
PHYSICAL REVIEW E 103, 052902 (2021)

Clogging of granular materials in a horizontal hopper: Effect of outlet size, hopper
angle, and driving velocity
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Due to the independence of the driving velocity and outlet size, it is possible to isolate geometrical and
kinematic contributions to clogging in two-dimensional horizontal flow in a hopper driven by a conveyor belt. We
experimentally investigate the geometric (outlet size and hopper angle) and kinematic effects (driving velocity)
on the clogging in such a horizontal flow. Based on quantitative measurements and analysis of the avalanche
size, blocking probability of a particle at the outlet, and other parameters, we show that the geometric factors can
more effectively affect clogging. In addition, we find that the clogging tends to be alleviated with the increases
of the driving velocity, suggesting a possible “fast is fast” behavior within a wide range of driving velocity. We
borrow and modify a model from clogging in gravity-driven hoppers, which can accurately describe the shape of
the clogging probability function in the conveyor belt driven flow, suggesting that these two systems could share
some mechanisms for clogging.
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I. INTRODUCTION

Clogging and flowing behavior of discrete materials
through a bottleneck are ubiquitous in many systems across
several scales: crowd evacuation [1], hopper flow [2],
thrombus in vascular stenosis [3], and microparticles’ agglom-
eration in constraint [4]. Clogging is sometimes beneficial,
such as blood clotting of wounds, and accelerated prolifera-
tion of cells in crowded spaces. However, clogging also causes
serious issues: traffic bottlenecks on poorly designed roads
bring huge economic losses each year; the blockage of mate-
rials in industrial hoppers leads to production interruption and
even casualties. It is of great social and economic significance
to study the passage of a many-particle system through a
bottleneck.

Clogging in hopper flow is a typical bottleneck clogging
phenomenon, and many fruitful studies have shed light on the
way in which clogging is influenced by outlet size [2,5], outlet
shape [6,7], particle shape [8,9], particle deformability and
friction [10], the presence of obstacles [11–13], and interstitial
media [14,15]. However, most studies on hopper or silo clog-
ging have dealt with the case of particles purely discharged by
gravity so far. Surprisingly, clogging in horizontal flow has not
attracted much attention yet, although this class of clogging
is ubiquitous and of fundamental importance in industry and
human society, such as clogging in conveyor belt flow, traffic
flow, and pedestrian flow.

In previous studies on clogging in gravity-driven hopper
flow, it has been found that the formation of clogging is due to
the arching of particles in front of an outlet. The development
and stability of arching are closely related to the outlet size
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and particle velocity before the outlet. The outlet size reflects
the geometric contribution on clogging. The wider an outlet
is, the more difficult forming an arch is. The particle velocity
near an outlet represents the kinematic contribution to hopper
clogging. The larger the velocity is, the less likely the fast-
moving particles stably form an arch due to the large kinetic
energy of particles at the outlet.

Unfortunately, it is very difficult to isolate the two con-
tributions on hopper or silo clogging in a gravity discharged
system, in which the particle velocity scales with v ∝ √

gR,
and thus the flow rate Q ∝ √

g(2R−kd )3/2, where R is the
radius of the outlet, d is particle diameter, and g is the gravity
acceleration. The outlet size couples with the particle velocity,
and the change of the outlet size results in the simultaneous
variation of the particle velocity. Because of this challenge,
there are few studies on the independent contribution of the
two effects on clogging in a gravity discharged hopper. In
these efforts, tuning the system’s effective gravity is a com-
mon but slightly indirect method [16,17]. Recently, Gella
et al. came up with an ingenious way to decouple the particle
velocity from the outlet size in the gravity discharged silo
by placing a conveyor belt beneath the outlet of a silo, and
investigated the independent contribution from the two effects
to the clogging process [18].

In contrast to the gravity-driven hopper flow, the horizontal
conveyor belt flow allows control of the particle velocity inde-
pendent from the outlet size. In the case of the conveyor belt,
the empirical law for the flow rate is Q = C V

d ( D0
d − k), show-

ing the independent relation between the driving velocity and
the outlet size, where V is the driving velocity of the conveyor
belt, and D0 is the outlet size [19]. The decoupling is suitable
for exploring the independent contributions of geometry and
kinematics to clogging in horizontal flow. Furthermore, it is
also an interesting question whether the clogging in a gravity-
driven hopper and conveyor belt hopper system share the same
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or similar physical laws, although the two systems seem quite
different.

