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Elasticity of a DNA chain dotted with bubbles under force

Debjyoti Majumdar
Institute of Physics, Bhubaneswar, Odisha 751005, India
and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India

® (Received 18 September 2020; accepted 4 May 2021; published 19 May 2021)

The flexibility and the extension along the direction of the force are shown to be related to the bubble number
fluctuation and the average number of bubbles, respectively, when the strands of the DNA are subjected to a
force along the same direction, here called a stretching force. The force-temperature phase diagram shows the
existence of a tricritical point, where the first-order force-induced zipping transition becomes continuous. On the
other hand, when the forces are being applied in opposite directions, here called an unzipping force, the transition
remains first order, with the possibility of vanishing of the low-temperature reentrant phase for a semiflexible
DNA. Moreover, we found that the bulk elasticity changes only if an external force penetrates the bound phase

and affects the bubble states.
DOI: 10.1103/PhysRevE.103.052412

I. INTRODUCTION

Perturbing a polymeric system and looking at its response
paves the way for us to probe its thermodynamical and struc-
tural properties in different phases. Pulling a stiff linear object
subjected to thermal fluctuations is in itself an important class
of problem [1-3]. Double-stranded DNA (dsDNA) is one
such polymeric system which undergoes a thermal melting
transition due to the breaking of the hydrogen bonds holding
the base pairs together, which is called DNA melting. This
opening up of the DNA into two single strands is the first
step towards fundamental biological processes such as DNA
replication, RNA transcription, etc., and is often initiated by
enzymes like helicase, polymerase, etc., which exerts force
to open up specific sections of the DNA [4]. Consequently,
the functionality of the DNA, which depends upon its bulk
properties such as elasticity, length, etc., might get altered
under the action of these regulatory forces.

With the advancement of technology now it is possible to
manipulate forces at the microscopic level using optical, mag-
netic tweezers or atomic force microscopic techniques [5,6].
This is where mechanical ways like unzipping and stretching
become important. For example, DNA can be mechanically
unzipped in vitro by applying an external force to separate
the two strands apart, which in turn can provide us with
information regarding the hydrogen bonds holding the strands
together along the base pairs, thus revealing the heterogeneous
nature of the base-pair sequence [7-16]. Since force-induced
melting transition is isothermal in nature, one can avoid the
poorly characterized thermal contributions to the transition
entropy and enthalpy, thus giving an extra advantage over
thermal melting transitions [17]. Different types of phase tran-
sitions have been observed [18,19]. These melting transitions
are associated with a change in the elastic property due to a
change in the topology of the system, e.g., elasticity of the
DNA changes when the ribbon picture is lost [20-22]. Thus,
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it is important to understand how these forces might affect
the DNA elastic properties under a change in the state of the
system.

Experimentally, the elastic properties of DNA are studied
from the force-extension curves obtained from single molec-
ular experiments [5,23]. These curves are then fitted with
various theoretical models. In the single chain limit the energy
associated with the conformational fluctuations of the DNA
can be modeled using the linear elasticity of a thin rod a la
the wormlike chain (WLC) model, described by the following

Hamiltonian:
1Y (9%r(s)\°
lec=5fc/0 ( kL )ds, (1)

where k (=kpTl,) is the bending elastic modulus and /,, is the
characteristic length scale, called the persistence length, over
which the rodlike behavior is maintained, N is the length of
the chain, s is the arclength along the semiflexible chain, kg is
the Boltzmann constant, and 7 is the temperature. The WLC
model predicts that in the presence of a force f the fractional
extension along the direction of force { = 1 — (z/N), where
z is the extension along the direction of force (Z), of a semi-
flexible chain goes to zero as { ~ f~!/? while from the freely
jointed chain (FJC) model the extension scales with force as
¢ ~ f~!in the large force limit [23,24]. The only parameter in
the description of these models is the persistence length (/).
These predictions do not take into account the presence of
thermally denatured (broken hydrogen bonds) local regions,
known as thermal bubbles, which act as local hinges for the
DNA to make bends and gain flexibility. This should lead
to an effective renormalized elasticity « (or equivalently /)
of the whole DNA [25]. Recently, it has been shown that
near the melting transition in the zero-force limit (f = 0), the
elastic modulus might be more meaningful than the notion of
a persistence length (,) [21]. Since the usual definition of the
persistence length from the tangent-tangent correlation may
not be meaningful, the persistence length loses its usual sig-
nificance. In such a situation it is reasonable that the validity of
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the WLC model is questionable. Besides providing flexibility,
these bubbles are also associated with important biological
functions. In recent times, many investigations have been per-
formed regarding the various aspects of these bubbles, which
include changes in rigidity [21], breathing dynamics [26-29],
and hysteresis [30,31], for DNA under topological constraint
[32-36], semiflexible DNA [37], etc.

Our aim in this paper is to study the elastic properties
of a flexible and semiflexible DNA under unzipping and
stretching-type forces in the presence of thermally melted
regions or bubbles using Monte Carlo simulations on a cubic
lattice (d = 3) while revisiting some earlier results from
the perspective of our model. Semiflexibility is introduced
in the bends of the double-stranded (ds) segments, while
single-stranded (ss) segments are exempted from any such
energy costs (see Sec. II for details). In reality the ds segments
are much more stiff [/, = 150 base pairs (bp) or ~50 nm]
than the ss or unbounded segments (I, = 4 bp or ~2.5 nm)
[38—40]. We also investigate how the bubble statistics, and
hence the nature of the thermal melting transition as shown
by this particular model, gets modified under various forcing
conditions. Our focus will be on the regime of intermediate
forces, where a coarse-grained picture of the DNA is valid and
microscopic details such as the local structure, bond length,
bond angles, torsional potentials etc., remain irrelevant.
High forces, on the other hand, show interesting phenomena
[33,41], although such a regime is out of the purview of our
study.

