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Remote firing propagation in the neural network of C. elegans
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Understanding the mechanisms of firing propagation in brain networks has been a long-standing problem in the
fields of nonlinear dynamics and network science. In general, it is believed that a specific firing in a brain network
may be gradually propagated from a source node to its neighbors and then to the neighbors’ neighbors and so
on. Here, we explore firing propagation in the neural network of Caenorhabditis elegans and surprisingly find an
abnormal phenomenon, i.e., remote firing propagation between two distant and indirectly connected nodes with
the intermediate nodes being inactivated. This finding is robust to source nodes but depends on the topology of
network such as the unidirectional couplings and heterogeneity of network. Further, a brief theoretical analysis
is provided to explain its mechanism and a principle for remote firing propagation is figured out. This finding
provides insights for us to understand how those cognitive subnetworks emerge in a brain network.
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I. INTRODUCTION

The study of signal propagation has been a long-standing
topic in various brain networks, especially the human brain
network, where one of the key problems is to understand
how brain functions emerge from external stimuli or how
different cognitive subnetworks are activated to respond to
different external stimuli. For this purpose, intense studies
have been made on the synchronization of dynamical systems
[1–3]. Recently, much attention has been paid to the aspects
of partial synchronization [4], including chimera state, remote
synchronization, and cluster synchronization. The chimera
state represents the coexistence of coherent and incoher-
ent dynamics [5]. One of its applications is to explain the
unihemispheric sleep in aquatic animals and migrating birds
[6,7], including the effect of first-night sleep of human beings
[8,9]. It is even pointed out that there are cognitive chimera
states [10] and multiscale chimera states in human brain net-
works [11], which may help us to understand the mechanism
of the diversity of brain functions. Remote synchronization
represents the synchrony among the leaf nodes of a hub but
not synchronized with the hub, i.e., the synchronized nodes
are not directly connected [12]. It is found that remote syn-
chronization does exist in brain networks and can be extended
to distant nodes when two or more star graphs are connected
[13]. This finding may help us to understand how different
brain functions emerge from their corresponding parts of the
brain network. While cluster synchronization represents the
case where the oscillators of the network are automatically
evolved into different synchronized clusters but the oscil-
lators in different clusters are not synchronized with each
other [14,15].

Instead of synchronization, an alternative approach to
understand the mechanisms of brain functions is to study

*zhliu@phy.ecnu.edu.cn

how functional cognitive subnetworks emerge from a brain
network such as the anatomical brain network. Toward this
aim, some efforts have been paid to the aspect of signal am-
plification in complex networks [16]. It is revealed that weak
signals can be amplified by the feature of heterogeneity of
scale-free networks [17,18]. Recently, the attention has been
focused on how network topologies influence signal or per-
turbation spreading [19,20]. It is found that both the network
topology and the node’s dynamics will seriously influence
the patterns of propagation. This problem is closely related
to the change of brain states during the natural wake-sleep
cycle, such as the repeated cycles of nonrapid-eye-movement
and rapid-eye-movement sleep, ranging from states of deep
unconsciousness to ordinary wakefulness [21].

In sum, these studies are mainly focused on the stabilized
states but pay little attention to the evolutionary processes. It
is now well known that the functional cognitive activity of the
brain is a robust transient process [22–24], which is neither
a state of equilibrium nor an exactly periodic oscillation. For
a brain to effectively adapt to handle multiple flexible cog-
nitive processes, such as the general sequential dynamics of
metastable brain states that are activated by internal or envi-
ronmental stimuli, it must be able to work in transient modes
for a specific cognitive task [25,26]. Therefore, it is more
interesting to study the detailed process of signal propagation,
especially on some real brain networks.

For this purpose, in this work, we study signal propagation
in a neural network by choosing one node as the signal source
node and all the other nodes as the target nodes. Considering
that signal propagation is in fact the firing propagation in
neuron systems, we here study how firing is propagated from
an activated source node to all the target nodes. For conve-
nience, we consider a real neural network with small size,
i.e., the network of Caenorhabditis elegans (C. elegans). To
make our study closer to reality, except the real neural network
substrate, we let the nodes’ dynamics be represented by neu-
ral models and pay attention to the evolutionary or transient
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process. In contrast to the general assumption that a firing will
be gradually spread out from a source node to its neighbors
and then to the neighbors’ neighbors and so on, we surpris-
ingly find an abnormal phenomenon, i.e., remote propagation
between distant nodes without the activation of intermediate
nodes. This finding is robust to different source nodes and also
works for nonlinear negative feedback coupling. Further, we
change the unidirectional network of C. elegans into a bidirec-
tional network or consider other networks such as the random
network, and find that the abnormal phenomenon disappears.
A brief theoretical analysis is provided to explain its mecha-
nism and further, a principle for remote firing propagation is
figured out. Thus, this finding may help us to understand how
a functional brain network emerges from the brain structure
network, such as why each specific cognitive subnetwork is
distributed in different regions of the brain.

