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Tailored nematic and magnetization profiles on two-dimensional polygons
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We study dilute suspensions of magnetic nanoparticles in a nematic host, on two-dimensional polygons. These
systems are described by a nematic order parameter and a spontaneous magnetization, in the absence of any
external fields. We study the stable states in terms of stable critical points of an appropriately defined free energy,
with a nemato-magnetic coupling energy. We numerically study the interplay between the shape of the regular
polygon, the size of the polygon, and the strength of the nemato-magnetic coupling for the multistability of this
prototype system. Our notable results include (1) the coexistence of stable states with domain walls and stable
interior and boundary defects, (2) the suppression of multistability for positive nemato-magnetic coupling, and
(3) the enhancement of multistability for negative nemato-magnetic coupling.
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I. INTRODUCTION

Nematic liquid crystals (NLCs) are classical examples
of soft materials that exhibit fluidity and long-range ori-
entational order [1]. The NLC molecules, typically rodlike
in shape, tend to align along locally preferred directions,
referred to as directors in the literature, and exhibit orien-
tational order about these directors [1–3]. Hence, NLCs are
intrinsically directional in nature with direction-dependent op-
tical, mechanical, rheological, and electromagnetic responses.
The directional-dependent properties of NLCs make them
the preferred working material of choice for a plethora of
electro-optic devices [4]. In recent years, there has been sub-
stantial interest in controlling nematic directors and defects
(regions of reduced orientational order where the nematic
directors cannot be defined) by embedded inclusions, e.g.,
dispersed colloidal nanoparticles, geometric frustration lead-
ing to complex self-assembled structures, new biomaterials,
topological materials, etc. [5–8]. In this paper, we focus on
dilute suspensions of magnetic nanoparticles (MNPs) in a
nematic host. Here the NLC-MNP interactions can lead to a
spontaneous magnetization in addition to the nematic direc-
tors, in the absence of any external fields. The two effects:
magnetization and nematic directors, are coupled by means
of a nemato-magnetic mechanical coupling. This coupling is
dictated by the the surface treatment of the MNPs [9,10].
Some of these composite systems are referred to as ferrone-
matics with nonzero net magnetization in the absence of an
external magnetic field. Ferronematics were theoretically pre-
dicted by the pioneering work of Brochard and de Gennes [11]
with further notable theoretical developments by Burylov and
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Raikher [12], among others. Although ferronematic systems
were experimentally realized rather early on by Rault, Cladis,
and Burger [13], stable MNP suspensions have been only
recently achieved (see [14,15]).

NLCs have historically relied on their dielectric responses
to electric fields for applications because the NLC dielectric
anisotropy is several orders of magnitude (e.g., seven orders of
magnitude) larger than the magnetic anisotropy [2]. This im-
plies that (unrealistically) large magnetic fields are needed to
elicit macroscopic NLC responses to magnetic fields, making
it difficult to exploit the magneto-mechanical and magneto-
optic properties of NLCs. The addition of MNPs to a NLC
host can substantially increase the magnetic susceptibility of
the suspension [9] and influence phase transition temperatures
and other material properties, all of which are largely deter-
mined by the surface anchoring on the MNP surfaces. The
anchoring depends on the NLC properties [16] or the particle
coating of MNPs [17]. In confined geometries, the nematic
director and the spontaneous magnetization can be tailored
through geometric frustration and boundary effects (see, e.g.,
[18]). This yields novel possibilities for NLC devices operated
by magnetic fields, biaxial ferronematics, and chiral ferrone-
matics that could be used for optics, telecommunications,
microfluidics, smart fluids, and diagnostics, to name a few
[10,15,19,20].

In [21] and [18], the authors study a dilute suspension
of MNPs in a one-dimensional NLC-filled channel and a
NLC-filled two-dimensional (2D) square, respectively. They
report exotic stable morphologies for the nematic director
and the associated magnetization profile, without any external
fields. They report the coexistence of stable states with interior
nematic defects, interior magnetic vortices, magnetic domain
walls that separate ordered polydomains, i.e., two distinct
domains with different magnetizations, and states with defects
pinned to the square vertices. These results demonstrate the
immense potential of 2D polygons for tailored multistability
in ferronematic-type systems, which would be inaccessible in
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generic confined NLC systems (see, e.g., [22], [23]). We build
on this work by studying dilute suspensions of MNPs in a ne-
matic host, on 2D regular polygons without external magnetic
fields, as a natural generalization of the work on square wells
in [18]. A dilute suspension refers to a uniform suspension
of small MNPs (on the nanometer scale with length greater
than the diameter) such that the average distance between a
pair of distinct MNPs is much greater than the MNP size, and
the total volume fraction of suspended MNPs is small. In this
limit, it can be mathematically proven, using homogenization
techniques, that the MNP-interactions are “small” compared
to other effects, and the NLC-MNP interactions are captured
by an “effective energy.” This effective NLC-MNP energy
depends on the shape and size of the MNPs, the surface an-
choring energies and the nemato-magnetic coupling [24,25].
2D polygons are an excellent approximation to shallow three-
dimensional (3D) wells with a 2D polygon cross section,
such that the well height is much smaller than the polygon
edge length. From a modeling perspective, it is reasonable
to assume that the structural details are invariant across the
well height, and it suffices to model the ferronematic profiles
on the 2D polygonal cross section; this reduced 2D approach
can be rigorously justified (see [26,27]). Boundary conditions
are a crucial consideration for confined systems. We impose
fixed or Dirichlet tangent boundary conditions for the nematic
director on the polygon edges, and these boundary conditions
create a natural mismtach for the nematic director at the poly-
gon vertices, making them natural candidates for defect sites
[23,28,29]. Tangent boundary conditions are well accepted for
confined NLC systems both experimentally and theoretically;
see [30]. We impose a fixed topologically nontrivial tangent
boundary condition for the spontaneous magnetization of the
suspended MNPs; this is a purely theoretical choice for the
time being. For a dilute system, it is reasonable to assume that
the boundary conditions for the magnetization follow the tan-
gent boundary conditions for the nematic director. This choice
of the boundary condition naturally leads to interior magnetic
vortices, offering a wonderful playground for exploring ex-
otic solution landscapes of these ferronematic systems. From
an experimental perspective, in [31] the authors argue that
tangent boundary conditions for the spontaneous magnetiza-
tion can arise from energetic considerations. We speculate
that the boundary conditions for the magnetization could be
controlled by applying an external magnetic field to fix the
orientation and position of the MNPs on the boundaries, fol-
lowed by the removal of the magnetic field, although this is
largely open to the best of our knowledge. There are multiple
choices of boundary conditions for the nematic director and
the magnetization, (including free boundary conditions for the
magnetization, or weak anchoring effects), but our choice of
Dirichlet tangent boundary conditions offers rich possibilities
that could guide future experimental studies on these lines.

