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Interfacial segregation of interacting vacancies and their role on the wetting critical properties of
the Blume-Emery-Griffiths model
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We study the wetting critical behavior of the three-state (s = ±1, 0) Blume-Emery-Griffiths model using
numerical simulations. This model provides a suitable scenario for the study of the role of vacancies on the
wetting behavior of a thin magnetic film. To this aim we study a system confined between parallel walls with
competitive short-range surface magnetic fields (hL = −|h1|). We locate relevant critical curves for different
values of the biquadratic interaction and use a thermodynamic integration method to calculate the surface tension
as well as the interfacial excess energy and determine the wetting transition. Furthermore, we also calculate the
local position of the interface along the film and its fluctuations (capillary waves), which are a measure of the
interface width. To characterize the role played by vacancies on the interfacial behavior we evaluate the excess
density of vacancies, i.e., the density difference between a system with and without interface. We also show that
the temperature dependence of both the local position of the interface and its width can be rationalized in term of
a finite-size scaling description, and we propose and successfully test the same scaling behavior for the average
position of the center of mass of the vacancies and its fluctuations. This shows that the excess of vacancies can
be associated to the presence of the interface that causes the observed segregation. This segregation phenomena
is also evidenced by explicitly evaluating the interfacial free energy.
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I. INTRODUCTION

The study and characterization of surfaces and interfaces
is a topic relevant to many fields within physics, chemistry,
material science, an others [1,2]. Considerable experimental
and theoretical attention has been addressed to understanding
common features of surfaces and interfaces at equilibrium
[3–8] and far from it [9,10]. This broad interest is moti-
vated not only by its numerous technological applications but
also by the existence of many challenges at the basic level.
Within this broad context, the influence of the presence of
an additional phase at the interface between two phases has
also been a source of experimental and theoretical studies.
In particular, the phenomenon of enhancement of the density
of the additional phase at the interface, known as “interfa-
cial adsorption.” An experimental realization of this physical
situation is provided by a two-component fluid system in
equilibrium with its vapor phase [11]. From the point of view
of statistical physics, which is the approach that will be fol-
lowed in this paper, interfacial adsorption can be studied by
means of three-state models, such as the Potts model or the
Blume-Capel (BC) model. A straightforward way to observe
interfacial adsorption is by confining the sample between two
walls where competitive surface magnetic fields act. In this
way, an interface between domains of different signs of the
magnetization runs parallel to the confining walls, and vacan-
cies adsorb preferentially along such an interface leading to
interfacial adsorption, as reported by Selke [12]. It is also
known that, depending on the temperature and the magni-
tude of the competitive surface fields, the interface between

domains undergoes localization-delocalization “transitions.”
Those “effective” transitions are the precursors of the wet-
ting transitions observed when the thermodynamic limit is
properly taken. Interfacial adsorption has been observed by
studying the localization-delocalization transition of the in-
terface between domains of different magnetization in the
BC model [13]. Furthermore, Fytas and Selke [14] have re-
ported an extensive numerical study of wetting and interfacial
adsorption in the BC model. To study wetting behavior in
d = 2 dimensions, Fytas and Selke assumed that spins are
fixed at the boundaries with two different states, “+1” and
“−1,” with the addition of reduced couplings at one bound-
ary. The adsorption of third state (“0” spins) at the interface
between “−1” and “+1” rich regions is mainly characterized
by measuring the interfacial adsorption W0, which accounts
for the surplus of “0” spins caused by the presence of the
interface. It is reported that due to the strong meandering of
the interface, W0 grows rapidly when approaching the wetting
temperature. The existence of a singularity in the temperature
derivative of W0 at the wetting transition is conjectured. It is
worth mentioning that the results of Fytas and Selke for the
wetting transition of the BC model confined between walls
are in agreement with previous results [13] and are found to
obey the anisotropic scaling behavior for wetting transitions
with short-range surface fields [13,15].

In a related context, great interest has also been attracted
by the study of interfacial pinning induced by impurities.
In fact, experimental and theoretical evidence [16,17] has
confirmed that a magnetic interface can be pinned by uni-
formly distributed nonmagnetic impurities. The influence of
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nonmagnetic fixed impurities placed at the center of an Ising
ferromagnet confined between walls has been studied [18].
It is found that for a low density of impurities the wetting
transition remains continuous (second order), while abrupt
first-order transitions are observed when such a density in-
creases [19]. In view of the reported change in the nature of
the wetting transition caused by the presence of impurities
in the case of the Ising ferromagnet, it is surprising that
interfacial adsorption in the BC model does not affect the
second-order nature of the wetting transition [13,14].

Within this broad context, the aim of the present paper is to
contribute to understanding the role played by nonmagnetic
impurities or vacancies in the wetting transition that occurs
when ferromagnet confined between walls where competitive
surface magnetic fields act. We will focus our attention on
the Blume-Emery-Griffiths (BEG) model [20]. This model is
based on the BC model [21,22], like its predecessor it contains
an Ising-like term for interaction between spins, a term that
controls the abundance of vacancies, and it incorporates an
interaction term between the latter. In the present work we
study the confined BEG model by means of extensive Monte
Carlo simulations which are rationalized in terms of a re-
cently proposed [13] anisotropic scaling approach. However,
we take advantage of the biquadratic interaction term, which,
depending on its sign favours either the formation of vacancy
interfaces or clustering of vacancies and occupied sites. Our
hypothesis is that if the vacancies tend to cluster, the interface
behavior would be analogous to the one of the interfacial
pinning induced by impurities [19] and the character of the
transition would change. By using the approach discussed
above, we are able to elucidate the role played by the nonmag-
netic impurities in the character of the wetting transitions in
the d = 2 dimensional BEG model. Furthermore, we use the
thermodynamic integration technique to look for first-order
wetting transitions. We show a simplified way to carry out this
study by using a Wang-Landau algorithm, which allows us to
directly calculate the free energy of the system.