II. A MODEL OF FIRING PROPAGATION IN THE NEURAL
NETWORK OF C. ELEGANS

For the purpose of understanding the underlying mech-
anisms of brain functions, some pioneering works have
been done so far and it is revealed that synchronization of
neuronal ensembles in the network of the cerebral cortex is
the base of various neurobiological processes [6,7,27]. How-
ever, most of these researches are focused on the topic of
partial synchronization, such as the chimera state [5,28,29],
remote synchronization [12,13,30], and cluster synchroniza-
tion [31,32]. On the other hand, the efficiency of brain
functions also depends on the firing propagation in the brain
network but little attention has been paid to this problem.
It is well known that in the performance of a normal brain
function, each neuron receives electrical signals via its treelike
dendrites, connected via synaptic inputs from other neurons.
Thus, the efficiency of firing propagation will seriously influ-
ence the neuronal activity that appears to drive the rhythms
over different timescales. To obtain some insights on this key
problem, we here focus on how firing is propagated on real
brain networks, i.e., how the topology of a brain network
influences firing propagation. For simplicity, we consider the
neural network of C. elegans with relatively small size as the
first step and hope that the obtained results can be extended to
those real networks with larger size, such as the real human
brain networks.

Specifically, we take the neural network of C. elegans from
Ref. [33] as our substrate, which has 277 nodes and 2105
directional links. Figure 1(a) shows its physical structure,
where the up part represents the locations of all the 277 nodes
distributed in the C. elegans and the low part represents the
connections among all the nodes. We see that it is a hetero-
geneous network with distributed nodes degrees. Figure 1(b)
shows its adjacent matrix. It is an asymmetric matrix, because
its element Ai j represents the directional link from the node
j to node i. As an example, the two blue circles of Fig. 1(b)
show two small symmetric regions along the diagonal line.
It is easy to see that they are significantly different, confirm-
ing the asymmetry of the adjacent matrix in the real neural
network of C. elegans.

Based on the adjacent matrix of Fig. 1(b), we now let each
node be represented by the Hindmarsh-Rose (HR) model,

FIG. 1. The neural network of C. elegans from Ref. [33].
(a) shows its physical structure, where the up part represents the
locations of all the 277 nodes distributed in C. elegans and the low
part represents the connections among all the nodes. (b) shows its
adjacent matrix where the two blue circles reflect the asymmetry
caused by the directional links.

which was proposed for the neuronal bursting of pond snail
Lymnaea by Hindmarsh and Rose in 1984 [34]. The HR model
consists of three variables x(t ), y(t ), and z(t ), where x is the
membrane potential, y is associated with the fast current Na+

or K+, and z with the slow current, for example, Ca2+. Its
dynamical equations are as follows:

dxi

dt
= yi + bx2

i − ax3
i − zi + Iext + λ�N

j=1Ai j (x j − xi ),

dyi

dt
= c − dx2

i − yi, (1)

dzi

dt
= r[e(xi − x0) − zi],

where i represents the node i with i ∈ [1, N] and N = 277, Iext

is the external current input, λ is the coupling strength, and
the parameters are taken as a = 1.0, b = 3.0, c = 1.0, d =
5.0, r = 0.006, e = 4.0, and x0 = −1.60 [35]. Ai j is the
adjacent matrix and can be represented as follows:

Ai j =
{

1, for a coupling from node j to node i
0, otherwise. (2)

Equation (1) will return to the case of a single neuron when
λ = 0. In this case, with the increase of Iext, a single neuron
will show different periodic behaviors and even chaotic bursts
[see Fig. 2(a) for its bifurcation diagram]. From Fig. 2(a)
we see that there is a critical Ic

ext ≈ 1.309. The single neu-
ron will be in the firing status when Iext > Ic

ext and no firing
when Iext < Ic

ext. For Iext > Ic
ext, the system will be period 1 for

1.309 < Iext < 1.563, period 2 for 1.563 < Iext < 2.085, . . .,
and chaotic for 2.915 < Iext < 3.40. Figures 2(b)–2(e) show
four examples for Iext = 1.31 (period 1), 2.0 (period 2), 3.0
(chaotic), and 3.5 (period 1), respectively.

When λ > 0, Eq. (1) represents coupled dynamics through
the network of C. elegans. In this case, the brain system is
organized into processing streams, along which the firings
induced by the external input Iext will be propagated to other
parts of the network and thus activates a specific brain func-
tion. Our purpose here is to study how the firing is propagated
in this neural network of C. elegans and how activating clus-
ters of nodes are formed. For this purpose, our idea is to let
Iext be a value slightly smaller than the critical point Ic

ext so
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FIG. 2. Dynamical behaviors of a single neuron of the HR model
where (a) represents the bifurcation diagram and (b)–(e) represent
four typical dynamics for Iext = 1.31 (period 1), 2.0 (period 2), 3.0
(chaotic), and 3.5 (period 1), respectively.

that the whole brain network is inactivated when there are
no initial activated nodes. That is, we fix Iext = 1.3 in this
work. In this sense, the inactive oscillators in the network
of C. elegans are similar to an inactive environment used
in environmental coupling [36]. Then, we will add another
external stimulus to a specific node as the input signal and call
this node the source node. In general, we let the input stimulus
satisfy the condition that the source node should be activated.
We will pay attention to how the firing of the source node is
propagated to other nodes of the network and then try to figure
out the underlying mechanisms for the emergence of brain
functions.