There are two macroscopic order parameters: the ne-
matic order parameter: the Landau-de Gennes (LdG) Q-tensor
nematic order parameter which encodes both the nematic di-
rector, n, and the degree of nematic ordering about n; and
a polar order parameter, described by the averaged spatial
magnetization vector, M, of the suspended MNPs without
external magnetic fields. We do not account for the volume
fraction of the MNPs as in [12], since we work with di-

lute uniform suspensions that have a small volume fraction;
also see the phenomenological approaches in [10,32]. We
model the experimentally observable profiles as minimizers
of an appropriately defined energy, as in [18,21], which in
turn builds on the free energy descriptions in [10,15,32].
The proposed free energy has three essential contributions:
a conventional nematic free energy; a magnetic energy that
coerces a preferred value of |M| as in [10,32,33] and includes
a Dirichlet energy density term to penalise arbitrary rotations
between M and −M; and crucially a nemato-magnetic cou-
pling energy parameterized by a coupling parameter c. The
Dirichlet energy density for M is, mathematically speaking, a
regularization term and does not introduce new physics into
the problem for judicious parameter choices. In the dilute
limit, the nemato-magnetic coupling energy is the homoge-
nized limit of a Rapini-Papoular type of surface anchoring
energy on the MNP surfaces [25]. In the dilute limit, we do not
see the individual MNPs but rather account for the collective
NLC-MNP interactions, mediated by the surface anchoring
energies, in terms of this effective nemato-magnetic coupling
energy. In principle, one could use homogenization methods
to compute effective nemato-magnetic coupling energies for
arbitrary MNP shapes, and other types of MNP surface an-
choring energies; e.g., we expect the coupling energies to be
different for platelet-shaped MNPs, but we adopt the sim-
plest approach here. For c > 0, the nematic director n and M
prefer to be either parallel or antiparallel to each other and
the Dirichlet energy density for M regularizes the M profile.
For c < 0, n and M tend to be perpendicular to each other
in the polygon interior, and this naturally creates fascinating
boundary layers near the polygon edges. From [24], both cases
of positive and negative c are physically relevant, and c may
be an experimentally tunable parameter.

There are five key dimensionless parameters in the model:
N the number of sides of the confining geometry; �1 and
�2 rescaled elastic constants associated with the Dirichlet
energy density of Q and M, respectively, which are in-
versely proportional to the polygon edge length ξ , which is
a magnetic coherence length that weighs the relative impor-
tance of the nematic and magnetic energies; and c is the
nemato-magnetic coupling parameter which determines the
coalignment of n and M. The coupling parameter c can be
related to the volume fraction, size, and shape of the MNPs,
and the strength of the MNP-NLC interactions. We consider
N = 4, 5, 6 in this paper, i.e., a square, a regular pentagon, and
hexagon, respectively. Specifically, we numerically compute
the energy-minimizing (Q, M) profiles for different values
of N , c and �, along with bifurcation diagrams for positive
and negative values of c that track the energy-minimizing sta-
ble and non-energy-minimizing (unstable) solution branches.
Mathematically, this corresponds to solving a system of four
coupled nonlinear partial differential equations, subject to
Dirichlet conditions for Q and M. The NLC system (with
c = 0) has been well described in [29] on 2D polygons, where
the authors demonstrate a unique Ring solution profile with a
unique nematic point defect at the center, which is the generic
stable solution for polygons except for the square for large �.
The authors find at least [ N

2 ] stable states for small �. A key
question is: How does this picture respond to the NLC-MNP
coupling, captured by the parameter c? There are various
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solutions for these nemato-magnetic systems, as will be de-
scribed in the sections below, which are not reported for
the c = 0 case in [29]. Some notable findings for positive c
concern the coexistence of stable (Q, M) profiles with ne-
matic defects pinned at the polygon vertices and magnetic
domain walls along polygonal diagonals and polygon edges,
that separate distinct domains of magnetization; along with
stable Peppa- (Q, M) profiles. The Peppa-branches have two
+1/2 interior nematic defects and a magnetic vortex at the
center. We note that magnetic domain walls are difficult to
find with either increasing N or increasing c ∈ (0,∞). The
picture with negative c is more complex: we effectively dou-
ble the number of stable states for small �, compared to the
results in [29] for c = 0. These stable states are distinguished
by vertex defects for Q and vertex vortices for M, so that
the multistability is strongly enhanced with increasing N , for
c < 0. Additionally, we find stable (Q, M)-profiles, labeled
as Peppain, Peppaout solutions, with complex permutations
of interior +1/2-nematic defects and magnetic vortices, for
small �. We compute bifurcation diagrams for representative
values c = 0.25 and c = −0.25, as a function of � and N , to
capture the solution branches as a function of the polygon
edge length encoded in �, and to illustrate defect-induced
multistability.

The paper is organized as follows. In Sec. II we outline the
theoretical framework and the governing equilibrium equa-
tions for this ferronematic-type system. In Sec. III we present
a comprehensive numerical study of the equilibria in a square
complemented by some analysis in two asymptotic limits. In
Secs. IV and V we present numerical results for a hexagon
and a pentagon, respectively, and we summarize the principal
conclusions and directions for further research in Sec. VI.

II. MODEL FORMULATION

We study partially ordered 2D systems on a square, pen-
tagon and hexagon, with nematic orientational order and polar
magnetic order, motivated by recent studies of dilute ferrone-
matic suspensions [18]. More specifically, the domain � is
a rescaled regular N-polygon centered at the origin; we note
that the physical edge length L has been absorbed into the
phenomenological parameters as will be described below (see
[18]). The polygon vertices are defined by

vk =
(

cos

[
2π (k − 1)

N

]
, sin

[
2π (k − 1)

N

])
(1)

for k = 1, . . . , N . The polygon edges are labeled counter-
clockwise as C1, . . . ,CN , such that C1 connects v1 to v2, and
so on.

These 2D systems have two order parameters: a rescaled
LdG Q-tensor order parameter and a 2D magnetization vector,
M = (M1, M2) which is the polar order parameter. In two
dimensions the reduced LdG Q-tensor order parameter can be
written as [29]

Q = S(2n ⊗ n − I), (2)

where the nematic director, n = (cos θ, sin θ )T describes the
preferred in-plane alignment of the nematic molecules, and
S is the scalar order parameter which measures the degree
of orientational order about the planar director. For a rigor-

ous justification of the reduced 2D LdG approach, see [26].
Therefore, Q has two independent components:

Q =
(

Q11 Q12

Q12 −Q11

)
, (3)

where Q11 = S cos 2θ and Q12 = S sin 2θ . In this framework,
we will not detect biaxial regions since trQ3 = 0, and we
have trQ2 = |Q|2 = 2Q2

11 + 2Q2
12. We assume that M is the

spontaneous magnetization induced by the MNPs with an
internal magnetic moment, which interacts with n through
surface anchoring conditions on the MNP surfaces. M has
variable magnitude: magnetic vortices are defined by |M| = 0,
and defective regions are identified by reduced values of |M|.
As described in the Introduction, we assume a dilute suspen-
sion of MNPs in a nematic host, and the total rescaled and
dimensionless free energy is given by

F[Q, M] =
∫

�

1

4

(
�1|∇Q|2 + 1

4
|Q|4 − |Q|2

)
dA

+
∫

�

ξ

2

(
�2|∇M|2 + 1

2
|M|4 − |M|2

)
dA

−
∫

�

c

2
MT QM dA, (4)

where the first line is the nematic energy, the second line is the
magnetic energy, the last line is the effective nemato-coupling
energy. We work with low temperatures so that the bulk favors
an ordered nematic and magnetic phase with |Q| �= 0, |M| �=
0. The total bulk potential is

1
4 |Q|4 − |Q|2 + ξ |M|4 − 2ξ |M|2 − 2cMT QM; (5)

the corresponding stationary points (in terms of c and ξ ) are
computed in [34].

