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Diffusion of active particles with angular velocity reversal
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Biological and synthetic microswimmers display a wide range of swimming trajectories depending on driving
forces and torques. In this paper we consider a simple overdamped model of self-propelled particles with a
constant self-propulsion speed but an angular velocity that varies in time. Specifically, we consider the case of
both deterministic and stochastic angular velocity reversals, mimicking several synthetic active matter systems,
such as propelled droplets. The orientational correlation function and effective diffusivity is studied using
Langevin dynamics simulations and perturbative methods.
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I. INTRODUCTION

In the past decades the field of active matter has grown
substantially both in interest and application [1–3]. Rang-
ing from bioinspired micro- and nanorobotics and engines to
crowd behavior, the applications of the ideas in active matter
research spans a multitude of length scales [4–9]. Particular
focus perhaps has been devoted to relatively simple theoreti-
cal models mimicking the behavior of living systems where
aspects such as self-propulsion are central [10–13]. Such
systems generally break time-reversal symmetry by energy
being injected locally and then dissipated and are driven out
of equilibrium. Chiral active matter presents a relatively new
class of nonequilibrium systems where not only energy is
injected on the particle scale but also angular momentum [14].
The prototypical example of such behavior is that of bacterial
motion in the presence of walls or boundaries where chiral
trajectories with a given handedness is observed [15,16].

Synthetic active matter systems have also gained a lot
of interest is recent times both due to the relatively simple
experimental setups that reveals fascinating nonequilibrium
phenomena and because of the possible applications in
medicine and drug delivery. Several investigations have, for
example, looked into the possibility of sorting and separating
active particles of differing chiralities with important applica-
tions in the pharmaceutical industry [17–20]. Recent studies
have revealed a myriad of swimming path shapes for synthetic
microswimmers with examples including zigzag motion of
swimming droplets driven by mechanical agitation [21], and
the motion of deformable self-propelled particles under forc-
ing [22]. Likewise, nematic liquid droplets have also shown
swimming paths where the handedness of the droplets al-
ternate in time, here due to autochemotactic reorientations
[23,24].

It is our intention in this paper to theoretically investigate
the transport properties of active particles that exhibit an-
gular velocity reversal, which we model by including either
deterministic or stochastic terms in the angular equations of
motion. We use a simple overdamped model of chiral active

Brownian point particles as described below. Although the
transport properties of chiral active matter have been studied
analytically in the past [25,26], the case of time-dependent
angular velocities has received less attention. Some studies
consider the effect of continuous fluctuations around a mean
chirality [27,28], originating, for example, from an imper-
fect external driving or from internal processes in biological
applications, whereas we here focus on angular dynamics
mimicking the zigzag motion of particles that reverse their
angular velocity either in a predictable manner or through
sudden stochastic reversal events. We report on analytical for-
mulas for the effective late-time diffusivity which we calculate
perturbatively in the regime where switching frequency is
large compared to the maximal value of the angular velocity.
Results are verified using Langevin dynamics simulations,
and the regime outside of the perturbative analysis is also
investigated numerically. Although time-dependent angular
dynamics has been observed also in three dimensions [29],
we here restrict our attention to a minimal two-dimensional
model. Theoretical methods proposed in the past for dealing
with three-dimensional chiral motion, e.g., that of Sevilla [25],
could potentially be generalized to also nontrivial angular dy-
namics, which presents an intriguing extension of this paper.
Such methods could also give further insights into spatial
distributions of active particles, whereas the Green-Kubo style
framework utilized here allow us to easily estimate moments
and correlation functions.

The paper is structured as follows. Section II discusses the
general theoretical setup of the model considered in this paper
where particles in addition to experiencing angular noise has a
nontrivial deterministic angular dynamics. Section III consid-
ers the case of a deterministic angular velocity reversal, which
we model using a sinusoidal time dependence. The correlation
function of the direction of motion is calculated exactly, and
the effective diffusivity is studied perturbatively. Section IV
considers a related model where the reversal is stochastic.
Predictions of an effective persistence time and diffusivity
in a perturbative regime is given and numerically verified. A
concluding discussion is offered in Sec. V.
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FIG. 1. (a) Typical trajectories for chiral particles with oscil-
lating torque displaying both zigzag, or meandering, and curling
behaviors, corresponding to the model in Sec. III. (b) Chiral particles
with a direction of motion given by the vector P̂(φ) moving on the
plane with an angular velocity �(t ).

