as no end contacts occur.
One clearly sees that this contribution is independent of α, at
least for the longest spherocylinders. Thus we can safely as-
sume that this value gs, which is only slightly smaller than the
full modulus g∞ (thin line, taken from Fig. 2), represents the
finite full modulus in the α → ∞ limit. In consequence,
the scaling with α−0.5 cannot be true.

Finally, in Fig. 5 we also consider the motion of particles
(as compared to the motion of contacts as given by δt ). In
response to the imposed strain γ , particles on average move
in shear direction (x) by an amount γY , depending on the
coordinate of the particle in the gradient direction (y). In
gradient or vorticity direction there is no average motion.
But fluctuations are present. In the figure we display the
magnitude of fluctuating motion in gradient direction,
δy(γ )2 = ∑

i[Yi(γ ) − Yi(0)]2/N . At the small strains studied
we find δy(γ )2 ∝ γ 2. A different, e.g., diffusive, behavior may
only be expected at much larger strains. Fluctuations in vortic-
ity direction are of roughly the same magnitude. As the figure
shows, the fluctuations of the motion of particles, similar to
the displacements of contacts, scales with �. Noteworthy is
that also the magnitude of both is quite similar, δy ≈ 0.05γ �,
to be compared with contact displacements δt ≈ 0.1γ �.

C. Finite friction coefficient μ < ∞
The infinite friction coefficient is rather unrealistic for

any real material. Here, we report results for varying friction
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FIG. 5. Fluctuations of SC center-of-mass displacement in
gradient direction (δy/γ )2 vs z.
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FIG. 6. (a) Stress vs strain for various μ = 1 . . . 10−7 (from top to bottom) and α = 40, φ = 0.11. Lines represent limits of infinite (top)
and zero (bottom) friction coefficient, respectively. (b) Modulus σ/γ vs rescaled strain γ /μ for the same data. Solid lines: infinite-friction
modulus and yield-stress model for zero friction σ = g0γ + g∞γc. Vertical line: crossover value γ /μ = 0.05 as derived in the text. (c) Strain
cycle with maximum strain γ0 = 10−4 and μ = 10−5. Lines represent limits of infinite and zero friction coefficient, shifted appropriately.

coefficients, spanning the range from nearly frictionless (μ ≈
0) to the infinite-friction scenario of the first section. Figure 6
presents the stress-strain relation for different μ of one partic-
ular packing with α = 40. For small strain the stress follows
the infinite-μ line σ = g∞γ , then saturates in a quasiplateau
before approaching the frictionless response σ = g0γ . The
strain γc where this change in behavior occurs depends on μ.

At strains γ < γc, the external work V σ γ̇ is converted
into “potential” energy of the tangential spring kt : dEpot/dt ∼
Nzkt�

2γ γ̇ . The stress here is σ = g∞γ with the infinite-
friction modulus g∞ ∼ (φz/�)kt�

2, with the prefactor assur-
ing an �-independent modulus, as discussed above.

The crossover scale to the quasiplateau can be expected to
depend on the saturation of the Coulomb inequality, Eq. (7), as
equality, ft = μ fn. At this point contacts start to slide, which
enters work-energy balance as an additional dissipative term,

t ∼ Nzμ fnvt .

With the normal force set by pressure, fn ∼ p�/zφ, we find
for the crossover strain

γc ∼ μp

kt zφ
. (12)

Indeed, all data collapse to a unique scaling form when plotted
vs a rescaled strain γ /μ [Fig. 6(b)]. Respecting all the numer-
ical factors for this set of data, Eq. (12) gives a crossover strain
γc = 0.05μ [indicated by the vertical line in panel 6(b)].

For strains γ > γc the relevant potential energy is that
of the normal overlaps, dEpot/dt ∼ Nzknγ γ̇ , and the stress
becomes σ ∼ σy + g0γ with the zero-friction modulus g0 ∼
(φz/�)knd2 and the “yield stress” σy ∼ g∞γc ∼ μp�. Thus,
at large strains, the frictional forces contribute a yield stress
σy ∼ g∞γc ∼ g∞μ to the frictionless response.