There are four parameters above as stated in the Intro-
duction: �1, �2, the magnetic coherence length ξ , and the
nemato-magnetic coupling parameter, c. �1 is defined to be
the ratio of a material-dependent length scale and the phys-
ical edge length L, i.e., �1 = K

|A|L2 where K is the nematic
elastic constant, |A| is proportional to the absolute temper-
ature and L is the edge length. Further, from the form of
the nemato-magnetic coupling energy density, −2cMT QM,
positive c favors (n · M)2 = 1 and negative c favors n · M = 0
(see [18]). The magnetic Dirichlet energy density is a reg-
ularization energy that smooths the M profiles and prevents
degeneracy of energy minimizers. As is standard in the cal-
culus of variations, the physically observable equilibria are
local or global minimizers of (4), subject to the boundary
conditions. However, unstable critical points of (4) play a
crucial role in transition pathways between distinct equilibria;
see [35]. The critical points (stable or unstable) of (4) are
solutions of the associated Euler-Lagrange equations:

�1�Q11 = Q̃Q11 − c

2

(
M2

1 − M2
2

)
, (6)

�1�Q12 = Q̃Q12 − cM1M2, (7)

ξ�2�M1 = ξM̃M1 − c(Q11M1 + Q12M2), (8)

ξ�2�M2 = ξM̃M2 − c(Q12M1 − Q11M2), (9)
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where � is the 2D Laplacian operator, and Q̃ = ( 1
2 trQ2 − 1)

and M̃ = (|M|2 − 1). The phenomenological parameters,
�1, �2, ξ , and c are typically estimated from experimentally
measured quantities but the available data are limited, in
the presence of external magnetic fields [10]. We investigate
the sensitivity of the solution landscapes with respect to the
rescaled elastic constants and c. The elastic constants de-
pend on the temperature, material-dependent constants and
the physical length L of the domain, and hence, they are
tunable parameters. The parameter c depends on the ratios
of material-dependent constants and the strength of the NLC-
MNP interactions, so could also be a tunable parameter. The
last parameter, ξ is the ratio of NLC material constants and
MNP-dependent constants, and again could be reasonably
tuned in moderate regimes. For simplicity, we fix ξ = 1, as-
sume that the rescaled nematic and magnetic elastic constants
satisfy �1 = �2 = �, unless stated otherwise. These choices
improve the efficiency of our numerical procedure and al-
low us to capture the complex solution landscapes. For a
dilute system, we expect �2 to be (much) smaller than �1 but
the qualitative properties of the bifurcation diagrams remain
unchanged compared to the �1 = �2 case, with shifted bifur-
cation points.

As stated in the Introduction, we assume fixed Dirichet
tangent boundary conditions for Q and M, which requires
both the nematic director, n, and M to be tangent to the edges
of �. We assume that M rotates by 2π rad around ∂�, which
is a topologically nontrivial boundary condition that naturally
induces an interior magnetic vortex. Regarding n, we assume
n is tangent to the edges Ck , and there is a natural mismatch
at the vertices, vk . More specifically, the square domain has
vertices at (−0.5,±0.5) and (+0.5,±0.5) such that

Q11b = 1 on y = ±0.5, Q11b = −1on x = ±0.5,

Q12b = 0 on x = ±0.5, y = ±0.5,

(M1b, M2b) = (−1, 0) on y = −0.5,

(M1b, M2b) = (1, 0) on y = 0.5,

(M1b, M2b) = (0, 1) on x = −0.5,

(M1b, M2b) = (0,−1) on x = 0.5. (10)

For a pentagon and a hexagon with N = 5 or N = 6, we spec-
ify the boundary conditions on the edges Ck for k = 1, . . . , N ,
as follows:

(Q11b, Q12b) =
(

− cos

[
2π (2k − 1)

N

]
, sin

[
2π (1 − 2k)

N

])
(11)

and

(M1b, M2b) =
(

sin

[
π (2k − 1)

N

]
,− cos

[
π (2k − 1)

N

])
.

(12)

We numerically compute the solutions of the system (6)–(9),
subject to the Dirichlet boundary conditions (10) [(11)–(12)
in the pentagon and hexagon], which are necessarily critical
points of (4). We use the DOLFIN library [36] from the
popular open-source computing platform FEniCS [37], which
allows us to solve the weak form of the Euler-Lagrange equa-

tions, in a suitable finite element function space. This solver
uses Newton’s method to find weak solution of the Euler-
Lagrange equations [38] and is unlikely to converge to an
unstable solution. Due to the high multiplicity of the solutions,
convergence may be highly sensitive to the choice of initial
condition. In the following figures, we plot |Q|, labeled by the
color chart, and the nematic director, n, by white lines where
n is given by

n = (cos θ, sin θ ), θ = 1
2 atan2(Q12, Q11) (13)

and |M| labeled by the color chart, and the white arrows
describe the magnetic orientation (M1, M2)/|M| for |M| �= 0.
We study the stability of the solutions by numerically cal-
culating the smallest real eigenvalue λ1 of the Hessian of
the energy (4) with four degrees of freedom Q11, Q12, M1,
and M2 using the LOBPCG ((locally optimal block precon-
ditioned conjugate gradient) method [39]). If λ1 is positive,
the solution is stable. The case c = 0, has been studied in
[29], and the authors report the WORS (Well Order Re-
construction Solution) on a square, and the Ring branch on
other regular polygons, for large �. These solutions bifurcate
to Diagonal (D), Rotated (R) solutions on a square; Para,
Meta, and Ortho solutions branches on regular polygons with
N > 4, as � decreases. The numerical computation of bifurca-
tion diagrams requires continuation techniques, for which we
first locate different stable solutions. We find a solution, the
Peppa solution, with stable interior +1/2-nematic defects, for
c = 0.25, by taking the D solution (for c = 0) as the initial
condition for the Newton’s method. The solutions Peppain

(Peppaout ) for c = −0.25 are obtained by taking the profiles
[Q, (M2,−M1)]([Q, (−M2, M1)]) as initial conditions where
[Q, M = (M1, M2)] is the Peppa solution for c = 0.25. Once
the Peppa, Peppain, Peppaout solutions are computed for
c = ±0.25, we perform a decreasing (increasing) � sweep
for c = ±0.25, to compute the corresponding bifurcation
diagrams.

III. SOLUTION LANDSCAPE ON A SQUARE

We first recall the essential results for a square domain,
for c = 0 from [22], where the authors track the solutions
of (6) and (7) subject to (10), as a function of the square
edge length, L, at a fixed temperature. The rescaled elastic
constant, � ∝ 1

L2 , at fixed temperature. For large � or small
L (� > 0.1 or L < 10−7 m approximately), there is a unique
WORS [40], distinguished by a pair of mutually orthogonal
defect lines along the square diagonals (with Q ≈ 0). The
WORS is a special case of the more general Ring solution
for N-polygons reported in [29] and exists for all � > 0 on
a square domain with tangent boundary conditions (10). As
� decreases, the WORS loses stability and bifurcates into
two stable diagonal, D solutions, for which n aligns along
one of the square diagonals in the interior. The D solutions
have two diagonally opposite splay vertices, such that the
corresponding n has a splay pattern near the splay vertex.
As � further decreases, there is a further bifurcation point
with two unstable BD solution branches bifurcating from the
WORS branch. The BD solutions have two defect lines paral-
lel to a pair of opposite square edges and the BD solutions
further bifurcate into four unstable rotated solutions (R) as
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FIG. 1. Bifurcation diagram for (4) on a square domain with c = 0.25. Left: Plot of
∫

Q11(0.5 + x + y)dx dy,
∫

Q12(0.5 + x + y)dx dy
versus �; right: orthogonal 2D projections of the full 3D plot.