II. ACTIVE BROWNIAN PARTICLES WITH
TIME-DEPENDENT TORQUES

We consider self-propelled particles constrained to two di-
mensions described by overdamped Langevin equations. The
dynamics follows:

ẋα (t ) = u0P̂α (φ), (1)

φ̇(t ) = √
2Dφζ (t ) + �(t ), (2)

where P̂ = (cos φ, sin φ) is the unit vector pointing in the
direction of motion and u0 is the constant self-propulsion
speed of the particles. Here we used index notation with α

as a spatial index. The diffusion coefficient Dφ governs the
angular noise, which sets the persistence timescale τ0 = 1/Dφ

for the particle changing its direction of motion due to noise
alone. The noise is Gaussian and white with 〈ζ (t )〉 = 0 and
〈ζ (t1)ζ (t2)〉 = δ(t1 − t2).

The term �(t ) is the time-dependent angular velocity of
the particles, originating from a time-dependent torque (see
Fig. 1). In the case of a constant � this model is the simplest
model of chiral active Brownian particles that perform circular
trajectories, whereas the case of � = 0 corresponds to linear
swimmers.

The class of angular velocities considered here give rise to
behaviors that are neither chiral nor linear. Much information
regarding the late-time dynamics can be extracted from the
correlation function for the direction of motion, defined as

C(t2, t1) = 〈P̂(t1) · P̂(t2)〉 = 〈cos[φ(t2) − φ(t1)]〉. (3)

This correlation function can readily be calculated from the
Langevin equations by using the fact that the angular dynam-
ics in integral form can be written

φ(t ) = √
2DφW (t ) +

∫ t

0
ds �(s), (4)

where W is the Wiener process. Using standard properties of
the Wiener process, we may write the difference in angles as

φ(t2) − φ(t1) = √
2Dφ (t2 − t1)Z +

∫ t2

t1

ds �(s) (5)

for t1 < t2, where Z is an independent normal random variable
with unit variance. Using standard trigonometric identities we

may then write

C(t2, t1) = 〈cos[
√

2Dφ (t2 − t1)Z]〉 cos
∫ t2

t1

ds �(s), (6)

where the sinusoidal contribution vanishes from symmetry
arguments. The expectation value may be calculated inde-
pendently of the deterministic contribution from the angular
velocity. We have

〈cos[
√

2Dφ (t2 − t1)Z]〉 = e−Dφ (t2−t1 ), (7)

which may, for example, be seen by expressing the cosine
as an infinite series in which case the moments of Z can be
estimated and the series resummed. Hence, the correlation
function takes the form

C(t2, t1) = e−Dφ (t2−t1 ) cos
∫ t2

t1

ds �(s), t2 > t1. (8)

This reduces to the well known correlation function for the
direction of motion of active Brownian particles in the case
of constant �. Note the integration inside the cosine which
breaks time-translational symmetry.

At late times we expect the mean-square displacement to
scale as 〈��x2(t )〉 = 2Defft with the effective diffusivity taking
the form

Deff = u2
0 lim

t→∞ ∂t

∫ t

0
dt2

∫ t2

0
dt1C(t1, t2), (9)

similar to expressions derived in the past when combined with
Eq. (8) [30]. In the case of a constant angular velocity �0, this
equation results in the known result for chiral active Brownian
particles [31],

Deff = u2
0

Dφ

1

1 + (
�0
Dφ

)2 . (10)

As can be seen, chirality suppresses transport. For the case of
a linear swimmer (�0 = 0) we denote the diffusivity as D0 =
u2

0/Dφ . This will act as a reference diffusivity to which other
effective diffusivities are compared.

