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Exploring dissipative sources of non-Markovian biochemical reaction systems
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Many biological processes including important intracellular processes are governed by biochemical reaction
networks. Usually, these reaction systems operate far from thermodynamic equilibrium, implying free-energy
dissipation. On the other hand, single reaction events happen often in a memory manner, leading to non-
Markovian kinetics. A question then arises: how do we calculate free-energy dissipation (defined as the
entropy production rate) in this physically real case? We derive an analytical formula for calculating the
energy consumption of a general reaction system with molecular memory characterized by nonexponential
waiting-time distributions. It shows that this dissipation is composed of two parts: one from broken detailed
balance of an equivalent Markovian system with the same topology and substrates, and the other from the
direction-time dependence of waiting-time distributions. But, if the system is in a detailed balance and the
waiting-time distribution is direction-time independent, there is no energy dissipation even in the non-Markovian
case. These general results provide insights into the physical mechanisms underlying nonequilibrium processes.
A continuous-time random-walk model and a generalized model of stochastic gene expression are chosen to
clearly show dissipative sources and the relationship between energy dissipation and molecular memory.
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I. INTRODUCTION

Many biological processes including important intracellu-
lar processes are governed by biochemical reaction networks.
Often, these systems operate far from equilibrium. Nonequi-
librium processes are essential for cells to perform internal
transport [1,2], drive directional motion [3,4], and generate
spatial organization [5,6]. In general, the achievement of bi-
ological functions is at the cost of free energy, e.g., cells
consume their free energy to achieve their particular func-
tions such as high-fidelity transcription and replication [7,8],
accurately sensing and adaption [9,10]. The quantitative or
qualitative analysis of free-energy consumption is thus sig-
nificant for understanding fundamental cell processes and the
underlying biophysical mechanisms.

Traditionally, the analysis of dissipative systems and
nonequilibrium dynamics is based on the Markovian hy-
pothesis [11–14]; e.g., in order to analyze dynamics of a
biochemical reaction network, it is often assumed that reac-
tion rates are constants (this assumption implies that waiting
times between individual reaction events follow exponen-
tial distributions [15,16]). Under this assumption, the energy
dissipation of nonequilibrium systems has been extensively
studied [17–19]. For example, the tradeoff between informa-
tion and dissipation in biological circuits has been discussed
using simple models [20]. It is generally believed that free
energy is consumed to maintain properties of a functional sys-
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tem, e.g., cells increase, through consuming their free energy,
the accuracy, efficiency, and robustness of their functions in
noisy environments [21–24]. From the viewpoint of thermo-
dynamics, adenosine triphosphate (ATP) hydrolysis provides
energy input to break detailed balance and achieve sensory
and adaptive functions at the cellular level [25–27]. Sev-
eral works showed a close connection between the amount
of energy consumed by a Markovian reaction network re-
sponsible for performing the cellular computation and the
accuracy of the final computed information [8,28–31]. A
similar study showed that energy dissipation is needed for
regulatory networks, and the amount of dissipated energy
limits reliable readout [32]. In addition, other studies showed
that Markovian gene expression needs energy dissipation to
ensure high-fidelity, specificity, and efficiency of transcription
and translation; e.g., fidelity of transcription in general fol-
lows energy-dissipative events such as chromatin remodeling,
DNA methylation, and histone modification [33]. Recently, it
was reported that bursty expression needs to consume more
free energy than constitutive expression if both processes are
Markovian [34,35].

In the biological world, however, Markovianity is the ex-
ception and non-Markovianity is the rule. For example, gene
activation in eukaryotic systems is typically a non-Markovian
process since transcription begins only when chromatin tem-
plate accumulates over time until the promoter becomes
active. The involved multistep process can create a memory
between individual events [36–39], leading to non-Markovian
reaction kinetics. More generally, the complex control pro-
cess of gene expression would involve the recruitment of
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repressors, transcription factors, and mediators, as well as
chromatin remodeling or changes in supercoiling, and all
these detailed processes can generate nonexponential time
intervals between transcription windows [40–42]. Recent
studies imply that nontrivial dissipation can be detected even
if there are no observed flows in non-Markovian time series
[43,44]. These studies indicate that memory plays an impor-
tant role in biochemical processes. The extensive existence
of molecular memory raises an interesting yet fully unsolved
question: how do we trace sources of the free-energy dissi-
pation (defined as the entropy production rate in this paper)
of a reaction system with molecular memory? Two related
issues are, under what conditions of molecular memory there
is no free-energy consumption; and does a reaction system
consume more free energy in the non-Markovian case than in
the Markovian case if mean waiting times between reaction
events are the same in the two cases?

There have been some works to address the above or
similar questions in terms of continuous-time random walk
(CTRW) [45–47]. For example, Martínez et al. [48] devel-
oped an approach based on the relative entropy to detect time
irreversibility and estimate the entropy production of a hidden
network with arbitrary waiting-time distributions. They also
showed that there is a nontrivial entropy production rate even
in the absence of observable currents. Recently, Teza and
Stella demonstrated that an exact coarse-graining model with
memory can preserve entropy production out of equilibrium
[49]. In addition, Bisker et al. studied a partitioning of the en-
tropy production related to the observed and hidden variables
with integral fluctuation theorems [50]. Despite these efforts,
we still lack a general theory for understanding the energy
dissipation of general non-Markovian reaction networks and
the relationship between energy consumption and molecular
memory.

This paper aims to quantify the energy dissipation of a
general reaction system with molecular memory characterized
by nonexponential waiting-time distributions. Although we
have proposed a general framework for modeling this kind
of system—-a generalized chemical master equation (gCME),
and shown that its steady-state probabilistic behavior is ex-
actly the same as that of an equivalent Markovian reaction
network [51], whether both systems consume the same free
energy remains unclear. We perform our analysis of entropy
production rate based on the CTRW theory [48,52]. Specifi-
cally, By considering forward and backward trajectories in the
state space of the non-Markovian reaction system if they exist,
we analyze and calculate the entropy production rate between
these two trajectories, which is used to quantify the energy
dissipation of the underlying system. As a result, we suc-
cessfully derive an analytical formula, which shows that the
entropy production rate is composed of two parts: one from
the broken detailed balance (BDB) of the topology-equivalent
Markovian system, and the other from the direction-time de-
pendence (DTD) of the waiting-time distributions. We also
show that if the system is at the detailed balance (DB)
and the waiting-time distributions are direction-time indepen-
dent (DTI), then there is no energy dissipation even in the
non-Markovian case. Using our general theory, we analyze
two examples: a CTRW model with nonexponential waiting-
time distributions, and a generalized ON-OFF model of gene

expression with molecular memory. For the former example,
we show how molecular memory affects the entropy pro-
duction rate. For the latter example, we find that different
memory mechanisms can induce different patterns of energy
dissipation, implying that molecular memory has an important
influence on energy dissipation in gene expression. Further
study on the energy dissipation of non-Markovian reaction
systems can help us understand the underlying nonequilib-
rium mechanisms.

