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Stationary distributions of propelled particles as a system with quenched disorder
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This article is the exploration of the viewpoint within which propelled particles in a steady state are regarded
as a system with quenched disorder. The analogy is exact when the rate of the drift orientation vanishes and the
linear potential, representing the drift, becomes part of an external potential, resulting in the effective potential
ueff . The stationary distribution is then calculated as a disorder-averaged quantity by considering all contributing
drift orientations. To extend this viewpoint to the case when a drift orientation evolves in time, we reformulate
the relevant Fokker-Planck equation as a self-consistent relation. One interesting aspect of this formulation is that
it is represented in terms of the Boltzmann factor e−βueff . In the case of a run-and-tumble model, the formulation
reveals an effective interaction between particles.
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I. INTRODUCTION

Within the two standard models of propelled motion, the
run-and-tumble (RTP) and active Brownian particle (ABP)
model, particles are subject to a drift of constant magnitude
v0 but randomized orientation. The time evolution of the drift
is what prevents a system from attaining an equilibrium. The
evolution of the orientation in each model is governed by
a different stochastic process. In the RTP model, the new
direction is assigned sporadically at intervals drawn from
Poisson distribution. A new orientation can take on any value
with equal probability. In the ABP model, the orientation
undergoes diffusion. The rate of orientation change in the RTP
model is α, and the angular diffusion in the ABP model is Dr .

Despite the apparent simplicity of an ideal-gas model of
propelled particles, there is no available analytical solution
for stationary distributions. One noted exception is the RTP
model in one dimension with drift limited to two values,
v = ±v0 [1–7]. Yet even a simple extension to three drifts
v = 0,±v0 leads to considerable increase in complexity [8].
(The third model of propelled motion is the active Ornstein
Uhlenbeck particles, AOUP [9,10]; however, in this work we
exclusively focus on the RTP and ABP models.)

In this work, we take a different point of view to charac-
terize stationary distributions of propelled particles. We start
by considering a stationary state of propelled particles at ex-
actly α = Dr = 0. Under these conditions, the unit vector uv ,
representing orientation of a drift, stops evolving in time and
as a consequence the system attains equilibrium. The result
is a mixture of particles with different drift orientations. And
because the drift orientations are randomly distributed, the
situation corresponds to a system with quenched disorder. The
stationary distribution is a disorder-averaged distribution that
takes into account all drift orientations.

The resulting distribution for the condition α = Dr = 0
represents the largest deviation from the distribution for the
same system but for passive Brownian particles. Since in the
limit α → ∞ and/or Dr → ∞ the distribution converges to

that of passive particles, this limit is generally regarded as
representing an equilibrium. The suggestion, therefore, that
the opposite limit α, Dr → 0 corresponds to an equilibrium
appears to contradict this view. If we look into the entropy
production � that is used as a quantification of distance
from the equilibrium, we find that � vanishes as α, Dr → 0,
supporting the claim that this limit represents an equilib-
rium. The opposite limit α → ∞ is found to yield the largest
possible value of �, indicating the largest deviations from
equilibrium—a surprising result given that the distribution in
that limit is the same as that for passive Brownian particles.

The central quantity that emerges in analyzing the limit
α, Dr → 0 is the effective external potential, which is the
original external potential uext plus the linear potential rep-
resenting a drift, ueff = uext + [uv · r]v0/D. One way to go
beyond the decoupled limit is to expand the stationary
distribution perturbatively as n ≈ n0 + αn1. This approach,
however, leads to a rather complex expression for n1 without
offering valuable insights. Instead, we reformulate the station-
ary Fokker-Planck equation (FP) as a self-consistent relation
(SC). The central quantity of the SC formulation is the Boltz-
mann factor e−βueff . Within the SC formulation, propelled
particles appear as if they were coupled, but the effective
attraction has the “chemical” origin and arises when particles
of different drift orientations are regarded as different species
that undergo a continuous conversion. The SC formulation
is used as a basis for numerical computation of stationary
distributions, an alternative procedure to dynamic simulations.