This paper is organized in the following manner. In Sec. II
we describe our model and discuss the observables required
to study the elastic properties. In Sec. III we discuss the algo-
rithm for simulating the dsDNA on the cubic lattice and for
applying an external force at the endpoints. Sections IV and
V deal with the elastic response of the DNA under stretching
and unzipping forces, respectively. And Sec. VI concludes the

paper.

II. DNA MODEL AND QUALITATIVE DESCRIPTION

Our minimal model for the DNA consists of two linear
polymer chains on a cubic lattice [42], which are self- as well
as mutually avoiding with the exception that they can form
energetically favorable contacts with energy E, = —e(e > 0)
only at the same monomer position along the chain. Through-
out the simulation we have chosen € = 1. One end of the DNA
is fixed while the other end is free to wander. We consider two
different cases which we call the flexible and the semiflexible
models. In the flexible model, we consider two self- and
mutually avoiding walks with complete flexibility even in the
bound state, while in the semiflexible model, we associate an
energy with bending of the ds or bound segments. The energy
for bending of the ds segments is given by

E, = —ncosH, 2)

where n(>0) is the bending energy constant. An increased
n means a stiffer chain. Note that the Boltzmann weight
exp (—Ey/kgT) for a straight move (8 = 0°) remains higher
than that for a bend (8 = 90°) [see Figs. 1(a)-1(c)].

To investigate the elastic properties we apply a space-
independent constant external force f = fZ in the direction

<
Bubbles
Y-fork
E,=-n E,=0 E,=0 dsDNA
E.=-3¢ E.=-2¢ E.=-3¢
(a) (b) () (d)

FIG. 1. Possible configurations for a two-step walk on a plane for
three consecutive monomers (red dots) and energies associated with
contact (E,) and bending (E},) according to Eq. (2). (a) Three contacts
resulting in contact energy E. = —3¢ and shifted bending energy
E, = —n, (b) opening of a Y fork with two contacts E. = —2¢ and
(c) same as (a) but with a bend, costing a bending energy (shifted)
E, = 0. The red dots also represent lattice sites. (d) Identifying
bubbles and the Y fork in a dsDNA.

Z (fixed force ensemble) at the free end points r;(N) of each
strand i = 1, 2, while the other end remains fixed at the origin.
If the forces on the two strands are in the same direction they
are said to be the stretching force, denoted by f;, while an
unzipping force f, pulls the two strands of the DNA in the
opposite directions(see Fig. 2). This minimal model allows for
the formation of bubbles which, as we will see, plays an im-
portant role in determining the elastic response of the system
under a stretching force. Both the models show (i) a zero-force
melting temperature, which we call the thermal melting point,
generically defined as 7, [21]; (ii) a stretching-induced zip-
ping transition from an unbound state to a stable bound state
beyond a critical stretching force f,. for any T > T,,; and (iii)
an unzipping phase transition beyond a critical force f,. at any
finite temperature below T,,,.

The canonical partition function of N-length DNA, where
N is the number of bonds, in the presence of a stretching force
f; can be written as

2, B) =) Cn(ri, r)e’*, 3)

ry,r

where Cy(ry, rp) is the zero-force partition function of the
N-length DNA with end position vectors r; and rp, R(N) =
ri(N) + ry(N) is the vectorial position of the center of mass
(c.m.) of the end points, and the sum is carried out over all
possible values of r; and r, and S(=1/kgT) is the inverse

FIG. 2. Schematic representation of a stretching force (f;) and an
unzipping force (f,) on a dsDNA consisting of a Y-forklike region at
the end and a bubble embedded between closed segments. The two
diagrams represent DNA under stretching (left) and unzipping (right)
forces, respectively.
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temperature. We set the Boltzmann constant kg = 1 through-
out our work. The elastic response of the DNA under an
external force is quantified using the tensorial quantity y;;,
defined in the following way:

c 10lnZ 0Cemi
cm; — >
"B Afy dfs;
where {cm, is the average extension of the ith component of
the c.m. chain and the average c.m. position is written as

>, ON (T, ry)efRR
Zrl,rz CN(rl ’ rz)eﬁfS'R .
Then, in the zero-force limit, where the anisotropy in shape
is isotropic in all directions [43], we can relate the elastic re-

sponse function (ERF) k., to the fluctuations in the vectorial
position of the c.m. position of the end points as [21]

_ 1 1 ) )

Kem = EKcm = ETr[X] = (R(N)") — (RWV)) (6)

= 2<r1<N>2>c<1 +

“4)

and Xij =

Cem = ®)

(ri(N) - l'z(N))c>
(ri(N)?)e '

where the subscript ¢ refers to the second cumulant and the
factor of 2 comes from the symmetry between the two strands.
Notice that when r; and r, are uncorrelated k., is the sum
of the elastic response of the individual strands. For Gaussian
chains K¢ /(ri (N )2, is exactly 2 in the unbounded phase, and
for chains with excluded volume interaction this is slightly
greater than 2 due to interstrand correlation [45]. The isotropy
breaks down in the presence of any external force, and con-
sequently other off-diagonal terms in the x tensor become
important, e.g.,

)

Xxy = 2[(r1xr1y)c + (rlxr2y>c]- ()

However, in this study we will focus on the isotropic part
only, since this would facilitate comparison with the zero-
force scenario [21], and a further investigation of the other
off-diagonal terms is left for a future study. According to the
definition of the ERF as in Egs. (4) and (7), a higher value
of k.m denotes an increased flexibility under an applied force.
Another quantity similar to ., comes from the relative (rel)
chain for forces along the opposite directions and is obtained
from Eq. (7) by replacing the positive sign with a negative as

(ri(N) - rz(N))c)
(ri(N)?)c '

Interestingly, the c.m. chain is not a conventional polymer
except in special situations, e.g., T — 0 with no bubbles.
This makes the dsDNA rigidity problem different from a
simple single-polymer problem. Moreover, when bubbles co-
exist with semiflexible bounded segments, the c.m. chain
behaves like a multiblock copolymer constructed from hard
rods (semiflexible ds segments) and flexible chains (bubbles).

