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Emergence of linear isotropic elasticity in amorphous and polycrystalline materials
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We investigate the emergence of isotropic linear elasticity in amorphous and polycrystalline solids via
extensive numerical simulations. We show that the elastic properties are correlated over a finite length scale
ξE , so that the central limit theorem dictates the emergence of continuum linear isotropic elasticity on increasing
the specimen size. The stiffness matrix of systems of finite size L > ξE is obtained, adding to that predicted
by linear isotropic elasticity a random one of spectral norm (L/ξE )−3/2 in three spatial dimensions. We further
demonstrate that the elastic length scale corresponds to that of structural correlations, which in polycrystals
reflect the typical size of the grain boundaries and length scales characterizing correlations in the stress field.
We finally demonstrate that the elastic length scale affects the decay of the anisotropic long-range correlations
of locally defined shear modulus and shear stress.
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I. INTRODUCTION

Linear isotropic elasticity (LIE) describes the mechanical
response of macroscopic molecular solids, assuming matter is
continuous and rotationally invariant. These assumptions are
not met at the microscopic scale. Indeed, the elastic properties
of small polycrystalline [1] or amorphous [2] samples exhibit
large sample-to-sample fluctuations. Similar size fluctuations
characterize the elastic response in the plastic regime, where
they have been extensively investigated (see, e.g., [3]). The
elastic response fluctuations vanish as the linear size of a sam-
ple increases and LIE becomes more accurate. Accordingly,
LIE’s validity depends on the ratio between the linear system
size L and a microscopic elastic length scale ξE . What sets
this length scale? And how does the validity of LIE depend
on L/ξE ? These questions have been separately addressed in
amorphous and polycrystalline materials.

For amorphous solids, extensive simulations have inves-
tigated the convergence of the elastic response to linear
isotropic elasticity in model Lennard-Jones-like systems.
Tanguy et al. [4] found the stress anisotropy to decrease ex-
ponentially with the system size with a decay length of the
order of 65 particle diameters, which is a possible estimation
of ξE . This length scale has been associated with the correla-
tion length of the nonaffine particle displacements induced by
external deformations, which is also, typically, of the order
of several diameters [2,4,5]. Subsequent work [6] showed
that the eigenvalues of the stiffness tensor evaluated over a
coarse-graining length scale w converge to their asymptotic
limit as a power law not complying with the central limit
theorem expectation and possibly dependent on the degree
of structural order [7]. We note, however, that these results
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may depend on the chosen definition of coarse-grained elastic
quantities [8].

For polycrystals, the question of how the validity of LIE
depends on ξE/L has not been addressed. Previous works,
indeed, mostly investigated how the elastic properties relate
to those of the single grains in the limit L/ξE � 1, e.g.,
through the Voight [9] or Reuss [10] averages or more refined
approaches [11,12]. In polycrystals, the length scale ξE is
heuristically identified with the typical grain size [13], despite
concerns about the connection between structural and elastic
length scales [14].

In this paper, we investigate the emergence of LIE in
materials with different degrees of structural disorder, from
amorphous to polycrystalline, produced via large-scale three-
dimensional numerical simulations of the cooling process of
liquid samples at different cooling rates (Sec. II). We demon-
strate in Sec. III that deviations from LIE scale with the linear
size L of the system as (L/ξE )−3/2, where ξE is an elastic cor-
relation length. This result implies that finite-size effects act as
a random perturbation to the stiffness matrix, as we discuss in
Sec. IV. We further show in Sec. V that the correlation length
ξE , which grows as the cooling rate decreases, (i) corresponds
to a structural correlation length ξS which for polycrystalline
materials coincides with the grain size and (ii) controls the
size dependence of the pressure and anisotropy of the stress
tensor. Finally, in Sec. VI we study the correlation of locally
defined stress and compliance tensors. We show that these ten-
sors are characterized by long-range anisotropic correlations,
confirming previous findings [15–18], and show that the decay
of these correlations is governed by the elastic length scale ξE .

II. NUMERICAL MODEL AND PROTOCOLS

We perform large-scale numerical simulations of monodis-
perse spherical particles of diameter σ interacting via the
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Hertzian potential, v(r) = 2
5ε(r − σ )5/2 for r < σ and v(r) =

0 otherwise. We fix the volume fraction to φ = 0.74, a value
at which the ground state is an fcc crystal [19], and prepare
solid samples by quenching equilibrated liquid configurations
to low temperature, using periodic boundary conditions. We
mimic quenches to temperatures well below the melting one
Tm by first cooling the system to Tl � 0.8Tm at rate � and
then minimizing the energy via the conjugate-gradient algo-
rithm. The cooling rate affects the ordering properties of the

resulting configuration, which is amorphous at large � and
polycrystalline at small �, which is apparent from Fig. 1. For
each cooling rate � and number of particles N , in the range of
500 to 1 million, we prepare 50 independent samples. All data
reported in the following are averaged over these samples.