� decreases. The nematic director, n, rotates by π radians
between a pair of opposite square edges for a R solution, and
there are four rotationally equivalent R solutions related by
a π

2 -rotation. In contrast to the D solutions, each R solution
has a pair of splay vertices connected by a square edge. The
R solutions gain stability as � decreases, and for � small
enough (� < 10−3 or L > 10−6 m approximately), there are
six distinct stable nematic equilibria: 2 D solutions and 4 R
solutions.

The qualitative features of the bifurcation diagram are
unchanged for c > 0; see Fig. 1. We distinguish between
the distinct solution branches by defining two measures,∫

Q11(0.5 + x + y) dx dy and
∫

Q12(0.5 + x + y) dx dy, and
plot these measures versus � for the different solutions. Solid
lines represent stable solution branches and dashed corre-
spond to unstable branches. For c = 0.25 and for � large,
we have a unique solution of the system (6)–(9), subject to
the boundary conditions (10). The unique Q-solution is the
WORS reported in [40] and the unique M-solution has a
magnetic vortex of degree +1 (determined by the degree of
the boundary conditions) at the square center. This solution
branch exists for all � > 0, but loses stability as � decreases.
As � decreases, the WORS loses the cross structure and col-
lapses into a Ring solution with a circular nematic defect,
analogous to the magnetic vortex, at the square center. We
refer to this solution branch, which is unique and globally
stable for � large enough, as the Ring branch. As � decreases,
the Ring branch loses stability and bifurcates into two stable
D solutions (with regard to the Q-solutions). The correspond-
ing M-profiles have domain walls (with reduced |M|) along
the corresponding square diagonals. As we will explain be-
low, these domain walls correspond to a π -rotation in the
M-vector. As � decreases further, the unstable Ring branch
bifurcates into two unstable BD branches (with regard to the
Q-solutions). Each BD solution bifurcates into two unstable

R solutions, which gain stability when � is small enough. The
M-solutions, corresponding to the stable R solutions, exhibit a
domain wall along the square edge with the two splay vertices.
We observe a striking feature for c > 0: the stable D solutions
bifurcate into two Peppa solution branches that have two
+1/2-nematic defects along the square diagonal, for � small
enough. The Peppa solutions, with pairs of interior nematic
defects, are stable for c = 0.25; we speculate that they exist
for all c > 0 but are unstable for c = 0. The corresponding
M-profiles have a smeared out vortex along the line con-
necting the nematic defect pair in the Peppa solutions. This
is an interesting example of how nemato-magnetic coupling
stabilizes domain walls in M (from the D and R solutions) and
interior point defects in Q, in terms of the Peppa solutions.
Plots of the 2 D solutions and 4 R solutions for c = 0.25, are
presented in Fig. 2.

In Fig. 3 we explore the solution landscape as a function
of �, for c = −0.25. There are striking findings here. For �

large, we observe the unique Ring branch, which is globally
stable for large �, and exists for all � > 0. The Ring branch
loses stability as � decreases. We note that the Ring profile
for small � and c = −0.25, is different from its counterpart
for c = 0.25. This is essentially because n and M tend to be
perpendicular in the square interior, since c < 0. In particular,
the Q-solution in the Ring branch adopts a hyperbolic-like
central nematic defect structure, in sharp contrast to the vortex
structure for c = 0.25. The M-profile has an interior magnetic
vortex because of the topologically nontrivial Dirichlet con-
ditions, as explained above. As � decreases, the Ring branch
bifurcates into four stable D solutions. This is notably differ-
ent from the c � 0 case. Informally speaking, the symmetry
between the splay vertices is broken in the nematic D solution,
rendering four different D solutions. One splay vertex is more
asymmetric than the other splay vertex, and the corresponding
M-profile orients perpendicular to the D-director, with the
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FIG. 2. The plots of two D and four R solutions with � = 10−3

and c = 0.25. Top row: In the nematic profile, the vector n in (13)
is represented by white lines and the order parameter |Q|/√2 =√

Q2
11 + Q2

12 is labeled by the color chart. Bottom row: In the mag-
netization profile, |M| is labeled by the color chart, and the white
arrows describe the magnetic orientation (M1, M2)/|M| for |M| �= 0.
All subsequent figures have nematic profiles in the top row and
magnetization profiles in the bottom row and have the same color
map and interpretation of the lines and vectors.

magnetic vortex localised near the asymmetric splay vertex.
In the same vein, when � is small enough, we find eight
stable R solution branches as seen in Fig. 4. The reasoning
is the same as for the D solutions. The symmetry between the
splay vertices is broken for the R solutions, with one splay
vertex being more asymmetric than the other splay vertex.
Hence, there are eight R solutions for the Q-solution profile.

The corresponding M-profiles orient perpendicular to the ne-
matic director and the magnetic vortex localizes near the more
asymmetric splay vertex.

Additionally for small �, we find two stable Peppain and
two Peppaout solutions branches, with pairs of stable inte-
rior +1/2-nematic point defects. The M-profiles for Peppain

(Peppaout ) have M pointing into (out of) the interior magnetic
vortex, motivating the choice of the subscripts in and out ,
respectively. The case of negative c illustrates how we can
use nemato-magnetic coupling to break symmetry, increase
the multiplicity of stable solutions (for small �) and generate
exotic permutations of defect profiles in Q and M, all of which
offer new prospects for engineered multistability.

A. The � → 0 limit

In this section, we study the asymptotics of minimizers
of (4) in the � → 0 limit, which is relevant for macroscopic
domains, on the length scale of microns or larger. Recall that
for �1 = �2 = �, ξ = 1, the dimensionless free energy of this
NLC (nematic liquid crystal)-MNP coupled system is given
by

F[Q, M] =
∫

�

1

4

(
�|∇Q|2 + 1

4
|Q|4 − |Q|2

)
dA

+
∫

�

1

2

(
�|∇M|2 + 1

2
|M|4 − |M|2

)
dA

−
∫

�

c

2

[
Q11

(
M2

1 − M2
2

) + 2Q12M1M2
]

dA.