III. NUMERICAL SIMULATIONS ON DIFFERENT
SOURCE NODES

In numerical simulations, we consider only one node as
the source node s while all the other nodes as target nodes.
We consider the external input Iext of Eq. (1) as a common
background for all the nodes, including both the source and
target nodes, and let Is be an additional external stimulus
only for the source node s. For convenience, we call Iext the
background stimulus while Is is called the external stimulus.
Thus, for the source node s, the first equation of Eqs. (1)
will become

dxs

dt
= ys + bx2

s − ax3
s − zs + Iext + Is + λ�N

j=1As j (x j − xs).

(3)

While for all the target nodes, Eqs. (1) will remain unchanged.
To detect the firing propagation, we set a firing threshold as
xc = 0. A target node i will be considered as firing propagated
or activated once its x variable reaches xi � xc, i.e., no matter
whether it is a burst or spike [see Figs. 2(b)–2(e) for different
firing behaviors]. Further, we let Is be large enough so that it
can produce a firing at the source node when λ = 0. By this
way, we can measure whether the firing of the source node s
is propagated to target nodes or not.

We first consider the case of taking the external stimulus
Is = 1.7 and the coupling strength λ = 0.25. Very interest-
ingly, we find that the firing can be either propagated or not,

FIG. 3. Firing propagation in the neural network of C. elegans,
with Is = 1.7 and λ = 0.25 in (a)–(c). (a) and (b) represent the
cases of successfully and unsuccessfully propagated firings from
the source nodes to their nearest neighbors, respectively, where the
insets show the local structures of the source nodes and the red
and blue lines represent the time evolutions of x variables at the
source nodes and their neighboring nodes, respectively. (c) shows
the dependence of the number of activated nodes ns on the source
node s. (d) shows the dependence of 〈ns〉 on the coupling strength
λ where the three curves represent the cases of taking the external
stimulus as Is = 1.2, 1.7, and 2.2, respectively.

depending on the chosen source nodes. Figure 3(a) shows the
case of successfully propagated firing from the source node
s to one of its nearest neighboring nodes, where the red and
blue lines represent the time evolutions of x variables at the
source node 15 and the target node 47, respectively. The inset
shows the local structure of the source node 15. We see that
the source node 15 has 12 neighboring nodes with 1 in-coming
link and 12 outgoing links, where the neighboring node 49 is
a bidirectional link. As the target node 47 receives a coupling
from the source node 15, it is also activated. Figure 3(b)
shows the case where the firing cannot be propagated and even
cannot be successfully generated at the source node (see the
red and blue lines for the time evolutions of x variable at the
source node 73 and one of its neighboring nodes 5, respec-
tively). The inset shows the local structure of the source node
73, which has 10 neighboring nodes with 4 incoming links and
6 outgoing links. We see that both the red and blue lines do not
reach the firing threshold xc = 0. Why is it that source node
73 cannot be activated by the same external stimulus Is = 1.7
as that in Fig. 3(a)? Their graphs of insets may tell us the
answer. We see that source node 73 has multiple incoming
links, in contrast to Fig. 3(a) with only one incoming link. We
will discuss it further in Fig. 4 and also provide a theoretical
explanation in Sec. VI. For obtaining a global picture of firing
propagation, we successively choose every node as the source
node for one time and count how many target nodes can be
activated to reach xi � xc. We let ns be the number of activated
nodes in the whole network by the source node s, including
both the activated source node and the activated target nodes.
Figure 3(c) shows the dependence of ns on the chosen source
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FIG. 4. Firing propagation in typical motifs with Is = 1.7 where the red line represents the dynamics of the source node s and the blue and
black lines represent the dynamics of the target nodes. (a) and (b) represent the case of only one target node with coupling from the source
node s to the target node, with λ = 0.05 in (a) and λ = 0.2 in (b). (c) and (d) represent the case of coupling from the target nodes to the source
node s, where the coupling strength is fixed as λ = 0.5 and there is one target node in (c) but two target nodes in (d). (e) and (f) represent
the case of two target nodes with one coupling from the source node s to the target node and another one opposite, with λ = 0.25 in (e) and
λ = 0.95 in (f).

node s. We see that ns is significantly different from one
to another and can be divided into three classes: (1) ns is
close to N , implying that the firing is globally propagated. (2)
ns = 0, indicating that the firing cannot be even successfully
generated at the source node s. (3) ns is in between the first
two cases, i.e., firing is propagated to part of the network. We
will pay more attention to class (3).

