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Minimal model for the onset of slip pulses in frictional rupture
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We present a minimal one-dimensional continuum model for the transition from cracklike to pulselike
propagation of frictional rupture. In its nondimensional form, the model depends on only two free parameters:
the nondimensional prestress and an elasticity ratio that accounts for the finite height of the system. The
model predicts stable slip pulse solutions for slip boundary conditions, and unstable slip pulse solutions for
stress boundary conditions. The results demonstrate that a mechanism based solely on elastic relaxation and
redistribution of initial prestress can cause pulselike rupture, without any particular rate or slip dependences of
dynamic friction. This means that pulselike propagation along frictional interfaces is likely a generic feature that
can occur in systems of finite thickness over a wide range of friction constitutive laws.
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I. INTRODUCTION

Frictional rupture, the process by which relative sliding
motion starts along the interface between two contacting solid
surfaces, is of prime importance in the description of various
systems in physical sciences and engineering. Examples range
from the squealing of brake pads and bush bearings [1,2],
corrugation and wear of mechanical compounds [3], to the
earthquake cycle along crustal faults [4], and the surge of
glaciers [5]. A frictional rupture is characterized by its rup-
ture speed and its rupture mode. The rupture speed can vary
from slow, through sub-Rayleigh up to supershear [6–8]. The
rupture mode can be described by analogy to the dynamics
of shear cracks, a behavior referred to as cracklike dynamics
[9]. Frictional rupture can also be pulselike rupture, where the
slipping portion of the interface is spatially and temporally
constrained to the vicinity of the propagating rupture tip.

Since the seminal work of Heaton [10] in 1990, the pulse-
like rupture mode has been successfully used to rationalize
the short slip duration observed in seismic inversions of earth-
quakes and describe the propagation of both fast [11,12] and
slow [13] earthquakes. Pulse-like ruptures have also been
reproduced in laboratory experiments [14–18]. The ubiquity
of pulse-like rupture observed in frictional systems has mo-
tivated the development of theoretical and numerical models
to investigate the conditions supporting the emergence of slip
pulses. Slip pulses have been found in systems with a large
variety of boundary conditions and domain approximations
[19–29] and friction laws including rate-and-state friction
[22,23,26–28], velocity-weakening friction [19,20,30], slip-
dependent friction [31], and Coulomb friction [25].

Several studies have demonstrated the important control of
the initial stress distribution along the interface, also called
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prestress, on slip pulses. Pulses widen with increasing pre-
stress, approaching crack-like rupture [17,32]. Heterogeneous
stress distributions can cause slip pulses [33]. Stress barriers
can cause cracks to arrest and create a backward propagating
arresting front that causes a pulse in the opposite direction
[34]. Also, fault geometry may play a role. Large earthquakes
have been shown to favor a transition from crack-like to
pulse-like propagation [32]. Large aspect ratios (i.e., large
earthquakes where rupture length is larger than other length
scales such as seismogenic depth) may favor the formation
of slip pulses [35], and the seismogenic depth can limit the
width of earthquake slip pulses [36,37]. Studies have also
demonstrated the inherent instability of slip pulses for differ-
ent friction constitutive laws [22,24,26,38].

Despite these extensive studies, the fundamental set of
conditions required to develop slip pulse in frictional sys-
tems remains debated. Several studies have highlighted the
need of velocity-weakening friction to obtain slip-pulses, and
there is a growing consensus that geometrical effects and
initial pre-stress may play a role, but that the existence of
slip pulses requires either strong velocity-weakening friction
[11,16,17,39] or a dependency of normal stress on local slip
due to, for example, bimaterial effects [16,40] or thermal
pressurization of pore fluids along the frictional interface [41].

In light of the many different models and interpretations
of slip pulses, our goal is to identify the minimum ingre-
dients necessary for their appearance. Here, we introduce a
one-dimensional continuum model which, in nondimensional
form, contains only two free parameters; the non-dimensional
initial shear pre-stress, τ̄ , and a ratio of elastic moduli, γ̄ , that
governs the elastic relaxation of shear stress due to a finite
system size. We demonstrate that the onset of slip pulses can
be explained in full by the elastic relaxation or redistribution
of initial pre-stress. In our simplified model, the existence of
slip pulses does not rely on a dependency of normal stress
on slip, nor velocity weakening friction. The stability of the
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FIG. 1. Sketch of the two-dimensional system that is integrated
to obtain the one-dimensional equation of motion used in the
manuscript. We model a thin elastic layer of thickness H with
shear modulus G and the second Lamé coefficient λ. Two boundary
conditions are considered on the top surface. At y = H we apply
either a constant stress τ or a fixed slip ∂ux/∂t = 0 which can be
translated to a stress boundary condition through linearization of
ux (y). At y = 0 we apply an Amontons-Coulomb friction law. The
system is integrated across the y-coordinate (red rectangle) to obtain
a one-dimensional approximation.

pulse-like propagation is set by the boundaries. For stress
boundary conditions, pulses are sensitive to small perturba-
tions in the pre-stress along the interface, which control their
shape. For displacement boundary conditions, the model pre-
dicts a transition from crack-like propagation to steady-state
pulses for constant pre-stress.

The manuscript is structured as follows. We derive the
non-dimensional equation of motion of a minimal friction
model in Sec. II, with supporting equations in Appendixes A
and B. We then demonstrate how this minimal model contains
a transition from crack-like to pulselike propagation for two
different choices of boundary conditions in Sec. III, and derive
scaling relations for this this transition. We then discuss the re-
sults in context of existing literature on slip pulses in Sec. IV,
before we sum up and conclude in Sec. V. Additional infor-
mation and equations can be found in the appendices, which
contain more detailed derivations of the equations of motion
(Appendixes A and B), analytical solution of slip pulses (Ap-
pendix C), as well as additional figures investigating the role
of viscous damping on the numerical results (Appendix D).

II. SIMPLIFIED MODEL OF PULSE-LIKE RUPTURE

We solve one-dimensional elasticity by integrating over a
thin layer with thickness H , lying above an infinitely rigid
substrate. Here, H is the only length scale of the model and
this length scale needs to be much smaller than any other
length scales involved in frictional rupture, such as rupture
length or slip pulse width. This approximation is useful in
the sense that the system is primed for frictional ruptures
that propagate over distances large compared to the system
thickness H , conditions that observations have shown to favor
slip pulses. Note that a similar approach has been used previ-
ously by, e.g., Bouchbinder et al. [42]. Here, we use two types
of boundary conditions at the top surface, (i) displacement
boundary condition and (ii) stress boundary condition.