In this work, we experimentally investigate the effects
of the outlet size, hopper angle, and driving belt velocity
on clogging characteristics of granular particles through a
bottleneck on a conveyor belt. Here we use several param-
eters, such as avalanche size and clogging probability, to
describe the clogging process. We demonstrate that a model
for the gravity-driven hopper clogging can well describe the
dependence of the clogging probability on the outlet size in
conveyor belt hopper flow. Based on this model, we propose
a modified model which predicts the relationship between the
clogging probability and hopper angle. Through quantitative
comparison and analysis of the experimental results, we dis-
cuss the extent of the geometrical contribution (outlet size and
hopper angle) and kinematic contribution (driving velocity)
on clogging. Finally, a possible “fast is fast” behavior is found
in the conveyor belt system.

II. EXPERIMENTAL SETUP

The flowing and clogging behavior of granular particles
driven by a two-dimensional conveyor belt as they pass
through a bottleneck is experimentally investigated. A circu-
lation conveyor belt is used to continuously supplement the
particles in the upstream granular flow, maintaining a basi-
cally constant number of particles before the narrow outlet,
and improving the efficiency of data acquisition as well, as
shown in Fig. 1(a). An acrylic plate covers the conveyor
belt, and the gap between the plate and the conveyor belt is
slightly wider than the particle thickness (the particles used
in the experiment are disks with a diameter of 11 mm and a
thickness of 4.5 mm). Therefore, only a monolayer of particles
is allowed between the acrylic plate and the conveyor belt, and
the flowing system is a two-dimensional system.

The width of the conveyor belt is 440 mm, more than
30 times a particle diameter. Therefore, the effect of side walls
on the granular flow can be ignored. Two wedge baffles are
placed opposite each other at the lower end of the acrylic plate
to form a narrow outlet [see Fig. 1(b)]. The wedge outlet is
chosen to prevent particles from forming an arch on the side
wall of the baffle. By adjusting the length of the wedge baffle,
different outlet sizes can be conveniently obtained, and the
outlet width is D0. Here, the particle diameter d is used to
normalize the outlet width, D = D0/d . In addition, different
hopper angles, θ , can be obtained by tuning the walls on the
wedge baffles, as shown in Fig. 1(c).

About 2000 Plexiglas disk particles are used in the experi-
ment. These particles passing through an outlet are driven by a
conveyor belt. If the outlet size is small, the particles will arch
before the outlet spontaneously [see Fig. 1(b)], resulting in
clogging, i.e., flow interruption. The clogging in the horizontal
hopper flow driven by a conveyer belt is markedly different
from that in the gravity-driven granular hopper flow. The latter
is extremely difficult to unclog spontaneously once the arch is
formed, and the clogging status will persist until the arch is
broken by external disturbance. In contrast, spontaneous un-
clogging often occurs in horizontal flow due to the continuous
shear on the arch by the conveyor belt. Therefore, intermittent
flow is more common, as shown in Fig. 1(d). The plateaus in

FIG. 1. (a) Sketch of the experimental setup. (b) Wedge outlet.
(c) Hopper angle θ . The hopper angle can be adjusted from θ = 0◦

(flat-bottom hopper) to θ = 90◦ (pipeline hopper). (d) Representative
curves of the number of particles crossing the outlet as a function
of time; plateaus in the curve indicate the development of clogging.
Each line corresponds to an independent trial. (e) A spatiotemporal
diagram of the disk particles as they discharge out of the outlet.

time evolution curves indicate clogging status. For situations
of persistent clogging, after 200 s, if the system still fails to
resume flow spontaneously, a jet of compressed air aimed at
the outlet is blown to break the arch and the flow is restored.