II. METHODS

A. Chemical master equations for modeling biochemical
networks with molecular memory

Chemical reactions are the consequence of the interaction
between different system components. Consider a general
reaction network consisting of N different reactive species
(denoted by Xj, j = 1, 2, . . . , N) that participate in L reac-
tions. Denote by n = (n1, n2, . . . nN )T the microscopic state
of the system, where n j represents the number of molecules
for the jth reactive species ( j = 1, 2, . . . , N). A single event
of any reaction, or equivalently a state transition n → n′ of
the system (in the following, we also use n → n′ to represent
a reaction unless confusions arises), is characterized by the
reaction waiting time t whose probability density function
(PDF) is denoted by ψnn′ (t ), depends, in general, on the sys-
tem state n, where n′ = (n′

1, n′
2, . . . n′

N )T . Thus, a reaction of
the underlying system may be, in general, described as

n
ψnn′ (t )−−−→ n′. (1)

If the cumulative distribution function of ψnn′ (t ) is defined
as �nn′ (t ) = ∫ t

0 ψnn′ (t ′)dt ′, then the joint PDF of reaction
n → n′ happening with the waiting time t is given by
φnn′ (t ) = ψnn′ (t )

∏
n′′ �=n′ [1 − �nn′′ (t )]. Correspondingly, the

probability that reaction n → n′ happens is given by �nn′ =∫ ∞
0 φ

nn′ (t )dt, where �nn′ satisfies the conservation condition∑
n′ �nn′ = 1. The PDF of the residence time at state n is

calculated according to φn(t ) = ∑
n′ φnn′ (t ). Note that the

probability that no reaction occurs at state n in time [0, t )
is given by �n(t ) = ∑

n′
∫ ∞

t φnn′ (t ′)dt ′ = ∏
n′ [1 − �nn′ (t )]

whereas the mean residence time at state n by τn =∫ ∞
0 �n(t )dt = ∫ ∞

0 tφn(t )dt = ∫ ∞
0

∏
n′ [1 − �nn′ (t )] dt .

Now, we define

φn′|n (t ) = φnn′ (t )

�nn′
, (2)

which represents the conditional waiting-time distribution of
reaction n → n′, given state n. If waiting-time distributions
φnn′ (t ) at state n for different n′ satisfy

φnn′ (t ) = �nn′φn(t ), (3)

then they are called distributions of direction-time indepen-
dence [45,46], i.e., the waiting-time distributions can be
represented as the product of the waiting-time part that de-
pends only on the originating state, and a transition probability
that connects the initial and final states. In the following, DTI
is an abbreviation for direction-time independent, whereas
DTD is an abbreviation for direction-time dependent. The
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combination of Eqs. (2) and (3) implies the relation

φn′|n (t ) = φn(t ), (4)

which indicates that the conditional waiting-time distribution
φn′|n(t ) for next reaction n → n′ does not depend on state n′.
Obviously, if all reaction processes from state n to state n′
are Markovian or memoryless (i.e., the waiting times follow
exponential distributions), then the waiting-time distributions
of state n are DTI.

Next, we establish a chemical master equation (CME) for
the entire reaction network. Let Pn(t ) denote the probability
that the system is in state n at time t , and Mnn′ (t ) be the mem-
ory function for state transition n → n′. Note that the Laplace

transform of Mnn′ (t ) is given by M̃nn′ (s) = φ̃nn′ (s)
�̃n(s)

[53,54].
Then, according to the probability principle, the change rate
(i.e., the derivative with regard to time) of Pn(t ) is equal to
the difference that all possible probability inflows of state n
subtract all possible probability outflows of state n. Mathe-
matically, this can be expressed as

∂Pn(t )

∂t
=

∑
n′

∫ t

0
[Mn′n(t − t ′)Pn′ (t ′) − Mnn′ (t − t ′)Pn(t ′)]dt ′.

(5)

This master equation is called a generalized CME. It is
worth pointing out that this gCME is an extension of the com-
mon CME. In fact, we can show that if M̃nn′ (s) is independent
of s, then Mnn′ (t ) will reduce to a reaction propensity function
in the Markovian case.

Note that∫ ∞

0
Mnn′ (t )dt = M̃nn′ (0) = φ̃nn′ (0)

�̃n(0)
= �nn′

τn

=
∫ ∞

0 ψnn′ (t )
∏

n′′ �=n′ [1 − �nn′′ (t )] dt∫ ∞
0

∏
n′ [1 − �nn′ (t )] dt

, (6)

which is termed as the effective transition rate for reaction
n → n′ and denoted by Knn′ . Apparently, Knn′ integrates the
effect of molecular memory if nonexponential waiting-time
distributions exist. This is an interesting fact.

Furthermore, if the stationary distribution of the reaction
system, denoted by Pn, exists (mathematically proving this
point seems difficult, but numerical calculations of examples
verify that Pn indeed exists), then using Knn′ , it follows from
Eq. (5) that the following the stationary gCME (sgCME)
holds: ∑

n′
(Kn′ nPn′ − Knn′ Pn) = 0. (7)

Interestingly, this equation is actually the CME for a
Markovian reaction network with the same topology but with
Knn′ taken as reaction propensity functions. In other words,
using Knn′ , we can construct an equivalent Markovian reaction
network whose steady-state CME takes the form of Eq. (7).

In addition, using the conservation condition that the sum
of all the transition probabilities satisfies

∑
n′ �nn′ = 1, we

can obtain

τn = 1∑
n′ Knn′

, �nn′ = Knn′∑
n′ Knn′

. (8)

Note that �nn′ is actually an element of the transition prob-
ability matrix for the equivalent Markovian reaction network.
If we let �n represent the distribution of visiting state n, which
denotes the fraction of visiting state n in a stationary regime,
then �n can be expressed as �n = ∑

n′ �n′�n′n. Since the
mean residence time for each reaction at state n is τn (we will
call the normalization constant τR = ∑

n �nτn the mean wait-
ing time per reaction in the reaction network), the stationary
distribution Pn of the whole system can be expressed as

Pn = τn

τR
�n. (9)

The above analysis gives a framework for modeling a
general reaction network. We emphasize that this analysis
framework is suitable to not only Markovian (i.e., all the wait-
ing times for reaction events follow exponential distributions)
reaction networks but also non-Markovian (i.e., the waiting
times for reaction events follow nonexponential distributions)
reaction networks, thus having broad applications.

B. A decomposition principle for entropy production rates

Recall that the relative entropy is defined as

E (P‖Q ) =
∑

x

P(x) ln
P(x)

Q(x)
, (10)

where P(x) and Q(x) are two probability distributions. The
entropy defined in such a manner is an information-theoretic
measure of distinguishability [55], and can quantify irre-
versibility and dissipation in nonequilibrium systems [43,56].