Finally, we would like to mention that mobile vacancies
could be relevant for the study of wetting upon adsorption on
layered materials, e.g., when two bulky layers (of a single or
different compound) are separated by a very thin layer of an
additional species, as used in many micro and nanodevices.
In fact, the influence of a transverse magnetic field on both
layering and bulk-melting transitions in the BEG model has
been studied by using a mean-field approach [23]. In this
case, infinitely long slabs of a finite width with open boundary
conditions were used for technical reasons, and competitive
surface magnetic fields (as used in the present study) were
not considered, except for the trivial case h1 = 0. Also, it is
worth to mention that layering transitions can be observed for
d > 2, in contrast to the wetting transitions studied in this
paper. Experimental evidence of layering transitions can be
found in Refs. [24,25]. Another realization would be a binary
surfactant mixture at the air-water interface undergoing phase
separation: A defect line with mobile particles then could be
created by colloidal particles bound also to the interface but
trapped in a cylindrical potential well at the interface, created
by suitable laser fields. This system would be a direct (qual-
itative) realization of the situation envisaged in our simple
model.

The manuscript is organized as follows: in Sec. II we
describe the main features of the BEG Hamiltonian together
with a brief discussion of the simulation method. Section III
is devoted to the presentation and discussion of our results
within the framework of the finite-size scaling approach for
wetting transitions with short-range surface fields [15], inter-
facial adsorption, dynamic on the wetting layers based on the
vacancy excess profiles, and the thermodynamic integration
method for the location of first-order wetting transitions. Fi-
nally, our conclusions are presented in Sec. IV.

II. MODEL AND METHODS

The study of a wetting transition, where the boundary
induces the formation of a macroscopically thick film of the
phase it favors, coexisting with the other phase separated by an
interface at macroscopic distance from the boundary, requires
us to consider the limit L → ∞, where L is the thickness
of the film. For any finite L in the antisymetric thin film
geometry, or thin strip geometry when one considers d = 2
dimensions rather than d = 3, one does not find a wetting
transition but rather the “interface localization-delocalization
transition” [26–35]: for temperature Tc(L, h1) but below the
transition temperature Tb of the bulk, the interface between
the coexisting phases is “delocalized,” freely fluctuating in
the center of the film (or strip, respectively). Here by “center”
we mean the plane (or line) (L + 1)/2, if we label the layers
(rows) of the lattice parallel to the boundaries from n = 1 to
n = L. However, for T < Tc(L, h1), the interface is tightly
bound, and hence “localized,” near one of the boundaries.
One predicts, however, that for large L, the transition temper-
ature converges rapidly to the wetting temperature Tw(h1) of
the semi-infinite system [29,30], and this prediction is con-
sistent with numerical simulations [27,28,31–33,35]. Since
simulations require systems with finite linear dimensions, we
consider the Hamiltonian of the BEG model in a square lat-
tice of geometry L × M, where the dimensions L and M are
perpendicular and parallel to the surface, respectively. This
lattice has periodic boundary conditions along the x direction
(where the lattice has length M) and free boundary conditions
(walls) in the y direction, on which surface fields h1 and
hL act. Capillary condensation like effects are then avoided,
and phase coexistence still occurs [31]. However, when linear
dimensions L, M are varied, ratios L/ξ⊥, M/ξ‖, with ξ⊥ and
ξ‖ the correlation lengths, need to change in the same way (cf.
Fig. 1) A schematic representation can be seen in Fig. 1.

The BEG Hamiltonian under these conditions has the fol-
lowing form:

H = − J
∑
〈i, j〉

sis j + D
N∑

i=1

s2
i − αJ

∑
〈i, j〉

s2
i s2

j

− h1

∑
i∈1

si − hL

∑
i∈L

si, (1)

where the spin variable si can take the values 1, 0 and −1,
〈i, j〉 indicates sum over nearest neighbors and N is the total
number of sites. J is the coupling constant which we take
equals to 1 throughout the entire study, D is the crystal field,
which favors the presence of vacancies when it is positive and
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FIG. 1. Schematic description of the system geometry and its
state at the wetting transition temperature Tw (h1). In that state, the
interface has detached from the wall and is fluctuating in the middle
of the lattice. It separates two domains with opposite magnetization,
where the positive domain is represented with red and the negative
one with blue. Vacancies are represented with white, and most of
them are located there due to the interfacial adsorption. The choice
of the linear lengths L and M, and the boundary conditions are
indicated: periodic in the x direction and free in the y direction. The
surface fields h1 and hL = −|h1| act on the latter. The correlation
lengths are also shown: parallel ξ‖ and perpendicular ξ⊥ to the inter-
face. These satisfy ξ‖ ∝ ξ 2

⊥.

α is a parameter characterizing the biquadratic interaction that
either favors nearest neighbors sites occupation when positive,
or promotes the mixing of occupied sites with vacancies. The
coupling constant J is homogeneous throughout the entire
system, so the possibility of adding a different constant JS for
the edge spins is not considered as has been done in other
studies [26,31–33,35–37]. The lattice parameter will be taken
as a unit of length, so the total number of spins is equivalent
to the product of the linear lengths of the system, N = L × M.
The surface fields, h1 and hL, act only on the spins of the
first and last rows, respectively. These could be homogeneous
or heterogeneous depending on the type of study performed.
To study localization-delocalization pseudo transitions of the
interface, that will correspond to true wetting critical tran-
sitions when the proper thermodynamical limit is taken, we
considered competitive surface fields, hL = −|h1| (see Fig. 1).