We use a camera (720 × 1280 pixels at 25 frames/s)
to record discharging of each particle out of the outlet. An
image, such as the one shown in Fig. 1(e), is constructed
from the video in the following way. We first define an image
sampling window downstream near the outlet. The width of
the sampling window is about twice the width of the outlet,
and the length of the window is equal to the displacement
of the particles passing through the outlet within one frame
time of the camera. We extract an image within the sampling
window from each frame, and stack the sampling images in
sequence to form the spatiotemporal diagram which describes
the relative position of every particle passing through the
outlet. The vertical dimension in this spatiotemporal diagram
is the distance along the width of the sampling window, and
the horizontal dimension represents the time, in units of the
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sampling period. Next, an image recognition algorithm is used
to extract the y coordinate (the y direction is the direction of
the driving velocity) of each particle in the spatiotemporal
diagram, calculate the spatial interval between the passage
of consecutive particles, and obtain the time lapse of con-
secutive particles with the driving velocity of the conveyor
belt. The time lapse is further processed to obtain important
information, such as an appropriate clogging time lapse to
determine a clogging event and avalanche size, presented in
the subsequent sections.

III. EXPERIMENTAL RESULTS

A. Dependences of clogging and flowing statistics
on the outlet size

This section focuses on the effect of the outlet size on
the clogging, where the driving velocity of the conveyor belt
is fixed at 8 cm/s and the hopper angle is 0°. Unlike the
conventional gravity-driven hopper flow, horizontal hopper
flow driven by a conveyor belt has difficulties in defining a
clogging event. This is because the conveyor belt continuously
destabilizes the clogging arch through cyclic shear, leading to
random occurrences of spontaneous unclogging. This results
in a huge fluctuation of clogging time interval, from 1 s to
more than 100 s. Therefore, it is difficult to select an appro-
priate clogging time interval to define a clogging event. Such
a problem of how to define clogging events has also appeared
in the clogging of sheep and other active particles passing
through a bottleneck, and has been properly solved [20,21].

As mentioned previously, the time lapse �t between the
passage of consecutive particles is extracted, and the com-
plementary cumulative distribution function (CCDF) of the
time lapse is obtained; see Fig. 2(a). The distribution func-
tion has a power-law tail, P(t � �t ) ∝ �t1−α , as observed in
other systems such as sheep, pedestrians, and gravity-driven
hopper flow [20–23]. Here we use a rigorous method (the
Clauset-Shalizi-Newman method) to fit the CCDF, and obtain
the exponent of a power-law tail α, and the minimum time
lapse �tc, in seconds, from which the fit is valid [24].

The exponent of a power-law tail has been used to specu-
late whether a system possibly tends to flow or clog [20,22].
When α � 2, the system could be prone to clogging. Other-
wise, the system could be inclined to flow. The experimental
measurement seems to be consistent with this statement. In
Fig. 2(a), when the outlet size D < 5.5, the power-law ex-
ponent α is less than 2 and the system tends to clog, When
the outlet size D > 5.5, the power-law exponent α is larger
than 2 and particles continuously flow out of the outlet almost
without any interruption. The minimum time lapse �tc is used
to define clogging events. Once �tc is chosen, the passage
of particles can be considered as “flowing” if �t < �tc, and
“clogging” if �t � �tc. The values of �tc are about 0.1–0.3 s
for different outlet sizes. Two parameters, α and �tc, are
shown in Table I.

Additionally, there is another approach to estimate �tc
[20]. In this method we need to calculate the mean flow rate
within the avalanches. Here, the mean flow rate is defined
as follows: We take the avalanche size (namely, the particle
number between two consecutive clogging events) divided by

FIG. 2. (a) Time-lapse CCDFs obtained from different outlet
sizes. The solid lines represent the power-law fits with exponent α.
The dashed line marked with α = 2.0 is the dividing line between a
clogging and flowing regime. (b) The mean flow rate as a function of
�tc. For clarity, error bars only show in a single curve. Other curves
have similar error bars.

the avalanche duration (the time between two clogging events)
for all the avalanches, and calculate the weighted average.
The weight of an avalanche size is the ratio of the avalanche
size to the total number of particles. As �tc decreases, the
avalanche size becomes smaller correspondingly, because the

TABLE I. Values of two parameters for the different outlet sizes.
α is the exponent of the power-law tail, and �tc is the value of the
minimum time lapse above which the fit is valid.