III. EMERGENCE OF LINEAR ISOTROPIC ELASTICITY

According to LIE, in three dimensions, the stress-strain
relation σ̂ = Ĉε̂ is
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Here, suffixes 1–6 indicate xx, yy, zz, xy, xz, yz so that, e.g.,
c14 stands for cxxxy. The parameters λ = νE

(1+ν)(1−2ν) and μ =
G = E

2(1+ν) are the Lamé constants, and E , G, and ν are
Young’s modulus, the shear modulus, and Poisson’s ratio,
respectively. If LIE holds, the six invariants of the stress tensor
Ĉ are 2μ, with multiplicity of 5, and 3λ + 2μ, with single
multiplicity. However, in finite systems rotational invariance
is broken, and hence, Ĉ is a symmetric matrix with entries
depending on the reference frame. A frame-independent eval-
uation of the LIE’s validity [6] is thus obtained by comparing
the invariants of Ĉ with those predicted by LIE.

To evaluate the stiffness matrix, we impose on each config-
uration a strain deformation followed by energy minimization.
We perform this operation for the six deformation modes
d (εαβ ). In the linear response regime, which we have checked
occurs for strains d (εαβ ) � 10−7, this allows evaluating the
stiffness matrix cαβγ δ from the changes in the stress tensor
d (σαβ ),

cαβγ δ (N ) = d (σαβ )

d (εγ δ )
. (2)

The subsequent diagonalization of the stiffness matrix yields
six eigenvalues, which we indicate by c1 � · · · � c5 � b.

We observe the sample average of the largest eigenvalue
〈b〉 becomes asymptotically size independent, 〈b〉 − (3λ +
2μ) ∝ N−kb , with kb � 0, as illustrated in Fig. 2(a). 〈b〉
decreases with �, a finding explained considering that, at
constant volume, ordered systems have a smaller pressure, as
in Fig. 1. When the effect of pressure is filtered out by inves-
tigating 〈b〉/〈P〉, ordered systems are stiffer than disordered
ones. At each �, the five eigenvalues 〈ci〉 approach a common
limiting value 2μ as the system size increases. We find, in
particular, that c1 and c2 approach the asymptotic value from
below and c4 and c5 approach it from above, while c3 � 2μ

regardless of the system size. As an example, we illustrate the
size dependence of the eigenvalues in Fig. 2(b) for � = 10−7.
The eigenvalues approach their common asymptotic limit as

|〈ci〉 − 2μ| = 2μ

(
N

NE

)−kc

, (3)

with kc = 1/2 and NE being slightly dependent on the con-
sidered eigenvalue, as illustrated for � = 10−7 and � = 2 ×
10−8 (data scaled by a factor of 5) in Fig. 2(c).

For each cooling rate, we also compute 〈〈|〈ci〉 − 2μ|〉〉,
where 〈·〉 denotes an average over different realizations and
〈〈·〉〉 denotes averages over the different eigenvalues. Fig-
ure 2(d) shows that this quantity scales as N−1/2 for N >

NE , with NE increasing as the cooling rate decreases, as
in Fig. 2(d). We remark that NE can be identified by the
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FIG. 1. We illustrate in the right panel the dependence of the
pressure on the temperature for different cooling rates. Energy min-
imization of the T = 7 × 10−4 configuration generates solids solid
configurations with different degrees of disorder. The left panels
illustrate example radial distribution functions and snapshots of these
solids, for N = 131 072. The color of a particle identifies its local
crystal structure [20,21]: fcc (green), hpc (red), bcc (blue), icosahe-
dral (yellow), and none (gray). In this work, we investigate the elastic
properties of these solids in the linear response regime.
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FIG. 2. System size dependence (a) of the largest eigenvalue of
the stiffness matrix for different cooling rates and (b) of the other
five eigenvalues c1, . . . , c5 for � = 10−7. (c) The approach of the
average of each 〈ci〉 to the common asymptotic value 2μ on increas-
ing the system size for � = 10−7 and � = 10−8. Data are averaged
over 50 realizations for each system size and cooling rate. (d) The
average of the five eigenvalues 〈ci〉 approaches its asymptotic limit as
(NE/N )1/2. This allows us to define an elastic length scale ξE = N1/3

E

which grows as � decreases, as illustrated in the inset.

disorder parameter introduced by fluctuating elasticity theory
[22–25]. Furthermore, we notice that these findings are in
line with previous results on the dependence of the sample-
to-sample fluctuations of the elastic constants on the systems
size [26–28].