We have used two different methods for the numerical sim-
ulations: the usual Monte Carlo metropolis update [38] and the
Wang-Landau algorithm for the evaluation of the density of
states [39,40] in the implementation proposed by Belardinelli-
Pereyra [41]. A detailed description of the simulation methods
can be found in the Appendix.

III. RESULTS

A. Numerical simulations

The study and characterization of the localization-
delocalization transitions and the interfacial adsorption, is
performed by working in the ferromagnetic phase of the BEG
phase diagram. Such a diagram, which was fully characterized
in a previous work [42], consists of three different phases:

(a)

(b)

(c)

FIG. 2. Plots of the average absolute value of the magnetization
〈|m|〉 (a), the second moment of magnetization 〈m2〉 (b) and the
fourth-order Binder cumulant U (c) as a function of the temperature
kBT/J , for α = 1, D = 3 and h1 = 0.7. Vertical lines indicate the lo-
cation of the size-independent intersection point, which corresponds
to the critical wetting temperature. In this case kTw (h1)/J 
 1.30.

ferromagnetic, paramagnetic, and quadrupolar, the later one
with one sublattice filled with spins and the other with
vacancies. The ferromagnetic-paramagnetic transition lines
present first- and second-order transitions, separated by
tricritical points. As it was mentioned before, localization-
delocalization transitions that are observed in finite-confined
samples, becomes true wetting transitions when the thermo-
dynamic limit is properly taken [29,30]. Since for α = 0 we
recover the BC model that already exhibited wetting transi-
tions [13,15], we take α > 0, so it will favor the mixing of
occupied sites with vacancies.

Based on the scaling theory for critical wetting [13,15], a
particular value of the generalized aspect ratio (c) has been
used:

Lν‖/ν⊥

M
= L2/1

M
= c = 9

8
, (2)

where ν‖ and ν⊥ are the correlation length exponents. The
results on the location of the critical wetting tempera-
ture [Tw(h1)] and the critical exponents do not depend on
this choice of c. The value was chosen simply because it
generates small integers solutions for L and M: (L, M ) =
(6, 32); (12, 128); (18, 288); (24, 512); (30, 800); (36, 1152);
(48, 2048). The effect of considering other options of c is dis-
cussed in Ref. [13]. The panels in Fig. 2 show the temperature
dependence of the first two moments of the magnetiza-
tion m = ∑N

i=1 si, 〈|m|〉, 〈m2〉, as calculated using metropolis
Monte Carlo simulations, for an applied field h1 = 0.7. These
are shown together with Binder’s fourth-order cumulant U ,
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(a)

(b)

(c)

FIG. 3. Scaling plots for 〈|m|〉 (a), 〈m2〉 (b) y U (c), vs kB(T −
Tw )/J M1/ν‖ , where ν‖ = 2. For the parameters hw = 0.7, α = 1,
D = 3, and different values of L, as shown in the figure.

given by

U = 1 − 〈m4〉
3〈m2〉2

. (3)

As it can be seen in the figure, there is unique size-
independent intersection point at a temperature T = 1.30.
This behavior, not at all common in second-order phase tran-
sition, is a clear evidence of a transition that follows the type
of scaling proposed by Albano and Binder [13], with a critical
exponent for the order parameter given by β = 0. Note the full
agreement between the size independent intersection points of
all the measured quantities including the cumulant, where an
intersection point is expected for a wetting transitions. This
gives our first estimate of the wetting critical temperature for
h1 = 0.7, namely, Tw(h1) = 1.30.

In the wet phase, the average position of the interface is
in the middle of the lattice, between the rows y = L/2 and
y = L/2 + 1, for L even; but due to capillary waves on the M
scale in the x direction, the interface performs excursions of
order

√
M in the y direction, which are of the order of L/2 for

the choice of geometry proposed in Eq. (2).
In addition, Fig. 3 shows the collapse of the curves shown

in Fig. 2 when 〈|m|〉, 〈m2〉 and U are plotted as a function of
kB(T − Tw )/J M1/ν‖ with ν‖ = 2, as proof of the scaling pro-
posed by Albano and Binder. We observe a rather good data
collapse, although there are deviations due to both statistical
errors and systematic effects when M and/or χ are not large
enough or when data is included too far from Tw(h1).

Figure 4 shows a scaling analysis of the heights and loca-
tions of the susceptibility peaks kBT/Jχ , calculated using

kBT/J χ = LM(〈m2〉 − 〈|m|〉2). (4)

(a) (b) (c)

FIG. 4. Plot of susceptibility χ vs temperature kBT/J (a) for
parameters α = 1, D = 3, h1 = 0.7. Collapse of the data of χ vs
kB(T − Tw )/J M1/ν‖ (b). Finally, extrapolation of the peaks of χ

to prove the power law kBT/J χmax ∝ c1/2M3/2−2β/ν‖ = M3/2 ∝ L3,
with β = 0 as in Ref. [13].

Figures 2, 3, and 4 are examples representative of the
general pattern of behavior. Therefore, it can be concluded
that by using the finite-size scaling analysis as presented here,
wetting transitions for the Blume-Emery-Griffiths model can
be located in a square lattice with reasonable accuracy.