Outlet size D Power-law exponent α �tc(s)

3 1.26 0.30
3.7 1.33 0.20
4 1.37 0.20
4.7 1.43 0.20
5 1.49 0.20
5.5 4.02 0.15
6 8.23 0.10
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shorter time lapses are considered clogs. The granular flow
is divided into more avalanche sizes, and the mean flow rate
necessarily increases. As can be seen in Fig. 2(b), when
D = 6.0, the mean flow rate tends to be stable at �tc = 0.1 s;
when D = 3.0, the mean flow rate saturates at �tc = 0.3 s.
For the rest of the outlet sizes, the mean flow rate quickly ap-
proaches a stable flow rate after �tc = 0.2 s. The value range
of �tc = 0.1−0.3 s is almost the same as that obtained with
the Clauset-Shalizi-Newman method. Thus, the two methods
can be cross tested to acquire reliable �tc. In our analysis,
the minimum time lapse used to set apart avalanches is 0.3 s.
Although the choice influences the value of mean avalanche
size 〈s〉, the exponential tail of the avalanche size distribution
is unaffected.

We can define some physical quantities to characterize
flowing and clogging in the system. The avalanche size s,
namely, the particle number between two consecutive clog-
ging events, is an important parameter in the flowing regime.
We can obtain the avalanche size distribution for each outlet
and the corresponding average avalanche size 〈s〉. By defin-
ing a rescaled avalanche size s∗ = s/〈s〉, we find that the
rescaled avalanche sizes overlap to form a single curve with
an exponential tail, as shown in Fig. 3(a). Notably, the same
exponential tail also exists in sheep or pedestrians passing
through a narrow gate and in the discharging of a gravity-
driven hopper flow [20,23,25].

With the avalanche size, we can introduce clogging proba-
bility J as the probability that flow gets stopped before N par-
ticles pass through the outlet [26]. JN (D) = 1− ∑∞

s=N nD(s),
where nD(s) is the propability of an avalanche size of s parti-
cles. According to the definition, the physical implication of
the J is the probabilty that the avalanche size is smaller than
N. In other words, J gives the clogging probability before N
particles flow out of a given outlet, which depends on the N
and system parameters such as the outlet size D and driving
velocity Vbelt.

Figure 3(b) shows the dependence of clogging probability
on the outlet size under different N. It can clearly be seen
that the clogging probability JN (D) is nearly 1 for all N for
a small outlet size D < 2.5, which indicates that the system
is extremely prone to clogging with D < 2.5. When the outlet
size D > 6.5, JN (D) approximately vanishes for all N, con-
firming that the flow is very unlikely to be arrested for a wide
outlet. The curve shape is similar to the clogging probability
curves in gravity-driven hopper flow [26,27].

In the clogging in two-dimensional gravity-driven hopper
flow, Janda et al. proposed a model to describe the exponen-
tial decay of nD(s) for large avalanche size s [26]: nD(s) =
ps(1−p), and 1−p = A exp(−Bη2), where p is the probabil-
ity that a particle passes through an outlet without resulting
in a blocking arch with adjacent particles; η is the number
of particles that forms a blocking arch; A and B are fitting
parameters. Based on the two equations above, the average
avalanche size 〈s〉 can be otained: 〈s〉 = A−1 exp[B(η0D)2]−1,
where it is assumed that η is linearly proportional to the outlet
size D, i.e., η = η0D, and η0 is a fitting parameter.

Extending the model for a two-dimensional gravity-driven
hopper clogging to a two-dimensional conveyor belt driven
horizontal hopper flow, we can obtain the dependence of the
average avalanche size 〈s〉 on the outlet size D; see Fig. 4.

FIG. 3. (a) Rescaled probability density function of the
avalanche size for different outlet sizes (Vbelt = 8 cm/s, θ = 0◦), as
indicated in the legend in Fig. 2. (b) Clogging probability JN (D) as a
function of the outlet size D. The fitted curves in the figure are given
by Eq. (1).

FIG. 4. The average avalanche size as a function of the outlet
size. The solid line is the fit from 〈s〉 = A−1 exp[B(η0D)2]−1. The
fitting parameters are A−1 = 5.85, Bη2

0 = 0.149. In the inset the plot
of ln(〈s〉 + 1) vs D2 shows the goodness of the fit.
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FIG. 5. The clogging probabilty J as a function of the rescaled
variable x = NAe−B(η0D)2

. The solid line corresponds to the function
1 − e−x .

In Fig. 4, the average avalanche size grows rapidly with the
increase of D, and the experimental results are in good accord
with the theoretical model 〈s〉 = A−1 exp[B(η0D)2]−1.