For the above reaction network, let us first consider a
trajectory in the state space

γ = {
n1

t1−→ n2
t2−→ · · · nl−1

tl−1−→ nl
tl−→ nl+1

}
, (11)

and its reversal trajectory

γ̃ = {
nl

tl−→ nl−1
tl−1−→ · · · n2

t2−→ n1
t1−→ n0

}
, (12)

if they exist, where
∑

i ti = t . Equations (11) and (12) imply
that the trajectory γ and its reversal trajectory γ̃ have the same
waiting time ti at state ni. Then, the occurring probabilities of
the two trajectories are given, respectively, by

P(γ ) = φn1n2 (t1)φn2n3 (t2) · · · φnl nl+1 (tl ), (13a)

P(γ̃ ) = φn1n0 (t1)φn2n1 (t2) · · · φnl nl−1 (tl ). (13b)

Similarly, if we consider two stationary trajectories of
the equivalent Markovian reaction network as constructed
above: a forward trajectory σ = {n1, n2, n3, . . . nl , nl+1}, and
a backward trajectory σ̃ = {nl , nl−1, . . . n2, n1, n0}, then the
occurring probabilities of these two trajectories are given by

P(σ ) = �n1n2�n2n3 · · ·�nl nl+1 , (14a)

P(σ̃ ) = �n1n0�n2n1 · · · �nl nl−1 . (14b)

In order to calculate the relative entropy per state tran-
sition, we first define memory difference by considering
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two state transitions n′ → n′′ and n′ → n, denoted by
D[φn′′|n′ (t )‖φn|n′ (t )], as

D[φn′′|n′ (t )‖φn|n′ (t ) ]

= 1

�n′n′′

∫ ∞

0
φn′n′′ (t ) ln

φn′n′′ (t )

φn′n(t )
dt + ln

�n′n

�n′n′′
, (15)

where states n, n′, n′′ constitute a substring of the trajec-
tory σ , that is, they take the forms:n = nm, n′ = nm+1, n′′ =
nm+2. Obviously, if two conditional waiting-time distributions

φn′′|n′ (t ) and φn|n′ (t ) at state n′ are DTI and DTD, respectively,
then the memory difference is D[φn′′|n′ (t )‖φn|n′ (t )] = 0 and
D[φn′′|n′ (t )‖φn|n′ (t )] > 0, respectively. In other words, DTI
distributions at state n′ cannot produce memory difference
whereas DTD distributions at state n′ produces a positive
memory difference.

Then, the relative entropy per state transition for all tra-
jectories in the reaction network is calculated according to
[43,48]

δG = lim
l→∞

1

l

∑
γ

P(γ ) ln
P(γ )

P(γ̃ )

= lim
l→∞

1

l

∑
σ

∫ ∞

0
· · ·

∫ ∞

0
φn1n2 (t1)φn2n3 (t2) · · · φnl nl+1 (tl )

[
ln

φn1n2 (t1)

φn1n0 (t1)
+ ln

φn2n3 (t2)

φn2n1 (t2)
+ · · · ln

φnl nl+1 (tl )

φnl nl−1 (tl )

]
dt1dt2 · · · dtl .

(16)

Substituting Eq. (15) into Eq. (16) and by simple calculation, we can obtain the following expression for the relative entropy
(see Appendix A for derivation):

δG =
∑
n,n′

�n�nn′ ln
�nn′

�n′n
+

∑
n,n′,n′′

�n�nn′�n′n′′ D[φn′′|n′ (t )‖φn|n′ (t )], (17)

where �n�nn′ is the probability for state transition n → n′
whereas �n�nn′�n′n′′ is the probability for state transitions
n → n′ → n′′ along a forward trajectory. Note that the first
sum on the right-hand side of Eq. (17) is just the rela-
tive entropy for the constructed Markovian reaction network,
whereas the second sum represents the relative entropy gen-
erated due to the DTD of waiting-time distributions. In other
words, the relative entropy for the entire reaction network can
be split into two parts: the one for the equivalent Markovian
reaction network and the other from the DTD of waiting-time
distributions.

On the other hand, for a nonequilibrium system, energy
dissipation can be quantified by the entropy production rate
[13]. Here, we try to derive a formula for calculating the
entropy production rate for the above reaction network. Note
that the entropy production per unit time, denoted by ṠG,
is calculated according to ṠG = δG

τR
, where τR is the mean

waiting time for every reaction in the reaction network. Thus,
according to Eq. (17), ṠG can be decomposed as

ṠG = ṠE + ṠM , (18)

where

ṠE =
∑
n,n′

PnKnn′ ln
Knn′

Kn′n
, (18a)

which is the entropy production rate for the equivalent Marko-
vian system, and

ṠM =
∑

n,n′,n′′
PnKnn′

Kn′n′′∑
n′′ Kn′n′′

D[φn′′|n′ (t )‖φn|n′ (t )], (18b)

which represents the entropy production due to the property
of the waiting-time distributions (more precisely, it is zero if

all the waiting-time distributions are DTI, and positive oth-
erwise). In particular, if the waiting times for all the states
follow exponential distributions, the above energy dissipation
decomposition reduces to a previous result obtained in the
Markovian case [11].

Note that ṠE = 0 if the equivalent Markovian system is
in a detailed balance, and ṠE > 0 if the detailed balance
is broken; ṠM = 0 if all the waiting-time distributions are
DTI, and ṠM > 0 if waiting-time distributions are DTD. Thus,
we obtain three possible decomposition patterns for the en-
tropy production rate of an nonequilibrium reaction system:
(1) ṠE > 0 and ṠM > 0; (2) ṠE > 0 and ṠM = 0; and (3) ṠE =
0 and ṠM > 0, referring to Fig. 1. The decomposition given by
Eq. (18) shows an important difference in energy dissipation
(or entropy production rate) between the non-Markovian sys-
tem and its equivalent Markovian system, that is, in contrast to
the latter, the former can have extra dissipation if waiting-time
distributions are DTD.

From Eq. (18b), we know that nonzero entropy produc-
tion rate ṠM is contributed by memory differences, and it is
positive if the conditional waiting-time distributions φn′′|n′ (t )
and φn|n′ (t ) at state n′ are DTD. To quantitatively show
how molecular memory impacts dissipation in the above
non-Markovian reaction system, we define mean memory dif-
ference as

〈D〉 =
∑

n,n′,n′′
Pn′ D[φn′′|n′ (t )‖φn|n′ (t )], (19)

which characterizes the mean effect of molecular memory.

III. APPLICATIONS

Using the above general theory, here we analyze two ex-
amples: a CTRW model and a model of stochastic gene
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FIG. 1. Shown is an example for energy dissipation decomposition. (a) Schematic description of the decomposition, showing that the total
entropy production rate is split into two parts: one for the equivalent Markovian system, the other due to molecular memory characterized
by nonexponential waiting-time distributions. (b) Three possible decomposition patterns for nontrivial entropy production rate, where BDB is
an abbreviation for broken detailed balance; DTD for direction-time dependence; DTI for direction-time independence; and DB for detailed
balance.

expression. For the former, we show that DB and DTI together
correspond to no energy dissipation even though the random-
walk process is non-Markovian. For the latter example, we
find that different memory mechanisms can lead to different
patterns of dissipation. These results indicate that molecular
memory has an important influence on energy dissipation of
biochemical reaction systems.