We start with the two-dimensional (2D) problem presented
in Fig. 1, following the approach of Bouchbinder et al. [42].
We consider a long linear elastic layer with height H in con-
tact with an infinitely rigid substrate. H is assumed to be much

smaller than any length scale over which all other quantities
vary in the x direction. The equation of motion is

ρ
∂2�u
∂t2

= ∇ · σ, (1)

where the stress tensor σ is given by

σ = λtr(∇�u)I + G[∇�u + (∇�u)T ]. (2)

G is the shear modulus, λ is the second Lamé coefficient,
and �u is the displacement. In this 2D system, the boundary
conditions are described in Fig. 1. At the bottom interface, the
shear stress is set by the frictional force f f . On the top sur-
face, two kinds of boundary conditions are considered, either
imposed shear stress or imposed displacement. To obtain a
1D approximation, we integrate the equation of motion over a
finite thickness H , corresponding to the red rectangle in Fig. 1,
and solve the momentum equation for the average horizontal
displacement 〈ux〉y. Next, we assume the normal stress σn to
be independent of x and u̇y = 0, which prevents a dependency
of normal stress on slip. For constant G and λ, we obtain
(detailed derivation can be found in Appendix A):

Hρ
∂2〈ux〉y

∂t2
= H (λ + 2G)

∂2〈ux〉y

∂x2
+ σ̂x(x, H, t ) − σ̂x(x, 0, t ).

(3)

The boundary conditions are set through the surface trac-
tions σ̂x(x, H, t ) and σ̂x(x, 0, t ). At the y = 0, we assume
Amontons-Coulomb friction:

σ̂x(x, 0, t ) = f f

{
� μsσn if u̇ = 0
= μkσn if |u̇| > 0,

(4)

where μs and μk are the static and dynamic friction coeffi-
cients. Next, we use two variations of boundary condition at
y = H , constant displacement or constant stress.

Non-dimensional formulation

In nondimensional form, the two variations of boundary
condition at y = H can be written as a single equation of
motion (Appendix B). Dropping the 〈〉 and the subscript x, the
momentum equation in the slipping portion of the interface
for Amontons-Coulomb friction reduces to

¨̄u = ∂2ū

∂ x̄2
− �γ̄ ū + τ̄± − β̄

∂2 ˙̄u

∂ x̄2
. (5)

where � is a binary variable that selects the boundary condi-
tion at the top interface

� =
{

0, if stress boundary condition
1, if displacement boundary condition.

(6)

The non-dimensional pre-stress is

τ̄± = τ/σn ∓ μk

μs − μk
, (7)

where τ is the initial shear stress along the interface. ±
corresponds to the sign of the velocity. In this paper only
positive velocities appear, which means we can simplify to
τ̄ ≡ τ̄+. τ̄ is a function which sets the non-dimensional initial
shear stress along the frictional interface. The static friction
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FIG. 2. Phase diagram of the behavior of crack-like versus pulse-like rupture in the parameter space of the simplified rupture model where
the two non-dimensional parameters are τ̄ and γ̄ . The transition from crack-like to pulse-like propagation is governed by the initial shear
pre-stress distribution at the onset of rupture (τ̄ ), and whether there is a stress boundary condition or a no-slip boundary condition at the top
interface (�).

threshold in non-dimensional form can be written as | ∂2ū
∂ x̄2 −

�γ̄ ū + τ̄ | � 1

γ̄ = 2G

λ + 2G
(8)

is a dimensionless ratio of elastic parameters. x̄ = x/X , ū =
(u − u0)/U , t̄ = t/T are the dimensionless position, slip, and
time, respectively. The characteristic length and time scales
are chosen so that a non-dimensional front speed v̄c = 1 cor-
responds to the wave speed of the material; X = H , U =
2H μs p−μk p

λ+2G (or U = H μs p−μk p
λ+2G ), T = H

√
ρ

λ+2G . To limit os-

cillations on the scale of the discretization, we also introduce
a small damping term −β̄ ∂2 ˙̄u

∂ x̄2 where we use β̄ = 10−3. The
transition from dynamic to static friction occurs when the
local slip velocity reaches zero. We solve the system for
varying τ̄ (x̄) and γ̄ . It is worth noting that the finite difference
discretization of Eq. 5 is identical to the dimensionless form of
the classical Burridge-Knopoff spring block model under the

additional constraint that the spatial discretization dx equals
the thickness of the system dx = H (dx̄ = 1).

III. THE CRACK-PULSE TRANSITION

We initialize τ̄ (x̄) with a (small) Gaussian function with
maximum τ̄ = 1 and standard deviation 1, so that rupture
nucleation occurs at x̄ = 0 (Fig. 2). We use either a symmetric
or an asymmetric pre-stress. If the pre-stress is symmetric, it
reaches a constant value τ̄0,r = τ̄0,l = τ̄0 in both directions,
where subscripts r, l refer to right and left. If pre-stress is
asymmetric, it reaches a positive value τ̄0,r � 0 for increasing
x̄ and a negative value τ̄0,l for decreasing x̄ (see the insets of
Fig. 2 for a visual representation of these definitions).

For a symmetric pre-stress distribution with τ̄0 > 0, we
observe bidirectional propagation of either a crack (stress
boundary condition with � = 0) or a crack that transitions into
two slip pulses (displacement boundary condition, � > 0).
For asymmetric pre-stress with τ̄0,r > 0 in one direction and
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FIG. 3. Left: numerically derived steady-state solution (in the co-
moving frame χ̄ ) of the slip velocity inside the pulse under constant
displacement boundary condition, � = 1, compared to the analytical
solution. The shear pre-stress profile is given in the inset, where
a Gaussian function with standard deviation 1 in the center of the
domain is used to nucleate rupture. The figure also shows the solution
for nonzero β̄. Right: numerically-derived steady-state slip speed of
slip pulses under constant stress boundary condition, � = 0. Pulses
remain in steady-state because they propagate in a region of τ̄0,r = 0.
The corresponding shear pre-stress τ̄ (x̄) is shown in the inset. In this
case, the slip velocity of the pulse is entirely determined by τ̄ (x̄) at
nucleation.

τ̄0,l < 0 in the other direction, we observe cracks that transi-
tion to unidirectional slip pulses for both � = 0 and for � > 0
if τ̄0,r = 0 in one direction and τ̄0,l < 0 in the other direction.
This model behavior is summarized in Fig. 2.