Inserting 〈s〉 = A−1 exp[B(η0D)2]−1 into JN (D) =
1− exp(−N/〈s〉), we will have for 〈s〉 	 1, that is,
〈s〉 ≈ A−1 exp[B(η0D)2],

JN (D) = 1 − exp[−NAe−B(η0D)2
]. (1)

The solid lines in Fig. 3(b) are the theoretical results pre-
sented in Eq. (1), where A and Bη0

2 are fitting parameters
obtained from the fit of 〈s〉 = A−1 exp[B(η0D)2]−1 to the
data in Fig. 4. The experimental data agree with the theoret-
ical results very well. We continue to define a variable x =
NAe−B(η0D)2

, and find that all data points from different N and
D collapse onto a single curve which is the function 1 − e−x,
as shown in Fig. 5. This agreement between the experimental
data and theoretical prediction confirms that the model from
the gravity-driven hopper clogging is also applicable to the
relationship between clogging characteristics and outlet size
in the conveyor belt driven horizontal hopper flow. This simi-
larity implies that the clogging issues in the two systems could
share some common physical laws. In addition, we investi-
gate the relationship between the blocking probability of a
particle near the outlet 1−p and the outlet size D, 〈s〉 = p

1−p .
Figure 6 manifests that 1−p decreases significantly with the
increase of the outlet size D. The blocking probability 1−p
for D = 3.0 is 20 times higher than that for D = 5.5.

B. Dependence of clogging and flowing statistics
on the hopper angle

The hopper angle θ plays an important role in the transi-
tion between clogging and flowing. When the hopper angle
reaches 90°, the granular flow becomes pipeline flow. For
pipeline flow, clogging is hardly ever observed provided the
pipeline width is larger than a few particle diameters. This
is proved in our experiment: For pipeline flow with D = 4.3,
particles continously flow without clogging. However, for a
flat bottom hopper (θ = 0◦), clogging frequently occurs with

FIG. 6. Blocking probability that a particle clogs the outlet, 1−p,
vs the outlet size D.

the same outlet width. Therefore, a clogging-flowing transi-
tion should exist when the hopper angle varies from 0° to 90°.
Recently, López-Rodríguez et al. investigated the role of the
hopper angle in the transition between clogging and flowing
in gravity-driven hopper flow, and indeed saw the trend of the
transition. The probability of clogging can be reduced by three
orders of magnitude with increasing hopper angle [28].

Using the same method described above, we obtain the
complementary cumulative distribution function (CCDF) of
the time lapse for different hopper angles. Figure 7(a) clearly
shows that the power-law exponent increases with hopper
angle, but the granular flow does not completely change into
continuous flow until the hopper angle is 80° (α = 2.01).
As θ = 90◦, pipeline flow appears with α = 9.86, which fur-
ther confirms that the pipeline flow is hardly interrupted.
Figure 7(b) is still used to assist in determining the minimum
time lapse �tc. With �tc obtained in Figs. 7(a) and 7(b), we
adopt 0.3 s as �tc in this section.

Figure 8(a) shows that all rescaled avalanche size distri-
butions collaspe into a single exponential curve. Figure 8(b)
shows the clogging probability JN (θ ) for different values of
N with hopper angles ranging from θ = 0◦ to θ = 90◦. The
clogging probability decreases as the hopper angle increases.

In previous work on the quantitative relationship between
the hopper angle and the flow rate of particles discharg-
ing through an outlet, the hopper angle is considered to be
related to an “acceleration region” above the outlet. For a flat-
bottomed hopper (θ = 0◦), the region is delineated by an arch
with a radius of curvature D/2, corresponding to the conver-
gence of the velocity stream through the outlet; for a hopper
with a finite hopper angle, the radius of the arch is modified
as D/2 cos θ [29,30]. The avalanche size is the number of
particles between two consecutive clogging events, which is
closely related to flow rate. We conjecture that the equation to
describe the relation between the average avalanche size and
the outlet size 〈s〉 = A−1 exp[B(η0D)2]−1 for a flat-bottomed
hopper (θ = 0◦) may be extended to Eq. (2).