Based on the results obtained for these scalings we have
constructed the phase diagram of the wetting transition. Fig-
ure 5(a) shows the phase diagram in h1 as a function of Tw/Tb,
where Tb is the bulk transition temperature. Here one can
see how as the surface field decreases, the wetting critical
temperature tends to the value for a bulk transition. This effect
is also present in the D − kBT/J phase diagram shown in
Fig. 6.

In second-order phase transitions, h1 obeys

h1(T ) ∝ (Tb − Tw )�1 , (5)

where �1 is the critical exponent that controls the scaling
behavior with the surface field h1 near the criticality of the
bulk. Abraham’s exact solution (α = 0) implies �1 = 1/2.
Figure 5(b) shows h1 vs (Tb − Tw )1/2. Albeit with different
prefactors, both cases follow the expected critical behavior.

These diagrams can be included in the phase diagram of
the BEG model as shown in Fig. 6, for a better visualization of
the results. Here one can see that, as it was mentioned before,
when h1 → 0, the wetting transition moves towards the bulk

(a) (b)

FIG. 5. (a) Plots of the wetting transitions h1 vs Tw/Tb, with
Tb = 1.748. The parameters used were α = 1, D = 3. (b) Plots of
the critical wetting surface fields h1 vs (kB/J )�1 (Tb − Tw )�1 , with
�1 = 1/2, obtained for Abraham’s exact solution (α = 0) and the
numerical data shown in the left-hand side panel.
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FIG. 6. Plots of the wetting transitions, this time in terms of D
vs kBT/J , for α = 2 and different values of the surface field h1 as
shown in the figure. The red line represents the bulk phase diagram
of the BEG model for α = 2 in Ref. [42] in the absence of surface
fields. Black star represents the tricritical point. In the inset the curves
of the wetting transition and the bulk transitions are normalized by
the wetting critical temperature and the bulk critical temperature,
respectively.

transition. Moreover, it is easier to appreciate this behavior by
normalizing the curves by the wetting critical temperature and
the bulk critical temperature, respectively, as it is shown in the
inset.

B. Interfacial adsorption

To characterize the interfacial adsorption one measures
the excess of vacancies due to the interface, W0, defined as
follows:

W0 = L( f0 − F0), (6)

where f0 is the vacancy density when the system is under the
effects of inhomogeneous surface fields (h1 = −hL), while F0

corresponds to the case of homogeneous fields (h1 = hL), and
has to be determined by means of additional MC simulations.

Figure 7 shows that, at Tw, W0 presents an inflection point,
so if the derivative is performed with respect to the temper-
ature, the wetting transition will be characterized by a peak
in dW0/dT , while for sufficiently high temperatures, a neg-
ative peak will appear corresponding to the bulk transition.
This behavior is also shown in Fig. 8 for α = 1, D = 3 and
different values of the surface field h1. On Fig. 8(a), one can
see how the positive peaks shift toward higher temperatures as
h1 is decreased, in agreement with the wetting phase diagram
shown in Fig. 5, while the peak corresponding to Tb remains
at a fixed position regardless of the field. Finite-size effects
can be seen in Fig. 8(b). The peaks become sharper as the
system size is increased, and the variation of both transition
temperatures, Tw and Tb, is very small for lattice sizes bigger
than 24.

Figure 9 shows the derivative of the interfacial adsorption,
dW0/dT , as a function of the biquadratic interaction α. If D
is kept constant and α increased, then one can observe, see

(a) (b)

FIG. 7. Plots of the temperature dependence of the interfacial
adsorption for a system with α = 1, D = 3, h1 = 0.7 and lattice size
L = 18. (a) shows the vacancy densities for a system with and with-
out an interface ( f0 and F0, respectively), as well as the difference
between both (W0). The enrichment of vacancies is clearly observed
due to the interface near the critical wetting temperature Tw = 1.30
(black dashed line). (b) shows both W0 and its derivative versus the
temperature. It is observed that the maximum corresponds to the
wetting transition, while the negative peak corresponds to the bulk
transition for Tb = 1.748 as in Ref. [42].

Fig. 9(b), that while the interfacial adsorption decreases, the
critical wetting temperature increases. This happens because
the number of vacancies segregated at the interface increases
as the system approaches the paramagnetic phase. In the case
of α = 1 the system is close to that phase, so the peak of
the interfacial adsorption is greater than the one for α = 4,
which is very far from the paramagnetic phase. It is important
to note that to help comparison between the different curves,
both the α = 3 curve and the α = 4 curve were multiplied by
a factor 10 and 100, respectively. However, as α increases,
Tw increases since the attraction between the spins makes
it more difficult for the interface to detach from the wall.
This seems to indicate that the character of the transitions
is not altered, even when the vacancies experiment a strong
attractive interaction between them.