However, these results represent a significant departure
from previous findings [6] on the dependence of the stiffness
matrix’s eigenvalues on a coarse-grained length scale w. In-
deed, this previous work in two spatial dimensions found the
largest eigenvalue approaches its asymptotic limit as w−2 and
the other two approach theirs as w−0.87. By associating the
exponents with volume and surface effects [6], the scalings
should be w−3 and w−2 in three spatial dimensions, corre-
sponding to kb = 1.5 and kc = 1, in marked contrast to our
findings of 0 and 0.5, respectively.

IV. SIZE EFFECTS AS PERTURBATIONS

We rationalize our findings considering that the stress
change resulting from an applied deformation is

d (σαβ ) = d (εγ δ )cαβγ δ (N ) = ρ

N

∑
i

d (rα fβ )i, (4)

where rα and fβ are the α and β components of the distance
and the interaction force of the particles involved in bond
i, respectively, where a bond corresponds to an interparticle
interaction. Since the strain is given, each matrix element
cαβγ δ (N ) is the average of ∝N numbers. If the contributions
d (rα fβ )i are asymptotically uncorrelated, then by the central
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FIG. 3. The distribution of the tensor elements (a) c11, c22, c33

and (c) c44, c55, c66 for different system sizes at a cooling rate of
10−7. These distributions are respectively collapsed in (b) and (d).
The solid lines are Gaussian fits to the N = 65 536 data.

limit theorem each matrix element is Gaussian distributed
with average cαβγ δ , its expected value in the thermodynamic
limit, and variance scaling as N−1/2 ∝ L−d/2 in d spatial di-
mensions. Indeed, we observe in Fig. 3 that the distributions
of the matrix elements collapse on a Gaussian curve when
appropriately scaled. We remark that these collapses occur
only asymptotically, N > NE , implying the existence of short-
range spatial correlations between the contributions of the
different contacts to the stiffness matrix.

These findings imply that, for N > NE , the stiffness matrix
of a given realization is

Ĉ(N ) = Ĉ(∞) + 1√
N

R̂, (5)

where Ĉ(∞) is as in Eq. (1) and R̂ is a Hermitian ran-
dom matrix, with some given probability distribution and
norm. Finite-size effects, therefore, are equivalent to a random
perturbation of the asymptotic stiffness matrix. Matrix pertur-
bation theory [29] then implies that each eigenvalue of Ĉ(N )
differs from its asymptotic limit by a constant proportional
to the spectral norm of the perturbation N−1/2, as we have
observed.

This theoretical interpretation allows rationalizing the re-
sults of Fig. 2, where we investigate how the averages of
the sorted eigenvalues of the perturbed matrix approach their
asymptotic values. In a given realization, eigenvalue b, which
is the largest, equals b(N ) = b∞ + x, where x is a random
number of zero mean and standard deviation ∝N . The av-
erage over different configurations is therefore 〈b〉(N ) = b∞:
The average has no size dependence, i.e., kb = 0, consistent
with our observation in Fig. 1(a). The other five eigenvalues
coincide in the thermodynamic limit. At any finite N , noise
splits their values, and the eigenvalues equal ci = c∞ + xi,
i = 1, 5, where xi are random variables of zero mean and
standard deviation ∝ N−1/2. Since we sort the eigenvalues,
xi < xi+1, we have |〈ci〉 − c∞| ∝ N−kc , with kc = 1/2, for
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i 	= 3. Conversely, for i = 3 we predict 〈ci〉 = c∞. All of these
predictions are in agreement with our findings in Fig. 2.

In two dimensions, where the stiffness matrix has three
eigenvalues, we predict kb = 0 and kc = 1/2 for i = 1, 2. This
prediction for kc is in rough agreement with previous results
[6], which reported 2kc = 0.87.

V. MECHANICAL AND STRUCTURAL LENGTH SCALES

A. Elastic length scale

The above results imply that the emergence of LIE is
characterized by a typical size NE , with which we associate
a length scale ξE := N1/d

E . For N > NE , the probability distri-
butions of different matrix elements are Gaussian, and Eq. (3)
holds. This length scale measures the spatial correlation of dif-
ferent contacts’ contributions to the stiffness matrix d (rα fβ )i.