A. Steady-state slip pulse

For � > 0 and τ̄ > 0, the steady-state solution of dynamic
frictional rupture is pulselike. In the limit of β̄ = 0, this
steady-state solution for a slip pulse propagating in a region
of constant pre-stress τ̄0 can be calculated in closed form and
the derivation is provided in Appendix C. The slip velocity is
a cosine

˙̄u = 1√
γ̄

cos

⎛
⎝

√
γ̄ (1 − τ̄ 2

0 )

τ̄0
χ̄

⎞
⎠, (9)

in the comoving frame where χ̄ = 0 corresponds to the posi-
tion of the maximum slip velocity, which is given by ˙̄umax =

1√
γ̄

, and the pulse width is W̄ = πτ̄0√
γ̄ (1−τ̄ 2

0 )
. To obtain this solu-

tion we also used the steady-state front velocity v̄c = 1√
1−τ̄ 2

0

which has been obtained previously by Amundsen et al. [43].
Figure 3 shows the steady-state slip speed inside a pulse for
� = 1 as well as � = 0, which correspond to displacement
and stress boundary conditions applied on the top surface,
respectively. For � = 1, the pulse shape is well defined. For
� = 0, a unique solution of a steady-state pulse does not
exist because under uniform stress L̄trans and T̄trans tend to
infinity when γ̄ → 0. However, under nonuniform pre-stress
conditions, pulses can still nucleate for � = 0. In this case, the

FIG. 4. Left: Spatiotemporal slip velocity using � = 1 and a
symmetric stress. A (small) Gaussian function with standard devi-
ation 1 is applied in the center of the domain to nucleate rupture.
Right: Spatiotemporal slip velocity for � = 0 with a non-symmetric
pre-stress distribution (left graph). The figure contains the definitions
of the transition time T̄trans and the transition length L̄trans.

pulse size will be entirely determined by the rupture history
which is controlled by the initial pre-stress distribution, and
is only stable when propagating in a region of τ̄ = 0, i.e., the
pulse grows when τ̄ > 0 and decays when τ̄ < 0.

B. Crack-pulse transition for slip boundary condition (� = 1)

For displacement boundary condition applied at the top
surface, we can estimate the transition from crack to pulse
using the analytical steady-state solution for the slip pulse.
The transition time T̄trans is defined by the time it takes to
reach a slip of ūtrans = 2τ̄

γ̄
at the point of nucleation. If we

assume that ∂2ū
∂ x̄2 is small, the equation of motion for the nu-

cleation point can be approximated as ¨̄u(t̄ ) ≈ −γ̄ ū(t̄ ) + τ̄ ,
which under the initial conditions ū(0) = 0 and ˙̄u(0) = 0
has the solution ū(t̄ ) = τ̄

γ̄
(1 − cos(

√
γ̄ t̄ )). T̄trans is found from

ū(T̄trans) = 2 τ̄
γ̄

where we use the first solution T̄trans = π√
γ̄

.

Assuming a uniform pre-stress τ̄ (x̄) = τ̄0 and using T̄trans, we
find L̄trans using the front speed v̄c:

L̄trans = 2T̄transv̄c = 2π√
γ̄ (1 − τ̄ 2

0 )
. (10)

Figure 4 (left) shows an example of a crack-pulse transition
at � = 1, in agreement with the predictions derived in this
section.

C. Crack-pulse transition for stress boundary condition (� = 0)

For stress boundary condition (� = 0) pulses are inher-
ently unstable, and the pulse shape is not unique. Pulses only
keep a steady shape if propagating in a region where the
available elastic strain energy exactly corresponds to the dis-
sipation in the pulse, which for Amontons-Coulomb friction
corresponds to τ̄ = 0. This can be seen from Eq. 5, which
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reduces to the 1D wave equation when τ̄ = 0 and � = 0. Any
small perturbation in τ̄ can cause the pulse to change its shape,
vanish or transition to a crack. For more complicated friction
laws or when solving the system in more than one dimen-
sion, it will in general be very unlikely to nucleate a pulse
where dissipation exactly matches the available elastic strain
energy. For � = 0, the onset of a steady-state pulse requires
that the following two conditions are met together. (i) The
pre-stress is such that an initial crack arrests in one direction
and not the other. This requires an asymmetry in the pre-stress.
(ii) The pre-stress in the propagating direction reaches zero at
some point. For � = 0, Ltrans is determined by the crack size
when the crack arrests in one direction. The position of front
arrest can be approximated by noting that stress balance at
zero acceleration requires that τ̄ = 0 in the ruptured region.
Assuming nucleation of rupture is located at x̄ = 0 and the
arresting occurs in the negative direction, we can write∫ ∞

x̄-

τ̄ (x̄)dx̄ = 0 (11)

which can be used to determine x̄- for any τ̄ (x̄). The transition
time is given by the time it takes to propagate from x̄ = 0 to
x̄-, which can be found if the rupture speed v̄c is known:

T̄trans = |x̄-|
〈v̄c〉-

. (12)

The total crack size is

L̄trans = |x̄-| + |x̄+|, (13)

where

x̄+ =
∫ T̄trans

0
v̄c,+dt̄ . (14)

In the arresting direction, τ̄ has to be negative. Then, we
do not have an analytical expression for the front speed,
but we instead use 〈v̄c〉± ≈ 1 leading to T̄trans ∼ |x̄−|. and
L̄trans ∼ 2|x̄−|, where x̄− is found from Eq. 11. Note that this
will lead to a slight underestimation of T̄trans. Figure 4 (right)
shows an example of a crack-pulse transition at γ̄ = 0, in
agreement with the predictions derived in this section. We
have calculated the scaling relations for � = 1 and � = 0 over
a wide range of γ̄ and τ̄ . While the non-dimensional elasticity
ratio γ̄ is expected to be found in a limited range close to 2/3
[44], for completeness we include a wider range. For � = 0,
we systematically vary the initial width W̄τ̄ of the pre-stress
perturbation to obtain different transition lengths and times.
Figure 5 shows the data collapse using the scaling relations
derived above. The model and analytical results are in good
agreement for the prediction of the transition from crack-like
to pulse-like propagation.

IV. DISCUSSION

In this discussion, we first insert dimensional quantities
in the non-dimensional scaling relations found above, and
qualitatively address how these predictions relate to existing
literature. We then move on to put this work in the context of
previously discussed mechanisms for the onset of slip pulses
along frictional interfaces. We then discuss stability of pulses,
and the role boundary conditions in pulse stability.