This work is organized as follows. In Sec. II we intro-
duce a general FP equation of propelled particles for an
arbitrary dimension d . In Sec. III we consider exact distribu-
tions for a decoupled condition α = Dr = 0, which represents
the system with quenched disorder. In Sec. IV we develop
the self-consistent framework for solving the stationary FP
equation. The goal of such a framework is to gain insights
as well as to look for alternative numerical schemes other
than dynamic simulations. In Sec. V we analyze the entropy
production of a two-state RTP model.
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II. THEORETICAL FRAMEWORK

The motion of an ideal gas of propelled particles in a
general d-dimensional space, with both RTP and ABP type of
motion, is governed by the following Fokker-Planck equation
(FP):

∂n

∂t
= D∇2n − v0uv · ∇n + βD∇ · [n∇uext]

−α

[
n − 1

�v

∫
d�v n

]
+ DrL̂Sn, (1)

where the distribution n ≡ n(r, uv, t ) is the function of the
position r, drift orientation uv (uv is a unit vector), and time
t , and is normalized to unity as

∫
dr n(r, uv, t ) = 1. The first

line in Eq. (1) governs the evolution of particle positions and
involves standard diffusion, drift of constant magnitude v0,
and the interaction with external forces due to a conservative
potential uext (r).

The second line in Eq. (1) governs the evolution of the
unit vector uv , which determines the orientation of a drift.
The time evolution of uv is what prevents the system from
attaining equilibrium. The first term gives rise to the RTP type
of motion, where �v = ∫

d�v is the area of a unit sphere
in a given dimension. The RTP motion is represented as a
“reaction” process where particles of different orientations are
continuously created and destroyed yet their total number is
conserved. The ABP motion is represented as a diffusion of a
unit vector uv on a surface of a sphere, and the operator L̂S is
a spherical Laplacian operator on the (d − 1) sphere.

For the explicit dimension d = 2 the second line in Eq. (1)
becomes

∂n

∂t
= −∇ · j − α

[
n − 1

2π

∫ 2π

0
dθv n

]
+ Dr

∂2n

∂θ2
v

, (2)

where we introduce the flux

j(r, uv ) = −D∇n + v0uvn − βD∇ · [n∇uext].

Because Eqs. (1) and (2) involve creation-destruction of
particles with different orientations, it is not immediately clear
if the total number of particles is conserved. To demonstrate
that this is the case, we integrate Eq. (2) over the space domain
within which the system is confined,

∂N

∂t
= −α

[
N − 1

�v

∫
d�v N

]
+ Dr

∂2N

∂θ2
v

, (3)

where we define the number of particles with particular ori-
entation as N (uv ) = ∫

dr n(r, uv ). Note that
∫

dr ∇ · j = 0,
since particles do not enter or leave the prescribed domain.
Finally, if we integrate Eq. (3) over all orientations and define
N̄ = 1

�v

∫
d�v N (uv ), we have

∂N̄

∂t
= −α[N̄ − N̄] + Dr

[ ∂N

∂θv

]2π

0
= 0, (4)

where the second term cancels out as a result of periodic
boundary conditions. The total number of particles, therefore,
is conserved.

At this point we introduce the “effective” external poten-
tial, defined as

βueff = βuext − v0

D
[uv · r], (5)

which is the external potential plus the linear potential for
representing a drift. As we limit our analysis to stationary
distributions, the time-independent FP equation of interest is

0 = D∇2n + βD∇ · [n∇ueff ]

− α

[
n − 1

�v

∫
d�v n

]
+ DrL̂Sn. (6)

The stationary distribution that accounts for all orientations is
defined as

n̄(r) = 1

�v

∫
d�v n(r, uv ),

where the bar indicates the averaging procedure.