Here, we extract this length scale via the linear regression
fits shown in Fig. 2(d). The length scale ξE grows as the cool-
ing rate � decreases and the system becomes more ordered. It
varies from ξE � 4σ at � = 10−7 to ξE � 15σ at � = 10−8.

B. Structural length scale

In polycrystalline materials that are an agglomerate of ran-
domly oriented grains, ξE is expected to correspond to the
typical grain size. In amorphous materials, ξE may reflect a
structural length scale of difficult definition. Since the correla-
tion between mechanical and geometrical properties of solids
is debated [14], it is also possible that ξE does not have a
structural interpretation.

Here, we investigate the correlation between the elastic
and structural properties of our systems by associating with
each particle its Steinhardt [30] order parameters, qlm(i) =

1
Nb(i)

∑
Ylm(r̂ij), where the sum runs over all Nb neighbors

of particle i and Ylm(r̂ij) = Ylm(θi j, ψi j ) are the spherical
harmonics. We identify the neighbors through a Voronoi
tessellation. The scalar product si j = ∑6

m=−6 q6m(i)q∗
6m( j)

measures the correlation between the structures surrounding
particles i and j [31]. Hence, the decay of the correlation
function

S(r) =
∑

i

∑
j si jδ(r − ri j )∑

i

∑
j δ(r − ri j )

(6)

allows us to estimate a structural correlation length.
We find the correlation function S(r) to decay expo-

nentially, S(r) = exp(−r/ξS ), with a characteristic structural
length scale ξS depending on the cooling rate, as shown in
Fig. 4(a). Deviations from the exponential behavior result
from finite-size effects. The elastic length scale ξE and the
structural length scale ξS turn out to be proportional, as illus-
trated in Fig. 4(b). This result demonstrates a close connection
between structural and elastic properties, equally valid in our
polycrystalline and disordered systems.

C. Stress length scale

Microscopically, ξE is the correlation length between the
contributions of different interparticle contacts to the stiffness
matrix d (rα fβ )i, Eq. (4). One may, therefore, wonder whether
the contributions (rα fβ )i of the contacts to the stress are sim-
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FIG. 4. (a) Structural correlation function, Eq. (6), for different
cooling rates and N = 524 288; for � = 10−8, we also consider a
larger N value, as indicated. The exponential decay of the corre-
lation functions defines a structural length scale ξS . (b) ξS and the
length scales ξP and ξR associated with the pressure and the stress
anisotropy, respectively, are proportional to ξE .

ilarly correlated. We investigate this issue while focusing on
the dependence of the average pressure 〈P〉 on the system size.
Figure 5(a) illustrates that the average pressure exponentially
approaches its asymptotic value as N increases. This allows
defining a typical size NP and hence a typical pressure length
scale ξP := N1/d

P , which we show is proportional to ξE in
Fig. 4(b). We remark here that, for � = 10−8, the pressure
dependence on N is too weak to allow for a reliable estimation
of ξP.

Furthermore, we evaluate the degree of anisotropy of the
stress tensor through the parameter R = √

2J2/P, where J2 is
the second invariant of the deviatoric stress. Regardless of the
cooling rate, 〈R〉 asymptotically scales as (N/NR)−1/2, as we
illustrate in Fig. 5(b). The corresponding length scale ξR :=
N1/d

R is also proportional to ξE , as we illustrate in Fig. 4(b).

VI. LOCAL ELASTICITY

We now consider the possibility of extracting the elastic
length scale via the direct study of the local elastic prop-
erties, rather than resorting to finite-size investigations. To
this end, we associate with each particle stress and elasticity
tensors. We define the stress tensor of particle i as σ

(i)
αβ =

ρ

2

∑(i)
j (rα fβ ) j , where the sum is over all interaction forces
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FIG. 5. (a) The average pressure approaches a limiting value as
the system size increases. The size dependence is well described
by an exponential law, P = P0 + �Pe−N/NP (lines). (b) The averaged
stress anisotropy parameters exponentially scale as (N/NR)−1/2.
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using their standard deviation. (b) As in (a), but for the correlation
function of the component c44 of the particle-level stiffness matrix.

involving particle i. We define a particle-level stiffness tensor
c(i)
αβγ δ as dσ

(i)
αβ/d (εγ δ ). These two definitions and, in particular,

the adoption of a uniform strain ensure that the macroscopic
stress and stiffness tensors emerge as the average of the local
ones.