The nature of the ERF obtained from k., and k., as we
will see, depends on how the forces are applied at the two
end points. This is similar to the direction-dependent elastic
response on pulling a single-strand polymer (protein) from a
collapsed or globule state to an extended state when the model
is inherently anisotropic in shape and conformation [46].

Rrel = 2<r1(N>2>c(1 - )

Anisotropy in our model is introduced by the application of an
external force. Therefore, while one of the forces introduces
anisotropy in shape, varying the direction of the other force
leads to a different elastic response.

Note that, in the bound state of the flexible model (n =
0) the ds remains as flexible as the ss; as a result there is
only emergent entropic elasticity. On the other hand, in the
semiflexible model (n # 0) the bound state has an intrinsic
rigidity towards bending and the only way to gain flexibility
is through the formation of locally melted bubbles. The model
we considered here is that of a torsionally unconstrained DNA
where the helical topology is disregarded. However, the semi-
flexibility due to the stacking of the base pairs in the helix is
effectively included as the semiflexibility of the ds bounded
segments.

II1. SIMULATION ALGORITHM

For simulation we have used the pruned and enriched
Rosenbluth method (PERM) algorithm, which samples equi-
librium configurations of long chains efficiently through a
successive cloning and pruning approach controlled by a pre-
defined threshold [42,47]. Both the chains take new steps at
the same instance, the choices of which are given by the joint
possibilities of atmospheres of both the chains. The monomers
are added to a chain successively, one after another, following
the Rosenbluth-Rosenbluth (RR) method [48]. At each step,
the local partition function is calculated by estimating all the
possible configurations with proper Boltzmann weights. Since
for self-avoiding chains the atmosphere seen by the open end
of the two chains can be different we need to consider the
combined atmospheres of the two chains [49]. Since overlap is
allowed only at the same monomer position of the two strands,
the total atmosphere would simply then be the multiplication
of the individual atmospheres of the two strands; i.e., the
total atmosphere at the nth step for two self- and mutually
avoiding chains would simply be atmos = atmos; X atmos;,
where atmos; and atmos, refer to the atmospheres of strand
1 and strand 2, respectively. Then for two interacting walks,
the first step for each walk has 6 different possibilities, with a
total of 36 combined possibilities to step into, among which
there are 6 ways of taking steps together and forming a
bond. Thus, the local partition function becomes Zjocy =
w; =30+ 6exp (¢/T), where exp (e/T) is the Boltzmann
factor for making a contact and Zjo, also serves as the
weight of that particular step w;. Then the weight of a
configuration of length N is Wy = ]_[fv=1 w;, the successive
multiplication of the weights of the previous steps. Likewise,
the weight of the second step provided that the first step
is bound would be w, = 4 exp(e/T) + exp(e/T ) exp(n/T) +
20. The external force is introduced similarly. Assuming that
the strands are stretched along the z direction by a force
f = fZ (f is the magnitude of force and Z is the unit vector
along the z direction), a weight factor b = exp (Azaf/T) is
introduced in calculating the weight w,, at the nth step for both
the chains:

wy = Y exp(—Ec/T)exp(—Ey/T)exp(Aziafi/T)

atmos

x exp (Azafa/T), (10)

052412-3



DEBJYOTI MAJUMDAR

PHYSICAL REVIEW E 103, 052412 (2021)

where f| and f, are the forces at the end points of chain 1 and
chain 2, respectively, and the sum is over all free directions
(atmos) with E, and Ej, the contact energy and the bending
energy, respectively. Az;» = =£1 for a step along or opposite
to the direction of the force and zero otherwise. a(= 1) is the
step length. Enrichment and pruning are performed at each
step depending on whether the ratio % is greater or smaller

n

than 1. In our simulation averages are taken over 107 tours and
error bars for the fluctuating quantities are estimated on the fly.
For a discussion on error calculation see [21]. The averaging
is not as simple as in the case of the RR method, where a tour
is just a single chain. For PERM a tour is a set of chains with
arooted tree topology, where new branches are added through
cloning and moves are performed only along the branches of
the tree to ensure detailed balance. To check self-avoidance,
we implement two different methods. One method uses a
virtual box where lattice sites are indexed 0 or 1 if empty or
occupied, respectively. Although the time complexity is O(1),
the memory required is large, thus limiting the maximum
length that can be achieved. In the second method we used a
tree-based search algorithm known as Adelson-Velsky-Landis
(AVL) tree [50]. Here the time complexity is O(logn) in the
worst case, where n is the number of nodes.