III. EXACT TREATMENT IN A DECOUPLED LIMIT,
α = 0 AND Dr = 0

In this section we obtain distributions n for a decoupled
condition given by α = Dr = 0. Because under such circum-
stances uv stops to evolve in time, the system is in equilibrium,
but the distribution of drift orientations introduces quenched
disorder.

By setting both α and Dr to zero, Eq. (6) reduces to

0 = D∇2n0 + βD∇ · [n0∇ueff ]. (7)

The result is the standard diffusion equation for a particle in
the external potential ueff . The solution is proportional to the
Boltzmann weight,

n0(r, uv ) ∝ e−βuext e[uv ·r]v0/D.

The subscript “0” is used to indicate that the solution is true
only for the case α = Dr = 0. The actual stationary distri-
bution is obtained by averaging over all possible drifts uv

uniformly distributed over all orientations and given by

n̄0(r) ∝
∫

d�v e−βuext+[r·uv ]v0/D. (8)

Quenched disorder is the inherent feature of the system in the
decoupled limit.

If uext depends on particle positions only, then the Boltz-
mann factor can be separated and the above equation can be
written as

n̄0(r) ∝ e−βuext (r)
∫

d�v e[r·uv ]v0/D.

All orientations in the above formulation are equally likely,
and there is no bias for any particular direction. But if the
external potential contributes to particle orientations, uext ≡
uext (r, uv ), a case that might arise for particles with dipole
moment, the orientation would no longer be distributed uni-
formly and we would have

n̄0(r) ∝
∫

d�v e−βuext (r,uv )e[r·uv ]v0/D.

Such orientation bias would reduce quenched disorder. In this
work, however, we limit our interest to the position-dependent
potentials.
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FIG. 1. Distributions of propelled particles in the potential uext =
Kr2/2 obtained from dynamic simulations for d = 2 (dashed black
lines). λk = √

2/βK is the trap size, and the results are for v0λk/D =
5. The solid red line corresponds to the expression in (10). The results
in (a) are for RTP and those in (b) for ABP type of motion.

A. Harmonic trap

We next consider a number of specific potentials. For a har-
monic potential βuext = 1

2 Kr2, ueff = 1
2 Kr2 − [uv · r]v0/D

and the Boltzmann distribution representing the decoupled
limit is

n0(r, uv ) ∝ e− 1
2 βKr2

e[uv ·r]v0/D. (9)

The disorder-averaged distribution is obtained using Eq. (8).
For dimension d = 2 we have d�v = dθv , leading to

n̄0(r) ∝ e− 1
2 βKr2

∫ 2π

0
dθv er cos θvv0/D.

After evaluating the integral we find

n̄0(r) =
[(

βK

2π

)
e− 1

2 βKr2

][
e
− v2

0
2D2βK I0

(v0r

D

)]
. (10)

The two terms in square brackets indicate different con-
tributions. The first is the usual Gaussian distribution for
passive particles in a harmonic potential. The second term,
represented by the modified Bessel function I0(x), is the con-
tribution due to propelled motion. This term diverges far away
from the center of the trap as I0(x) ≈ ex/

√
2πx and gives rise

to particle deposition at the border of a trap [11].
For dimension d = 3, the drift orientation is uniformly

distributed on a unit sphere with d�v = sin θvdθvdφv . The
disorder-averaged distribution obtained using Eq. (8) is

n̄0(r) ∝ e− 1
2 βKr2

∫ 2π

0
dφv

∫ π

0
dθv sin θv er cos θvv0/D

and evaluates to

n̄0(r) =
[(

βK

2π

)3/2

e− 1
2 βKr2

][
e
− v2

0
2D2βK

D

v0r
sinh

(v0r

D

)]
.