A. Predicted scaling relations from the minimal model

In our model, the onset of slip-pulse frictional rupture oc-
curs through a transition from crack-like to pulse-like rupture
at a crack size that depends on pre-stress and boundary condi-
tions. For stress boundary conditions, the transition length is
controlled in full by the initial pre-stress distribution, and the
transition occurs because the crack arrests in one direction and
not the other. The pre-stress in the propagating direction is set
so that dissipation in the pulse is equal to the available elastic
strain energy. For slip boundary conditions, the transition from
crack to a self-similar pulse is given by the system width H ,
the elasticity ratio γ̄ as well as the ratio of rupture speed vc

and speed of sound vs.
When inserting dimensional quantities we obtain Ltrans =

2πH
√

λ+2G
2G

vc
vs

. The pulse width is W = πτ̄H
√

λ+2G
2G

vc
vs

with a

maximum velocity u̇max = �τ√
2Gρ

, where �τ = (μs − μk )σn is
the stress drop. The model predicts that the onset of slip pulses
occurs at shorter propagation lengths in systems with small H ,
and low initial pre-stress. Applied to earthquake mechanics,
these results are consistent with (i) the observation that large
earthquakes favor slip pulses [32], (ii) the observation that
large aspect ratios seem to favor the formation of slip pulses
[35], (iii) the observation that increasing pre-stress widens slip
pulses so that they approach crack-like solutions [17], and (iv)
the prediction that the seismogenic depth may limit the width
of slip pulses [36,37].

B. Relation to other mechanisms for the onset of slip pulses

The present study introduces a 1D two-parameter con-
tinuum model for the onset of slip-pulses which can be
understood from elastic relaxation and redistribution of elastic
energy stored in the pre-stress only. In that respect, it is useful
to place this minimal model in the context of previously dis-
cussed mechanisms for the onset of slip pulses along frictional
interfaces. Three main mechanisms are often encountered in
the literature: (i) velocity-weakening friction, (ii) coupling
between slip and normal stress, and (iii) stress barriers and
heterogeneous stress distributions. Below we discuss the rela-
tion between this study and these three mechanisms.

1. Velocity-weakening friction

A widespread explanation for the onset of slip pulses is
velocity-weakening dynamic friction. This idea was intro-
duced by Heaton [10]. The argument is as follows. First, one
assumes that a ruptured part of a frictional interface can be
described using dislocation theory. Slip is then expected to
vary as u ∼ √

vct − x in the region behind the rupture front,
with slip speed u̇ decreasing as the inverse square root of x
behind the front. Assuming linear velocity weakening fric-
tion ( f f = fs − αu̇), the frictional resistance is then expected
to increase with increasing distance from the rupture front.
In turn, this causes the crack to heal, causing the propaga-
tion of a self-healing slip pulse. Velocity-weakening friction
has since been identified as an important ingredient for the
existence of slip pulses. In particular, several studies have re-
ported a transition between crack-like and pulse like solutions
as the characteristic velocity that controls the velocity-
weakening steady state is increased [23,35,45,46]. Another
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FIG. 5. Scaling relations of L̄trans and T̄trans for the crack-pulse transition for both � = 1 (left panels), and � = 0 (right panels). For � = 0,
we use an asymmetric stress distribution (top right inset), while for � = 1 we use a symmetric stress distribution (top left inset). The face color
shows the stress τ̄0 or τ̄0,l , while the color of the rim shows γ̄ or W̄τ̄ .

interpretation of the role of velocity weakening friction is that
strong velocity weakening friction causes a statically strong,
but dynamically weak interface, which favors pulse-like rup-
ture. In contrast, if the interface is weak throughout, crack-like
rupture is favored [47].

2. Coupling between slip and normal stress

A different but related mechanism that has been previously
identified to generate slip-pulses, is weakening of the fric-
tional resistance within slip pulses due to a coupled response
between slip along the interface and normal stress, even to
the point of surface separation [29,48]. This can occur in a
number of ways. First, a material contrast across the fric-
tional interface will cause such coupling. Slip along such a
bi-material interface will cause a break of stress symmetry.
In turn, this leads to the prediction that local normal stress is
directly coupled to interface slip [15,49]. Experiments have
demonstrated that pulses then propagate in the direction of
motion of the soft material, while the opposite direction favors
crack-like propagation [15]. Second, the existence of pore
fluids along the interface can cause such coupling. In this
case, slip can directly couple to normal stress through elevated

pore pressures due to thermal pressurization. In this case, slip
pulses can arise in the absence of velocity-weakening friction,
material contrasts and heterogeneous stress [41].

3. Stress barriers and heterogeneous stress distributions

A third mechanism that has been proposed is the existence
of stress barriers and heterogeneous stress distributions along
frictional interfaces. Johnson [34] demonstrated that frictional
rupture starting out as crack-like can transition to pulse-like if
it arrests in one of the propagating directions. Subsequently,
a healing front is initiated at the barrier, propagating back-
wards causing a unidirectional pulse. This mechanism can be
extended to heterogeneous stress distributions [33,50]. In such
a case, the heterogeneous stress distribution can be seen as
multiple stress barriers causing a large variety of propagat-
ing and healing fronts leading to a transition from crack-like
propagation to unidirectional pulse-like propagation.

4. Mechanism of slip pulses in the minimal model

The slip pulses in the minimal model are not a conse-
quence of velocity-weakening dynamic friction. In principle,
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FIG. 6. Sketch of onset of slip pulses in the discrete Burridge-Knopoff model. The Burridge-Knopoff model is a special case of the finite
difference discretization of the continuum model used here. The top row shows a discrete version of Fig. 2 with � = 1, with corresponding onset
of slip pulses in the continuous limit shown in Fig. 4 (left). The bottom row shows a discrete version of Fig. 2 with � = 0 with corresponding
onset of slip pulses in the continuous limit shown in Fig. 4 (right).

one could argue that Amontons-Coulomb friction is both ve-
locity weakening and slip weakening where the weakening
occurs over an infinitesimal velocity or displacement step.
However, the argument carried out by Heaton [10] does not
apply to this case as it requires dynamic friction to be velocity
weakening. However, for � = 1, the transition from crack-
like to pulse-like rupture in our model occurs at a smaller
propagation distance as the difference between μs and μk is
increased (decreased τ̄ ), which can be interpreted as pulse-like
rupture being more likely to occur along statically strong and
dynamically weak interfaces.