IV. ELASTIC PROPERTIES UNDER
A STRETCHING FORCE

The zipping transition. If the forces applied at the end of
the two wandering strands of the DNA are towards the same
direction, then the forces are said to be stretching in nature
(see Fig. 2). A model similar to ours, but over a directed
lattice, was considered in [51,52], where a continuous transi-
tion was observed. For a directed lattice, the phase transition
behavior in d + 1 dimensions is the same as that of Gaussian
chains in d dimensions. Here, we consider self-avoiding in-
teraction among all segments of the chain and the same force
upon both the strands. However, the case of unequal forces
could be equally interesting, as this would raise the question
regarding the possibility of a bound phase at small forces, for
DNA interacting only at the complementary sites. The simul-
taneous stretching of both the strands along the same direction
has a stabilizing effect on the bound state of the DNA. Under
stretching, the strands tend to come together and form contacts
which carry the system from an unbound state to a stable
bound state. This happens above a critical stretching force
(fsc) which depends upon the temperature (7") and the rigidity
(n) of the system. The critical stretching force required to zip
the DNA increases for DNA at an elevated temperature or with
higher flexibility (see Fig. 3). In other words, the semiflexi-
ble chain tends to cooperate with the stretching force. While
the thermal melting transition (f; = 0) with excluded volume
interaction is first order [21,42], under a stretching force the
DNA undergoes a continuous zipping transition even with
excluded volume interaction, for sufficiently strong forces
[53]. This is evident from the shift of the specific heat (C.)
peaks with the system size [Fig. 4(b) inset] or the bubble-size
exponent (c). This can be explained from the correlation of the
fluctuations along the polymer chain, also known as the “de-
flection length” A, which in the presence of a strong force is

T T
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c=1.79 second-order —<— 1
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FIG. 3. Force-temperature phase diagram for a flexible DNA
(n = 0) under a stretching force (f;). The red and blue points repre-
sent the first- and second-order phase boundaries, respectively, which
meets at a tricritical point (TCP). We have shown the bubble-size
exponent ¢ along the transition line.

given by [55-58]
M, = (filp/kgT) ™2 (11)

When A becomes [, the excluded volume becomes irrele-
vant and thus the DNA undergoes a continuous renaturation
transition. In simple words, the reduced interaction between
the bubbles and the rest of the chain due to the presence of the
external force results in this change of nature of the transition
[59-61]. This hints at the possibility of the existence of a
special point in the force-temperature phase diagram where
the transition changes from second order to first order or vice
versa and is known as a tricritical point (TCP). The TCP has
been determined by observing the value of the exponent ¢
near the critical point. For the exponent ¢ < 2 the transition
is regarded as second order, while for ¢ > 2 the transition is
first order. First-order thermal melting follows an exponent
¢ = 2.4 [21]. The strongest first-order transition reported is
for ¢ = 3.2 [61]. We obtain ¢ directly from the bubble-size
distribution [Fig. 5(c)] for various T near the transition point
fsc» which in turn is estimated from the specific heat curves.
The TCP is obtained at f; = 1.47 and T = 1.184 with ¢ =
2.03 £ 0.001. The determination of c is sensitive to fitting of
the data points and the initial transients should be excluded
[61]. Therefore, a careful determination of the TCP would re-
quire longer lengths and better statistics or equivalently longer
CPU time.

Thermodynamic observables usually studied to character-
ize the nature of a denaturation transition are the number of
bond pairs in contact per monomer (#.), which also serves as
the order parameter for the transition and the thermal response
function (C,) which is related to the fluctuation of n. and gives
the specific heat after scaling with 72 [see Fig 4(a)]. Near the
transition f = f;. for a chain length N, we have the following
scaling form for the specific heat [62]:

C. ~ N7 'gl(f — fie)N?], (12)
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FIG. 4. Order parameter, its fluctuation, data collapse, and
smearing exponent. (a) Number of base-pair contacts per monomer
(n.), for a flexible DNA, i.e., n = 0 under a stretching force (f;)
at temperature 7 = 1.5(>7,,). Inset: Contact number fluctuation
per monomer (C.). (b) Data collapse of C. curves according to
Eq. (12) using ¢ =0.77 and f,, = 2.57. Inset: Log-log plot for
scaling of the contact fluctuation peaks C, m,x With the system size N.
W(x) ~ x~%3* is a fit to the data points resulting in ¢ = 0.77 £ 0.001.
(c) Log-log plot of Af; with N. Smearing exponent quantifying the
finite-size rounding of the (C,) curves [inset of (a)] at T = 1.5 and
n = 0. We obtain &« = 0.72 & 0.009 from fitting the data points using
Eq. (13) [54].

where ¢ is the crossover exponent, which determines the
nature of the transition, and g is a scaling function. However,

for large N and close to fi. Eq. (12) reduces to C; peak ~
N?$=1. We provide the data-collapse plot in Fig. 4(b), and
the scaling of the specific heat peaks with the system size in
the inset of Fig. 4(b). Our estimate of the crossover exponent
¢ = 0.77 £ 0.001 for the zipping transition at 7 = 1.5 com-
pares well with an independent estimate using the bubble-size
distribution, Eq. (14) in the upcoming paragraph.

Although we are interested in the thermodynamic limit
(N — 00), study of these scaling laws for finite-size systems
near the critical point is often useful since single-molecule
DNA experiments are performed with finite-size systems.
These critical points are characterized by mathematical sin-
gularities of thermodynamical quantities which appear only
for an infinite system, but are smeared for finite systems. This
smearing is quantified by the smearing exponent which mea-
sures the rounding of the response curves near the transition
point. It was shown that when a nonordering field (other than
temperature) drives the transition from first order to second
order [54,63], then the broadening near the transition, under
the assumption that the broadening in the nonordering field
(w) is the same as that of temperature, gives that

Ape ~ N~VE, (13)

where o = (2¢p — 1)/¢ is the critical exponent for the diver-
gence of specific heat and 1/(2 — «) is the smearing exponent.
However, the stretching force f;, in our case, like tempera-
ture, induces a transition, but since it is not coupled to the
order parameter (n.) directly, it cannot be linked to any “or-
dering” field. Taking the width of the specific heat curves
at the half maximum as the measure of Af; we plot the
width of the C. curves for different sizes and then fit with
Eq. (13) [see Fig. 4(c)]. We obtained o = 0.72 £ 0.009 and
therefore ¢ >~ 0.78, compatible with the previously obtained
result. The smearing exponent remains the same as that of
the second-order smearing in temperature A7, ~ N~!/C=),
Thus, stretching dsDNA provides an excellent system of
studying this smearing exponent for a field which induces a
transition to a more orderly state (fully stretched and bound)
although not connected directly to the order parameter while
also changing the nature of the transition to second order.