(14)

In a 2D framework, we can parametrize Q and M as

Q11 = S cos(2θ ), Q12 = S sin(2θ ), (15)

M1 = R cos(φ), M2 = R sin(φ), (16)

FIG. 3. Bifurcation diagram for (4) on a square domain with c = −0.25. Left: Plot of
∫

Q11(0.5 + x + y)dx dy,
∫

Q12(0.5 + x + y)dx dy
versus �; right: orthogonal 2D projections of the full 3D plot.
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FIG. 4. The plots of four D and eight R solutions with � = 10−3 and c = −0.25.

where |Q|2 = 2S2 and |M| = R, and θ , φ are orientation
angles for n and M, respectively. Substituting the parametriza-
tion above into (14), we obtain

1

�
F[S, R, θ, φ] =

∫
�

(
1

2
|∇S|2 + 2S2|∇θ |2

)
dA

+
∫

�

(
1

2
|∇R|2 + 1

2
R2|∇φ|2

)
dA

+ 1

�

∫
�

(
1

4
S4 − 1

2
S2 + 1

4
R4 − 1

2
R2

)
dA

−
∫

�

c

2�
SR2 cos[2(θ − φ)] dA. (17)

Heuristically, the coupling energy determines the preferred
relative orientation of n and M. If c > 0, the last term is
minimized when

θ = φ + πk, k ∈ Z, (18)

i.e., when the director angle θ and the magnetization angle, φ,
differ by a multiple of π so that (n · M) = ±1. In particular,
the coupling energy does not distinguish between M and
−M and the gradient term, |∇M|2, penalizes such arbitrary
rotations. If c < 0, the coupling energy is minimized when

θ = φ +
(

2k + 1

2

)
π, k ∈ Z, (19)

i.e., for n · M = 0.
Informally speaking, as � → 0, minimizers of (14) con-

verge to appropriately defined minimizers of the bulk potential

f (S, R, θ, φ) = (
1
4 S4 − 1

2 S2
) + (

1
4 R4 − 1

2 R2
)

− c

2
SR2 cos[2(θ − φ)]. (20)

More precisely, in [34], the authors compute the minimizers,
(Sc, Rc), of the bulk potential and show that

Sc =
⎡
⎣ |c|

4
+

√
c2

16
− 1

27

(
1 + c2

2

)3
⎤
⎦

1/3

+
⎡
⎣ |c|

4
−

√
c2

16
− 1

27

(
1 + c2

2

)3
⎤
⎦

1/3

,

Rc =
√

|c|Sc + 1. (21)

As � → 0, for a fixed c, minimizers of (14) converge (in an ap-
propriately defined sense) to (Q∗, M∗), where |Q∗| = √

2Sc,
|M∗| = Rc almost everywhere away from the polygon edges.
The corresponding orientation angles, θ∗ and φ∗ are solutions
of the Laplace equation

�φ = 0, (22)

and θ∗ and φ∗ are related by (18) for c > 0, respectively, (19)
for c < 0, away from the polygon edges.

We can illustrate these concepts by considering the diag-
onal solutions in Fig. 2, and the corresponding M-profiles
with domain walls along the square diagonals. For c > 0 and
small �, the preceding discussion suggests that θ and φ differ
only by a multiple of π in the interior. Let c = 0.25 and
consider one of the D solutions. The corresponding boundary
conditions for θ are

θ =
{π

2 , x = ±0.5

0, y = ±0.5
. (23)

However, this does not agree with the boundary conditions for
φ, which are fixed by (10), i.e.,

φ = 0 on y = 0.5, φ = π on y = −0.5,

φ = π

2
on x = −0.5, φ = 3π

2
on x = 0.5. (24)
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Comparing the boundary conditions for θ , for this D solution,
and φ above, along with the constraints imposed by (18),
we deduce that θ ≈ φ for y � x, and φ ≈ θ + π for y < x.
Hence, there is a π -wall in the corresponding M-profile along
x = y (see Fig. 2). Analogous comments apply to the second
D solution (the second column in the first two rows of Fig. 2)
where we observe a π -wall in the M-profile, along y = −x,
such that φ flips by π rad across the wall. M �= 0 on either
side of the π -wall in these figures, so that these domain walls
separate ordered magnetic polydomains. We refer to such π -
walls as domain walls in the subsequent discussion.

In Fig. 2 there are four stable R solutions, labeled by,
say, R1 . . . R4. These rotated states can be defined by their
boundary conditions, e.g.,

R1 : θ (x,±0.5) = 0, θ (−0.5, y) = 3π

2
, θ (0.5, y) = π

2
,

R2 : θ (±0.5, y) = π

2
, θ (x,−0.5) = 0, θ (x, 0.5) = π,

R3 : θ (x,±0.5) = 0, θ (−0.5, y) = π

2
, θ (0.5, y) = 3π

2
,

R4 : θ (±0.5, y) = π

2
, θ (x,−0.5) = π, θ (x, 0.5) = 0.

(25)

These boundary conditions are incompatible with the bound-
ary conditions for φ in (10). In the � → 0 limit, with fixed
c > 0, we need θ and φ to differ by a multiple of π almost
everywhere. Comparing (10) with the above, we deduce that
the M-profile corresponding to R1, has a domain wall near
the edge y = 0.5, i.e., φ rotates from φ = 0 to φ = π across
a domain wall parallel to y = 0.5, as can be clearly seen from
the first column of the fourth row in Fig. 2. In other words,
θ ≈ φ for y < 0.5 and φ ≈ θ + π on y = 0.5. Analogous
remarks apply to the M- profiles corresponding to R2 . . . R4,
where we observe domain walls along one of the square edges,
such that θ ≈ φ on one side of the wall, and |θ − φ| = π on
the other side that contains the square edge in question.

The Peppa solution branch for positive coupling, is an
example of the nematic profile being tailored by the magneti-
zation profile. The boundary conditions for φ are fixed in (10)
but the boundary conditions for θ are not fixed by (10), except
that 2θ is a multiple of 2π on y = ±0.5, and that 2θ is an odd
multiple of π on x = ±0.5. In other words, θ can also assume
the topologically nontrivial boundary conditions satisfied by
φ, and this is indeed observed in the Peppa-branch, for which
the corresponding nematic director rotates by 2π rad along the
boundary. The 2π -rotation around the square perimeter nec-
essarily means that n must have interior topological defects,
with total charge of +1. For topological and energetic reasons,
the +1-defect splits into two nonorientable +1/2-nematic
defects in the interior, conserving the total topological charge.
This is allowed in the reduced LdG framework, since the Q-
tensor includes nonorientable director fields, outside the scope
of a vector field description. By contrast, the corresponding
M-profile has a single interior +1-vortex due to orientability
constraints.

To summarize, for small � and c > 0, the D and R solution
branches illustrate that the nematic profile can generate do-
mains walls in the M-profile, and the Peppa solution branch

demonstrates how the topologically nontrivial M-profile can
stabilize interior nematic point defects. The story with nega-
tive c is more complex and fascinating, as we describe below.

We consider the diagonal solutions in Fig. 4 for c = −0.25.
Consider D1 such that the nematic director, n, is aligned
along the square diagonal y = x. The corresponding M tends
to be perpendicular to n in the interior, so that φ ≈ 3π

4 or
φ ≈ −π

4 along y = x. Further, the negative coupling breaks the
symmetry between the two diagonally opposite splay vertices
at (0.5, 0.5) and (−0.5,−0.5). In the first column of the
first row, the splay vertex at (0.5, 0.5) is “more defective”
than the second splay vertex, in the sense that |Q|(0.5, 0.5) <

|Q|(−0.5,−0.5), and φ ≈ 3π
4 along y = x for the correspond-

ing M-profile, in the first column of the second row. Similarly,
in the third columns of the first and second rows, the splay
vertex at (−0.5,−0.5), of D1 solution is more defective than
the splay vertex at (0.5, 0.5), and φ ≈ −π

4 along y = x, for
the corresponding M-profile. Analogous remarks apply to
the D2 solution with two splay vertices at (−0.5, 0.5) and
(0.5,−0.5), respectively, with φ ≈ π

4 or φ ≈ 5π
4 along y =

−x. The same reasoning applies to the 8 rotated solutions in
the third and fourth rows of Fig. 4, for c = −0.25. Each of
the four rotated solutions for the Q-profile is distinguished by
two splay defects along a square edge. The negative coupling
breaks the symmetry between the splay vertices so that one
vertex is “more asymmetric” than the other. This doubles
the number of admissible rotated solutions. For each rotated
solution, θ ≈ 0, θ ≈ π or θ ≈ π

2 , θ ≈ 3π
2 at the square center.