III. DETERMINISTIC ANGULAR VELOCITY REVERSAL

For the case of deterministic angular motion reversal, we
consider the angular velocity �(t ) = �0 cos(γ t ) where �0 is
the magnitude of angular velocity and γ is the reversal rate.
The correlation function can in this case be written

C(t2, t1) = e−Dφ (t2−t1 ) cos

[
�0

γ
[sin(γ t2) − sin(γ t1)]

]
(11)

for t2 > t1. Figure 2 shows the correlation function C(t, 0)
obtained from Langevin dynamics simulations together with
the theoretical prediction Eq. (11). The period t0 of the oscilla-
tions depends on both timescales γ and �0 and can be simply
extracted from Eq. (11), resulting in γ t0 = sin−1(2πγ /�0),
which in the case of Fig. 2 gives t0 ≈ 1.11. The exponential
envelope is given by the rotational diffusivity as expected.

The presence of two timescales that govern the angular
dynamics is also seen to have an effect on the effective dif-
fusivity. Figure 3(a) shows the mean-squared displacement
obtained through Langevin dynamics simulations where the
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FIG. 2. Correlation function for direction of motion for active
particle with deterministic angular velocity reversal. The solid line
resulting from ensemble average over N = 5 × 104 particle tra-
jectories and the dashed line showing Eq. (11). The enveloping
exponential decays with the standard persistence timescale 1/Dφ .
Parameters used: Dφ = 0.25, �0 = 7, γ = 1.

dynamical equations Eq. (1) and (2) are integrated using a
simple Euler scheme. The effective diffusivity, extracted as
the linear slope at late times, displays a nonmonotonic depen-
dence on the angular speed variable �0 as shown in Fig. 3(b).
In Fig. 3(c) we highlight the γ = 1 case and show typical
particle trajectories corresponding to the peaks and valleys
of the effective diffusivity. We see that the peaks of the plot,
corresponding to enhanced transport, is due to synchronized
curling events where particles in the ensemble are able to
maintain their direction after tumbles, similar to what has been
observed for noisy angular dynamics [27]. In the valleys of
the plot, the particle trajectories are more disordered. These
effects are as mentioned due to temporally synchronized curl-
ing events for all trajectories in the ensemble, which may be
appropriate if the torques originate from externally applied
fields that affect several particles equally, or if one is interested
in the typical behavior of a single long particle trajectory.
A model that includes angular motion reversal but lacks this
synchronicity is discussed in the next section.

Some insight regarding the dependence of the effective dif-
fusivity on the reversal rate γ can be obtained by analytically
considering the perturbative regime where ε ≡ �0/γ is small.
This regime correspond to particles displaying meandering
swimming paths without any curling. We express the effective
diffusivity as a series,

Deff =
∑
m�0

dm(t )εm, (12)

where the expansion coefficients are found by Taylor expand-
ing the cosine in the correlation function in Eq. (11). Since
the series expansion of the cosine has only even terms, we
immediately have that d2m+1 = 0 for all m > 0. The second
expansion coefficient can be calculated to be

d2 =− 3u2
0γ

3 sin(2tγ )

2(D2
φ + γ 2)(D2

φ + 4γ 2)
− u2

0Dφγ 2 cos2(tγ )

(D2
φ + γ 2)(D2

φ + 4γ 2)

+ u2
0γ

4 cos(2tγ )

Dφ (D2
φ+γ 2)(D2

φ+4γ 2)
− 2u2

0γ
4

Dφ (D2
φ+γ 2)(D2

φ+4γ 2)
.

(13)

The remaining time dependence is of an oscillatory na-
ture and can be dealt with by introducing the average over
the timescale associated with the oscillation frequency G ≡
γ

2π

∫ 2π/γ

0 ds G(s). Performing this average results in

d2 = −D0

2

γ 2

γ 2 + D2
φ

. (14)

This correction leads to an effective diffusivity that increases
with increasing reversal rate γ . This is sensible since we
expect that in the limit of infinitely fast switching the behavior
of linear swimmers should emerge. This is because at finite
angular velocities, the particle will not have had time to depart
from its trajectory substantially before the handedness again
changes.