The slip pulses in the minimal model do not rely on a
dependency of normal stress on slip. While our setup is bi-
material (elastic-rigid), the bimaterial coupling is not present
in our simulation because of the constraint set on the vertical
displacements u̇y = 0. This assumption ensures there is no
feedback between slip along the frictional interface uy and the
normal stress at the interface σn.

For stress boundary conditions, a stress barrier is neces-
sary in the minimal model to transition from crack-like to
pulse-like rupture. Further, a steady state solution only exists
if the pulse can propagate along an interface where the energy
available in the form of pre-stress exactly balances the energy
dissipated by the pulse. In other words, the minimal model
mechanism of slip pulses for stress boundary conditions is the
same as the above- mentioned mechanism of stress barriers.

For displacement boundary conditions the consequence of
a stress barrier in the minimal model would be a change from
bidirectional to unidirectional pulse propagation. However,
the barrier itself is not a necessary condition for the emergence
of pulse-like propagation. In the minimal model, slip pulses
under displacement boundary condition at the top interface,
occur because the resistance to slip is increased with slip

because of elastic relaxation and a finite thickness. This mech-
anisms does not depend on details of the friction law, and slip
pulses are thus expected to be generic features of systems with
imposed displacement boundary condition. In that sense, our
model offers a fourth basic mechanism for slip-pulse creation
that arises simply from elastic interactions with the imposed
boundary condition.

5. Mechanism of slip pulses in the minimal model, in context of
the discrete Burridge-Knopoff model

The minimal model used here is directly connected to the
Burridge-Knopoff model (see, e.g., Amundsen et al. [43] and
[19]) and our Eq. 5. The Burridge-Knopoff model is a special
case of the finite difference discretization of Eq. 5 when dx =
H . The Burridge-Knopoff model implicitly assumes that the
distance between the blocks equals the block height, and is
thus consistent with the results shown here as long as the pulse
width W is larger than H .

Because the Burridge-Knopoff model is a widely used
model in the study of frictional systems, especially in the
context of earthquake physics, we dedicate this section to
an explanation of the physical mechanism of our findings in
context of the discrete Burridge-Knopoff model.

The Burridge-Knopoff model is illustrated in Fig. 6. Our
continuum model in Eq. 5, in its discrete form, essentially
describes a mass connected by Hookean identical springs to its
neighbors, sitting on a frictional surface and driven by either a
stress or strain boundary condition from above. The γ ū term
represents a leaf-spring that connects each block to the driving
plate above, where � determines if the leaf springs are present
or not. The τ̄ term represents the space-varying initially stored
elastic stress in excess of the frictional resistance. The β term
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provides a viscous damping term that reduces high frequency
oscillations.

Figure 6 (top) illustrates constant displacement boundary
condition imposed at the top wall. This drives masses to move
via forces imparted by leaf springs. If a single block starts slid-
ing to the right the driving force from its leaf spring drops, yet
the block displacement has stretched its neighboring springs.
Now the two neighboring blocks may start to slide due to
the sum of the drive from their leaf spring and their normal
springs. The motion of the blocks relaxes their leaf spring
forces which slows them down, while loading adjacent springs
and driving their neighbors to move. The figure shows single
block wide pulses moving right and left.

A constant stress boundary condition in Eq. 5 (� = 0)
implies no leaf springs, and that the system is driven by stress
applied on each block. This is mathematically equivalent an
initial relative displacement of all blocks [6,43]. A slip pulse
in Fig. 6 (lower panels) will initiate when one of the blocks is
initially given a larger potential energy than its neighbors (a
spike in τ̄ ). Such a perturbation in elastic energy will travel
as a self-similar wave solution if the following conditions
are met: (i) There is a barrier leading to rupture arrest in
one of the directions (stuck block in lower panels of Fig. 6).
(ii) The pre-stress along the direction of propagation reaches
the dynamic friction level or below. The pulse will grow or de-
cay depending on whether the available elastic energy, in the
form of pre-stress it encounters on its way, is τ̄0 > 0 or τ̄0 < 0.
A steady-state solution only exists if the pulse propagates in a
region with τ̄0 = 0.

C. Stability of slip pulses–the crucial role of boundary
conditions

1. Pulse stability–stress versus displacement boundary conditions

Recent studies have demonstrated the inherent instabil-
ity of slip-pulses for different kinds of friction constitutive
laws [22,24,26,38]. These models report the existence of a
steady-state pulse solution located at the sharp transition be-
tween growing pulses, whose spatial extent increases during
propagation, and decaying pulses, whose spatial extent pro-
gressively shrinks and eventually arrests the pulse. The slip
pulses in our simplified model have the same intrinsic insta-
bility only when stress boundary conditions are used (� = 0).
Then, slip pulses only keep their shape when the available
elastic strain energy in the form of pre-stress is exactly equal
to the dissipation in the pulse. For our choice of Amontons-
Coulomb friction law, this corresponds to τ̄ = 0, when the
equation of motion reduces to the 1D wave equation. In this
case, the net stress change is zero if the pulse velocity profile is
constant, and the net stress change is nonzero only if the pulse
accelerates or decelerates. This is consistent with the obser-
vation that pulses can propagate rapidly with negligible net
stress change [51]. Any small perturbation in τ̄ will make
the slip pulse decrease or grow. The velocity profile of these
unstable pulses under constant stress boundary conditions
(� = 0) are not unique in our model. This non-uniqueness
is likely a feature of our specific choice of friction law. For
different friction laws, unique solutions may be likely found
through couplings between sliding velocity, slip and pulse
dissipation. Interestingly, a slip boundary condition stabilizes

FIG. 7. Schematic deformation of a fault zone with a damaged
core. A symmetric configuration can be assumed in the y < 0 direc-
tion with no loss of generality.

the slip pulses through elastic relaxation. Steady-state slip
pulses are then found for any pre-stress τ̄ ∈ (0, 1), and pertur-
bations in τ̄ will simply transition pulses from one steady-state
solution to another.

2. The characteristic length H in the context of earthquake
dynamics

In the context of fault mechanics, H can naturally be
interpreted as the distance from the fault at which tectonic
displacements are imposed. For the example of subduction
zones, H can then be understood as the crustal thickness.
Nevertheless, to enable the slip pulse mechanism proposed
in this paper (i.e., elastic relaxation from imposed displace-
ment at the boundary), the duration of the rupture t∗ must be
sufficiently large to allow elastic waves (typically moving at
the shear wave speed cs) to travel back and forth from the plate
boundaries: t∗ > 2H/cs. In light of this criterion, the proposed
model provides an explanation why slip pulse becomes the
dominant rupture mode for large earthquakes [32] but also
slow-slip events [52] which are both characterized by long
rupture duration.