At zero strain the modulus is expected to reach the
μ-independent value g∞. Deviations from this expectation
and a lack of scaling are visible in Fig. 6(b) for some data sets,
which seem to level off at lower values. This, however, is an
artifact from a too large deformation rate γ̇ = 10−7. We have
checked that by reducing the strain rate to 10−8 no deviations
from scaling occur within the range of strains studied.

To wrap up, long spherocylinders respond to strain primar-
ily via sliding. Contacts are displaced in surface-tangential
direction by amounts δt ∼ γ �. As a consequence, frictional
forces ft = ktδt increase and dominate the elastic modulus.
Nonfrictional forces fn, directed normal to the SC surface,

increase much slower and constitute only a small part of the
total modulus. At strains γc ∝ μ the Coulomb threshold of
the contacts is reached and frictional forces cannot increase
further. The stress first reaches a plateau before, eventually,
the normal forces start to dominate the response. From this
point the packing behaves as if it were frictionless with a
yield stress (the plateau) from the frictional forces σy ∼ g∞μ.
Still, energy is dissipated because contacts are sliding. This
gives rise to hysteresis in oscillatory sweeps. To probe this
we perform oscillatory strains γ (t ) = γ0 sin(ωt ) [Fig. 6(c)]
with variable maximal strain γ0 and frequency ω chosen such
that the product γ0ω matches the strain rates used up to now.
Friction governs the response (highlighted by the steep lines
σ = g∞γ ) in the startup, as well as just after strain reversal.
After reversal the frictional sliding stops and contacts stick.
The tangential springs relax and load in the opposite direc-
tion. Once the sliding limit in this direction is reached, a
crossover to frictionless response (shallow lines σ = g0γ ) is
observed again.

D. Viscous dissipation

Dissipation is due to sliding friction of the contacts.
Technically, this is due to the application of the Coulomb
inequality, Eq. (7), which effectively rescales ξ t to keep tan-
gential forces from increasing beyond what is allowed by the
inequality. This leads to a loss of energy. This mechanism is
strain rate independent and is therefore called “plastic dissi-
pation.” The rescaling also implies that ct , i.e., the viscous
dissipation in the tangential motion, is not relevant; it is the
total tangential force, including the viscous component, that is
limited according to Coulomb inequality. To assess the influ-
ence of viscous dissipation on the response we therefore study
the frictionless limit μ = 0 in combination with different
values of ct , which governs the strength of viscous dissipation
due to relative sliding motions. The tangential force, Eq. (6),
reduces to ft = −ct vt .

Figure 7 compares the stress-strain relations for one
particular packing sheared at various strain rates and with
different values of ct . For comparison the quasistatic result,
for which the parameter ct is irrelevant, is also displayed.

The data indicate the scaling form σ = ct γ̇ F (t/ct ), with
F (x → ∞) → x or F (x → 0) → xε and small exponent ε ≈
0.13. An ε = 0 would give σ = ct γ̇ in the initial regime,
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FIG. 7. (a) Stress vs strain for various ct/cn = 0.1 . . . 4.0, cn=0.5
and α = 40, φ = 0.11, μ = 0, γ̇ = 10−7. Line represents quasistatic
results; see Fig. 6. (b) Rescaled stress σ/(γ̇ ct ) vs time t/ct for the
same data, as well as different strain rates, γ̇ = 10−6, 10−8. Dotted
line ∼xε , ∼x.

which indicates dissipation via tangential viscous forces when
contacts are sliding with velocities set by the strain rate
vt ∼ �γ̇ . In more detail, the energy-work balance has three
terms

Nzknγ γ̇ = V σ γ̇ − Nzct
〈
v2

t

〉
. (13)

The terms are the time rate of change of the potential energy,
the external work, and the dissipation now via viscous forces.
At early times one balances stress with dissipation to obtain
σ ∼ (φz/�)ct γ̇ �2, i.e., a time-independent constant. This is
the regime, where, in our data, we still see a weak time
dependence, governed by the exponent ε. For the velocities
this would imply a time dependence vt ∼ (t/ct )ε/2�γ̇ . At long
times the usual elastic regime σ = g0γ sets in. The crossover
time scale is τ ∼ z2ct/g0. At very short times t ∼ 1, the scal-
ing with (t/ct )ε breaks down. This corresponds to the elastic
collision time scale, i.e., the very first collision when initial
conditions are still important. In the figure this is visible as
the hump at small times.