A. Analysis of a CTRW model

1. Model setting

Consider a CTRW model, referring to Fig. 1(a) where
three states 1, 2, and 3 form a loop. Here we use mixed
Gamma distributions to model the memory effect at ev-
ery state, and assume the waiting-time distributions for
jump from state i to state j, φi j (t ) (i, j = 1, 2, 3), take the

forms: φ12(t ) = p1
λ

k12
12 t k12−1


(k12 ) e−λ12t , φ13(t ) = q1
λ

k13
13 t k13−1


(k13 ) e−λ13t ,

φ23(t ) = p2
λ

k23
23 t k23−1


(k23 ) e−λ23t , φ21(t ) = q2
λ

k21
21 t k21−1


(k21 ) e−λ21t , φ31(t ) =
p3

λ
k31
31 t k31−1


(k31 ) e−λ31t , and φ32(t ) = q3
λ

k32
32 t k32−1


(k32 ) e−λ32t , where p j +
q j = 1 ( j = 1, 2, 3). Symbols λi j (i, j = 1, 2, 3) are positive
constants and will be called memory parameters throughout
this paper, and symbols ki j (i, j = 1, 2, 3) are positive integers
and will be called memory indices (remark: a larger value of
memory index means that the memory is stronger). We point
out that all ki j = 1 and λ jk = λ ji correspond to the Markovian
case whereas other parameter values to the non-Markovian
case. Note that if λ jk �= λ ji (λ jk = λ ji), then the waiting-time
distributions at state j will be DTD (DTI).

In the following, for analysis convenience but without loss
of generality, we set ki j = 2 (i, j = 1, 2, 3). Then, the effec-
tive transition rates, Ki j , take the forms K12 = p1λ12λ13

2(p1λ13+q1λ12 ) ,

K13 = q1λ12λ13

2(p1λ13+q1λ12 ) , K23 = p2λ21λ23

2(p2λ21+q2λ23 ) , K21 = q2λ21λ23

2(p2λ21+q2λ23 ) ,

K31 = p3λ31λ32

2(p3λ32+q3λ31 ) , and K32 = q3λ31λ32

2(p3λ32+q3λ31 ) . In addition, the
stationary distribution Pi (i = 1, 2, 3) can be easily obtained
by solving the following sgCME:

−(K12 + K13)P1 + K21P2 + K31P3 = 0,

K12P1 − (K21 + K23)P2 + K32P3 = 0, (20)

K13P1 + K23P2 − (K32 + K31)P3 = 0,

with the conservation condition
∑3

i=1 Pi = 1.

2. Calculation of energy dissipation

First, we can show that the dissipation due to broken de-
tailed balance is given by

ṠE = 1

U
(K12K23K31 − K21K32K13) ln

K12K23K31

K21K32K13
, (21)

where U = K12K23 + K23K31 + K31K12 + K21K13 + K32K13 +
K21K32+K12K32+K23K13+K31K21. Note that ln (K12K23K31)/
(K21K32K13) = ln (p1 p2 p3)/(q1q2q3). Therefore, the condi-
tion for DB reduces to p1 p2 p3 = q1q2q3, which is indepen-
dent of the memory parameters.

Second, the dissipation due to molecular memory takes the
form

ṠM = P1K12 p2D[φ3|2 (t )‖φ1|2 (t )] + P1K13q3D[φ2|3 (t )‖φ1|3 (t )] + P2K23 p3D[φ1|3 (t )‖φ2|3 (t )] + P2K21q1D[φ3|1 (t )‖φ2|1 (t )]

+ P3K31 p1D[φ2|1 (t )‖φ3|1 (t )] + P3K32q2D[φ1|2 (t )‖φ3|2 (t )], (22)

where the memory difference is given by

D[φk| j (t )‖φi| j (t )] = 2

(
ln

λ jk

λ ji
+ λ ji

λ jk
− 1

)
, (22a)

with φk| j (t ) and φi| j (t ) being conditional waiting-time dis-
tributions of jumps j → k and j → i, respectively. From
Eqs. (22) and (22a), we find that if there is a state j whose
waiting-time distribution is DTD, i.e., if the ratio of mem-
ory parameter satisfies λ jk/λ ji �= 1, then we have ṠM > 0.
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FIG. 2. Energy dissipation in a CTRW model. (a) The global scenario for dependence of the equivalent dissipation ṠE on both ratios
λ12/λ13 and λ23/λ21. (b) The global scenario for dependence of the memory dissipation ṠM on both ratios λ12/λ13 and λ23/λ21. (c) the global
scenario for dependence of the memory dissipation ṠM on both ratio λ12/λ13 and transition probability p2 if the system is in DB. (d) Special
case of (c), which shows dependence of the memory dissipation ṠM on ratio λ12/λ13 for three fixed transition probabilities p2. The transition
probabilities are set as: p1 = 0.6, p2 = 0.7, p3 = 0.8 for (a) and (b), and p1 = 1 − p2, p3 = 0.5 for (c) and (d), and other parameters are set
as: λ13 = 10, λ21 = 20, λ31 = λ32 = 50. In addition, λ23 = 20 is set for (c) and (d).

On the other hand, if the waiting-time distributions of all
states j( j = 1, 2, 3) are DTI, i.e., all the ratios of memory
parameters equal the unit, i.e., if λ jk/λ ji = 1, then we can
get ṠM = 0. Moreover, we find that the memory difference at
state j as defined by Eq. (22a) is a monotonically decreasing
function of ratio λ jk/λ ji if λ jk/λ ji < 1, but a monotonically
increasing function of ratio λ jk/λ ji if λ jk/λ ji > 1. These anal-
yses imply that both the memory difference and the energy
dissipation have a direct correlation with the ratios of memory
parameters, λ jk/λ ji. In the following, we will analyze how the
ratios of memory parameters quantitatively affect the energy
dissipation of the underlying system.

3. Numerical results

The numerical results are shown in Fig. 2. For conve-
nience, we will call the entropy production rate corresponding
to the equivalent Markovian system “equivalent dissipation,”
whereas the entropy production rate corresponding to waiting-
time distributions “memory dissipation.”

Figure 2(a) shows how the ratios of memory parameters
affect the equivalent dissipation whereas Fig. 2(b) shows how
these ratios affect the memory dissipation in the case of BDB.
We observe that when one of the memory parameter ratios
is fixed, the equivalent dissipation monotonically increases
with the other ratio of memory parameters. This is because
increasing the ratio of memory parameter can lead to a faster
switching rate, which in turn can result in more energy con-

sumption (this is a known fact in the Markovian case [34]). On
the other hand, we observe that the memory dissipation has a
minimal value 0 when the two ratios of memory parameter
simultaneously equal 1, i.e., the waiting-time distributions
for all states are DTI. In addition, the memory dissipation
increases as the ratio of memory parameter is far from 1. In
particular, it can become larger as this ratio further increases,
implying that a stronger memory leads to more memory dis-
sipation. Figure 2(c) shows how both the ratio of memory
parameter and transition probability p2 affect the memory
dissipation in the case of DB (i.e., the equivalent dissipation
ṠE = 0). For this, we change transition probabilities p1 or
p2 while keeping the property of DB. From Fig. 2(d), we
observe that there is trivial (nontrivial) dissipation if the ratio
of memory parameter equals (does not equal) 1. These results
imply that DB and DTI together are equivalent to the absence
of energy dissipation in the non-Markovian process.