Along mature fault zones, the interface between the stiff
host rock and the more compliant damage zone can reflect
part of the radiated waves, enhancing self-healing in the wake
of a rupture and easing the nucleation of slip pulses [53–55].
Recently, Idini and Ampuero [56] showed how fault core
damage zone also changes quasistatic stress relaxation and
favors pulse-like rupture style. In light of our model, such an
effect corresponds to a reduction in the characteristic length
H , which now scales as the thickness of the damage zone.
This can be understood from the idealized 2D geometry of
a mature fault with damage zone presented in FIG. 7. Field
observations of fault zones in nature showed that this damage
zone has a lower stiffness [57]. This means that the fault
core damage zone is surrounded by a host rock of different
shear modulus Gr > G. The system is sheared by a far-field
displacement û applied at a distance H + Hr from the fault. As
the plate velocity loading the system is very small compared
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to the slip velocity, we can assume that û is a far-field imposed
displacement over the duration of the rupture and analyze the
static stress drop after the interface has slipped a distance δ.
From the continuity of stress and displacement at y = H , the
stress drop �τ associated to interfacial slip δ writes

�τ = G�γ = Gr�γr, (15)

with �γr and �γ being, respectively, the change of shear
strain in the rock and the damage zone, such that

δ = H�γ + Hr�γr = �γ
(

H + G

Gr
Hr

)
. (16)

Combining the two equations above, one gets that

�τ = G
δ

H + G
Gr

Hr
. (17)

In the limit of a high stiffness contrast (G � Gr), Eq. (17)
reduces to �τ = Gδ/H . This is exactly equivalent to the
stress drop obtained if the imposed displacement û is directly
set at the boundary y = H (rigid motion of the wall rock),
which is the model we use in the present study. In nature,
G/Gr will never be truly zero. However, even though the
model presented here is an end-member scenario that does
not exactly represent the conditions found along faults, it
can still be understood as an asymptotic solution in the limit
of a highly damaged fault zone. For a thorough discussion
of this asymptotic limit, we refer the reader to Idini and
Ampuero [56].

In this context, our study explains how the formation of
a compliant fault core damage zone plays a role on the exis-
tence and the stability of steady-state pulse solutions. Whereas
the instability of slip pulses has been demonstrated for ho-
mogeneously imposed stress conditions and diverse friction
models [22,24,26,38], the development of off-fault damage
can turn the system into imposed slip boundary conditions,
for which stable steady-state pulse solutions exist, even for
Amontons-Coulomb friction. The existence of generic pulse
solutions suggests that slip pulses could be the dominant mode
of frictional rupture along highly damaged fault zones.

V. CONCLUDING REMARKS

In view of the number of features of slip pulses captured by
the minimal model presented here, we propose that pulse-like
propagation along frictional interfaces is a likely generic fea-
ture. While different friction laws will yield different velocity
profiles, crack-pulse transition lengths, propagation speeds,
and pulse widths, the existence of slip pulses does not rely
on details in the friction constitutive law in our model. In-
stead, the pre-stress and the boundary conditions alone can
produce slip pulse solutions along frictional interfaces. This
interpretation has important consequences. In particular, in
laboratory experiments and natural earthquakes, one should
be careful with interpreting observations of slip pulses as
proof of velocity-weakening friction.

Preventing the appearance of slip pulses is in many situa-
tions desirable as they are the origin of squealing noise in train
breaks and several industrial processes [1,2]. Our findings
also demonstrate the prospect of controlling the onset of slip
pulses as well as their stability through (i) manipulation of

the pre-stress at the frictional interface and (ii) control of the
system boundary conditions. We can sum up our findings in
three main points:

(1) We have shown that slip pulses occur in a minimal
continuum friction model with only two non-dimensional
parameters. The transition from crack-like to pulse-like prop-
agation as well as the pulse width scales with the system
thickness, the rupture speed, the pre-stress, and the elastic
parameters of the material for displacement boundary condi-
tions. For stress boundary conditions, the transition and the
pulse width are entirely determined by the non-dimensional
pre-stress.

(2) The onset of slip pulses can be explained by redistri-
bution of elastic stress alone, which means that slip pulses
are likely generic phenomena that exist for a wide range of
friction constitutive laws.

(3) The stability of slip pulses is largely influenced by the
system boundary conditions. In our minimal model, stress
boundary conditions favor unstable slip pulses, while dis-
placement boundary conditions favor stable slip pulses.
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APPENDIX A: EQUATION OF MOTION

Here, we supplement the main text with the derivation of
the equation of motion. We start with the integration over the
red rectangle in Fig. 1:

Hρ〈∂
2�u

∂t2
〉y =

∫ H

0
∇ · σdy

= ∂

∂x

∫ dx

0

∫ H

0
∇ · σdxdy = ∂

∂x

∮
S
σ�ndS (A1)

= ∂

∂x
(dxσ�n|y=H + dxσ�n|y=0 + H〈σ�n|x=dx〉y + H〈σ�n|x=0〉y)

(A2)

= σ�n|y=H + σ�n|y=0 + ∂

∂x
H[〈σxx〉y, 〈σxy〉y]T . (A3)

Here, S denotes the surface of the volume over which the inte-
gration is calculated, and �n is the normal vector. The boundary
conditions can now be set through the surface tractions
[σ̂x(H ), σ̂y(H )]T ≡ σ�n|y=H and [σ̂x(0), σ̂y(0)]T ≡ σ�n|y=0. We
further assume uy = 0 which results in the last term being
reduced to ∂

∂x H[σxx, 0], which is the assumption needed to be
able to consider only the x coordinate. At the frictional inter-
face, σ̂x(x, 0, t ) is set by the friction law. At the top interface,
we either set a constant traction, or a constant displacement
(i.e., no slip boundary).

Now we insert for ux(x, t ) and assume uy ≈ 0 with constant
λ and G, and we obtain

Hρ
∂2〈ux〉y

∂t2
= H

∂〈σxx〉y

∂x
+ σ̂x(x, H, t ) − σ̂x(x, 0, t ), (A4)
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where we have introduced a minus sign on σ̂x(x, 0, t ) in order
to consider the f f as positive in Eq. (A9). Inserting for σxx, we
obtain

Hρ
∂2〈ux〉y

∂t2
= H (λ + 2G)

∂2〈ux〉y

∂x2
+ σ̂x(x, H, t ) − σ̂x(x, 0, t ).