In a similar way one can calculate the fourth order coeffi-
cient. In this case the number of terms involved grows rather
large, and one should carefully keep track of which terms will
be present in the final result. Just like for the second order
coefficient, one keeps only constant and oscillating terms and
performs a temporal average. This results in

d4 = 3D0

8

γ 4

D4
φ + 5D2

φγ 2 + 4γ 4
. (15)

We denote the effective diffusivity containing terms up to
mth order D(m)

eff . To summarize, the expansion coefficients
read

d0 = D0, (16)

d1 = 0, (17)

d2 = −D0

2

γ 2

γ 2 + D2
φ

, (18)

d3 = 0, (19)

d4 = 3D0

8

γ 4

D4
φ + 5D2

φγ 2 + 4γ 4
, (20)

d5 = 0. (21)

One should note that in the above expressions, the expansion
coefficients take values in (0,1). This leads to a rather well-
behaved perturbative series where the corrections to D(m)

eff /D0

in magnitude are always smaller than εm+1. For example, if
ε = 0.4 the correction to the fifth order calculation provided
above is already smaller than half a percent.

Figure 4 shows the effective diffusivity for Dφ = 0.1,
showing convergence to the linear swimmer result when the
reversal rate diverges. We see that transport is suppressed
with decreasing reversal rate as expected from the analytical
predictions.

IV. STOCHASTIC ANGULAR VELOCITY REVERSAL

In many realistic scenarios, the switching between right
and left handedness may not be predictable and deterministic
as in the previous example. For example, the reversal rate
may not be constant throughout a population of particles, or
there may be random phases in the periodic behavior of the
angular reversal that desynchronize the curling events leading

052608-3



KRISTIAN STØLEVIK OLSEN PHYSICAL REVIEW E 103, 052608 (2021)

FIG. 3. Figure showing mean-squared displacements (a) and the associated effective diffusivity (b), both obtained numerically by
simulating a large number of independent active particles using the equations of motion. A nonmonotonic behavior in the effective diffusivity
is observed, stemming from a competition between the two timescales set by the maximal angular speed �0 and the reversal rate γ . Part
(c) of the figure shows example trajectories corresponding to peaks and valleys in the plot of the effective diffusivity. Parameters used are
Dφ = 0.2, �0 = 7, u0 = 1, γ = 1 unless otherwise stated in the figures.

to the nonmonotonic behavior observed in Fig. 3(b). In this
section we consider a simple stochastic version of the above
deterministic model.

The angular velocity is now assumed to take the form
�(t ) = �0κ (t ), where κ (t ) is a Kac process (also known
as a telegraph process). This process switches between +1

FIG. 4. Effective diffusivity for deterministic reversal, showing
good agreement with the prediction from the fourth order perturba-
tive expression D(4)

eff . Simulated with 3 × 105 particles by numerically
integrating the stochastic equations of motion. Maximal angular ve-
locity is set to �0 = 5/2. Shaded region indicates the expected range
of validity for the perturbative expansion. Small values of the reversal
frequency demands larger numerical simulations (with simulation
time being much larger than 2π/γ ), which is the reason why the
behavior is not investigated in the γ < 1 region.

and −1 at random times {ti} determined by a Poisson pro-
cess with rate γ . Such stochastic reversal models have been
considered in the past in the context of microswimmers
reversing their direction of motion [32]. Figure 5 shows
a typical particle trajectory with angular velocity reversal.
The mean and variance of the Kac process are known to
satisfy

〈κ (t )〉κ = e−2γ t , (22)

〈κ (t1)κ (t2)〉κ = e−2γ |t2−t1|, (23)

where γ is the reversal rate and the subscript on the angular
brackets indicates that the average is taken over realizations of
the κ process.

FIG. 5. Sample trajectory for a particle with stochastic angular
velocity reversal. Green and red points indicate initial and final
positions, respectively.
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Proceeding similarly as in the previous section, the corre-
lation function will for small values of the maximal angular
speed compared to the timescale introduced by the switching
rate take the form

C(t2, t1) = e−Dφ (t2−t1 )

[
1 − �2

0

2
Cκ (t2, t1)

]
, (24)

where we introduced the function,

Cκ (t2, t1) =
∫ t2

t1

ds2

∫ t2

t1

ds1〈κ (s1)κ (s2)〉κ . (25)

Using the mean and variance of the reversal variable κ one
can straightforwardly show that