Bubble statistics. In our model, a bubble is identified to be
a continuous section of broken bonds flanked by the bound
segments on either side. Thus, the broken bonds in the Y fork
do not count as part of the bubbles [see Fig. 1(d)]. In the
zero-force limit (f; = 0), i.e., in the linear response regime,
the isotropic ERF k., is controlled by these bubbles for a
continuous transition and by the broken bonds in the Y-fork
region for a first-order transition [21]. Naturally, we expect
some new behavior in the system under a finite force (f; # 0)
when the fluctuations transverse to the direction of the applied
force get suppressed, since these thermal fluctuations are es-
sential in determining the elasticity of the bulk DNA in the
form of bubbles and Y fork.

In the process of bringing the strands together, the stretch-
ing force primarily aids in the formation of bubbles: the
average bubble length (I,) grows with the stretching force,
peaking near the transition point, and then dies out as the
strands gradually collapse into a single strand [see Fig. 5(b)].
Averaging is done over length and then over configurations.
Bubbles under a stretching force grow larger on average in
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(a) comparison to the thermal melting transition [21]. This is
0.09 — : due to the combined effect of strong thermal fluctuations (at
. _0.6 51338' TR :ﬁ% ] T > T,,) and the ordering force f;. Note that the peaks for
0% Fiseo ° E ox average number of bubbles per monomer (7;,) and the average
0.07 F04 ;‘2000 ’ E DD; : Rﬁ% E length of bubbles (I,) shifted on either side of the transition
0.06 F*3 F x 16 = % point [see Figs. 5(a) and 5(b)]. This indicates that as the chain
00s £ 3 I H approaches the transition point from below f; — f;.—, a few
2 01 2 %, i - ! larger bubbles break to form many smaller bubbles in the
004 F o bl 7 g E process of stretching. The fluctuation in the number of bubbles
o03f 7 3 : 3 per monomer (Cp) gets large near the transition point [see
0oz b fs B : o X ] Fig. 5(a) inset]. In the Fig. 5(b) inset we plot the fraction of
x : 1500 broken bonds comprising the bubbles (f;) and the Y fork (fy).
0.01 - X ijOgg B The bubble-size distribution (BSD) near the transition point

0 = . '3 — 3'5 follows a power-law scaling [64]
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FIG. 5. Bubble statistics. (a) Average number of bubbles per
monomer () against the stretching force (f;) for a flexible DNA
(n=0) at T =1.5(>T,) for chain length up to N = 2000. Inset:
Same as in (a), but with bubble number fluctuation per monomer (Cj)
along the y axis. (b) Average bubble length (/,) along the chain for
a flexible DNA n = 0 at T = 1.5, for chain lengths up to N = 2000.
Average taken over a chain and then over configurations. Inset:
Fraction of broken bonds that form bubbles (f,) and Y fork (fy).
(c) Bubble-size distribution P(/) near the tricritical point f;, = 1.47
and T = 1.184 with ¢ = 2.03 £ 0.001 (see Fig. 3), also at T = 1.5
and f; = 2.45 with ¢ = 1.79 &£ 0.01. Both for chain length N = 500.
W (x) ~ x72% and W,(x) ~ x71"% is a fit to the data points along
the middle of the distribution. Data points for i, (x) are shifted by a
factor of 10.

P(,N)~1"g(l/N), (14)

where the exponent c is related to the reunion exponent of
random walkers [65] and determines the nature of the tran-
sition and g(I/N) is a scaling function [see Fig. 5(c)]. Away
from the transition point (f > f;.) an exponential distribution
P(l,N) ~ exp (—1/ly) is followed. As mentioned previously,
for ¢ > 2 the transition is first order, for 1 < ¢ < 2 the transi-
tion is second order, and for ¢ < 1 there is no transition at all.
The BSD exponent c is related to the crossover exponent ¢ as

p=c—1, (15)

with ¢ = 0.77, estimated independently from the specific heat
curves [see Fig. 4(b)]. The BSD for stretching-induced renat-
uration transition at 7 = 1.5 and f; = 2.45 for chain length
N =500 follows an exponent ¢ = 1.79 & 0.01 [see Fig. 5(c)].
This further corroborates the continuous nature of the tran-
sition [59]. The nature of the transition does not change on
including semiflexibility, as observed from the exponent ¢ for
n=1atT =15 and f; = 1.5. However, the possibility of
whether an increased stiffness can drive the transition towards
first order needs to be checked further.

Elastic properties. The elastic properties for single poly-
mer chains are studied using the force-extension curves where
the slope of the curve provides an estimate of its extensibility.
However, for systems like dsDNA, interstrand correlations
play an important role in determining the bulk elasticity, and
the elastic response of individual strands does not capture the
whole picture. Therefore, we study the fluctuation response
of the c.m. chain to investigate the elastic behavior of the
system.