(A5)

The friction law at the interface can be applied through
σ̂x(0, t ), and σ̂x(H, t ) is the driving stress. y = 0 defines the
frictional interface location. We use two variations of the
boundary condition σ̂x(x, H, t ).

First, we follow what was used by Bouchbinder et al. [42]
and apply a shear stress boundary condition. σ̂x(x, H, t ) is then
set as a constant function τ (x) that does not vary in time. The
equation of motion can then be written as

Hρ
∂2〈ux〉y

∂t2
= H (λ + 2G)

∂2〈ux〉y

∂x2
+ τ − σ̂x(x, 0, t ). (A6)

To be able to apply a friction law at y = 0, we need
to make an additional approximation that relates the av-
erage slip with the slip at the interface. When we later
will apply Amontons-Coulomb friction at y = 0, it is suf-
ficient to assume sign(u̇(y = 0)) = sign(〈u̇〉). Alternatively,
for velocity-dependent friction laws an alternative approach
would be to approximate u̇(y = 0) ≈ 〈u̇〉.

Second, it is also possible to introduce a constant displace-
ment (i.e., no slip) boundary condition at y = H ; ∂ux (H )

∂t = 0.
This can be rewritten in terms of a driving stress which is
set by a relative displacement at the top boundary and the
frictional interface ux(x, H, t ) − ux(x, 0, t ). Then, we need to
introduce an approximate relation between the displacement
at y = H and the displacement at y = 0, which we do by lin-
earizing the displacement profile. The shear stress σ̂x(x, H, t )
can then be rewritten in terms of the imposed displacement at
the top boundary, matching the traction and the shear stress in
the volume close to the interface G ∂ux

∂y |y=H :

Hρ
∂2〈ux〉y

∂t2
= H (λ + 2G)

∂2〈ux〉y

∂x2

+ ux(x, H, 0) − ux(x, 0, t )

H
G − σ̂x(x, 0, t ).

(A7)

To evaluate the relative slip of the frictional interface and the
top layer we can no longer use the averaged value 〈ux〉y, but
instead change the slip of interest to ux(x, 0, t ):

1

2
Hρ

∂2ux(x, 0, t )

∂t2

= H
λ + 2G

2

∂2ux(x, 0, t )

∂x2

− H
λ + 2G

2

∂2ux(x, H, 0)

∂x2

+ ux(x, H, 0) − ux(x, 0, t )

H
G − σ̂x(x, 0, t ). (A8)

where ∂2ux (x,H,0)
∂x2 is a constant function that arises if the the dis-

placement at the top interface is not set as constant. At y = 0,
we apply a frictional boundary condition. In principle, this
means that we adopt the linearization in an approximate sense,

i.e., small deviations from linearity can cause a difference
in shear stress between y = 0 and y = H . The mathematical
formulation is also equivalent to treating the y coordinate
as quasistatic, where the relevant difference in shear stress
reduces to the difference between the shear stress at y → 0
(which equals the stress at y = H), and the kinetic shear stress
at the boundary (y = 0). We choose an Amontons-Coulomb
friction law f f = σ̂x(x, 0, t ) at the interface, which can be
written as

f f

{
� μsσn if u̇ = 0
= μkσn if |u̇| > 0,

(A9)

where σn is the normal stress (which is equal to σyy), with
the additional criteria that a transition from static to dynamic
friction occurs when the local shear stress is greater than μsσn,
and a transition from dynamic to static friction occurs when
the local velocity reaches zero. In the following, we will write
ux(x, 0, t ) as u.

APPENDIX B: DIMENSIONLESS FORMULATION

For the rest of the document, and in the main text, we
drop the subscript x. We start with the equation of motion
using a displacement boundary condition at y = H . Follow-
ing the approach from Amundsen et al. [43], we assume an
initial displacement field u(x, 0, 0), and a constant displace-
ment u(x, H, 0). We then change the coordinate system u′ =
u(x, 0, t ) − u(x, 0, 0), which allows us to rewrite the initial
displacement to an initial shear stress τ :

ü′ = λ + 2G

ρ

∂2u′

∂x2
− 2G

ρH2
u′ − 2

ρH
σ̂x(x, 0, t ) + 2

ρH
τ. (B1)

We then define the dimensionless variables ū = u′
U , t̄ = t

T and
x̄ = x

X so that

¨̄uU/T 2 = λ + 2G

ρ

U

X 2

∂2ū

∂ x̄2
− 2GU

ρH2
ū

− 2

ρH
σ̂x(x, 0, t ) + 2

ρH
τ, (B2)

where the derivative is now taken with respect to t̄ and x̄. We
can further manipulate the expression to arrive at

¨̄u = λ + 2G

ρ

T 2

X 2

∂2ū

∂ x̄2
− 2GT 2

ρH2
ū

− T 2

U

2

ρH
σ̂x(x, 0, t ) + T 2

U

2

ρH
τ. (B3)

Next, we reduce the number of parameters by selecting
λ+2G

ρ
T 2

X 2 = 1, which leads to T = X
√

ρ

λ+2G . This automati-

cally obeys dimensionless wave speed equal to 1 in the limit
of small 2GT 2

ρH2 ;

v̄s =
√

λ + 2G

ρ

T

X
=

√
λ + 2G

ρ

√
ρ

λ + 2G
= 1. (B4)

Choosing U = 2H μs p−μkσn

λ+2G leads to

T 2

ρUH
(τ − f f ) = X 2

H2

τ − σ̂x

μsσn − μkσn
. (B5)
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If we now select the length scale X = H , we obtain the famil-
iar parameter [6,43]

T 2

ρU
(τ − σ̂x ) = τ/σn ∓ μk

μs − μk
≡ τ̄±, (B6)

which applies when the interface is sliding, and where ±
corresponds to the sign of the velocity. In this paper only
positive velocities appear, which means we can simplify to
τ̄ ≡ τ̄+. We can then define the non-dimensional equation of
motion

¨̄u = ∂2ū

∂ x̄2
− γ̄ ū + τ̄ , (B7)

where

γ̄ = 2GT 2

ρH2
= 2GH2ρ

ρH2(λ + 2G)
= 2G

(λ + 2G)
. (B8)

To remove oscillations at the grid scale we introduce a damp-
ing term β̄

¨̄u = ∂2ū

∂ x̄2
− γ̄ ū + τ̄ − β̄

∂2 ˙̄u

∂ x̄2
. (B9)