(a) (b)

FIG. 8. Plots of the derivative of the interfacial adsorption of
vacancies, dW0/d (kBT/J ) with respect to the temperature vs the
temperature kBT/J for the parameters α = 1, D = 3 and: different
values of the surface field h1 with lattice size L = 18 (a) and different
lattice sizes (b). For these parameters, Tw (h1 = 0.7) = 1.30 (maxi-
mum peak in the right-hand side panel) and Tb = 1.748 (minimum
peak in both panels).
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(a)

(b)

FIG. 9. Panel (a) shows the plots of the derivative of the inter-
facial adsorption of vacancies W0 vs the temperature kBT/J for the
parameters D = 3, h1 = 0.7, lattice size L = 36 and different values
of α. For reasons of scale, both the α = 3 curve and the α = 4 curve
were multiplied by 10 and 100, respectively, to facilitate the compar-
ison with α = 1 and α = 2 curves. Maximum peaks correspond to
critical wetting transition while minimum peak correspond to bulk
transition. The inset shows the region of interest, red arrow, as well
as part of the four different phase diagrams [42] corresponding to
each of the considered values of α. It can be seen that the study
region moves away from the paramagnetic phase as α increases.
Therefore, one observes that the interfacial adsorption decreases
when approaching the bulk critical temperature for larger values of α

(larger Tw). Panel (b) shows the interfacial adsorption at the wetting
transition critical temperature W0(kBTw/J ) vs α. Here one can see
how the the interfacial adsorption of the vacancies on the interface
decrease as α increase. It is because as α increase, the spins tend to
stay together so a bigger value of D is needed to place the vacancies
on the interface.

C. Finite-size scaling of the wetting interface

As previously mentioned, the interface between domains
undergoes localization-delocalization transitions that depend
on the temperature and the magnitude of the competitive sur-
face fields. Those effective transitions are the precursors of the
wetting transitions observed when the thermodynamic limit is
properly taken. This localization-delocalization transition can
be characterized by using the magnetization corresponding to
those profiles [43] [Fig. 10(a)]. It is important to point out
that while in the wet state the interface is unbound from either
wall and fluctuates around the midpoint position, for partial
wetting the interface could be bound to layers n = 1 or n = L,
with equal probability. For simplicity, Fig. 10(a) only shows
the case in which the interface is attached to layer n = 1. By

(a) (b)

FIG. 10. (a) Plot of the magnetization profiles M(n, kBT/J ) for
α = 1, D = 3, h1 = 0.7, lattice size L = 36 and different values of
temperature. (b) Plot of the interface average location Z0(kBT/J ) and
the interface effective width w(kBT/J ) vs the temperature, obtained
form the magnetization profiles. The black dashed line represents the
wetting critical temperature Tw = 1.30 just for reference.

fitting the numerical curves with the aid of an error function
M(n, T ) = −m0er f [(n − Z0)/2w(T )], where n is the layer
number and m0 is of the order of the bulk spontaneous magne-
tization which is obtained for n > L/2, one can evaluate both
the effective width of the interface w(T ) [not to be confused
with the interfacial adsorption W (T )] as well as its average
location Z0(T ). In Fig. 10(b) we can observe how Z0 evolves
from being attached to one of the walls to finally fluctuate
around the middle of the system after reaching the critical
wetting temperature.

By taking advantage of the interfacial adsorption of the
vacancies we can also obtain Zv

0 (T ) and wv (T ), where the su-
perindex v refers to vacancies, by following a similar method
used to compute the interfacial adsorption W . Instead of sub-
tracting the vacancy density both when the system is under the
effects of inhomogeneous and homogeneous fields as it was
previously done, we subtract the respective vacancy profiles.
This gives us the vacancy excess profile V (n, T ) [Fig. 11(a)],
which can be fitted by a Gaussian function given by V (n, T ) =
v0 exp{−[n − Zv

0 (T )]2/[2wv (T )2]} to find Zv
0 (T ) and wv (T ),

as shown in Fig. 11(b). Notice that, as in the already

(a)

(b)

FIG. 11. (a) Plot of the vacancy excess profiles V (n, kBT/J ) for
α = 1, D = 3, h1 = 0.7, lattice size L = 36 and different values of
temperature. (b) Plot of the interface average location Zv

0 (kBT/J )
and the interface effective width wv (kBT/J ) vs the temperature,
obtained form the vacancy excess. The black dashed line represents
the wetting critical temperature Tw = 1.30 just for reference.
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commented case of Fig. 10(a), Fig. 11(a) corresponds to pro-
files taken with the interface attached to the wall at n = 1.

Let us now recall that Z0 can be expressed in terms of a
dynamic scaling ansatz [44,45] similar to the scaling approach
used in domain growth [46], yielding

Z0(t, ξ‖) = b−βs Z (1)
0 (b−ν‖zt, bξ−1/ν‖

‖ ), (7)

where t is the time, b is a scale factor, ξ‖ is the correlation
length for interfacial fluctuations in the direction parallel to
the wall, ν‖ is the corresponding correlation length exponent, z
is a dynamic exponent, and βs is the static exponent describing
the divergence of the distance of the interface from the wall.
Z (1) denotes a scaling function (as well as Z (2), Z (3), and Z (4)

below). For the case of critical wetting, i.e. in the absence of
bulk field and close to the wetting critical point we define τ =
|T − Tw|, so that ξ‖ 
 τ−ν‖ . Then Eq. (7) becomes

Z0(t, τ ) = b−βs Z (2)
0 (b−ν‖zt, bτ ). (8)

Noting that static scaling at wetting transitions in d = 2
implies Z0(t → ∞) ∝ ξ⊥ ∝ ξ

ζ

‖ with the “wandering expo-
nent” ζ = 1/2, one generally concludes in d = 2 that ν⊥ =
βs = ν‖/2. Additionally, Z0 ∝ ξ⊥ implies that the profile per-
pendicular to the surface is characterized by a single length
scale.