Each possibility generates two possibilities for φ at the square
center, for the corresponding M-profiles in the fourth row of
Fig. 4. For example, φ ≈ π

2 or φ ≈ 3π
2 (for θ ≈ 0 or θ ≈ π

near the center) at the square center, for the M-profile, since
negative c coerces θ and φ to differ by an odd multiple of
π
2 . These heuristic arguments corroborate the existence of
eight rotated (Q, M)-stable solution profiles for small �, with
c = −0.25.

Additionally, we find the Peppa solution branches with
stable interior nematic defects, as with positive c. For c < 0,
θ and φ tend to differ by an odd multiple of π

2 in the square
interior, as � → 0. In particular, this implies two choices for
φ in the square interior, resulting in the Peppain and Peppaout

branches. There are two Peppain solution branches, since
the nematic defect pair can align along one of two square
diagonals. Similarly, there are two Peppaout solution branches
by the same reasoning as above. The case of negative cou-
pling strongly enhances multistability for small �, effectively
doubling the number of admissible stable states compared to
positive coupling (compare Figs. 1 and 3). We do not observe
domain walls in M for negative coupling, rather we observe
magnetic vortices at the square vertices for negative coupling.
These corner defects may act as distinguished sites/binding
sites for devices based on such NLC-MNP systems.

B. The � → ∞ limit

The � → ∞ limit is relevant for small nanoscale domains.
Mathematically, this limit is much simpler than the � → 0
limit, since we lose the nemato-magnetic coupling in this
limit. Referring to [41], the leading order equations, in this
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FIG. 5. (a) and (b) are plots of the Ring solution at c =
0.25 and c = −0.25, respectively. The plots in the first row
of (a) and (b) from left to right are Q1, the difference
Q1

11Q100
12 − Q100

11 Q1
12 = S1S100 sin(2θ100 − 2θ1), and M1, the differ-

ence M1
1 M100

2 − M100
1 M1

2 = R1R100 sin(φ100 − φ1). In the Q1 plot, the
corresponding vector n1 in (13) is represented by white lines and the

order parameter |Q1|/√2 =
√

Q1
11

2 + Q1
12

2 is labeled by the color

chart. In the M1 plot, |M1| is labeled by the color chart, and the
white arrows describe the magnetic orientation (M1

1 , M1
2 )/|M1| for

|M1| �= 0. The plots in the second row of (a) and (b) from left to
right are Q1

11, Q1
12, M1

1 , and M1
2 .

limit, are

�Q = 0, �M = 0, (26)

subject to the Dirichlet conditions (10). The limiting solution
is unique. It is straightforward to recover the WORS for the
Q-profile, and to show that there is a magnetic vortex of
degree +1 at the square center [with M(0, 0) = 0], for the
M-profile, in this limit. This is precisely the solution along
the Ring branch for large �, in the bifurcation diagrams Figs. 1
and 3, which is the unique energy minimizer in this limit.

Following the methods in [41], the limiting solution,
(Q∞, M∞) of (26) is an excellent approximation to the
solutions, (Q�, M�) of (6)–(9), for fixed c, subject to
the same boundary conditions, for � large enough, i.e.,
|(Q�, M�) − (Q∞, M∞)|2 ∼ 1

�2 .
However, the unique limiting solution (Q∞, M∞) remains

an excellent approximation to the Ring solution, even for val-
ues of � as small as unity as we show below. We demonstrate
this by comparing two solutions along the Ring branch, for
� = 1 and � = 100, denoted by (Q1, M1) and (Q100, M100),
respectively. The solution, (Q100, M100) is effectively identi-
cal to the limiting solution (Q∞, M∞) described above. Let(

Q1
11, Q1

12

) = S1(cos 2θ1, sin 2θ1),(
Q100

11 , Q100
12

) = S100(cos 2θ100, sin 2θ100),(
M1

1 , M1
2

) = R1(cos φ1, sin φ1),(
M100

1 , M100
2

) = R100(cos φ100, sin φ100).

In Fig. 5 we plot the differences between the orientation
angles, sin(2θ100 − 2θ1) and sin(φ100 − φ1), and they are of
the order of 10−4, from which we deduce that (Q∞, M∞) is a
reliable approximation to (Q�, M�), along the Ring branch for
� � 1.

IV. HEXAGONS

Next, we consider a NLC-MNP suspension on a 2D regular
hexagon, subject to the Dirichlet conditions for Q and M in
(11) and (12), for N = 6, respectively.

The case of c = 0 has been well studied in [29]. For large
�1 = �2 = � and c = 0, there is a unique Ring solution on the
hexagon, for which the corresponding Q and M profiles have
a single +1-vortex at the center of the hexagon. This Ring
solution branch loses stability as � decreases. In the limit of
small �, with c = 0, there are at least 15 different stable states,
with topologically trivial boundary conditions, i.e.,

deg(nb, ∂�) = 0, (27)

which represents the Brouwer degree or winding number of
nb considered as a map from ∂� into S1. nb and Qb are related
by

Qb =
(

Q11b Q12b

Q12b −Q11b

)
= (2nb ⊗ nb − I). (28)

These 15 states are categorized by permutations of the vertex
defects. There are six vertices, two of which have +1/3-
charge (referred to as splay vertices) and four of which have
−1/6-charge (referred to as bend vertices). These 15 solutions
are split into three rotationally invariant classes: (1) the three
Para states, where the splay defects are opposite each other;
(2) the six Meta states, where the splay defects are separated
by one vertex; and (3) the six Ortho states, where the splay de-
fects are connected by an edge. In [29], the authors show that
there exist three bifurcation points such that the Ortho, Meta,
and Para states gain stability for � < �Ortho < �Meta < �Para,
respectively, for c = 0.

In Fig. 6 we track the different solution branches as a
function of � with c = 0.25, using the Ring solution, the Para,

FIG. 6. Bifurcation diagram for (4) on a hexagon domain with
c = 0.25 plotting

∫
Q11(1 + x + y)dx dy and

∫
Q12(1 + x + y)dx dy

versus �.
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FIG. 7. Bifurcation diagram for (4) on a hexagon domain with c = −0.25. Left: Plot of
∫

Q11(1 + x + y)dx dy,
∫

Q12(1 + x + y)dx dy
versus �; right: orthogonal 2D projections of the full 3D plot.

Meta, and Ortho states as initial conditions for the Q-solver.
The Ring branch exists for all � > 0, is unique and globally
stable for � large enough, but loses stability as � decreases,
as expected by analogy with the c = 0 case. In contrast to a
square domain, we lose the Para, Meta, and Ortho solutions
and recover only three Peppa solution branches in the � → 0
limit. The three Peppa solution branches are featured by a
pair of stable interior +1/2-nematic defects aligned along
one of the hexagon diagonals, near the center of the hexagon.
There are three hexagon diagonals, and hence there are three
Peppa solution branches. The corresponding M-profiles have
a slightly smeared magnetic vortex along the line connect-
ing the nematic defect pair. We will explore this in greater
detail below, but magnetic domain walls connecting pairs of
diagonally opposite vertices for the Para-nematic state on a
regular hexagon, have greater length than their corresponding
counterparts on a square domain. Magnetic domain walls for
Meta-nematic states have lesser symmetry. Heuristically, this
may explain the absence of magnetic domain walls in stable
(Q, M)-profiles on a hexagon, with c = 0.25. Equally, our nu-
merical methods are not exhaustive, and we may have omitted
certain solution branches, e.g., high-energy Meta and Ortho
solution branches.