Let 〈ns〉 be the average of ns on all the source nodes s
for fixed Is and λ. We find that 〈ns〉 depends on both the
parameters Is and λ. Figure 3(d) shows the dependence of 〈ns〉
on the coupling strength λ where the three curves represent
the cases of taking the external stimulus as Is = 1.2, 1.7, and
2.2, respectively. We see that all three curves are bell shaped,
indicating that there is an optimal λ for each fixed Is.

In sum, three observations can be made from Fig. 3:
(i) From (a) we see that the amplitude of the propagated
node is smaller than that of the source node s, indicating the
decaying of firing. (ii) From (b) we see that the amplitude is
not zero but a small value at both the source and propagated
nodes, although the source node s is not activated. (iii) From
(d) we see that there is an optimal coupling strength λ, in con-
trast to the general assumption that a larger coupling always
favors firing propagation. To understand these observations of
Fig. 3, we design a few typical motifs consisting of the source
node s and its nearest neighboring nodes only (see the insets
of Fig. 4 with Is = 1.7). Figures 4(a) and 4(b) represent the
case of only one target node with coupling from the source
node s to the target node, with λ = 0.05 in (a) and λ = 0.2
in (b). We see that the target node is activated for the larger
coupling of λ = 0.2 in (b) but not for the smaller coupling
of λ = 0.05 in (a), indicating that a larger coupling favors
firing propagation rather than that of a smaller coupling. Fig-
ures 4(c) and (d) represent the case of coupling from the
target nodes to the source node s, where the coupling strength

is fixed as λ = 0.5 and there is one target node in (c) but
two target nodes in (d). We see that the source node s can
be activated in Fig. 4(c) with reduced amplitude, but cannot
be activated in (d), indicating that the incoming coupling
from a target node behaves like an obstructor and more such
couplings will have stronger power to reduce the firing of
the source node. Figures 4(e) and 4(f) represent the case of
two target nodes with one coupling from the source node s
to the target node and another one opposite, with λ = 0.25
in (e) and λ = 0.95 in (f). We see that both source node 1
and target node 2 are influenced by the coupling and stronger
coupling will influence more. Comparing the case of Figs. 4(e)
and 4(f) with that of Figs. 4(a) and 4(b), we see that their
couplings have opposite effects on the target node 2, i.e.,
enhanced firing in Figs. 4(a) and 4(b) but weakened firing in
Figs. 4(e) and 4(f).

Very interestingly, we notice from Fig. 4(f) that the source
node 1 has x1 < xc and the target node 2 has x2 > xc, indicat-
ing that source node 1 is not activated but the target node 2 is
activated. This is an abnormal phenomenon and tells us that
both the firing of the source node and its firing propagation
come from the competition between its enhancing coupling
and weakening coupling. This finding also brings us a new
topic: Can a firing be propagated from a source node to a
distant target node without the activation of their intermedi-
ate nodes? This is an important question in a human brain
network as each of its cognitive subnetworks is composed of
not only those nodes located in the same local area but also
other nodes distributed in different local areas [10]. Here, an
open question is how these distributed nodes emerge as a cog-
nitive subnetwork to execute specific brain function or even
how the brain functional network emerges from the physical
structure network. To go a substantial step toward this open
question, we need to recheck the detailed propagation process
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FIG. 5. A typical example of RFP where the source node is chosen as node138 and parameters are taken as Is = 1.7 and λ = 0.25. (a) The
paths of firing propagation in the neural network of C. elegans where the central red node is source node 138, other red nodes are the propagated
nodes, and the different circles from the center represent the nearest neighboring nodes, the neighbors’ neighbors, and so on. (b) A part of the
network of (a) with only the firing nodes and the links among them, where the colors of nodes are changed to be different from circle to circle,
as a guide for the eyes.

of Fig. 3(c), especially the class (3), and extend the analysis
of the motifs of Fig. 4 to the much more complicated case of
the neural network of C. elegans.

From Fig. 3(c) we notice that some source nodes can be
activated and thus their firings will be propagated, while oth-
ers cannot. For the former, the propagated ranges are different
for different source nodes, i.e., some can go to global level
with ns ≈ 260 while others only go to a small part of nodes
with ns < 10. This raises an important question: What is the
rule for a firing to be propagated and how does the structure
of a brain network influence the propagation range ns? In
general, we may think that firing will be first propagated
from the source node to its neighbors and then to neighbors’
neighbors and so on. However, after checking all the detailed
propagation processes of Fig. 3(c), we surprisingly find that it
is not always like that. Sometimes, the nearest neighbors may
not be propagated but the neighbors’ neighbors or even further
non-neighboring nodes can be propagated. This is in sharp
contrast to our common sense. We here call it remote firing
propagation (RFP), i.e., the firing propagation between two
distant and indirectly connected nodes with the intermediate
nodes being inactivated.