In Figs. 6(a) and 6(b) we plot the fractional extension
(¢) of an individual strand along the force and the ERF per
monomer (K., /N), respectively, for n = 0 and 1. The contin-
uous variation of ¢ around the transition point is the signature
of a second-order transition. Note that, post-transition, the
extension happens faster, both for = 0 and 1 and follows a
power law. The ERF k., diverges at the transition point, with-
out any pretransitional signature in the thermodynamic limit
N — oo [see Fig. 6(b)]. The peak for k., /N increases with
the size of the DNA and eventually leads to a § function in the
infinite chain limit. However, for finite-size systems, the ERF
per monomer is continuous and becomes length independent
away from the transition on either side. This indicates strong
finite-size effects mainly around the transition point over a
range of forces. Further, this divergence in i, grows sharper
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FIG. 6. Average fractional extension and ERF. (a) Log-log plot
of fractional extension (¢) of strand 1 along the direction of the
stretching force (f;), for a flexible DNA (n =0) at T = 1.5(>7,)
for chain lengths up to N = 2000. The straight solid line represents
W, (x) ~ x3! Inset: Same as (a), but for a semiflexible DNA (n =
1) at T = 1.5 and chain lengths up to N = 500. The straight solid
line represents W, (x) ~ x~>*%_ For both cases the straight dotted line
represents W(x) ~ x~%° WLC scaling. (b) Data collapse of the ERF
(Kem) for a flexible DNA n =0 at T = 1.5 for chain length up to
N = 2000 according to Eq. (16) using v = 0.5 and ¢ = 0.77. Inset:
ERF &ey /N? with v = 0.5 for a semiflexible DNAp =1atT = 1.5
and chain length up to N = 500.

with the stiffness of the chains. A finite-size scaling should be
of the form

= 2v __ a7p—v ¢

Eem/N7" = N*""gl(fs — fic)N]. (16)

The system undergoes a change in flexibility from the most

flexible state when it is unbound with large ., and zero exter-
nal force f; = 0, to a rigid state with &, going towards zero.
Although under stretching force the renaturation transition
is continuous at 7 = 1.5, the profile for k¢, is remarkably
different from that of DNA constructed with two Gaussian
chains undergoing a continuous thermal melting transition
where the i, follows the order parameter curve without any
jumps near the transition point [21].
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FIG. 7. Relation between bubble-related quantities and ERF.
(a) Ratio of bubble number per monomer (n,) and the fractional
extension (¢) of strand 1 along the direction of force for the flexible
model n = 0atT = 1.5 and chain length up to N = 2000. The dotted
line W (x) = 0.65 is the value of the collapsed curve. Inset: Same
as (a) but for the semiflexible model = 1 and T = 1.5 and chain
length up to N = 500. The dotted line W, (x) = 0.35 represents the
value of the collapsed curve. (b) Fluctuation in number of bubbles per
monomer (C,) scaled by the ERF (%,,,/N)forn =0and T = 1.5 and
chain length up to N = 2000. Inset: Same as (b) but for a semiflexible
chain with n = 1 and T = 1.5 for chain length up to N = 500.

Next, we investigate whether there is any connection be-
tween the observables describing the elastic response of the
system, viz., ¢ and K.,, and the bubble-related quantities
such as n;, and Cj,, which controls the nature of the thermal
transition [51]. Since the ERF k., is associated with the fluc-
tuations in the average extension of the c.m., ¢, We expect
Kem to be related to the fluctuation in bubbles C;, while ¢, or
simply ¢ should be related to n,. In Figs. 7(a) and 7(b) we plot
the quantities n,/¢ and CpN/k.,. We found that beyond the
transition point, the curves for the two ratios collapse into a
single master curve which indicates that ¢ ~ n;, and i, /N ~
C,, with a weak dependence on f;. From this proportionality,
n, and Cp, seem to be important elements in determining the
elastic response of the bound system containing thermally
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FIG. 8. Unzipping phase diagram of flexible ( = 0) and semi-
flexible (n = 0.5) DNA. The smooth line is an interpolation using
the data points. The arrows along the phase boundary direct towards
the unbound phase. The low-temperature slope is determined by the
entropy of the bound phase. As it approaches zero for nonzero 7, the
curve becomes horizontal as shown for n = 0.5 (open squares). An-
alytical values of f,. at T = 0 are an exact match with the simulation
results both for n = 0 and 0.5.

melted regions or bubbles under a stretching force. Moreover,
only bubbles contribute to the flexibility of the stretched DNA
in the partially bound state with finite fraction of broken bonds
in the bubbles f;, = n;, x I, # 0, while the fraction of broken
bonds in the Y fork fy — O [see Fig. 5(b) inset].

V. ELASTIC PROPERTIES UNDER AN UNZIPPING FORCE

The unzipping transition. DNA can be mechanically un-
zipped [7] by applying an equal and opposite force f, on the
two open ends of the DNA (see Fig. 2). Unlike a stretch-
ing force, an unzipping force tries to separate the DNA into
two single strands. The unzipping takes place only after the
force exceeds a critical value f,. [7]. This critical value
could depend upon factors like the temperature, flexibility,
etc. Theoretical studies have obtained the force-temperature
phase diagram [66], but the agreement with the experimental
curve for the unzipping of a lambda phage DNA is only
over a selected range of temperature outside which it differs
significantly, resulting into either underestimation or overesti-
mation of the critical force [67]. One of the major factors that
was not taken into consideration in these previous theoretical
and simulative investigations in studying the unzipping phase
diagram in three dimensions is the large difference in the
rigidity between the ss and ds segments. Here, we perform
a simulative study of the effect of semiflexibility of the ds
segments of the DNA on the unzipping phase diagram along
with the elastic properties and bubble statistics, for unzipping
induced by an externally applied force.

The force-temperature phase diagram of DNA, unzipped
through pulling of both the strands simultaneously in op-
posite directions, consisting of flexible chains, shows a
low-temperature denaturation or reentrant phase transition
due to the nonzero ground state entropy [68] (see Fig. 8).
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FIG. 9. Order parameter, its fluctuation, and Gibbs free energy.
(a) Number of base-pair contacts per monomer (n.). Inset: Data
collapse for contact number fluctuation (C.) per monomer, using
¢ =0.96+0.02 and f,. = 0.176(7), for a flexible DNA (n = 0)
subjected to unzipping force (f,) at a constant temperature 7 =
0.7(< T,,) for chain lengths up to N = 2000. (b) Comparison of
the two free energies per monomer (G/N) for f, =0 and f, = 0.1
for chain length N = 400. Arrow directs to the point of difference
between the two free energies representing 7. for the f, = 0.1 unzip-
ping force (see Fig. 8).