Now, by taking t → ∞ and b = La with arbitrary a we
obtain

Z0(τ, L) = L−aβs Z (3)
0 (Laτ ). (9)

To get aβs = 1, a must be −1/βs = 1/ν⊥ then

Z0(τ, L) = LZ (4)
0

(
L

1
ν⊥ τ

)
. (10)

However, since [43] Z0 ∼ τβs ∼ τ−ν⊥ and Z0 ∼
L(L1/ν⊥τ )

x
, by taking x = −ν⊥ = −1 we get

Z0 ∝ |T − Tw|−1. (11)

Similar scaling behavior can be obtained for w(τ, L),
namely, w(τ, L) = Lw(L1/ν‖τ ) which can be derived just by
assuming w(kBT/J ) ∝ |T − Tw|−ν‖ .

Figure 12 shows that Eq. (11) holds for Z0(kBT/J ) and
w(kBT/J ) both for magnetization profiles and vacancies ex-
cess profiles [note that the quantities referred to the vacancy
excess are labeled by the superindex v, i.e., Zv

0 (T ) and
wv (T )]. This is shown for α = 1, D = 3, h1 = 0.7 and dif-
ferent lattice sizes, but also for α = 2, D = 3, h1 = 0.7, and
α = 2, D = 5, h1 = 0.7 in Fig. 13.

D. Thermodynamic integration

Another method frequently used to characterize wetting
transitions, particularly those of the first order, is the Ther-
modynamic Integration. This method allows to determine the
location of the coexistence points in the phase diagram or,
in other words, find the field values for each temperature in
which the phase transitions occur. It has been previously used
successfully to locate wetting transitions in d = 3 in Ref. [47]
and d = 2 in Refs. [13,19]. For a more detailed description
and discussion of this method, refer to Refs. [48,49].

To locate wetting transitions, we consider the fact that
they depend on the difference in excess surface free

(a)

(c) (d)

(b)

FIG. 12. Log-log plots of the Z0(kBT/J ) [panels (a) and (c)] and
w(kBT/J ) [panels (b) and (d)] scaling for α = 1, D = 3, h1 = 0 and
different lattice size. Upper panels were made by using magnetiza-
tion profiles while lower panels were made by using vacancy excess
profiles. In both cases Eq. (11) holds. Solid lines represent the linear
fitting with slopes = −1 and = −2, respectively, and they have been
drawn to guide the eyes.

energy (� f1L = f +
s − f −

s ) between semi-infinite domains
with positive (+) and negative (−) magnetization. Signs of
magnetization are caused by surface fields and interfacial ten-
sion between the coexisting phases fint (T ). This, according to
Young’s [4] criterion, satisfies f +

s − f −
s = fint. For the Ising

(a) (b)

(c) (d)

FIG. 13. Log-log plots of the Z0(kBT/J ) [panels (a) and (c)] and
w(kBT/J ) [panels (b) and (d)] scaling as obtained for a lattice of side

L = 36 and different values of α and D versus kB|T − Tw|/J L
1

ν⊥ .
Upper panels were made by using magnetization profiles while lower
panels were made by using vacancy excess profiles. In both cases
Eq. (11) holds. Solid lines represent the linear fitting with slopes =
−1 and = −2, respectively, and they have been drawn to guide the
eyes.
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FIG. 14. Plot of � f1L/J in function of the surface field h1/J ,
obtained for different temperatures, with α = 0 and D = −∞, that
is, Ising model. The horizontal lines correspond to the interfacial free
energy, which is obtained from Onsager’s exact solution [50], while
the vertical lines correspond to the critical fields for which wetting
transitions occur, and are obtained from Abraham’s exact solution
[47]. The intersection points are indicated by arrows.

model, the interfacial free energy is known exactly thanks to
the Onsager [50] solution,

σ = 2J + kBT log

[
tanh

(
J

kBT

)]
. (12)

But in this work it is necessary to use the thermodynamic
integration. First, we use the following relations:

m1 = −
(

∂ fs(T, h1)

∂h1

)
T

, (13)

mL = −
(

∂ fs(T, hL )

∂hL

)
T

, (14)

which connect the surface magnetization on the walls 1 and
L, with the surface free energy and the corresponding surface
field. In this way, the difference of surface free energy excess
(� f1L) can be obtained as follows:

� f1L = fs(T, h1) − fs(T, hL ),

=
∫ h1

0
(mL − m1)dh′

1. (15)

To evaluate this integral, we took hL = −h1. The system
size was L = 36 and M = 1152, and its initial configuration
consisted of all spins pointing up. In addition, averages of
more than 10 × 106 MCS were taken, after discarding the first
2 × 106 MCS. As proof of the accuracy of this procedure,
the case D = −∞ was first studied, in which vacancies are
excluded and the standard wetting problem is obtained in the
Ising model d = 2, for which the exact solution is known
thanks to Abraham [47].

Figure 14 shows the results for � f1L in terms of h1 ob-
tained for D = −∞. It was found that the Eq. (15) can be
discretized in steps of h1 = 0.025 so that the numerical in-
tegration error is small enough (note that the fields are also
indicated in units of J). Since in the case of the Ising model the
interfacial free energy is known exactly according to Onsager
Eq. (12), in Fig. 14 the values used for σ corresponding to the
temperature used to perform the integration of Eq. (15) were

included (horizontal lines). In addition, Abraham’s exact re-
sults were included for the critical fields of wetting transitions
(vertical lines), which intercept the integration curves just
when they begin to saturate and coincide (within statistical
error) with the lines that define the interfacial free energy.
Therefore, Fig. 14 shows that by using thermodynamic inte-
gration and taking advantage of the existence of exact results,
the location of wetting transitions is compatible with the exact
results.

Unfortunately, in the case of D > −∞, there is no exact
solution of σ , so interfacial free energy must also be evaluated
through thermodynamic integration.