Recall that BDB can lead to energy dissipation in a
Markovian process [57]. Here we have shown that BDB
or DTD can also lead to energy dissipation in the non-
Markovian process. It is worth mentioning that the previous
studies implied several same characteristics such as the
steady-state flux, exit probabilities, and mean trapping times
between a non-Markovian CTRW process and its equiva-
lent Markovian process [45]. However, we can distinguish
these two processes by the fact that the non-Markovian
CTRW has extra dissipation in contrast to the Markovian
CTRW.
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FIG. 3. (a) Schematic description of a generalized gene expression model, where the reaction processes are characterized by waiting-time
distributions as indicated. (b) Schematic description of state transitions with six possible patterns. The top row figures show that the current
state is at OFF state whereas the bottom row figures show that the current state is at ON state. In all cases, n, n′, and n′′ denote the current
state, next state, and last sate, respectively. Note that the current state n may be the last state n′′.

B. Analysis of a generalized gene expression model

1. Model description

Regulation of gene expression often involves binding and
unbinding of many transcription factors (TFs), leading to
complex promoter structure [58,59]. For example, although
the promoter for repressor maintenance (PRM) promoter of
phage lambada in Escherichia coli is regulated by two dif-
ferent TFs binding to two sets of three operators, this can
lead to the PRM promoter states’ number up to 128 [60].
Compared with prokaryote promoter, eukaryotic promoters
would be more complex since they would involve nucleo-
somes that compete with or are removed by TFs [61]. In
addition, epigenetic regulation via histone modifications can
also lead to complex promoter structures [62]. A previous
study showed that the process of gene activation can create
narrowly distributed gestation periods between transcription
windows [37]. In addition to gene activation, gene expression
also involves transcription initiation, elongation, and release
[63–65]. For example, Xu et al. presented a coarse-grained
model that the delay from initiation to elimination of nascent
RNA is modeled as a fixed quantity, and predicted discon-
tinuous distribution of nascent RNA [66]. Filatova et al.
considered a stochastic model in which the elongation time
is modeled as a random variable, and uncovered the explicit
dependence of the statistics of both types of RNA on tran-
scriptional parameters [67]. Jiang et al. used neural networks
to approximate the time-dependent distributions and infer the
parameters of gene expression models [68]. These studies
indicate that molecular memory exists extensively in gene

expression. Given the complexity, we introduce waiting-time
distributions to simplify the modeling of complex processes
occurring in gene expression. As such, we can assume that the
promoter of a gene has one active (ON) state and one inactive
(OFF) state, although it would have many activity states in a
realistic case.

Let m be the molecular number of mRNAs. For the gene
expression model depicted in Fig. 3(a), biochemical reactions
are listed below:

OFF
ψ1(t ;m)−−−−→ ON, ON

ψ2(t ;m)−−−−→ OFF,

OFF
ψ3(t ;m)−−−−→ OFF + mRNA,

ON
ψ4(t ;m)−−−−→ ON + mRNA,

mRNA
ψ5(t ;m)−−−−→ φ, (23)

where ψ1(t ; m) and ψ2(t ; m) are waiting-time distributions
for promoter switches from OFF to ON and vice versa, re-
spectively, ψ3(t ; m) and ψ4(t ; m) for mRNA production at
OFF state and ON state, respectively, and ψ5(t ; m) for mRNA
degradation. Since Gamma distributions can model multistep
processes, we can set ψ1(t ; m) = [
(L1)]−1(λ1)L1tL1−1e−λ1t ,
ψ2(t ; m) = [
(L2)]−1(λ0)L2tL2−1e−λ0t , where L1 and L2 are
positive integers with each called memory index, λ1 and λ0

are the mean rates of gene activation and inactivation, respec-
tively. In addition, we set ψ3(t ; m) = μ0e−μ0t , ψ4(t ; m) =
μe−μt , and ψ5(t ; m) = δme−δmt for simplicity, where μ is the
transcription rate whereas μ0 is the leakage rate, and δ is the
degradation rate.
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According to the definition of �i(t ; m) and the setting of ψi(t ; m), simple calculations can show �1(t ; m) =
1− ∑L1−1

i=0
(λ1t )i

i! e−λ1t , �2(t ; m) = 1− ∑L2−1
i=0

(λ0t )i

i! e−λ0t , �3(t ; m) = 1 − e−μ0t , �4(t ; m) = 1 − e−μt , and �5(t ; m) = 1 − e−δmt .

In addition, we have φ1(t ; m) = (λ1 )L1


(L1 ) tL1−1e−(λ1+μ0+δm)t ,

φ2(t ; m) = (λ0)L2


(L2)
tL2−1e−(λ0+μ+δm)t ,

φ3(t ; m) = μ0e−(λ1+μ0+δm)t

[
L1−1∑
i=0

(λ1t )i

i!

]
,

φ4(t ; m) = μe−(λ0+μ+δm)t

[
L2−1∑
i=0

(λ0t )i

i!

]
,

φ5(t ; m) = δme−[λ1(1−Ion )+λ0Ion+μ0(1−Ion )+μIon+δm]t

[
L1−1∑
i=0

(λ1t − λ1Iont )i

i!

][
L2−1∑
j=0

(λ0Iont ) j

j!

]
,

where the indicator function Ion = 1 if the gene is at the ON state, but Ion = 0 if the gene is at the OFF state (we
will always make this understanding throughout this paper). Thus,�1(m) = ( λ1

λ1+μ0+δm )L1 , �2(m) = ( λ0
λ0+μ+δm )L2 , �3(m) =

μ0
∑L1−1

i=0
λ1

i

(λ1+μ0+δm)i+1 , �4(m) = μ
∑L2−1

i=0
λ0

i

(λ0+μ+δm)i+1 , and

�5(m) = δm
L1−1∑
i=0

L2−1∑
j=0

(
i + j

j

)
(λ1 − λ1Ion)i(λ0Ion) j

[λ1(1 − Ion)+λ0Ion+μ0(1 − Ion)+μIon+δm]i+ j+1 .

According to definition, the mean residence time at state n = (off, on, m) is given by

τn =
L1−1∑
i=0

L2−1∑
j=0

(
i + j

j

)
(λ1 − λ1Ion)i(λ0Ion) j

[λ1(1 − Ion)+λ0Ion+μ0(1 − Ion)+μIon+δm]i+ j+1 . (24)

The effective transition rates are given by

K1(m) = (μ0 + δm)
(λ1)L1/(λ1 + μ0 + δm)L1

1 − (λ1)L1/(λ1 + μ0 + δm)L1
,

K2(m) = (μ + δm)
(λ0)L2/(λ0 + μ + δm)L2

1 − (λ0)L2/(λ0 + μ + δm)L2
, (25)

K3(m) = μ0, K4(m) = μ, K5(m) = δm.

Let P0(m) and P1(m) be the stationary probabilities that mRNA has m molecules at states OFF and ON, respectively. Then
we can obtain the following sgCME:

−K1(m)P0(m) + K2(m)P1(m) + K3(m − 1)P0(m − 1) − K3(m)P0(m) + K5(m + 1)P0(m + 1) − K5(m)P0(m) = 0,

K1(m)P0(m) − K2(m)P1(m) + K4(m − 1)P1(m − 1) − K4(m)P1(m) + K5(m + 1)P1(m + 1) − K5(m)P1(m) = 0. (26)
In general, Eq. (26) has no analytical solution but we can solve it using a numerical method (see Appendix B for details).