(11)

The result is similar to that in Eq. (10). The deposition of
particles predicted by (10) and (11) correspond to the optimal
deposition. Any finite value of α > 0 or Dr > 0 would make
this deposition less extreme. To see how the true stationary
distributions n̄(r) evolve toward n̄0(r) as α or Dr tend to zero,
in Fig. 1 we plot the distributions obtained from dynamic
simulations for both the RTP and ABP type of motion for par-
ticles trapped in the harmonic potential and for the dimension

d = 2. The results are compared to the limiting functional
form in Eq. (10).

B. Particles in a confinement with 1D geometry

If a confining potential has one-dimensional (1D) geome-
try, the system is effectively 1D. The simplest example is for
particles trapped between two parallel walls. Since uext = 0,
the effective potential is

βueff (x) = −vxx

D
,

where x axis is perpendicular to the walls.
The normalized Boltzmann distribution for this effective

potential, representing the decoupled limit, is

n0(x, vx ) = 1

2h

vxh

D

e
vx x
D

sinh
(

vxh
D

) . (12)

For the dimension d = 2 the disorder-averaged distribution is
given by

n̄0(x) = 1

2π

∫ 2π

0
dθv n0(x, v0 cos θv ). (13)

Using d cos θv

dθv
= − sin θv and vx = v0 cos θv , we obtain

dθv = − dvx√
v2

0 − v2
x

,

and the integral in Eq. (12) can be rewritten as

n̄0(x) = 1

π

∫ v0

−v0

dvx
n0(x, vx )√
v2

0 − v2
x

. (14)

Or more generally, we can write

n̄0(x) =
∫ v0

−v0

dv P(v)n0(x, v), (15)

where we use v ≡ vx, and for d = 2 the distribution of drifts
is

P(v) = 1

π

1√
v2

0 − v2
. (16)

Even if the drift orientations are uniformly distributed in the
variable θv , when considering the variable vx, there is a con-
siderable inhomogeneity with peaks at v = ±v0.

For the dimension d = 3 the disorder-averaged distribution
is given by

n̄0(x) = 1

4π

∫ π

0
dθv

∫ 2π

0
dφv sin θv n0(x, v0 cos θv ) (17)

and evaluates to (see Appendix A for the derivation)

n̄0(x) = 1

2v0

∫ v0

−v0

dv n0(x, v).

Comparing to Eq. (15), this implies that P(v) is uniform on
the interval −v0 � v � v0,

P(v) = 1

2v0
. (18)
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FIG. 2. Distributions of propelled particles between two parallel
walls separated by 2h obtained from dynamic simulations for d = 2
(dashed black lines). The results are for v0h/D = 10. The solid red
line corresponds to the distribution n̄0(x) in the quenched disorder
limit. The results in (a) are for RTP motion and (b) for ABP motion.

The expressions in (16) and (18) show strong dependence
of P(v) on the system dimensionality and suggest that the
particle deposition at the walls is larger for d = 2 than that
for d = 3.

The next question is, can the integral in (15) be evaluated
exactly. Even for uniform distribution P(v), representing the
system in d = 3, the resulting analytical expression is rather
complex. It involves Hurwitz-Lerch ζ and hypergeometric
functions. From a practical point of view, it is more convenient
to evaluate Eq. (15) numerically for both d = 2 and d = 3.

In Fig. 2 we show an analogous plot to that in 1 but for
particles between two parallel walls and decreasing values of
α and Dr in order to demonstrate convergence of the distri-
butions to n̄0. The distribution n̄0 correctly delimits the range
within which the distributions n evolve.

A different example of a potential with 1D geometry is
the harmonic potential uext = Kx2

2 . The normalized Boltzmann
distribution corresponding to the decoupled limit in this case
is

n0(x, v) =
√

βK

2π
e−v2/2βKD2

e
vx
D − βKx2

2 ,

and the disorder-averaged distribution is obtained from
Eq. (15) for an appropriate P(v). For d = 2 the integral must
be evaluated numerically, and for d = 3 it evaluates to the
following expression:

n̄0(x) = D

2v0λ
2
k

(
erf

[
x

λk
+ 1

2

v0λk

D

]
− erf

[
x

λk
− 1

2

v0λk

D

])
,

(19)
where erf(x) is the error function and λk = √

2/βK . Unlike
the results in (10) and (11), the simple separation between the
passive and propelled motion is not possible.