To show RFP in detail, Fig. 5(a) shows such an example of
the source node 138 where the network topology is plotted as
the center for the source node, the first circle for the nearest
neighboring nodes of the source node, and the second circle
for the nearest neighbors’ neighbors and so on. The red nodes
represent all the activated nodes from the source node. As
Fig. 5(a) contains all nodes, the connections among them are
too dense and thus difficult for us to study the relationship
among the activated nodes. To figure out the features of RFP,
we simplify Fig. 5(a) into Fig. 5(b) by keeping only the red
nodes and those links among them, i.e., remove all the other
nodes and their links, which will not influence our analysis.
Further, we let the colors of the nodes of Fig. 5(b) be dif-
ferent from circle to circle so that their connections can be
easily distinguished. From Fig. 5(b) we see that only the three

nodes 139–141 of the first circle are connected to source node
138 and thus form a core cluster of four connected nodes,
while all the other nodes are not directly connected to them,
indicating that they must be indirectly connected to the core
cluster. Moreover, some of them even have no connections to
others such as the nodes 46, 35, and 253, etc., implying that
they are isolated to all the other activated nodes. This finding
may open a new window for us to understand the underlying
mechanisms for the emergence of cognitive subnetworks and
brain functional networks. We will explain it theoretically
in Sec. VI.

IV. FIRING PROPAGATION IN OTHER NETWORKS

It is important to check whether the phenomenon of RFP
is only observed in brain networks or can be also observed in
other complex networks. For this purpose, we consider two
specific networks, both with the same number of nodes and
the same number of total links as that of the neural network of
C. elegans.

The first one is the bidirectional neural network of C.
elegans where all the directional couplings are changed into
bidirectional couplings and other parameters are kept un-
changed [see the insets of Figs. 6(a) and 6(b)]. By doing
the same steps as in Sec. III, we find that RFP does not
show up anymore. Moreover, the firing propagation process is
significantly different from the case of directional couplings.
Figure 6 shows the results corresponding to Fig. 3 where
Figs. 6(a)– 6(d) correspond to (a)–(d) of Fig. 3, respectively.
Comparing Fig. 6(a) with Fig. 3(a), we see that the firings
are bursts in Fig. 3(a) but spikes in Fig. 6(a). Comparing
Fig. 6(b) with Fig. 3(b), we see that their difference is even
significantly large, i.e., there are no firings in Fig. 3(b) but
firings in Fig. 6(b). A consequence of these differences is that
there is a class (3) in Fig. 3(c) but no class (3) in Fig. 6(c).
A further consequence is that the average number of activated
nodes is 〈ns〉 < 10 in Fig. 3(d) but can reach almost all of
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FIG. 6. Firing propagation in the bidirectional neural network of
C. elegans where the parameters are kept the same as in Fig. 3, except
the directional couplings are changed into bidirectional couplings.
(a)–(d) correspond to (a)–(d) of Fig. 3, respectively.

the nodes in Fig. 6(d), i.e., the maximum 〈ns〉 ≈ 258. The
underlying mechanism is that the bidirectional couplings
make the outgoing couplings be approximately doubled and
thus make the firing of the source node be quickly propagated
to its neighbors and neighbors’ neighbors and so on. In this
sense, there are no longer purely obstructors and thus the
competition between the enhancing coupling and weakening
coupling is broken, resulting in no space for RFP.

The second one is a directional random network from the
directional neural network of C. elegans and is constructed as
follows. We keep all 277 nodes and 2105 directional links of
the neural network of C. elegans from Ref. [33] but let the
2105 directional links be randomly rearranged among the 277
nodes. For example, we randomly choose two nodes i and j
and let them have a directional link from node i to node j. We
will abandon it if this directional link already exists. Then,
we reduce one from the 2105 directional links. We continue
this process until all 2105 directional links have gone. In this
way, different directional random networks can be obtained.
Based on the obtained directional random networks, our
numerical simulations show that there is no RFP in any one
of them. Take one of these directional random networks as an
example. Figure 7 shows the results corresponding to Fig. 3
where (a)–(d) correspond to (a)–(d) of Fig. 3, respectively.
Comparing the inset of Fig. 7(a) with that of Fig. 3(a), we see
that the number of source node’s neighboring nodes changes
from 12 (1 incoming link and 12 outgoing links, with one
being a bidirectional link) in Fig. 3(a) to 16 (10 incoming links
and 6 outgoing links) in Fig. 7(a). This change of network
topology causes the change of dynamics from Fig. 3(a) with
activation to Fig. 7(a) with inactivation. That is, because of too
many incoming links in Fig. 7(a), its source node 15 becomes
inactivated. Similarly, comparing the inset of Fig. 7(b) with
that of Fig. 3(b), we see that the number of the source node’s
neighboring nodes changes from 10 (4 incoming links and 6
outgoing links) in Fig. 3(b) to 14 (6 incoming links and 8
outgoing links) in Fig. 7(b). Very interestingly, this change

FIG. 7. Firing propagation in the directional random network
from the neural network of C. elegans where the parameters are kept
the same as in Fig. 3, except the directional couplings are randomly
rearranged among the 277 nodes with overlapped links avoided.
(a)–(d) correspond to (a)–(d) of Fig. 3, respectively.

of network topology causes an inverse change of dynam-
ics, i.e., from Fig. 3(b) with inactivation to Fig. 7(b) with
activation. However, a new point here is that both Fig. 3(b) and
Fig. 7(b) have a number of incoming links, thus the activation
of Fig. 7(b) implies that other features of a network such as the
community also take effect in firing propagation. Comparing
Figs. 7(c) and 7(d) with Figs. 6(c) and 6(d), respectively, we
see that they are similar to each other, indicating that they
have a similar underlying mechanism to break the competition
between the enhancing coupling and weakening coupling and
thus result in no space for RFP.