Unzipping of a flexible DNA (n = 0) at T = 0.7 is found to be
weakly first order with ¢ = 0.96 +0.02 and f,, = 0.176(7)
obtained from the data collapse of specific heat [see Fig. 9(a)
inset]. The specific heat peaks scale roughly o« N. Since our
maximum length is only up to N = 2000 this might introduce
corrections to scaling. Our results are in agreement with the
thermal melting of DNA where ¢ = 0.98 £ 0.15 is estimated
from the scaling of peaks of the specific heat with length
[42,69]. This shows that under an unzipping force the na-
ture of the transition remains intact. Further, the nature of
the transition does not change by semiflexibility of the ds
segments or by the magnitude of the unzipping force. The
only effect of the semiflexibility is to induce stability into
the system by lowering the entropy of the bound phase and
thereby the formation of bubbles [21]. This also affects the
low-temperature denaturation transition, since the reentrant
phase transition is solely driven by the entropy of the ground
state. Therefore, for semiflexible chains, the low-temperature
denatured phase vanishes (see Fig. 8).
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A simple scaling argument for the critical force near the
thermal melting follows from a thermodynamical analysis of
unzipping for a Y model as [66]

1-v T ’
Jue(T)~T"\ 1= =], A7)
Ty

where T, is the thermal melting point and v is the size expo-
nent. That the scaling near the thermal melting point can be
explained by a simple Y model of DNA is due to the fact that
the unzipping force is unaware of the bubbles residing beyond
the Y fork. Near the low-temperature unzipping transition for
n = 0[66],

fue(T) = A(e + T log o), (18)

where p; is the effective coordination number of the DNA.
Thus, the curvature of the reentrant transition ("af;“ )r—o0 1S
controlled by the entropy (or in other words the flexibility) of
the ds bound phase. Thus, setting 7 = 0 we obtain the zero-
temperature unzipping force f,.(T = 0) = 0.5. Similarly, for
a semiflexible DNA (1 # 0), Eq. (18) can be written as
Jue(T =0) = (e + n)/2, giving the zero-temperature unzip-
ping force for n = 0.5 to be f,,.(T = 0) = 0.75 in exact match
with the extrapolation of the simulation results and the slope
(%’%)T%O — 0 with the ground state entropy going to zero
(see Fig. 8), thus resulting in the vanishing of the reentrant
transition for nonzero n. Estimates of the transition points
are obtained from the peaks of the specific heat curves (see
Fig. 9) [70].

Hypothesis of the impenetrability of force. From a ther-
modynamical viewpoint we have two mutually exclusive
situations, where either the force (f,) or the extension (z) is
fixed. These two scenarios correspond to the two possible
ensembles in the statistical mechanical picture. The fixed-
distance ensemble is characterized by the Helmholtz free
energy J (T, z) and the fixed-force ensemble is characterized
by the Gibbs free energy G(T, f,). For a system which is both
thermally and mechanically coupled to the environment, we
need to consider the change in the Gibbs free energy. The
mechanical coupling comes from the applied force at the end
points and the two free energies are related via a Legendre
transformation

G(T, fu) = F(T,2) — fuz, 19)

where f, is the force and z is the extension of the strand
along the direction of the applied force. For a first-order
unzipping transition G(7, f,) is continuous across the phase
boundary which implies G,(T, fuc) = Gu(T, fu), Where G,
(G,) represents the free energies in the zipped (unzipped)
phase. Hypothesizing that the force does not penetrate the
bound state for f, < f,.(T) we can write [71]

G(T, fu) = GAT,0),  fu < fues (20)

i.e., the Gibbs free energy in the presence of the unzipping
force must be equal to the Gibbs free energy in the absence
of the unzipping force in the zipped phase. We estimate the
free energy (=—p"!In Z) where Z is the canonical partition
function estimate in the fixed force ensemble directly from
the PERM simulations and plot the free energies for f, =0
and f, = 0.1 in Fig. 9(b). The point of difference between
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FIG. 10. Bubble number, its fluctuation, and average bubble
length of a DNA under unzipping force. (a) Average number of
bubbles per monomer (7,). Inset: Bubble number fluctuation per
monomer (Cp). (b) Average length of bubbles (/,) along the chain.
Average is taken along the chain and then over configurations. Inset:
Fraction of broken bonds (f;,) forming bubbles and Y fork (fy). All
data taken for a flexible DNA, i.e.,n =0atT = 0.7(< T,).

the two free energies then should give the critical point of
unzipping. This hypothesis is valid irrespective of the stiff-
ness of the chain. Although a thermodynamical description of
the first-order unzipping transition rests on the hypothesis of
the impenetrability of force, thermodynamics does not rule out
the possibility of a continuous unzipping transition in case
there are sources that allow for the force to penetrate [71,72].

Bubble statistics. The important length scales of the prob-
lem come from the bubble size along the chain (t) and in
spatial extent (£) [7]. T is related to the average bubble length
(Ip). In Fig. 10(a) we plot the average number of bubbles per
monomer (n;), in Fig. 10(b) the average bubble length (1),
and in the inset the fraction of broken bonds forming the
bubbles (f,) and the Y fork (fy) for unzipping at T = 0.7.
The value of n, in the bound phase represents the corre-
sponding zero-force value at 7 = 0.7. The impenetrability of
the unzipping force below a certain critical value makes the
bubbles, residing deep within the chain, impervious to the
external force. The average number of bubbles per monomer
remains constant up to the critical point f — Similarly, I,

uc*
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FIG. 11. Fractional extension (¢) of strand 1 along the direction
of the unzipping force. The straight dotted line represents W(x) ~
x~%5 while the single strand refers to the extension along the force
for a single flexible polymer chain.

does not change until the critical point is reached. Further, in
finite-size systems a Y fork may coexist with a finite fraction
of broken bonds in the bubbles near the critical point [see
Fig. 10(b) inset]. Since the bubbles remain invisible to the
external force which acts only as a boundary effect, the nature
of the unzipping transition remains intact.