Cκ (t2, t1) = t1 + t2
γ

+ 2

4γ 2

(
e−2γ (t2−t1 ) − 1

)
(26)

for t2 > t1.
In the region of parameter space where this perturbative

analysis holds, the particles are in the meandering regime
where curling is unlikely to take place. In this regime one
expects the correlation function to decay exponentially, and
one can extract an effective persistence timescale through the
formula,

τ−1
eff = lim

t→∞

{
− ln C(t, 0)

t

}
. (27)

After some algebra, the first order correction from the switch-
ing on the persistence time results in

τeff = 1

Dφ + �2
0

2γ

. (28)

We see that as the angular velocity vanishes one regains the
linear swimmer result τ0 = 1/Dφ . This limit is also regained
as the switching frequency diverges. The switching from left-
to right-handed angular motion, leading to meandering paths,
will reduce the persistence time when compared to that of a
linear swimmer. Figure 6(a) shows the exponential decay of
the correlation function, obtained numerically by calculating
the ensemble average 〈P̂(t ) · P̂(0)〉 over particle trajectories.

FIG. 6. Correlation function for active Brownian particles with
stochastic angular velocity reversal. (a) Perturbative regime where
Dφ = 1/5, γ = 2, �0 = 1, u0 = 1 where an exponential decay
of correlations is observed. Decay with the effective persistence
timescale τeff from Eq. (28) shown in a dashed line. The gray line
corresponds to the unperturbed persistence time. (b) Nonperturba-
tive regime where Dφ = 1/5, u0 = 1, γ = 0.5, �0 = 5, showing
oscillating correlations with an exponential envelope. Ensemble over
2 × 105 particles.

FIG. 7. Mean-squared displacements for active Brownian parti-
cles with stochastic angular velocity reversal. In contrast to the case
of deterministic reversal, the diffusivity (slopes) are here decreasing
monotonically with increasing maximal angular speed. Parameters
used: �0 = 5, γ = 1, u0 = 1, Dφ = 0.2.

The theoretical prediction agrees well with the numerics and
deviates quite significantly from the curve corresponding to
the “bare” persistence time τ0. Figure 6(b) shows the correla-
tion function obtained numerically outside of the perturbative
regime where oscillatory behavior is observed.

Equation (26) together with Eq. (24) for the correlation
function can also be used to estimate an effective diffusivity,
analogous to the calculations performed in the deterministic
case. To second order the effective diffusivity takes the form

Deff

D0
= 1 − γ 2

D2
φ + 2γ Dφ

(
�0

γ

)2

. (29)

Figure 7 shows the mean square displacement of active
particles with stochastic reversals, obtained numerically. Fig-
ure 8 shows the effective diffusivity as a function of the
switching frequency, showing good quantitative agreement
in the domain of validity and good qualitative agreement

FIG. 8. Effective diffusivity as a function of switching rate γ for
different values of angular speed �0. The colored solid lines rep-
resent numerical results obtained by performing ensemble averages
over 5 × 105 particle trajectories. The dashed lines are the theoretical
expression in Eq. (29). Parameters used: Dφ = 2, u0 = 1.
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elsewhere. As in the deterministic case, the linear swim-
mer results are obtained as the switching frequency γ

grows very large compared to the angular speed �0. Lower
values of switching frequency drastically reduces transport,
approaching the chiral active Brownian result in the γ → 0
limit.

V. DISCUSSION

The dynamics of self-propelled particles with meandering
or curling swimming paths have been studied using numeri-
cal and analytical methods. Both deterministic and stochastic
reversals of the angular velocity has been considered. In the
deterministic case, a synchronization effect lead to nonmono-
tonic behavior of the effective diffusivity as a function of
maximal angular speed. The dependence of the effective diffu-
sivity on reversal rate was studied using perturbative methods

in the meandering regime, which was verified using Langevin
dynamics simulations. In the case of stochastic angular ve-
locity reversal, the effective diffusivity displays a monotonic
dependence on maximal angular speed, in contrast to the de-
terministic case. Effective diffusivity and effective persistence
times were studied analytically and verified through simula-
tions. In particular, it was found that the effective persistence
time in the regime of swimming paths with small oscillations
decreases with maximal angular speed and increases with
reversal rate.
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