In sum, we notice a common feature from the relationship
between 〈ns〉 and λ in Figs. 3(d), 6(d), and 7(d) that 〈ns〉
is switched at some medium coupling strength, e.g., more
nodes are activated for the case of Is = 1.2 when λ = 0.1,
but more nodes are activated for the case of Is = 2.2 when
λ = 0.8. Then, an interesting question is what is the under-
lying mechanism for this switching phenomenon? To figure
out the answer, we go back to Fig. 2. From Fig. 2(a) we see
that the firing period T depends sensitively on the bifurcation
parameter Iext. And from Figs. 2(b)–2(e) we see that the firing
behaviors are closely related to Iext, i.e., the firing period T . In
this sense, a shorter firing period T of source node will have a
higher frequency to activate its neighbors than that of a longer
firing period T of source node. When the coupling strength λ

is small in Eq. (1), such as λ < 0.1, this effect will increase
with λ and result in a faster increase of 〈ns〉 for the shorter
firing period T of the source node than that for the longer
firing period T of the source node, confirming the observed
results for λ = 0.1. However, when the coupling strength λ

is large in Eq. (1), such as λ > 0.3, a nearest neighbor of the
source node will get a larger resistance from its neighbors, i.e.,
the second nearest neighbors of the source node. When this
resistance is greater than the influence from the source node,
the increase of λ will prevent the further firing propagation
from the nearest neighbors of the source node and result in a
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slower increase of 〈ns〉 for the shorter firing period T of source
node than that for the longer firing period T of source node,
confirming the observed results for λ = 0.8. This may be the
mechanism for the observed switching phenomenon.

V. FIRING PROPAGATION BY NONLINEAR NEGATIVE
FEEDBACK COUPLING

The negative feedback coupling of Eq. (1) is usually
regarded as a diffusive coupling and represents the electric
coupling, provided that it is bidirectional. In this case, Chen
et al. found that stimulating a single node, i.e., the largest-
degree node, may induce the firing of the whole network [37].
However, this is not the coupling considered in this work, as
the asymmetric matrix Ai j of Eq. (1) symbolizes the directions
of couplings, i.e., the coupling of Eq. (1) is not bidirectional.
In this sense, the directional coupling of Eq. (1) is more like a
chemical coupling, i.e., having the directionality of chemical
coupling.

It is well known that there are both electric and chemical
couplings in neural systems. To reflect this fact, it is necessary
to consider both couplings at the same time [38–41]. For
example, Pournaki et al. considered both electric and chemical
couplings in the neuronal networks of C. elegans and found
that chimeralike states can be hard to identify in real-world
networks [38]. Following Ref. [38], a key variable of chemical
coupling is the nonlinear sigmoidal function

S(x) = 1

1 + exp [−λsyn(x − θsyn)]
, (4)

where the parameters are usually taken as θsyn = −0.25 and
λsyn = 10. By this sigmoidal function, the chemical coupling
can be described as

chemical coupling = −gch(xi − Vsyn)�N
j=1Ai jS(x j ), (5)

where gch is the coupling strength and Vsyn = 2 is the reversal
potential of the synaptic current.

Motivated by Eq. (5), we would like to replace the linear
coupling λ�N

j=1Ai j (x j − xi ) of Eq. (1) by a nonlinear coupling
−λ(xi − Vsyn)�N

j=1Ai j[S(x j ) − S(xi )]. In this way, Eq. (1) will
become

dxi

dt
= yi + bx2

i − ax3
i − zi + Iext

−λ(xi − Vsyn)�N
j=1Ai j[S(x j ) − S(xi )],

dyi

dt
= c − dx2

i − yi,

dzi

dt
= r[e(xi − x0) − zi]. (6)

That is, the linear coupling of Eq. (1) is replaced by the
nonlinear coupling of Eq. (6). Correspondingly, Eq. (3) will
be replaced by

dxs

dt
= ys + bx2

s − ax3
s − zs + Iext + Is

−λ(xs − Vsyn)�N
j=1As j[S(x j ) − S(xs)]. (7)

This nonlinear negative feedback coupling may be considered
as a combination of electric and chemical couplings, but its

FIG. 8. Case of nonlinear negative feedback coupling for the
firing propagation in the neural network of C. elegans, with Is = 1.7
and λ = 0.25 in (a)–(c). All the panels (a)–(d) correspond to that of
Figs. 3(a)–3(d), respectively, where the parameters are kept the same.

biological aspect remains to be confirmed. Thus, we here
consider Eqs. (6) and (7) as an abstract or toy model and only
use it to check the robustness of RFP.