Furthermore, the mean mRNA is calculated according to

〈m〉 =
∑

m

mP(m), (27)

where P(m) = P0(m) + P1(m) is the total stationary probability. Note that if we take Ki(m) as the reaction-propensity function
for the ith reaction in the topologically equivalent gene expression model without molecular memory, then the stationary CME
of the non-Markovian system is exactly the same as that of the equivalent Markovian system.

2. Decomposition of energy dissipation

For convenience, we call the energy dissipation corresponding to the equivalent Markovian system “equivalent dissipation,”
and that corresponding to the memory part “memory dissipation.” First, the equivalent dissipation shown in Eq. (18a) becomes

ṠE =
∑

m

P0(m)

[
K1(m) log

K1(m)

K2(m)
+ K3(m) log

K3(m)

K5(m + 1)
+ K5(m) log

K5(m)

K3(m − 1)

]

+
∑

m

P1(m)

[
K2(m) log

K2(m)

K1(m)
+ K4(m) log

K4(m)

K5(m + 1)
+ K5(m) log

K5(m)

K4(m − 1)

]
. (28)
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Note that if all the reaction processes are Markovian, Eq. (28) further reduces to a previous case [8]. In the following, we

denote Ri(m) = φi (t ;m)
�i (m) (1 � i � 4) and RX

5 (m) = φX
5 (t ;m)

�X
5 (m) (where X = on or off) for convenience.

Then, the memory dissipation can be decomposed as

ṠM = Ṡ(off )
M + Ṡ(on)

M , (29)

where

Ṡ(off )
M =

∑
m

P0(m)K1(m)
K4(m)D[R4(m)‖R2(m)] + K5(m)D

[
Ron

5 (m)
∥∥R2(m)

]
K2(m) + K4(m) + K5(m)

+
∑

m

P0(m)K3(m)
K1(m + 1)D

[
R1(m + 1)

∥∥Roff
5 (m + 1)

] + K3(m + 1)D
[
R3(m + 1)

∥∥Roff
5 (m + 1)

]
K1(m + 1) + K3(m + 1) + K5(m + 1)

+
∑

m

P0(m)K5(m)
K1(m − 1)D[R1(m − 1)‖R3(m − 1)] + K5(m − 1)[Roff

5 (m − 1)‖R3(m − 1)]

K1(m − 1) + K3(m − 1) + K5(m − 1)
, (29a)

Ṡ(on)
M =

∑
m

P1(m)K2(m)
K3(m)D[R3(m)‖R1(m)] + K5(m)D[Roff

5 (m)‖R1(m)]

K1(m) + K3(m) + K5(m)

+
∑

m

P1(m)K4(m)
K4(m + 1)D

[
R4(m + 1)

∥∥Ron
5 (m + 1)

] + K2(m + 1)D
[
R2(m + 1)

∥∥Ron
5 (m + 1)

]
K2(m + 1) + K4(m + 1) + K5(m + 1)

+
∑

m

P1(m)K5(m)
K2(m − 1)D[R2(m − 1)‖R4(m − 1)] + K5(m − 1)D

[
Ron

5 (m − 1)
∥∥R4(m − 1)

]
K2(m − 1) + K4(m − 1) + K5(m − 1)

. (29b)

In the following, we consider two special kinds of cases, which correspond to two different kinds of memory mechanisms:

Case 1: L1 � 1, L2 = 1

In this case, the reaction processes are multistep activation with memory and single-step deactivation without memory. So
Eq. (29a) reduces to

Ṡ(off )
M =

∑
m

P0(m)K3(m)
K1(m + 1)D

[
R1(m + 1)

∥∥Roff
5 (m + 1)

]
K1(m + 1) + K3(m + 1) + K5(m + 1)

+
∑

m

P0(m)K5(m)
K1(m − 1)D[R1(m − 1)‖R3(m − 1)]

K1(m − 1) + K3(m − 1) + K5(m − 1)
,

(30)

where the memory difference is given by

D
[
R1(m)

∥∥Roff
5 (m)

] = D[R1(m)‖R3(m)]

= − ln 
(L1) + (L1 − 1)ψ (L1) + ln(λ1 + μ0 + δm) + ln

(
L1−1∑
i=0

λi
1

(λ1+μ0+δm)i+1

)

−
∫ ∞

0

(λ1 + μ0 + δm)L1


(L1)
tL1−1e−(λ1+μ0+δm)t ln

(
L1−1∑
i=0

(λ1t )i

i!

)
dt . (30a)

Equation (29b) reduces to

Ṡ(on)
M =

∑
m

P1(m)K2(m)
K3(m)D[R3(m)‖R1(m)] + K5(m)D[Roff

5 (m)‖R1(m)]

K1(m) + K3(m) + K5(m)
, (31)
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where the memory difference is given by

D[R3(m)‖R1(m)] = D
[

Roff
5 (m)

∥∥R1(m)
] = ln 
(L1) − (L1 − 1)

∑L1−1
i=0

(λ1 )iψ (i+1)
(λ1+μ0+δm)i+1∑L1−1

i=0
(λ1 )i

(λ1+μ0+δm)i+1

− ln(λ1 + μ0 + δm)

− ln

(
L1−1∑
i=0

λi
1

(λ1+μ0+δm)i+1

)

+
(

L1−1∑
i=0

(λ1)i

(λ1+μ0+δm)i+1

)−1 ∫ ∞

0
e−(λ1+μ0+δm)t

(
L1−1∑
i=0

(λ1t )i

i!

)
ln

(
L1−1∑
i=0

(λ1t )i

i!

)
dt . (31a)

In Eq. (31a), ψ (x) is the Digamma function, and satisfies the iteration relationship: ψ (x + 1) = ψ (x) + 1/x, where ψ (1) =
−γ with γ being the Euler’s constant.

Case 2: L1 = 1, L2 � 1
In this case, the reaction processes are single-step activation without memory and multistep deactivation with memory. So

Eq. (29a) reduces to

Ṡ(off )
M =

∑
m

P0(m)K1(m)
K4(m)D[R4(m)‖R2(m)] + K5(m)D

[
Ron

5 (m)
∥∥R2(m)

]
K2(m) + K4(m) + K5(m)

, (32)

where the memory difference is given by

D[R4(m)‖R2(m)] = D
[
Ron

5 (m)
∥∥R2(m)

]

= ln 
(L2) − (L2 − 1)

∑L2−1
i=0

(λ0 )iψ (i+1)
(λ0+μ+δm)i+1∑L2−1

i=0
(λ0 )i

(λ0+μ+δm)i+1

− ln(λ0 + μ + δm) − ln

(
L2−1∑
i=0

λi
0

(λ0+μ+δm)i+1

)

+
(

L2−1∑
i=0

(λ0)i

(λ0+μ+δm)i+1

)−1 ∫ ∞

0
e−(λ0+μ+δm)t

(
L2−1∑
i=0

(λ0t )i

i!

)
ln

(
L2−1∑
i=0

(λ0t )i

i!