In Fig. 3 we plot the distributions n̄(x) for the potential
uext = Kx2

2 for d = 2 for decreasing values of α and Dr , in
analogy to Figs. 1 and 2. Once again, the distributions n̄0

correctly delimit the range within which the true distributions
for finite α or Dr can be found.

Earlier we briefly discussed the dependence of P(v) on
dimensionality when comparing P(v) for d = 2 and d = 3
in (16) and (18) and the implication of those differences on
the accumulation of particles at the trap borders. Below we
provide a general expression of P(v), derived in Appendix A,
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FIG. 3. Distributions of propelled particles in the external po-
tential uext = Kx2/2 obtained from dynamic simulations for d = 2
(dashed black lines). λk = √

2/βK is the trap size and the results are
for v0λk/D = 5. The solid red line corresponds to the distribution
n̄0(x). The results in (a) are for RTP and (b) for ABP motion.

for a general dimension d > 1,

P(v) = 1

v0
√

π

�[d/2]

�[(d − 1)/2]

(
1 − v2

v2
0

)(d−3)/2

, if d > 1,

(20)

with P(v) normalized and defined on the interval −v0 � v �
v0. For d = 1 the distribution is represented in terms of δ

functions, as drifts in this dimension are limited to two values
v = ±v0 [7],

P(v) = 1
2 [δ(v + v0) + δ(v − v0)], if d = 1. (21)

Clearly, the distribution n̄0 calculated using (15) depends on
P(v). For large d the distribution P(v) approaches a Gaussian
functional form

P(v) ≈
√

d

2πv2
0

e− d
2 (v/v0 )2

,

and in the limit d → ∞, P(v) → δ(v), and the system loses
its quenched disorder—all particles have zero drift, and the
system becomes identical with that for passive Brownian par-
ticles.

In Fig. 4 we plot the distributions n̄0(x) for two different
external traps, uext = Kx2

2 , and for confinement between two
walls, for P(v) in (20) and (21), corresponding to different d .
The plots demonstrate strong dependence on d , in particular,
they show increased deposition of particles around the trap
borders as dimensionality goes down.

A similar dimensionality dependence is found in the oppo-
site limit of large α and/or Dr , accurately represented by the
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FIG. 4. Distributions n̄0(x) for an external potential (a) uext =
Kx2/2 and (b) for particles between two walls, for different sys-
tem dimensionality d . The distributions are for v0λk/D = 5 and
v0h/D = 10.
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concept of effective temperature [12,13,14] valid for d > 1,

Teff

T
= 1 + 1

d (d − 1)

v2
0

D(α + Dr )
, (22)

where increased dimensionality d brings Teff closer to ther-
modynamic temperature T . In the limit d → ∞, Teff = T .
The reason for this behavior is rather simple. The constant
velocity v0 and the associated kinetic energy is distributed into
d components. For increased dimensionality, the extra kinetic
energy that goes to each degree of freedom is reduced, giving
rise to the observed cooling effect.

IV. SELF-CONSISTENT FORMULATION

The next step is to try to expand the distribution n around
the decoupled limit as n ≈ n0 + αn1. However, such a sys-
tematic expansion yields expressions which are complex and
not very insightful. Instead, we reformulate the stationary
FP equation as a self-consistent relation (SC). The resulting
formulation yields interesting insights, provides a basis for an
alternative computation of distributions, and can be used for
obtaining perturbative expansion of n.