Doing the same procedures as in Fig. 3, Fig. 8 shows the
results by Eqs. (6) and (7). Comparing the corresponding
panels between Fig. 3 and Fig. 8, we see that Figs. 8(a) and
8(b) are similar to Figs. 3(a) and 3(b), respectively, but their
panels (c) and (d) are of some difference. For their panels
(c), there is much more global propagation 〈ns〉 in Fig. 8(c)
than that in Fig. 3(c), indicating that the nonlinear coupling of
Eqs. (6) and (7) favors the firing propagation, while for their
panels (d), the switching phenomenon of Fig. 3(d) disappears
in Fig. 8(d).

Similarly, Figs. 9(a)–9(d) show the results corresponding
to Figs. 4(a)–4(d), respectively. Comparing their correspond-
ing panels, we see that they are qualitatively similar to each
other, respectively, implying that the nonlinear coupling of
Eqs. (6) and (7) does not change the firing propagation
substantially.

Very interestingly, we find that RFP can be also ob-
served in the case of nonlinear negative feedback coupling.
Figure 10 shows such an example, corresponding to Fig. 5.
From Fig. 10(b) we see that there are no activated nodes in
the first circle but there are12 activated nodes in the second
circle, confirming the existence of RFP. Therefore, RFP is of
robustness in the neural network of C. elegans.

VI. A BRIEF THEORETICAL ANALYSIS

In this section, we aim to give a brief theoretical explana-
tion to the observed RFP in Fig. 5. For a single HR neuron,
we know from Fig. 2 that it will be activated once its external
input Iext is greater than the threshold Ic

ext. This rule will still
work for a node in the network, i.e., a node will be acti-
vated once its total external input is greater than the threshold
Ic
ext. From Eq. (1) we know that the total external input of
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FIG. 9. Case of nonlinear negative feedback coupling for the firing propagation in typical motifs with Is = 1.7 where the red line represents
the dynamics of the source node and the blue and black lines represent the dynamics of the target nodes. All the panels (a)–(f) correspond to
that of Figs. 4(a)–4(f), respectively, where the parameters are kept the same.

node i is Iext + λ�N
j=1Ai j (x j − xi ), which gives the activating

condition

Iext + λ�N
j=1Ai j (x j − xi ) > Ic

ext. (8)

By Eq. (8) we know that the coupling term λ�N
j=1Ai j (x j − xi )

is very important for the activation of node i. Node i will be
activated when λ�N

j=1Ai j (x j − xi ) is positive and larger than
Ic
ext − Iext. In general, the neighbors of node i can be divided

into two classes. One class has positive contribution to the
activation of node i, while another class has negative contri-
bution. The nodes in the positive class usually have shorter
distance to the source node s than that in the negative class.
Therefore, the total coupling λ�N

j=1Ai j (x j − xi ) of node i will

be a competition or balance between the positive and negative
coupling parts. The positive coupling can be considered as a
stimulator while the negative as an obstructor. In this sense, a
greater number of positive coupling links is better for the acti-
vation of node i, while a greater number of negative coupling
links will prevent the activation of node i.

While for the source node s, condition (8) will become

Iext + Is + λ�N
j=1As j (x j − xs) > Ic

ext. (9)

In this case, all the coupling links take negative contribution
and thus all of them behave as obstructors. Therefore, a greater
number of coupling links will prevent the activation of the
source node s more. That is, the source node s will not be

FIG. 10. A typical example of RFP for the case of nonlinear negative feedback coupling of Eqs. (6) and (7) where the source node is
chosen as node 21 and parameters are taken as Is = 1.7 and λ = 0.09. (a) The paths of firing propagation in the neural network of C. elegans
where the central red node is source node 21, other red nodes are the propagated nodes, and the different circles from the center represent the
nearest neighboring nodes, the neighbors’ neighbors, and so on. (b) A part of the network of (a) with only the firing nodes and the links among
them, where the colors of nodes are changed to be different from circle to circle, as a guide for the eyes.
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FIG. 11. The mechanism of RFP with Is = 0.2. (a) The
schematic figure of RFP where node 1 represents the source node,
nodes 2–5 represent the four target nodes, and the arrows denote the
directions of couplings. The coupling strength from node 4 is λ2 and
that from other nodes is λ1. (b) represents the dynamics of all five
nodes in (a), with λ1 = 0.25 and λ2 = 0.15, where the “red,” “blue,”
“black,” and “yellow” lines represent node 1, nodes 2 and 3, node 4,
and node 5, respectively.

activated once Iext + Is − Ic
ext < −λ�N

j=1As j (x j − xs). In this
sense, both the coupling strength λ and degree �N

j=1As j take
important roles for firing propagation, as in the case of echo
behavior [42].