In Fig. 7 we plot the solution landscape on the rescaled
hexagon, as a function of �, for c = −0.25. As before, we have
a unique and globally stable Ring solution branch for large �,
which exists for all � > 0 and loses stability as � decreases.
Here, as with a square domain, we effectively double the
number of Ortho, Meta and Para states, since the symmetry
between the splay vertices is broken. We numerically observe
six Para, twelve Meta, twelve Ortho-nematic states. The
corresponding M-profiles are distinguished by the location of
the magnetic vortex at one of the hexagon vertices (six pos-
sibilities) and the orientation of M, since M is preferentially

perpendicular to n in the hexagon interior for c = −0.25. For
example, there are six Para (Q, M)-states, corresponding to
six possibilities for the location of the more asymmetric splay
vertex. For c = 0, there are six Meta stable states for � small
enough, with two splay vertices separated by a vertex. For
c < 0, the symmetry between the splay vertices is broken and
we obtain two Meta states for each admissible splay vertex
pair, yielding a total of 12 Meta states. Analogous remarks
apply to the Ortho solution branch. As with the square, we
also observe three Peppain and Peppaout solution branches,
with pairs of stable interior nematic defects along the three
hexagon diagonals. The in-branches refer to inwards-pointing
M-profiles, and out-branches refer to outward-pointing M-
profiles from the central magnetic vortex. In Fig. 8 we plot
a Peppain and Peppaout solution [the (Q, M) profiles], for
c = −0.1 with ξ = 1 and � = 5 × 10−4.

FIG. 8. Peppain and Peppaout solution profiles (from left to right)
for c = −0.1, with ξ = 1 and � = 5 × 10−4.
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FIG. 9. The nematic Q-profile for small and positive coupling
(c = 5, 6, 7 × 10−3, respectively). The Para solution for c = 0 was
taken as an initial guess with �, ξ fixed. Here we see the Para
solutions transition into the Peppa solution as c increases.

To understand how the splay defects evolve in the Para
solution branch for c > 0, we use the Para-nematic solu-
tion (for c = 0) as an initial condition for small values of
c = 5, 6, 7 × 10−3, � = 10−4, ξ = 1 to trace the Para branch
using continuation methods; see Fig. 9. As we move from left
to right, i.e., from c = 5 × 10−3 to c = 7 × 10−3, it is clear
that the defects detach from the splay vertices as c increases,
and migrate towards the hexagon interior, and align along one
of the hexagon diagonals as c → 1. As c increases, the inte-
rior nematic defects localise near the center of the hexagon,
yielding the Peppa solution branches in Fig. 6. The Peppa
solution branches are clear examples of nematic profiles being
tailored by the magnetic profile. Namely, the central magnetic
vortex coerces the creation of two +1/2-stable interior ne-
matic defects, due to the positive nemato-magnetic coupling
that favors coalignment of n and M.

For a square domain, we observe diagonal (D) and rotated
(R) solution branches for � small enough, c = 0.25, for which
the corresponding M-profile exhibits a domain wall, either
along a square diagonal or along a square edge, respectively.
These domain walls are characterized by a sharp drop in |M|
compared to the surrounding values. It is evident that these
domain wall M-profiles are increasingly difficult to find in a
hexagon for positive c, and in a pentagon as will be shown
below. In the preceding simulations, ξ = 1. We conjecture
that smaller values of ξ will coerce the Q-profile to tailor the
M-profile for c > 0, i.e., the M-texture will be determined by
n, leading to the creation of domain walls in M. A smaller
value of ξ suppresses the magnetic energy and hence, the
nematic effects dominate in this regime. The domain walls
are essentially a consequence of the topologically nontrivial
boundary conditions for M, so that n · M ≈ 1 on one side of
the wall, and n · M ≈ −1 on the other side of the wall. In
Fig. 10 we take ξ = 0.01, � = 5 × 10−4, and use the Para,

FIG. 10. Para and Meta solution profiles for c = 0.02 and the
Ortho solution profile for c = 1, with ξ = 0.01 and � = 5 × 10−4.

Meta, and Ortho-nematic solutions (for c = 0) and the M-
solution with a central magnetic vortex (for c = 0) as initial
conditions. We do indeed recover the Para solution for the Q-
profile with two defects pinned at a pair of diagonally opposite
splay vertices, and the corresponding M-profile has a clear
domain wall along the diagonal connecting the splay vertices,
for c � 0.02. Analogous remarks apply to Meta solutions,
for which the M-profile has a distinct domain wall along the
line connecting the two splay vertices. In other words, we can
numerically find Meta solutions for which the Q-profile with
two splay vertices (separated by a vertex) and M has an as-
sociated domain wall, for 0 < c � 0.02. The Ortho solutions
are easier to find, with a short magnetic domain wall along
the hexagon edge connecting the two adjacent splay vertices
in the Ortho Q-solution. We find these Ortho solutions by
continuation methods for c � 1.

We deduce that we can stabilize either interior nematic
point defects or magnetic domain walls, depending on a ju-
dicious interplay of ξ and c, and this interplay depends on
N , the number of sides of the regular polygon. A reasonable
conjecture is that magnetic domain walls are observable for
ξ < ξ (N ) and 0 < c < c(N ), for the boundary conditions in
(11) and (12). We expect that ξ (N ) and c(N ) are decreasing
functions of N , i.e., ξ (N ) → 0, c(N ) → 0 as N → ∞, so that
domain walls are increasingly difficult to find for coupled
systems.

V. PENTAGONS

Next, we consider a regular pentagon with N = 5, and
study the solution landscape as a function of �, for positive
c and negative c, respectively (c = 0.25 and c = −0.25, re-
spectively). The case of c = 0 has been well studied in [29].
For c = 0 and � large enough, there is a unique Ring solution
for the Q-solution (with a central +1-nematic defect) and
a unique M-profile with a degree +1 central vortex. This
Ring branch is globally stable for � large enough, exists for
all � > 0 and is unstable for � small enough. For small �,
there are at least 10 different stable solutions (with c = 0) for
the Q-solutions, for topologically trivial boundary conditions
(27). As with the hexagon, the tangent boundary conditions

FIG. 11. Bifurcation diagram for (4) on a pentagon domain with
c = 0.25. The plot of

∫
Q11(1 + x + y)dx dy,

∫
Q12(1 + x + y)dx dy

versus �.
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FIG. 12. Meta and Ortho solution profiles (from left to right) for
c = 0.05. We take the Meta and Ortho solutions on a pentagon for
c = 0 as the initial guesses and fix l = 5 × 10−4 and ξ = 1. For c
small enough, the nematic profile is maintained, whereas for c large,
we get the pair of interior point defects. There is a reduction in S
along the polygon edges as c → 1.

naturally create a mismatch in nb at the pentagon vertices, so
that the vertices are natural candidates for nematic defects.
The different vertices are classified as “splay” and “bend”
vertices, and there are two splay and three bend vertices for
topologically trivial boundary conditions. The 10 solutions are
classified into two rotationally invariant classes: (1) the five
Meta states, where the splay vertices are separated by one
vertex; and (2) the five higher energy Ortho states, where the
splay vertices are connected by an edge. In [29] the authors
show that there exist at least two bifurcation points such that
the Meta and Ortho states gain stability for l < lOrtho < lMeta,
respectively.