For this purpose, two system reference states are used: one
with all the spins pointing up (+1), and one in which half the
spins are pointing up and the other half is pointing down. In
this way, by using the relationship between free energy and
internal energy by spin [48,49]

u =
(

∂ (β f )

∂β

)
α,D,h1,hL

, (16)

where β = 1/T , one can perform the following integration

β f (β ) = β0 f (β0) +
∫ β

β0

u(β ′)dβ ′. (17)

Here β0 represents a reference state and β the state at the
working temperature, that is, the temperature at which the
transition is intended to be found. The most tempting option
is to take β0 = 0, but, since we are going to analyze tem-
peratures below the critical temperature of the system, this
is not convenient. An alternative is to consider T = 0 as a
reference state, where the entropy is zero and the free energy
can be considered equal to internal energy by virtue of the
relationship

U = F + T S. (18)

In numerical implementation, it will be enough to take a
temperature that is not zero but too small to consider entropic
contributions irrelevant. For example, T = 0.05, that is β0 =
20, is small enough to omit such contributions.

This procedure is simplified when using the Wang-Landau
algorithm, which allows you to directly calculate the free en-
ergy of the system. To do this, the partition function of the two
reference states are calculated: one with all the spins pointing
up and the other with one half pointing up and the other down.
To obtain the interface in the latter case, antiperiodic boundary
conditions were imposed. Then, the free energy for both cases
are calculated and subtracted as follows:

finterfacial = f ± − f +, (19)

where f ± is the free energy of the system with interface and
f + is the free energy of the system without interface. Since the
energy excess f ± is caused by the interface, finterfacial is the
interfacial free energy. In this way it is possible to calculate
the energy for any value of α and D.

Figures 15(a) and 15(b) show the plots of σ as a function of
T/Tb obtained for α = 0 and α = 1, respectively, and differ-
ent values of D. For D = −∞, the error bars of the numerical
integration are smaller than the line size. However, for finite
values of D, the interfacial free energy decreases (at constant
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(a)

(c)
(d)

(b)

FIG. 15. Panels (a) and (b) show the interfacial free energy σ

in terms of T/Tb, for α = 0 and α = 1, respectively, with different
values of D. The results obtained for the Ising model (D = −∞
and α = 0) show a slight departure from Onsager’s exact solution
(dotted line), due to finite-size effects (L = 16 in the simulation).
Panels (c) and (d) show the interfacial adsorption in terms of T/Tb,
for α = 0 and α = 1, respectively. Dashed lines represent wetting
critical temperatures and they have been drawn to guide the eyes.

temperature) compared to the case of Ising due to the presence
of non-magnetic impurities in the interface, as expected. That
increment of the vacancies in the interface can be seen in
the lower panels, c and d , in which the interfacial adsorption
W0 increases as D increase. However, Fig. 16, shows how
the interfacial free energy increases when α increase for a
constant value of D. This is caused by the decrease in the
amount of vacancies in the interface as the system moves away

FIG. 16. Plot of the interfacial free energy σ in terms of T/Tb,
for D = 1, with different values of α. The results obtained for the
Ising model (D = −∞ and α = 0) show a slight shift with respect to
the exact Onsager solution (dotted line), due to the size of the lattice
(L = 16).

FIG. 17. Plots of � f1L/J in terms of the surface field h1/J
obtained for different temperatures, with α = 1 and D = 3. Hori-
zontal lines correspond to the interfacial free energy obtained by
thermodynamic integration (see Fig. 15). The intersection points for
the second-order wetting transitions are indicated by arrows. It is
important to note that these points are in agreement with those shown
in Sec. III A.

from the paramagnetic phase. It is in complete agreement with
Fig. 9.

Finally, Fig. 17 shows the plots of the integration results of
� f1L in terms of h1, obtained for D = 3, α = 1 and different
temperature values. As in Fig. 14, the values of σ obtained
by thermodynamic integration were included, and the values
of the critical fields, obtained from the plots of Fig. 5. The
results are in agreement with those shown in Figs. 3, 4, and 8
for h = 0.7.

This method is also very useful when working with
first-order transitions, where one cannot perform finite-size
scaling.

IV. CONCLUSIONS

We studied the wetting behavior of the two-dimensional
Blume-Emery-Griffiths model confined in a strip with com-
peting boundary fields by means of Monte Carlo simulations.
The BEG model has a biquadratic interaction term which
allows us to control the interaction between vacancies by
tuning the biquadratic constant α. We proved that a previously
proposed anisotropic scaling proposed by Albano and Binder
is still valid for the BEG model. We assumed that if the
vacancies tend to cluster in the interface, its behavior would
be analogous to the one of the interfacial pinning induced by
impurities so the character of the transition would change, as
have been shown by Albano and Binder [13]. But our study on
both the influence of the biquadratic interaction and the role
of interfacial adsorption on wetting transitions reveals that
regardless of how intense the attraction between vacancies is,
the nature of the transition does not change from second to
first order.

Wetting transition lines have been determined for different
values of h1, D, and α. To estimate Tw, the calculation of the
second moment of the magnetization and the Binder cumulant
proved very useful, showing only weak effects of finite size.
It was shown that as h1 increases, Tw decreases, while when
h1 → 0, Tw → Tb. However, the presence of non-magnetic
impurities (vacancies) can favor the wetting transition
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depending on D and α. Finally, the thermodynamic integra-
tion method was used to verify second-order transitions. This
method is very useful when working with first-order tran-
sitions, in which it is not possible to perform a finite-size
scaling; however, all the transitions were second order.