)
dt . (32a)

Equation (29b) reduces to

Ṡ(on)
M =

∑
m

P1(m)
K4(m)K2(m + 1)D

[
R2(m + 1)

∥∥Ron
5 (m + 1)

]
K2(m + 1) + K4(m + 1) + K5(m + 1)

+
∑

m

P1(m)
K5(m)K2(m − 1)D[R2(m − 1)‖R4(m − 1)]

K2(m − 1) + K4(m − 1) + K5(m − 1)
, (33)

where the memory difference is given by

D
[
R2(m)

∥∥Ron
5 (m)

] = D[R2(m)‖R4(m)]

= − ln 
(L2) + (L2 − 1)ψ (L2) + ln(λ0 + μ + δm) + ln

(
L2−1∑
i=0

(λ0)i

(λ0+μ+δm)i+1

)

−
∫ ∞

0

(λ0 + μ + δm)L2


(L2)
tL2−1e−(λ0+μ+δm)t ln

(
L2−1∑
i=0

(λ0t )i

i!

)
dt . (33a)

From the above analysis, we can see that there is a nontrivial entropy production rate corresponding to the memory if L1 >

1 (L2 > 1 ) in both cases. Furthermore, we find that the nontrivial effect results from the difference between the waiting-time
distributions of state n = (off, on, m), i.e., the memory difference. So it is reasonable to speculate that memory dissipation is
used for computing the memory difference (or for processing the memory information).

To quantitatively analyze how molecular memory affects the energy dissipation, we compute the mean memory difference
according to

〈D〉 =
∑

m

[P0(m)Doff (m) + P1(m)Don(m)], (34)

where Doff (m) and Don(m) denote the memory difference at OFF state and ON state, respectively, and can be expressed
as

Doff (m) = D
[
R1(m)

∥∥Roff
5 (m)

] + D
[

Roff
5 (m)

∥∥R1(m)
] + D[R3(m)‖R1(m)] + D[R1(m)‖R3(m)], Don(m) = 0,
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FIG. 4. Influence of molecular memory on mRNA expression and memory difference. (a) Stationary mRNA distributions in Case 1;
(b) Influence of memory index L1 on mean mRNA level in Case 1; (c) Influence of L1 on mean memory difference in Case 1; (d) Stationary
mRNA distributions in Case 2; (e) Influence of memory index L2 on mean mRNA level in Case 2; (f) Influence of L2 on mean memory
difference in Case 2. (g) Stationary mRNA distributions in Case 3; (h) Influence of memory index L3 on mean mRNA level in Case 3; (i)
Influence of L3 on mean memory difference in Case 3. Parameters are set as μ0 = 1, μ = 20, λ1 = 3L1, λ0 = 5L2, δ = L3.

for Case 1, and

Doff (m) = 0

Don(m) = D[R4(m)‖R2(m)] + D[R2(m)‖R4(m)]

+ D
[
R2(m)

∥∥Ron
5 (m)

] + D
[
Ron

5 (m)
∥∥R2(m)

]
,

for Case 2.
Recent experimental data analysis indicated that the

waiting-time distribution describing nascent RNA removal is
nonexponential [63], implying that the mRNA degradation
is a multistep process with memory. So we also consider a
nonexponential waiting-time distribution for degradation with
the memory effect modeled by Gamma distribution. For con-
venience, this memory mechanism is called Case 3, and its
analysis is referred to as Appendix C.

In addition, we are more interested in the mean dissipation
rate, which can be used to show characteristics of energy
dissipation. Therefore, we define the “mean equivalent dissi-
pation” as the ratio of the equivalent dissipation over the mean
mRNA, and the “mean memory dissipation” as the ratio of the

memory dissipation over the mean memory difference, that is,

ẆE = ṠE

〈m〉 , ẆM = ṠM

〈D〉 . (35)

Equation (35) indicates that the mean equivalent dissipa-
tion is proportional to the energy dissipation required per
mRNA molecule, whereas the mean memory dissipation is
proportional to the energy dissipation required for each unit
of memory difference.

3. Numerical results

Here, we use numerical results to demonstrate how molec-
ular memory (characterized by one of three different memory
indexes) qualitatively affects mRNA expression level, mem-
ory difference, and energy dissipation. From the above
analysis, we know that the equivalent dissipation is caused by
the BDB of the equivalent Markovian system and is responsi-
ble for mRNA production, whereas the memory dissipation
is generated due to the DTD of the waiting-time distribu-
tions and contributes to computing memory difference. For
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FIG. 5. Effects of molecular memory on energy dissipation. Heatmaps (a), (d), respectively, show the equivalent dissipation and the
memory dissipation as a function of both memory index L1 and inactivation rate λ0. Heatmaps (b), (e), respectively, show the equivalent
dissipation and the memory dissipation as a function of both memory index L2 and activation rate λ1. Heatmaps (c), (f), respectively, show the
equivalent dissipation and the memory dissipation as a function of both memory index L3 and inactivation rate λ0. The setting of parameter
values is the same as in Fig. 4.

clarity, we keep a constant average time λ1/L1 = 3 for Case
1, λ0/L2 = 5 for Case 2, and δ/L3 = 1 for Case 3.

a. Molecular memory can tune gene expression but always
increases memory difference. Numerical results are shown in
Fig. 4, where the top row, the middle row, and the bottom
row correspond to Case 1, Case 2, and Case 3, respectively.
From the first column, we observe that the increase of memory
index L1 can cause stationary mRNA distributions moving to
the left-hand side whereas the increase of memory indexes L2

and L3 can cause stationary mRNA distributions moving to the
right-hand side, implying that molecular memory can tune the
stationary distributions. From the second column, we can see
that the mean mRNA is monotonically decreasing in mem-
ory index L1, whereas monotonically increasing in memory
indexes L2 and L3, implying that molecular memory can tune
the expression level. From the last column, we observe that the
mean memory difference is always a monotonically increas-
ing function of the memory index, implying that a stronger
memory can lead to a larger mean memory difference.

In a word, molecular memory can tune mRNA expression
level and increase memory difference, indicating that molecu-
lar memory has a non-negligible effect on gene expression.
Based on the above analysis, we speculate that the mem-
ory difference may be related with the memory information.
The increase in mean memory difference would mean more
memory information being processed in a non-Markovian
gene-expression system, and computing memory difference
(used in processing the memory information) requires con-
sumption of energy. In the following, we further analyze the
influence of molecular memory on energy dissipation.

b. Effects of molecular memory on energy dissipation. Nu-
merical results are shown in Fig. 5, where the first, second,
and last columns correspond to Case 1, Case 2, and Case 3,
respectively. From the top row of this figure, we observe that
the dependence of equivalent dissipation on different mem-
ory indexes has different modes, referring to Figs. 5(a)–5(c).
For example, with the increase of memory index L1(L2), the
equivalent dissipation first increases and then decreases for
a smaller inactivation rate λ0 (activation rate λ1), whereas it
always decreases for a larger λ0 (λ1). However, the equivalent
dissipation always increases with the increase of memory
index L3 for arbitrarily fixed inactivation rate λ0. In addition,
there are some differences: for Case 1 and Case 3, larger
equivalent dissipation exists in a wide range of memory index,
but for Case 2, it exists in a narrow range of memory in-
dex. These results imply that the modes of energy dissipation
through breaking the DB in a non-Markovian gene-expression
system would be complex.