〈s〉 = A−1 exp[B(η0D/ cos θ )2] − 1. (2)
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FIG. 7. (a) Complementary cumulative distribution function of
the time lapse between passage of consecutive particles for different
hopper angles (D = 4.3, Vbelt = 5 cm/s). The solid lines represent
fitting lines obtained by the Clauset-Shalizi-Newman method, and
the corresponding power-law exponents are marked. The dashed line
marked with α = 2.0 is the dividing line between a clogging and
a flowing regime. (b) The mean flow rate as a function of �tc for
different hopper angles. For clarity, error bars are only shown in a
single curve. Other curves have error bars with a similar size.

In Fig. 9, 〈s〉 grows rapidly as θ increases, and the
experimental data are consistent with Eq. (2). The lin-
ear fit in the inset of Fig. 9 also confirms the va-
lidity of the modified equation. As before, we insert
Eq. (2) into JN (D) = 1− exp(−N/〈s〉). For 〈s〉 	 1, 〈s〉 ≈
A−1 exp[B(η0D/ cos θ )2], we have

JN (D, θ ) = 1 − exp[−NAe−B(η0D/ cos θ )2
]. (3)

The solid lines in Fig. 8(b) are theoretical results given
by Eq. (3), where A−1 = 42.19; Bη0

2 = 8.18 × 10−4 are ob-
tained from the fit of Eq. (2) to the data shown in Fig. 9.
Furthermore, all data points cluster together to result in a
single curve with a rescaled variable x = NAe−B(η0D/ cos θ )2

, as
shown in Fig. 10. This confirms that the modified equation

FIG. 8. (a) Rescaled probability density function of the
avalanche size for different hopper angles (D = 4.3, Vbelt = 5 cm/s),
as indicated in the legend. (b) Clogging probability JN (θ ) as a func-
tion of the hopper angle. The fitted curves are given by Eq. (2).

FIG. 9. Mean avalanche size as a function of a hopper angle
(D = 4.3, Vbelt = 5 cm/s). The solid line corresponds to the fit pre-
sented in Eq. (2), where the fitting paremeters are A−1 = 42.19,
Bη2

0 = 8.18 × 10−4. In the inset the linear fit between ln(〈s〉 + 1) and
D2 shows the goodness of the fit more clearly.
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FIG. 10. The clogging probability J as a function of the rescaled
variable x = NAe−B(η0D/ cos θ )2

. The experimental data for different
hopper angles collapse into the theoretical curve predicted by Eq. (3).

can indeed describe the relationship between the clogging
probability and the hopper angle.

When the hopper angle increases to θ = 80◦, the blocking
probability of a particle decreases more than 70 times, nearly
two orders of magnitude, as shown in Fig. 11. With the fur-
ther increase of the hopper angle, the time to measure the
avalanche size is predicted to exceed the service time of the
camera battery, so the experiment with hopper angle larger
than 80◦ did not continue.

We speculate that the blocking probability of a particle
at the outlet could continue to decrease with the increase
of the hopper angle. In addition to the experimental ex-
trapolation above, theoretical analysis gives a consistent
conclusion. López-Rodríguez et al. have pointed out that
the angle between adjacent frictionless particles constitut-
ing the clogging arch satisfies certain constraint conditions
[28]: (1) All particle angles in the arch are within the range
of [90◦−θ , −(90◦−θ )], and (90◦−θ ) � θ1 � θ2 � θ3 · · · �
θn−1 � (−90◦−θ ). (2) The shape of the arch is convex and the

FIG. 11. The blocking probability of a particle at the outlet, 1−p,
as a function of the hopper angle (D = 4.3, Vbelt = 5 cm/s).

FIG. 12. (a) Time-lapse CCDFs obtained from different driving
velocities (D = 4.0, and hopper angle θ = 0◦). The solid lines rep-
resent the power-law fits with exponent α. (b) The mean flow rate as
a function of �tc. For clarity, error bars are only shown in a single
curve. Other curves have similar error bars.

span of the arch satisfies [1 + (n−1) cos(90◦−θ )]d � l < nd .
When the particle flow is pipeline flow (θ = 90◦), the angle
range becomes [0°, 0°], and the arch span cannot be larger
than the outlet width, so the probability of particle clogging is
very low for this case, or even zero. Moreover, according to
Eq. (3), when the outlet size is a finite value and the hopper
angle is 90°, it could be equivalent to expanding the outlet
size to infinity, and thus the clogging probability J is very low.
The results derived from the two theories are self-consistent.
However, it is still an open question whether the blocking
probability of a particle in a 90° hopper vanishes completely;
this will be investigated in future work.