Elastic properties. We plot the average fractional exten-
sion ¢ of an individual strand along the force in Fig. 11 and the
isotropic ERF obtained from the c.m. chain &y, and from the
relative chain iy in Fig. 12. The sharp drop in ¢ signals a first-
order transition [see Fig 11(a)]. That the extension remains
zero until the critical point is reached is another instance of
the impenetrability of force. In the large-force limit (f > f,.)
the extension (¢) follows the curve of the single strand. The
qualitative behavior of the ERF obtained from the c.m. chain
Kem 1s similar to that of the thermal melting [21], while that
obtained from the relative chain is divergent at the transition
point [see Fig. 12(b)]. This divergence is absent in thermal
melting [21]. It is evident from Fig. 12 that even in the pres-
ence of an external force the isotropic part of the ERF i, (or
K1) in the bound phase represents the zero-force value with a
scaling exponent of v = 0.588, while in the unzipped phase a
reduction took place with respect to the zero-force value when
scaled by N''176_ owing to the presence of the unzipping force.
However, a better collapse is obtained when & is scaled by N
with v = 0.5. This shows that, given the bubbles remaining
unaffected by any boundary effect, bulk elasticity does not
change. On the contrary, in the stretching case since bubbles
gets modified continuously, this leads to a gradual change in
the value of iy, starting from the zero-force value and also
after the transition. This is evident from the plots of the av-
erage bubble length and average number of bubbles [compare
Figs. 5(b) and 10(b)]. Thus, the impenetrability of force [71]
plays an important role in controlling the elastic properties of
the zipped phase. We expect this behavior to be independent
of the position where the force is applied. Also noticeable
is that k., and & behave in a similar way as the stiffness
constants of the restoring potential for fluctuations about the
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FIG. 12. (a) Rescaled ERF from c.m. chain (Z.,,/N''7°) against
unzipping force (f,). Inset: Same as (a) but when scaled by N.
(b) Rescaled ERF from the relative chain (<., /N'!7®) against unzip-
ping force f,. Inset: Same as (b) but scaled by N. All data taken for a
flexible DNA (n = 0) at T = 0.7(< T,,). Notice that the value in the
zipped phase remains the same as the zero-force value [21] while a
reduction takes place in the unzipped phase.

mean value of the order parameter along the longitudinal (k;)
and transverse (k;) directions, respectively, derived from the
Landau-Ginzburg Hamiltonian [73], i.e., Kcm (k1) = Kre1(k;) in
the unbound (disordered) phase and ke (x;) = O in the bound
(ordered) phase. This vanishing of the transverse component
(k; = 0) represents the Goldstone modes appearing due to
spontaneous breaking of a continuous symmetry. However,
such a symmetry breaking is not known for DNA.

VI. CONCLUSION

To conclude, we consider a minimal model of dsDNA in
good solvent conditions to study the change in the elastic
response under a change in the state of the system when
subjected to unzipping or stretching forces and investigate
how the elements that contribute to the flexibility, viz., the
number of bubbles and its fluctuation, get modified by it.
Interestingly, the elastic response of the DNA is different
for the two types of forces considered. The elasticity for the
flexible case is completely entropic, which emerges due to
the bond-bond correlation. On the other hand, the semiflexible
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model contains an additional intrinsic rigidity. We found that
a stretching force alters the bubble statistics, and hence the
order of the transition, resulting in a continuous transition, for
sufficiently strong forces, even with excluded volume inter-
action. With semiflexibility in the ds segments, the DNA is
found to cooperate with the stretching force in the sense that
the renaturation transition occurs at a lower critical force in
comparison to the flexible case. We also show that the average
extension along the force and the ERF is related to the average
bubble number and its fluctuation, respectively, and that the
flexibility of the bound phase is mainly due to the bubbles
because of the complete disappearance of the Y fork.

On the other hand, for an unzipping force, the unzipping
transition remains first order as in the case of thermal melting
for all values of forces and semiflexibility. Unzipping takes
place at a higher critical force for systems at lower tempera-
ture. Semiflexibility provides thermal and mechanical stability
against an unzipping force. However, our results remain more
towards the theoretical models but it surely narrows the differ-
ent possibilities; e.g., semiflexibility does not seem to change
the nature of the flexible chain phase diagram except for
the vanishing of the low-temperature reentrant part. We also
revisited some previously known results from the perspective
of the model we describe here. Additionally, we show that

a modification of the bubble states is necessary in order to
change the bulk elasticity of the DNA. Intriguingly, the elastic
response is largest at the critical point. This seems to relate
to the notion that biological systems poise themselves at the
criticality for enhanced elastic response [74].

For simplicity, we chose equal forces for both the strands.
However, two unequal forces in arbitrary angles can be de-
composed into stretching and unzipping forces applied at
the end independently. This allows for an easy experimental
implementation. Other interesting situations include position-
dependent elastic response of the DNA, which might show
new features different from the simple stretching at the end
points, e.g., how critical force for unzipping depends upon
the position where the force is being applied [18,75], the het-
erogeneity of the base-pair sequence, or the elastic response
under spatial confinement. We hope our results will serve as a
theme for future experiments on DNA.
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