A. RTP particles

To keep things simple, we consider a system with 1D
geometry. For the RTP motion the stationary FP equation in
1D can be written as

0 = Dn′′ + βD[u′
eff n]′ + α(n̄ − n),

where the effective potential incorporates the drift as βueff =
βuext − v

D x, and the disorder-averaged distribution is n̄ =∫
dv P(v)n(n, x). The same equation can be written as

0 = n′′ + β[u′
eff n]′ + s, (23)

where

s = α

D
(n̄ − n) (24)

plays the role of the source function. Note that the source
function satisfies

∫
dx s(x, v) = 0 and

∫
dv P(v)s(x, v) = 0.

By introducing the source function, Eq. (6) can be regarded
as an inhomogeneous second-order differential equation. The
solution then can be obtained using the method of variation
of parameters. To proceed, we first need solutions for the
homogenous equation. The two possible solutions are

y0 = e−βueff , y1 = y0Y0, (25)

where

Y0 =
∫

dx eβueff . (26)

The first solution corresponds to the Boltzmann distribution.
The second solution is normally rejected on physical grounds
due to its nonvanishing local flux, Dρ ′ + u′

effρ 
= 0, when
dealing with passive particles. As we will see, this solution
becomes relevant for describing propelled particles.

The solution of the second-order inhomogeneous equation
can be expressed as

n = Ay0 + By1 +
[

y0

∫
dx

y1

w
s − y1

∫
dx

y0

w
s

]
, (27)

where A and B are undefined coefficients, and w = y0y′
1 −

y′
0y1 is the Wronskian that for the present case evaluates

as w = y0. The first two terms constitute a complementary
solution, and the last term is the particular solution. Since the
second term does not produce a vanishing flux, B is set to zero.
After using (25) and substituting (24) for the source function,
the solution transforms into the desired SC relation,

n=Ae−βueff + αe−βueff

D

[ ∫
dx (n̄ − n)Y0−Y0

∫
dx (n̄ − n)

]
,

(28)

where A is determined from the condition of normalization∫
L dx n(x, v) = 1 on the domain L prescribed by a physical

problem. Note that for α = 0, we recover n = n0.
The SC relation in (28) reveals a certain mean-field char-

acter of the formulation [15] and the presence of the effective
interactions between particles—particles appear to be “at-
tracted” toward the average distribution n̄. The origin of this
coupling between particles, however, is different from that
in a system of truly interacting particles. It is caused by the
“reaction” part of the FP equation, as particles of different
drift, regarded as belonging to different species, exchange
their identity.

If the RTP particles are confined between two parallel
walls, then βueff = − vx

D and

Y0 = −D

v
e− vx

D ,

and the SC relation becomes

n = An0 + α

∫ x

−h
dx′

[
1 − e

v
D (x−x′ )

v

]
(n̄ − n). (29)

The above SC relation is next used as a basis for nu-
merical computation of the distributions n based on iterative
procedure starting with n0. For α � 0.5 a mixing parameter
is used, 0 < γ < 1, for generating the next distribution as
nnew ≡ (1 − γ )nold + γ nnew. For the bin size �x = 0.01 the
convergence is attained within 10–20 iterations (amounting to
a few seconds of the CPU time, a significant improvement
over dynamic simulations).

Figure 5 plots the numerically calculated stationary dis-
tributions for d = 2 [using the distribution P(v) in (16)].
The distributions are in perfect correspondence with those
obtained from dynamic simulations.

The SC formulation in (28), or that for particles between
walls in (29), can also be used for constructing subsequent
terms within the perturbative approach, n = n0 + αn1 + · · · ,
by inserting n0 on the right-hand side of those equations. If
considering Eq. (29) we get

n1 =
∫ x

−h
dx′

[
1 − e

v
D (x−x′ )

v

]
(n̄0 − n0) + Cn0, (30)

where the constant C is such as to ensure the condition∫ h
−h dx n1(x, v) = 0, since the perturbation n1 cannot create or

destroy particles, only redistribute them in the interval −h �
x � h. We recall that n0(x, v) for the system between walls
is given in Eq. (13); however, inserting this expression into
(30) does not lead to analytical results, and the perturbative
formulation itself does not shed any additional light.
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FIG. 5. Distributions n̄(x) obtained numerically using the SC
formulation of the FP equation for the RTP particles between two
walls for d = 2 and v0h/D = 10. Circles correspond to simulation
data points.