C. Dependence of clogging and flowing statistics
on the driving velocity

In the past work of horizontal flow, it was found that the
particle velocity is closely related to clogging. In particular, an
increase of the velocity leads to more congestion of particles
at the outlet, which is known as the “fast is slow” effect
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FIG. 13. (a) Rescaled probability density function of the
avalanche size for different driving velocities (D = 4.0, θ=0◦), as
indicated in the legend. (b) Clogging probability JN (v) as a function
of the driving velocity Vbelt . The fitted curves in the figure are given
by Eq. (4).

[1,23,31,32]. Whether the same effect exists in the conveyor
system remains elusive.

In this section, we fix the outlet size D = 4.0, hopper angle
θ = 0◦, and control the driving velocity of the conveyor belt
Vbelt from 2 to 15 cm/s. Using the same method described
in previous sections, we obtain the CCDFs of time lapse �t
under different driving velocities. Figure 12(a) shows that the
distribution has a power-law tail and the power-law exponent
increases slightly with the increase of the driving velocity, but
not larger than 2, indicating that the system always tends to
clog within the range of the driving velocity. With Vbelt =
2 cm/s, the minimum time lapse �tc is about 1 s, which is
the largest of all driving velocities studied. We also calculate
the mean flow rate for different driving velocities, and the
maximum �tc is about 0.6 s when the mean flow rate becomes
stable, as shown in Fig. 12(b). Here we adopt �tc=1 s as the
minimum time lapse to distinguish clog from flow.

Figure 13(a) shows that all rescaled avalanche sizes over-
lap to form a single exponential curve. Figure 13(b) shows
the dependence of clogging probability JN (v) on the driving
velocity Vbelt under different N. The clogging probability de-
creases with the increase of the driving velocity, and finally
approaches saturation. With the increase of N, JN (v) gradually
tends to be a horizontal line.

FIG. 14. The average avalanche size as a function of the driving
velocity. The solid line is the fit from Eq. (4). The fitting parame-
ters are a = 346.5(cm/s)−1, b = –335.9(cm/s)−1, and c = –6.87 ×
10−4(cm/s)−1.

The experimental results show that the average avalanche
size 〈s〉 monotonically increases with the driving velocity
Vbelt; see Fig. 14. The quantitative relationship between 〈s〉
and Vbelt determines the mathematical expression of JN (v).
The driving velocity Vbelt has two effects on the motion of the
particles near the outlet. We made a conjecture to estimate the
relationship.

On one side, with the increase of Vbelt , the blocking
probability 1 − p monotonically decreases until it is finally
saturated, as shown in Fig. 16. The mean flowing time �T
between two clogging events could be closely related to the
blocking probability of a particle at the outlet. Qualitatively
speaking, the mean flowing time �T is supposed to be in-
versely proportional to the blocking probability 1−p. That
is to say, �T may increase with Vbelt , and finally reach
saturation. Based on the simple assumption, we propose an

FIG. 15. The clogging probability J as a function of the scaled
variable x = −N/(aVbelt + bVbelte−cVbelt ). The experimental data from
different driving velocity and N collapse into the theoretical curve
1 − e−x .
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FIG. 16. The blocking probability of a particle at the outlet, 1−p,
as a function of the driving velocity (D = 4.0, and θ=0◦).

empirical expression to describe the relation between �T and
Vbelt: �T =a1 − a2e−bvbelt ; a1 and a2 are fitting parameters.

In the other aspect, with the increase of the driving velocity
Vbelt, the particle velocity near the outlet increases correspond-
ingly. We propose a linear ansatz: The velocity of particles
discharging through the outlet increases linearly with the driv-
ing velocity Vbelt . Namely, Vparticle = kVbelt; k is a proportional
parameter. As stated previously, the average avalanche size
is the average number of particles discharging out of the
outlet between two consecutive clogging events, which is the
product of the mean flowing time �T between two clogging
events and the velocity of particles discharging through the
outlet Vparticle. Thus,

〈s〉 = aVbelt + bVbelte
−cVbelt . (4)

The agreement with the experimental data is proving the
validity of the proposed Eq. (4); see Fig. 14.