Equation (B9) applies for the sliding part of the interface,
and dynamic friction is included through τ̄ . The static friction
threshold in dimensionless units reduces to

|∂
2ū

∂ x̄2
− γ̄ ū + τ̄ | � 1. (B10)

The same approach can be carried out using the equation
with stress boundary condition, and we define the non-
dimensional equation of motion

¨̄u = ∂2ū

∂ x̄2
+ τ̄ − β̄

∂2 ˙̄u

∂ x̄2
, (B11)

where the dimensionless scaling parameters are the same as
before apart from U which changes by a factor two due to the
different way of integrating the thin layer for the two different
boundary conditions: U = H μs p−μk p

λ+2G .
In the manuscript, we combine these two boundary condi-

tions in a single equation of motion

¨̄u = ∂2ū

∂ x̄2
− �γ̄ ū + τ̄ − β̄

∂2 ˙̄u

∂ x̄2
, (B12)

where � = 1 corresponds to displacement boundary condi-
tion, and � = 0 corresponds to stress boundary condition.
It is worth noting that the finite difference scheme of the
dimensionless equation of motion derived here is identical to
the classical Burridge-Knopoff spring block model with leaf
springs (see, e.g., Heaton [10]) under the assumption that the
discretization �x equals the thickness of the system �x = H .

APPENDIX C: ANALYTICAL SOLUTION FOR STEADY
STATE SLIP PULSE WITH DISPLACEMENT BOUNDARY

CONDITION (β̄ = 0)

To obtain the steady state solution for a slip pulse, we first
assume a homogeneous stress profile τ (x) = τ0 and define

τ̄0 ≡ τ0/σn ∓ μk

μs − μk
. (C1)

Next, we solve

¨̄u = ∂2ū

∂χ̄2
+ τ̄0 − γ̄ ū, (C2)

where χ̄ is a comoving coordinate with units of x̄ where χ̄ = 0
corresponds to the position of the maximum slip speed inside
the pulse. We assume ˙̄u(−W̄ /2) = ˙̄u(W̄ /2) = 0, ū(−W̄ /2) =
�τ̄/γ̄ , and ū(W̄ /2) = 0, where W̄ = W

H is the dimensionless
pulse width. For a constant front speed v̄c we can relate ū to ˙̄u
and ¨̄u:

˙̄u = −v̄c
∂ ū

∂χ̄
, (C3)

where the minus sign arises from the assumption of propaga-
tion in the positive direction. Then,

¨̄u = v̄2
c

∂2ū

∂χ̄2
, (C4)

which leads to

v̄2
c

∂2ū

∂χ̄2
= ∂2ū

∂χ̄2
+ τ̄0 − γ̄ ū, (C5)

which can be rewritten as

∂2ū

∂χ̄2

(
v̄2

c − 1
) + γ̄ ū − τ̄0 = 0. (C6)

The general solution is

ū(χ̄ ) = c1 sin

( √
γ̄ x̄√

v̄2
c − 1

)
+ c2 cos

( √
γ̄ χ̄√

v̄2
c − 1

)
+ τ̄0

γ̄
. (C7)

To find the constants c1, c2, as well as the pulse width
W̄ and the stress drop �τ̄ , we use the following boundary
conditions: ū(W̄ /2) = 0, ū(−W̄ /2) = �τ̄0

γ̄
, where �τ̄ is the

stress drop, ˙̄u(W̄ /2) = 0, ˙̄u(−W̄ /2) = 0. In addition, we set
v̄c = 1/

√
1 − τ̄ 2 which is exact in the limit γ̄ → 0 [43], but

is also a good approximation for γ̄ � 1 as seen in Fig. 3 in the
manuscript. This gives us the solution

ū(χ̄ ) = τ̄0

γ̄

⎛
⎝1 − sin(

√
γ̄ (1 − τ̄ 2

0 )

τ̄0
χ̄ )

⎞
⎠ (C8)

for χ̄ ∈ [−W̄ /2,W̄ /2], where W̄ is the pulse width

W̄ = π

√
v̄2

c − 1

γ̄
= πτ̄0√

γ̄ (1 − τ̄ 2
0 )

. (C9)

The slip speed inside the pulse is

˙̄u(χ̄ ) = 1√
γ̄

cos

⎛
⎝

√
γ̄ (1 − τ̄ 2

0 )

τ̄0
χ̄

⎞
⎠, (C10)

where the maximum slip speed is

˙̄umax = 1√
γ

. (C11)

The slip acceleration is

¨̄u(χ̄ ) = 1

τ̄0
sin

⎛
⎝

√
γ̄ (1 − τ̄ 2

0 )

τ̄0
χ̄

⎞
⎠. (C12)
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FIG. 8. Steady state solution of slip, slip velocity, and acceleration for � = 1. Left: Non-dimensional slip in the pulse in steady state.
Middle: Non-dimensional slip velocity in the pulse in steady state. Right: Non-dimensional acceleration inside the propagating pulse in steady
state. The acceleration also shows that the stress drop is �τ̄ = 2τ̄ in steady state.

FIG. 9. Steady state slip, slip velocity and acceleration/stress for a selection of pulses at � = 0 with prestress shown in the inset. Left:
Non-dimensional slip in the pulse in steady state. Middle: Non-dimensional slip velocity in the pulse in steady state. Right: Non-dimensional
acceleration inside the propagating pulse in steady state. The acceleration also shows that the stress drop is �τ̄ = 0 in steady state. Note that
any acceleration or deceleration of the pulse (which occurs when the pulse is propagating in a region τ̄ �= 0) will leave behind a nonzero
stress drop.
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FIG. 10. Scaling relationships for the transition from crack-like to pulse-like rupture for a variety of damping parameters β̄ for � = 1.

In addition, the stress drop is given by

�τ̄ = 2τ̄0, (C13)

which can also be understood from symmetry arguments.
Figure 8 summarizes the pulse solution in steady state. Fig-
ure 9 shows pulse solutions for � = 0 expanding on the data
shown in the main text.

FIG. 11. Scaling relationships for the transition from crack-like to pulse-like rupture for a variety of damping parameters β̄ for � = 0.
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APPENDIX D: SCALING RELATIONSHIPS FOR SYSTEMATIC VARIATION OF THE DAMPING PARAMETER β̄

In the main text, we present a set of scaling relationships for the transition from crack-like to pulse like rupture. Figure 10
shows how the data collapse for � = 1 is affected by the damping parameter β̄. Figure 11 shows how the data collapse for � = 0
is affected by the damping parameter β̄.
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