We next consider a harmonic potential, in which case
βueff = − vx

D + βKx2

2 ,

Y0 = λk
√

π

2
e−(

vλk
2D )2

erfi
[ x

λk
− 1

2

vλk

D

]
,

where erfi(x) = −ierf(ix) is the imaginary error function, and
the SC equation expressed in terms of definite integrals is

neβueff = A + α

D

[ ∫ x

−∞
dx′ (n̄ − n)Y0 − Y0

∫ x

−∞
dx′ (n̄ − n)

]
.

(31)
For numerical integration the limits x = ±∞ are substituted
by x = ±xc, where the cutoff distance xc is large enough so
that n(±xc, v) ≈ 0. Numerically calculated distributions for
d = 2 are shown in Fig. 6. Again, the distributions are in
perfect correspondence with those obtained from dynamic
simulations.

B. ABP particles

A self-consistent relation could similarly be established for
the ABP type of motion. Considering the system dimension

-4 -2 0 2 4
x/λk

0

0.1

0.2

λ k
n(
x)

αλk/vo=0
αλk/vo=0.1
αλk/vo=0.2

RTP

FIG. 6. Distributions n̄(x) obtained numerically using the SC
formulation for the RTP particles in the potential uext = Kx2/2 for
d = 2 and v0λk/D = 5. Circles correspond to simulation data points.

-1 0 1
x/h

0

1

2

3

hn
(x
)

Drh/vo=1
Drh/vo=0.5
Drh/vo=0.1
AP

(a)

-4 -2 0 2 4
x/λk

0

0.1

0.2

0.3

λ k
n(
x)

(b)

ABP
Drλk/vo=1
Drλk/vo=0.5
Drλk/vo=0.1

FIG. 7. Distributions n̄(x) obtained numerically from the SC for-
mulation for the ABP particles for d = 2 (a) between two walls
with v0h/D = 10 and (b) in the harmonic potential with v0λk/D = 5.
Circles correspond to simulation data points.

d = 2 and a system with 1D geometry, the stationary FP
equation that describes this situation, obtained using Eq. (2)
with α = 0 but for finite Dr , is

0 = n′′ + βD[u′
eff n]′ + Dr

D

∂2n

∂θ2
v

, (32)

where n ≡ n(x, θv ). If the source term is defined as

s = Dr

D

∂2n

∂θ2
v

,

we arrive at a similar form to that in (23) and can follow
up with the same procedure. In the case of ABP motion, the
expressions are more economic if the distributions are defined
in terms of θv rather than v ≡ vx.

The SC relation that follows is

n = Ae−βueff + Dre−βueff

D

[ ∫
dx Y0

∂2n

∂θ2
v

− Y0

∫
dx

∂2n

∂θ2
v

]
(33)

and can next be used as a basis for calculating stationary
distributions. The results are shown in Fig. 7. Unlike for the
RTP particles, the numerical method is less robust and a larger
number of iterations are required to reach convergence.

V. WHAT IS THE TRUE EQUILIBRIUM?

There is an interesting consequence of treating the system
at α = Dr = 0 as a reference point and considering deviations
from it as a “distance” from equilibrium. According to this
viewpoint, the system at α → ∞ or Dr → ∞, represents the
largest deviation—the conclusion that runs counter to the
more accepted view that regards as a reference state (and
equilibrium) the limit α → ∞ or Dr → ∞.