Inserting Eq. (4) into JN (D) = 1− exp(−N/〈s〉), we obtain

JN (Vbelt ) = 1 − exp[−N/(aVbelt + bVbelte
−cVbelt )]. (5)

Letting x = −N/(aVbelt + bVbelte−cVbelt ), all experimental
data collapse into a single curve presented by Eq. (5), as
shown in Fig. 15.

With the analysis of Figs. 12(a), 13(b), 14, and 16, now we
can answer the question raised at the beginning of this section.
The system of horizontal hopper flow driven by a conveyor
belt does not show the fast is slow effect that is common in the
sheep, robots, crowd, and traffic flow. Instead, the clogging
tends to be weakened in the system by the increase of the
driving velocity, suggesting a possible fast is fast behavior,
which is similar to the phenomenon in the evacuation of an
extremely panicked crowd from the emergency exit simulated
by the social force model [33]. In this reference, the force
balance model points out that particles in a clogging arch are
subjected to pushing force and frictional force. The pushing
force is proportional to the desired velocity of particles (in
our experiment, the desired velocity is the driving velocity),
and the frictional force is linearly proportional to the particle’s

actual velocity and the compression between the individuals in
the clogging arch. If the two forces are balanced, the clogging
arch will remain stable. As the pushing force in the crowd
increases with the desired velocity, the compression between
individuals in the clogging arch seems not enough to provide
a slowing down in the moving pedestrian. The clogging arch
will be broken soon. Thus, a “faster is faster” effect appears.
The fast is fast behavior in our experiment could be the case.
In our experiment, we increase the desired velocity (driving
velocity) by an order of magnitude from 2 to 15 cm/s. The
pushing force is greatly increased. The particles used in the
experiment are hard plastic disks; it is very difficult to cause
compression between individuals. The frictional force due to
the compression may not catch up with the increase of the
pushing force.

In addition, compared with the geometric effect (outlet
size and hopper angle) on the clogging in the horizontal
flow driven by a conveyor belt, the kinematic effect (driving
velocity) is much weaker. For the geometric effect, the sys-
tem eventually switches a clogging state to a flowing state,
whether the outlet size is increased or the hopper angle is
enlarged. For example, when the outlet size is doubled, in-
creasing from D = 3.0 to D = 6.0, the blocking probability
1−p is reduced by about two orders of magnitude, resulting
in the transition from a clogging state to a flowing state. When
the driving velocity nearly increases by an order of magnitude
(from 2 to 15 cm/s), the blocking probability 1−p is only
reduced by three times and the power exponent α is still less
than 2, implying that the system possibly tends to be in the
clogging state. This suggests that the geometric effects play a
more critical role in determining the clogging characteristics
in the case of the conveyor system.

IV. CONCLUSION

In conclusion, due to the independence of the driving ve-
locity on the outlet size, separating geometrical and kinematic
contributions to the clogging process becomes possible for
horizontal hopper flow driven by a conveyor belt. We exper-
imentally investigate the geometric and kinematic effects on
the clogging and flowing process in such a horizontal hopper
flow, respectively. By enlarging the outlet size or increasing
the hopper angle, we find that the clogging state can switch
to the flowing state, and the blocking probability of a parti-
cle near the outlet can be reduced by almost two orders of
magnitude. A model from the gravity-driven hopper clogging
describes the dependence of clogging probability on the outlet
size and hopper angle in horizontal hopper flow, which sug-
gests that some underlying mechanisms could be common in
clogging issues in the two systems.

Besides, we do not find the fast is slow effect, which is
common in other horizontal flow, within the range of driving
velocity in our investigation. Instead, a possible fast is fast
behavior is shown in the conveyor belt system. We speculate
that the effect could originate from the force imbalance in
the blocking arch. Specifically, the frictional force due to
the compression between particles cannot catch up with the
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increase of the pushing force that is closely related to the
driving velocity, which enables the arch to be more likely to
be broken. Finally, by comparing the parameters describing
the clogging characteristics, such as the power-law exponent,
average avalanche size, and so on, we find that the geometric
effect more effectively affects the clogging in the conveyor
belt system.
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