The adsorption of vacancies at the interface between re-
gions rich with spins −1 and 1 was also studied. Adsorption
was shown to grow rapidly near Tw, possibly associated with a
singularity in the derivative of W0 with respect to temperature.
However, if D is kept constant and α is increased, then the
system will need a higher temperature to reach the wetting
transition. This method allows us to locate wetting and bulk
transitions precisely and easily.

We showed that due to the interfacial adsorption of the
vacancies, wetting transitions can also be characterized by
means of the vacancy excess profiles. As we approach the
wetting critical temperature the interface detached from the
wall and start to fluctuate in the middle of the layer. So, if we
measure the average position of the interface, when reaching
the wetting critical temperature, then it will be fluctuating
around L/2. It holds for different values of D and α.

These features reported in the present paper could be rel-
evant for practical applications aimed at designing highly
stable superhydrophobic and omniphobic materials.

APPENDIX: NUMERICAL METHODS

The metropolis update (MU) is a Markov chain Monte
Carlo method that allows to obtain a sequence of random sam-
ples from a probability distribution. Simulations are started
from a random configuration of spins and vacancies. Then the
energy Ei of this initial configuration is computed, and sub-
sequently a new configuration, with energy Ej , is attempted
just by flipping a randomly selected spin (or vacancy). The
transition probability between those configurations, given by
ω = exp[β(Ej − Ei )]; β = 1/kBT is evaluated, and the trial
is accepted if ω > r, where r ∈ (0, 1) is a pseudo random
number and kBT is the Boltzmann constant. A Monte Carlo
time step (MCS) involves N = L × M flipping attempts, so
that each spin of the system is visited once in average. This
procedure is followed during τD = 2 × 106 MCS to allow
for the equilibration of the system. Then, data is recorded
during τM = 10 × 106 MCS, to perform an average over the
quantities of interest, such as magnetization, susceptibility,
cumulant, etc.

Even though this is a very useful algorithm to study many
particles systems, in the case of the BEG model it shows
some disadvantages that are successfully solved by the Wang-
Landau algorithm. Among others, we can quote that the MU
algorithm works properly if all the configurations of the sys-
tem are into a relatively narrow energy range, otherwise, there
is the possibility that, during the random walk, the process
gets stuck in an energy local minimum from where, the proba-
bility to escape is very low. Furthermore, the MU method only
allows to set one temperature per run, so one has to perform
many runs to get the data for many temperatures.

Unlike the usual MU algorithm that directly estimates the
mean values of the thermodynamic observables at a given
temperature, the Wang-Landau (WL) algorithm accurately es-
timates the density of states g via a random walk. We work

in the grand canonical ensemble, interpreting D in the second
term of the BEG Hamiltonian to be a chemical potential. The
number of spins/particles is then given by N = ∑N

i=1 s2
i . The

energy E is given solely by the interaction terms: the first,
third, fourth and fifth terms of Eq. (1). To compute the grand-
canonical partition function and calculate the thermodynamic
quantities under an applied magnetic field we seek to deter-
mine g(E ,N , m), where m = ∑N

i=1 si is the magnetization.
The algorithm samples the configuration space by randomly
flipping spins. New configurations of the system are accepted
with a probability that is proportional to 1/g(E ,N , m), the
reciprocal of the density of states. As a result a flat histogram
HE (E ,N , m) is generated during the random walk and the
current density of states is modified by a refinement parameter
f . Since the density of states is not known a priori, in the be-
ginning of the simulation one sets all entries to g(E ,N , m) =
1 for every state and perform a random walk considering that,
if (E1,N1, m1) and (E2,N2, m2) are the states before and after
a spin is flipped, the transition probability would be

p[(E1,N1, m1) → (E2,N2, m2)] = min

(
g(E1,N1, m1)

g(E2,N2, m2)
, 1

)
,

(A1)

and the density of states is modified as

g(E ,N , m) → g(E ,N , m) f . (A2)

When choosing the refinement parameter, one should have in
mind that all possible energy levels must be reached quickly
even for a large system. A reasonable choice is f = f0 = e,
and to reduce it one can use a function like fn+1 = √

fn. This
reduction is accomplished whenever the histogram becomes
flat during the random walk. In our simulations, the flatness
criterion for the histogram is about 80% of the average his-
togram 〈HE (E ,N , m)〉 and is generally checked every 1000
MC steps. Afterwards, the histogram is reset to 0 and the
simulation comes to and end when the modification factor is
smaller than 1e−8. Convergence of large systems is always
difficult in the WL algorithm, moreover, every time a new
parameter is added to g the convergence becomes much harder
since it requires smoothness on a higher dimensional space.
In our case we require smoothness on a three-dimensional
space, which limited the size of our simulations. We have used
the modification proposed by Belardinelli and Pereyra (BP),
which changes the refinement parameter to 1/τ , where τ =
j/ε is the Monte Carlo time, j is the number of trial moves
attempted and ε is the number of energy levels of the system.
Starting from the same initial condition as the original WL
algorithm, the modification factor is reduced as 1/τ , instead
of checking the flatness condition after the condition fn � 1/t .
The final value of f should be fixed from the beginning.
One additional advantage of the BP implementation is that
its faster convergence speed makes it unnecessary to partition
the energy spectrum. Thus, the full energy range can be used
in all simulations and artifacts close to first-order transitions
characteristic to multirange implementations are avoided.

We have estimated the error of our simulations by looking
at the different particular cases where our model has an exact
solution. In all cases the error of the simulated data is smaller
than the symbol size of the figures.
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