One way to resolve this controversy, of which reference
point corresponds to equilibrium, is to resort to the arbitra-
tion of the entropy production, considered as a sophisticated
way of quantifying the degree of violation of detailed-balance
condition. We will not make calculations for the entropy pro-
duction for our system. Instead we use the exact expression
for the RTP system in d = 1, where for P(v) = 1

2 [δ(v − v0) +
δ(v + v0)], found in Ref. [7] in Eq. (17) and given by

� = α
hk cosh hk − sinh hk

αD
v2

0
hk cosh hk + sinh hk

, (34)
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where k = v0
D

√
1 + αD

v2
0

. In true equilibrium, � = 0. The larger

the value of �, the larger the deviation from equilibrium. If we
plot � as a function of α for fixed D and v0 we discover that
�(α = 0) = 0, and as α increases � grows monotonically

and in the limit α → ∞ we have �(α → ∞) = v2
0

D . Such a
result appears to vindicate our viewpoint that the “correct”
equilibrium corresponds to the decoupled limit, not the other
way around. The reason for this surprising result is that even
if the distribution n becomes flat and the transport due to
diffusion vanishes, a convective type of motion is still there.

VI. CONCLUSION

This work starts by recognizing that at the precise con-
dition α = Dr = 0, where orientation of the drifts becomes
fixed and time independent, the system attains an equilibrium
with quenched disorder. This intuitive interpretation permits
us to obtain exact stationary distributions of propelled parti-
cles in confining potentials. The central quantity that emerges
is the effective potential ueff , which is the sum of an external
potential and a linear potential for representing drift, and the
Boltzmann factor e−βueff .

In the second part of this work we construct the theoretical
framework in which the decoupled state figures naturally.
This is done by reformulating the stationary FP equation as
a self-consistent relation, formulated in terms of the Boltz-
mann factor e−βueff . The formulation reveals the presence of
coupling between propelled particles (even if there are no
true interactions between particles) as a result of a “chemical”
process whereby particles with different drift are represented
as different species that continuously exchange identities. The
self-consistent formulation is used as a basis for numerical
computation of stationary distributions, as an alternative to
dynamic simulations. The SC formulation can also be used
to expand n perturbatively around n0.

The viewpoint that considers the decoupled condition as
an equilibrium state raises the question, So what is the real
equilibrium? Generally, equilibrium is attributed to the limit
α → ∞ and/or Dr → ∞, since the distribution in those limits
converges to that of passive Brownian particles. However, if
we look into the entropy production � that is supposed to
measure a distance from equilibrium, we get the results that
support the case for the decoupled limit as a true equilibrium.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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APPENDIX: DISTRIBUTIONS P(v) FOR A GENERAL d
DIMENSION

A general, disorder-averaged distribution over drift orien-
tations uniformly distributed on the surface of a unit sphere
in d dimension for the system with 1D geometry, such as a
system between two parallel walls or in the harmonic potential
uext = Kx2

2 , is

n̄0(x) ∝
∫ 2π

0
d�v n0(x, v0 cos θv ),

where vx = v0 cos θv is the velocity component in the direc-
tion perpendicular to the boundaries of a trap. The stationary
distribution is uniform in the remaining directions.

Since for an arbitrary dimension d , d� is defined as

d� = sind−2 ϕ1 sind−3 ϕ2 · · · sin dϕd−2 dϕ1 dϕ2 · · · dϕd−1,

where θ = ϕ1, we may write∫
d�v n0(x, v0 cos θv ) ∝

∫ π

0
dθv sind−2 θv n0(x, v0 cos θv ),

as the angles ϕk for k > 1 can be ignored. The above integral is
transformed using dθv = − 1

v0

dv
sin θv

, where v ≡ v0 cos θv , and

sin θv =
√

1 − cos2 θv into∫
d�v n0(x, v0 cos θv ) ∝

∫ v0

−v0

dv

(
1 − v2

v2
0

) d−3
2

n0(x, v),

and the normalized distribution P(v) for an arbitrary dimen-
sion d is

P(v) = 1

v0
√

π

�
[

d
2

]
�

[
d−1

2

](
1 − v2

v2
0

) d−3
2
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