In Fig. 11 we plot the bifurcation diagram for the (Q, M)-
solutions as a function of �, for c = 0.25. The qualitative
features are similar to those for a hexagon, we lose the
Ortho and Meta states and obtain five stable Peppa solution
branches for �-small enough, with two stable interior nematic
defects. For each Peppa branch, the nematic defect pair is
localized near the center of the pentagon, parallel to one of
the pentagon edges. The magnetic profile retains the central
vortex and the Peppa solutions are again examples of nematic
profiles tailored by the magnetic profile. However, domain
walls are easier to find in pentagons compared to hexagons.
In Fig. 12 we recover the Meta and Ortho-nematic states in
a pentagon, with ξ = 1, � = 5 × 10−4 with c = 0.05, which
is not observed in a hexagon. The corresponding M-profiles
exhibit domain walls (with reduced |M|) along straight lines
connecting the splay vertices.

In Fig. 13 we plot the bifurcation diagram for the (Q, M)-
solutions as a function of �, for c = −0.25. We lose the
symmetry between the splay vertices, and for small �, we
have five stable Peppain, five stable Peppaout , 10 Meta and
10 Ortho stable solution branches. The symmetry breaking
and the preferential perpendicular coalignment between n and
M essentially doubles the number of admissible stable states
for negative coupling, in the � → 0 limit. This provides an
ingenious mechanism for stabilizing exotic point defects at
polygon vertices and in the interior, which could offer novel
optical and material responses for future applications.

VI. CONCLUSIONS

In this article, we have studied 2D systems with nematic
orientational order and directional magnetic order on regular
2D polygons, with Dirichlet conditions for Q and M on the
polygon edges. The Dirichlet conditions are special in the
sense that we impose a topologically nontrivial boundary con-

FIG. 13. Bifurcation diagram (4) on a pentagon domain with c = −0.25. Left: Plot of
∫

Q11(1 + x + y)dx dy,
∫

Q12(1 + x + y)dx dy
versus �; right: orthogonal 2D projections of the full 3D plot.
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dition on M, which necessarily creates an interior magnetic
vortex for the M-profiles. Our work is motivated by dilute
ferronematic suspensions in 2D frameworks (see [18,21,25])
and we study observable, physically relevant states in terms
of local or global minimizers of an appropriately defined free
energy. This approach may apply more widely to model sys-
tems with polar and apolar order parameters. The free energy
has three contributions: a nematic energy, a magnetic energy,
and a nemato-magnetic coupling energy. There are four phe-
nomenological parameters in the free energy, and with some
assumptions, we study the interplay between two parameters:
a rescaled elastic constant � and a nemato-magnetic coupling
parameter, c. We study the solution landscapes on a 2D square,
regular hexagon, regular pentagon in terms of bifurcation
diagrams, for c = 0.25 and c = −0.25 and varying �. The
asymptotics for large � are well understood in terms of the
Ring branch, since there is a unique critical point or global
minimizer of the free energy in the � → ∞ limit. As � de-
creases, the multiplicity of stable (Q, M)-solutions increases
and the solution landscape becomes increasingly complicated.
The multistability can be partially understood for small �

(which correspond to “large” domains on the micron scale or
larger) in terms of a boundary-value problems for φ and rela-
tions between θ and φ, which define the the nematic director
and magnetization vector, respectively.

For c = 0 and � small enough, the polygon vertices act
as defect sites for stable Q-profiles and in fact, there are at
least, N (N−1)

2 stable Q-states on a regular polygon of N sides.
For positive c that favors coalignment between n and M, the
number of stable states decreases as c increases, as � → 0.
In fact, we conjecture that there are only N stable states on a
N-polygon with N sides for odd N , and only N/2 stable states
for a N-polygon with N even, in the � → 0 limit, and for large
c. These stable states are featured by a pair of stable interior
1/2-nematic point defects in the polygon interior, aligned
either parallel to a polygon edge (N odd) or along a polygon
diagonal (N even). As N → ∞ and � → 0, we recover the
solution landscape on a circle with tangent boundary condi-
tions for the Q-profiles: infinitely many stable states with an
interior nematic defect pair along one of the circle diagonals
[42] for c > 0 and these states cannot be obtained for c = 0.
The M-profiles are less affected in the regime of c > 0 and
small �, they retain the interior central magnetic vortex with
some distortion. We refer to these solution branches with
interior nematic defect pairs, as Peppa solution branches for
c > 0 and small �. Informally speaking, positive c has the
same effect as regularizing the boundary or rounding off the
vertices, so that the nematic defects detach from the polygon
vertices and localise near the polygon center. Stable domain
walls are observed in the M-profile for very small positive
values of c or small values of ξ , whilst the corresponding
Q-profiles retain defects pinned at the polygon vertices.

The case of c < 0 that favors (n · M) = 0 in the poly-
gon interior, is more complicated. The picture in the � → ∞
limit (small nanoscale domains) is qualitatively unchanged in
terms of the unique Ring solution branch but c < 0 strongly
enhances multistability in the � → 0 limit. We obtain stable

solution branches with interior defects for both Q and M, and
additionally, we also find stable solution branches with point
defects at the polygon vertices in both the nematic and mag-
netic profiles. These solution branches with vertex defects,
and interior defects, coexist and could offer exciting optical
and electromagnetic responses to light and external fields. Of
course, the experimental tuning of c is expected to be hugely
challenging and perhaps a material property, and we expect
the case of positive c to be more common in applications
than negative c. As mentioned in Sec. II, one might expect
�2 << �1 for a dilute ferronematic system. We have carried
out preliminary numerical investigations by varying the ratio
�2
�1

with �1 = 0.005, c = 0.25, ξ = 1. As this ratio decreases
from unity, the defects in the Peppa-solution branch move
towards the vertices and we recover the Para-nematic solution
branch on a hexagon, which is not attainable for �2 = �1 and
c = 0.25. However, we recover the Peppa-solution branch for
�2 << �1 for large enough values of c. Hence, we argue that
the solution branches for �1 = �2 survive for �2 << �1, for
large values of c.

Our study is by no means exhaustive but it does illustrate
some generic features of positive and negative c, and the roles
of � and the geometry, in terms of N . We do not comment
on physical relevance at this stage, but our methods have ap-
plications to generic systems with multiple order parameters,
of which dilute ferronematics are an example [14,24,31]. Our
numerical findings suggest that we will observe multistability
in this regime, with coexistence of stable solutions supporting
a variety of singular structures: magnetic domain walls, stable
interior magnetic and nematic defects, boundary vortices, all
of which depend on a subtle interplay between N , c and �.
It may also be possible to stabilize multiple interior defect
pairs, or interior and boundary vortices simultaneously, with
a judicious interplay of the model parameters. Of course, we
have neglected a number of crucial physical considerations,
e.g., elastic anisotropy, dipolar interactions, weak anchoring,
mixed anchoring, the topology of the boundary conditions
and flow effects, all of which offer new horizons for complex
systems and tailor-made applications.
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