According to these analyses, we go back to Fig. 4 and find
that all the motifs completely agree with the above analy-
sis. For example, in Fig. 4(a), Eq. (8) is not satisfied as the
coupling strength λ is too small. Whereas in Fig. 4(b),
Eq. (8) is satisfied as the coupling strength λ is now large
enough. In Fig. 4(c), we have only one obstructor, thus
Eq. (9) is satisfied. Whereas in Fig. 4(d), the number of ob-
structors is increased to two, which breaks the condition of
Eq. (9). In Fig. 4(e), the coupling strength λ is larger than
that of Fig. 4(b) but less than that of Fig. 4(c), implying
that the coupling strength is not enough for the obstructor
node 3 to prevent the activation of source node 1 but large
enough for target node 2 to be activated, i.e., both Eq. (8)
and Eq. (9) are satisfied. A similar analysis can be applied
to Fig. 4(f).

Based on these analyses, it is now the time for us to
explain the mechanism of RFP. For this purpose, we here
design a schematic figure to illustrate the principle of RFP
[see Fig. 11(a)]. In this schematic figure, we have an activated
source node 1 and four target nodes 2–5, where the arrows
denote the directions of couplings. We require that the middle
nodes 2 and 3 will not be activated but the remote node 5 will
be activated. For this purpose, we let node 4 be an obstructor
and also let its coupling strength λ2 be a little different from
the coupling strength λ1 of other nodes. This may be reason-
able as node 4 represents the comprehensive effect from other
nodes of the network and thus its effective coupling strength
cannot be exactly the same as that of other links. Our numer-
ical simulations show that the schematic figure of Fig. 11(a)
does generate RFP. Figure 11(b) shows one of such realiza-
tions of RFP by choosing Is = 0.2, λ1 = 0.25, and λ2 = 0.15,
and keep other parameters the same as in Fig. 3. Based on
this schematic figure, we now conclude the principle of RFP
as follows: (i) The system of RFP consists of three parts,
i.e., a source node s, a remote node j, and some intermediate
nodes k. The source node s should be in the activated status.

(ii) The intermediate node k has to receive both the incoming
and outgoing couplings and one of its in-coming couplings
has to come from the obstructor node. The balance of these
couplings should prevent the firing of the intermediate node k
but sustain it as an oscillatory behavior of a small amplitude,
i.e., xk < xc. And (iii) the remote node j should only receive
couplings from those intermediate nodes with small amplitude
oscillations and the sum of these couplings is large enough for
the remote node j to be activated.

VII. DISCUSSIONS AND CONCLUSIONS

We have to point out that RFP is fundamentally different
from the concept of remote synchronization although they
both concern the relationship between indirectly connected
nodes. Remote synchronization is currently a hot topic in
the fields of nonlinear science and complex networks and
represents the synchronization between indirectly connected
or distant nodes where the intermediate nodes are not synchro-
nized with them [12,13]. Take the star graph as an example.
When the frequency of the central node is largely different
from that of leaf nodes, a remote synchronization among all
the leaf nodes may appear but the leaf nodes do not synchro-
nize with the central node. While RFP does not pay attention
to the synchronization of unconnected nodes but to their firing
propagation, i.e., the synchronization among the remote prop-
agated nodes is not necessary. Specifically, we may have only
one remote propagated node in RFP, where synchronization
cannot be discussed. On the other hand, when we have several
remote propagated nodes in RFP and they all have the same
distance to the source node, these remote propagated nodes
may fire at the same time and thus can be also considered as
remote synchronization.

On the other hand, the finding of RFP may provide a new
clue to understand the emergence of cognitive subnetworks.
It is well known that the structural brain network consists of
a huge number of neurons and is thus very complicated. For
a specific brain function, the involved neurons are only part
of the total neurons but not all of them. It is revealed that
these involved neurons form a specific cognitive subnetwork
but are distributed in different regions of the brain [10,25,26].
A similar case goes to the resting-state network where its
number of links is much less than that at wake and its nodes
are also distributed in different regions of the brain [21,43].
Previously, these functional networks are approved by experi-
ments but its microcosmic mechanism remains unclear. Here,
RFP shows a possible way for distant nodes to transmit the
same firing signal. For class (3) in Fig. 3(c), we observe that
different source nodes will have different sets of activated
nodes. If we explain each specific set of activated nodes as
a subnetwork and the initially activated source node as a
task, this cluster of activated nodes will be equivalent to a
cognitive subnetwork. Therefore, we may assume that the way
of generating RFP is closely related to the way of generating
cognitive subnetworks.

In conclusion, we have studied the firing propagation in
the directional neural network of C. elegans by the HR model
and found that the propagated range depends sensitively
on the chosen source node, i.e., it can be either global or
zero. Specifically, we find a novel phenomenon of RFP and
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confirm that it cannot be observed in both the bidirectional
network of C. elegans and the random network. By study-
ing the local patterns of RFP we find the conditions for the
appearance of RFP. Based on a brief theoretical analysis,
we figure out the principle of RFP. This finding may show
insights for us to understand how those cognitive subnetworks
emerge among distant nodes of the brain network. Finally,
we expect that our schematic figure of RFP provides a

framework for experimental scientists to confirm this novel
phenomenon of RFP.
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