We illustrate in Fig. 6 spherical maps of the correlations
functions of the local shear stress, 〈σxy(r)σxy(0)〉 − 〈σxy〉2

[Fig. 6(a)], and of c44, which we will refer to as the local shear
modulus μ, 〈μ(r)μ(0)〉 − 〈μ〉2 [Fig. 6(b)], at r � 1.5 for an
N = 131 072 particle system in a disordered state, as obtained
using the fastest of our cooling rates. The standard deviation
of the correlations at the considered radial distance is used
as a normalization factor. In accordance with previous results
[15–18] this investigation evidences Eshelby-like quadrupolar
anisotropic correlations both in the stress and in the local shear
modulus.

We investigate the radial dependence of the observed
stress correlations through [32] an angle averaged correla-
tion function, Cσxy (r) = − 1

2π

∫ π

0 dφ
∫ 2π

0 dθ [〈σxy(r)σxy(0)〉 −
〈σxy〉2]. The correlation function Cμ(r) of the local shear mod-
ulus is similarly defined. Figure 7(a) illustrates that Cσxy (r) ∝
r−3, after a transient, regardless of the cooling rate. A similar
result holds for the local shear modulus’s correlation function,
as illustrated in Fig. 7(b). These results confirm the existence
of long-range anisotropic correlations [15–18] in the stress
and stiffness fields of amorphous materials.

When the correlation functions are plotted versus the radial
distance scaled by the elastic length scale, as in Figs. 7(c) and
7(d), data for different cooling rates collapse in the asymptotic
regime, within our numerical uncertainty. This result indi-
cates that the correlation functions asymptotically decay as
(r/ξe)−3, demonstrating how the elastic length scale can be
evaluated from the analysis of locally defined elastic quanti-
ties.

We finally remark that self-averaging, the scaling of the
fluctuations of the elastic properties with N−1/2 (Fig. 2), holds
as these long-range correlations are anisotropic in space. Pos-
itive and negative contributions cancel when evaluating the
fluctuations via a volume integral of the correlation function.

VII. CONCLUSIONS

Our results establish that the emergence of isotropic linear
elasticity is governed by the central limit theorem, whose
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FIG. 7. Correlation function of the particle defined σxy for differ-
ent cooling rates, plotted as a function (a) of r and (c) of r/ξe. (b) and
(d) Analogous results for the correlation function of the particle de-
fined c4, respectively. The correlation functions are averaged taking
into consideration the quadrupolar symmetry of the fields. Symbols
are as in Fig. 5.

predictions are verified in systems larger than a typical elastic
length scale. The existence of a finite correlation length in
the elastic properties is in general agreement, e.g., with the
assumptions of fluctuating elasticity theory [22–24], as well
as with the size dependence of the shear modulus reported in
previous works [26–28,33]. The degree of disorder does not
qualitatively affects this scenario but influences the value of
the elastic length scales. Specifically, the elastic length scale
grows with the degree of ordering and can be identified with
the size of the grain boundaries in polycrystalline materials.
We have further demonstrated that the elastic length scale,
which we have derived via a finite-size scaling investigation,
can alternatively be measured via the study of the spatial
correlation of locally defined elastic properties.

The finite-size scaling and real space investigations indi-
cate that the correlation of the elastic properties reflect those
of the frozen-in stress. This is a result of practical significance,
as correlations in the stress are easier to investigate than cor-
relations in the local elastic constants.

We suspect that the structural correlation function we have
introduced may be inappropriate in the presence of poly-
dispersity or nonradially symmetric interaction potentials. In
these cases it is not apparent which structural correlation
function relates to the elastic response. Possibly, in these cases
structural correlations could be more meaningfully indirectly
evaluated by studying the correlation of the elastic properties.
This appears to be a promising direction to extract a static
length scale in disordered materials whose relevance to, e.g.,
the glass transition problem [34] or plastic response [3] needs
to be systematically explored.
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In this regard, it is interesting to contrast our results with
size-scaling studies of the fluctuations of the shear modu-
lus in systems whose crystallization is severely inhibited.
These studies considered systems first thermalized at a par-
ent temperature Tp and then brought to an energy minimal
configuration. The parent temperature, therefore, qualitatively
plays the role of our cooling rate. While we have observed that
the elastic length scale grows as a system is better annealed,
correlated to the size of the grain boundaries, these previous
studies have conversely found it to decrease [25,35]. Recent
results [25,36,37] have also shown that, in attractive systems,
the elastic length scale is affected by the range of the attractive

interaction. Hence, depending on the features of the underly-
ing energy landscape, annealing might increase or decrease
the elastic length scale above which isotropic linear elasticity
sets in.
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