IV. DISCUSSION

We have dealt with assemblies of long spherocylinders
(SC). Because of the large excluded volume of such high-
aspect ratio particles, packings are of very low volume
fraction that decreases with particle length as φ ∝ �−1.

The key question we posed was in how far frictional forces
modify or dominate the elastic response at small strains. The
starting point was the assumption that steric hindrance is the

key factor to restrict particle motion. Free motion is then
only possible along the long axis of the cylinder. This motion
induces sliding of the contacts on the surface of the cylinders
and gives rise to large frictional forces.

We have argued that frictional contact forces act similar to
forces from an elastic bond, at least as long as the Coulomb
threshold is not yet reached. In this analogy the motion of
a contact on the surface is comparable to the extension of
a permanent elastic bond (here described via a spring con-
stant kt ). Such permanent bonds frequently occur in biological
systems, e.g., the cytoskeleton, where the long filamentous or
rodlike polymers are chemically or electrostatically bonded
via crosslinking proteins [33,34]. Depending on the stiffness
of the bonding and the polymers’ intrinsic elasticity the de-
scribed mechanism of contact sliding and bond extension
might also lead to secondary (stretching, bending) deforma-
tions in the polymers [35–37]. Note that the spherocylindrical
particles used here do not have these degrees of freedom;
they are modeled as cylinders with a straight backbone that
may not change length. Biopolymers in cytoskeletal systems
usually have very high aspect ratios with diameters in the
nanometer range and lengths exceeding the μm scale. For
rodlike microtubules, however, with a diameter of d ≈ 25 nm
and lengths � ≈ μm our simulations with α = 40 are within
physically reasonable values also for these particles.

We have determined the shear-induced tangential motion
δt of contacts on the surface of particles (the extension of
the “bonds”) in a variety of packings with spherocylinders
of different lengths �. Interestingly, δt ∝ � and thus increases
with the length of the particles. This can be understood
by assuming the packing to respond affinely to an imposed
shear deformation γ . From the properties of an affine map,
the distance between the center of mass of two SCs should
change in proportion to their distance. Overlapping SCs have
distances on the order of their length �, such that also the
change in distance is 	� ∝ γ �. As the SCs themselves do not
change length, the motion of the center of mass gives rise to
relative sliding motion of the contacts of exactly this order
of magnitude, δt ∝ γ �. While we have seen (Fig. 5) that the
actual motion of the SCs also includes a substantial fluctuating
component, this additional component also scales with �. Thus
the overall scaling δt ∝ � is not affected, albeit the prefactor
is changed.

The shear modulus itself has a finite (nonzero) limit for
large �. We have shown that this results from the combined
effect of increasing δt and decreasing overall density φ. On the
other hand, the modulus in the absence of friction is orders of
magnitudes smaller and vanishes as g0 ∝ �−2. Contact motion
responsible for forces in this frictionless limit is normal to the
surface of the particles, δn. Without friction, tangential motion
δt does not build up forces. We find that δn is much smaller
than δt and does not scale with the length of the SCs but their
diameter, δn ∼ d .

As the strain increases frictional forces reach the limit set
by the Coulomb inequality Eq. (7). At this point the packing
starts to strain weaken and the shear modulus decreases to
its frictionless value g0. This generally happens at strains
γc ∼ μp/kt zφ ∼ μ/�, with the latter representing the lim-
iting behavior for long SCs. At these strains, hysteresis is
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observed in oscillatory sweeps γ (t ) = γ0 sin(ωt ). This high-
lights the presence of energy dissipation in the sliding contacts
and evidences a transition from static (γ < γc) to dynamic
friction (γ > γc).

Finally, we also consider energy dissipation via viscous
forces, embodied in the parameter ct . With the assump-
tion of time-independent velocities vt ∼ �γ̇ one expects a
time-independent stress σ ∼ ct γ̇ at small strains. Rather
we obtain σ ∼ ct γ̇ (t/ct )ε with a small exponent ε ≈ 0.1
that embodies the time dependence of the stress. For the

contact velocities this would imply v ∼ (t/ct )ε/2�γ̇ ; alterna-
tively, for the contact displacements δ2

t ∼ t2+ε . The origin of
such a behavior is currently unclear.
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