The bottom row of Fig. 5 shows the dependence of mem-
ory dissipation on both memory index and the switching
rate of the promoter. For a given switching rate, we observe
that the memory dissipation is almost a monotonically in-
creasing function of the three memory indexes. Note that
there are some differences: In contrast to the equivalent
dissipation, the larger memory dissipation in Case 1 and
Case 3 exists in a narrow range of memory index, whereas
that in Case 2 exists in a wide range of memory index.
In short, molecular memory can induce different modes of
the equivalent dissipation but almost increases the memory
dissipation.
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FIG. 6. Effects of molecular memory on mean dissipation. Heatmaps (a), (b), respectively, show the mean equivalent dissipation and the
mean memory dissipation as a function of both memory index L1 and inactivation rate λ0. Heatmaps (d), (e), respectively, show the mean
equivalent dissipation and the mean memory dissipation as a function of both memory index L2 and activation rate λ1. Heatmaps (g), (h),
respectively, show the mean equivalent dissipation and the mean memory dissipation as a function of both memory index L3 and inactivation
rate λ0. (c), (f), (i) Dependence of the mean equivalent dissipation and mean memory dissipation on L1 for a fixed λ0 = 5, L2 for a fixed
λ1 = 3, and L3 for a fixed λ0 = 5, respectively. The setting of other parameter values is the same as in Fig. 4.

c. Effects of molecular memory on mean dissipation.
Figure 6 illustrates how molecular memory affects mean dis-
sipation; here the top, middle, and bottom rows correspond to
Case 1, Case 2, and Case 3, respectively. First, we analyze the
mean equivalent dissipation, referring to the first column of
Fig. 6. We observe that if the switching rate of the promoter
is fixed, the mean equivalent dissipation is a monotonically
increasing function of memory index in Case 1 and Case 3,
implying that molecular memory can lead to more energy
dissipation needed for the production of one mRNA molecule.
However, the mean equivalent dissipation monotonically de-
creases with the increase of memory index in Case 2, implying
that molecular memory can reduce energy dissipation required
for the production of one mRNA molecule. Similar to the
equivalent dissipation, larger mean equivalent dissipation in
Case 1 and Case 3 exists in a wider range of memory index
with a larger inactivation rate, referring to Figs. 6(a) and 6(g),
and larger mean equivalent dissipation in Case 2 exists in a
narrower range of memory index with a lower activation rate,
referring to Fig. 6(d).

Next, we analyze the mean memory dissipation, refer-
ring to the second column of Fig. 6. If the switching rate

of the promoter is fixed, we observe that with the increase
of memory index, the mean memory dissipation in Case 1
and Case 2 significantly reduces, whereas the one in Case 3
slightly increases (comparing the subfigures in the last column
of Fig. 6), implying that different memory mechanisms can
lead to different dissipation required for each unit of memory
difference. In addition, we observe that larger mean memory
dissipation in Case 1 and Case 2 emerges in a smaller range
of memory index with a wider range of switching rate of the
promoter, whereas in Case 3 it emerges in a larger range of
memory index with a smaller range of switching rate of the
promoter, implying that the state transitions of the promoter
also influence the mean memory dissipation.

Finally, we simply state possible implications of the above
findings. The above analysis shows that molecular mem-
ory can tune two kinds of energy dissipations, and different
memory mechanisms can lead to different modes of energy
dissipation. A previous study showed that molecular mem-
ory is in effect equivalent to a feedback [51], and different
feedback regulations can induce different and even coun-
terintuitive effects on gene expression [69]. Here, different
memory mechanisms are equivalent to different regulation
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mechanisms, so they may lead to different effects on dissi-
pation. Recent experimental evidence of time-resolved data
showed that the inactive phases of the promoter are a multistep
process, showing strong memory [40], and the analysis of
multistep activation memory mechanism implies that more
strong memory can lead to more memory dissipation. On
the other hand, the dissipation of biological systems usually
follows certain design principles for optimal evolutionary fit-
ness [70]. Thus, we speculate that there would be a tradeoff
between energy dissipation and the achievement of biological
functions.

IV. SUMMARY AND CONCLUSION

Nonequilibrium mechanisms play important roles in many
biological processes such as high-fidelity DNA transcription
[7], internal transport [2], and spatial organization [6]. En-
ergy dissipation is a characteristic of these nonequilibrium
processes. For example, the dissipation of the chemical energy
from the hydrolysis of ATP can drive unidirectional transitions
between states of a molecular motor [71], and such unbal-
anced transitions break DB, resulting in directional motion
of the individual motor. From the perspective of stochastic
thermodynamics, the entropy production rate is a good way
to quantify the energy dissipation [13]. Previous studies on
energy dissipation in biochemical reaction systems are mainly
based on Markovian hypothesis, i.e., the entropy production
rate is derived in the framework of the Markovian process
[11]. However, intracellular reaction processes are not nec-
essarily Markovian but may be non-Markovian. For example,
the complex control process of gene expression can generate
nonexponential time intervals between transcription windows
[40], and in elongation process [66]. How energy dissipa-
tion is quantified in the non-Markovian process is a key for
understanding nonequilibrium mechanisms. Here, based on
the CTRW theory we have derived and decomposed the total
entropy production rate for a general biochemical-reaction
network with arbitrary waiting-time distributions. We found
that the energy dissipation can be split into two parts: one

from BDB of the topology-equivalent network system, and
the other from DTD of the waiting-time distributions. In par-
ticular, the total energy dissipation rate can reduce to that
in the Markovian case if the waiting-time distributions at all
states are exponential. Our decomposition of the total energy
dissipation rate can help us to distinguish the non-Markovian
system and its equivalent Markovian system, although the two
systems have the same stationary dynamical behaviors.

We have applied the above method to two examples: a
CTRW model and a generalized ON-OFF model of gene
expression. Analysis of CTRW model indicated that DB and
DTI together are equivalent to no energy dissipation in the
non-Markovian process. In other words, even if the condi-
tion of DB is satisfied, there is still nontrivial dissipation in
the non-Markovian process. Analysis of the gene-expression
model indicated that different memory mechanisms can in-
duce different modes of energy dissipation, implying that
molecular memory has an important influence on gene expres-
sion. Based on these obtained results, we speculate that the
energy dissipation due to the BDB of the equivalent Marko-
vian system would be used mainly in achieving particular
functions such as fidelity of transcription [57], whereas the
dissipation from the DTD of the waiting-time distributions
would be used mainly in processing memory information [72].

In summary, we have developed a method for decom-
posing the energy dissipation of a general reaction network.
This method has a good perspective for understanding the
nonequilibrium dynamics of non-Markovian biochemical re-
action systems.
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APPENDIX A: DERIVATION OF EQ. (17)

Here, we derive the relative entropy per state in Eq. (17). Substituting Eq. (15) into Eq. (16), we have

δG = lim
l→∞

1

l

∑
γ

P(γ ) ln
P(γ )

P(γ̃ )

= lim
l→∞

1

l

∑
σ

∫ ∞

0
· · ·

∫ ∞

0
φn1n2 (t1)φn2n3 (t2) · · · φnl nl+1 (tl )

[
ln

φn1n2 (t1)

φn1n0 (t1)
+ ln

φn2n3 (t2)

φn2n1 (t2)
+ · · · ln

φnl nl+1 (tl )

φnl nl−1 (tl )

]
dt1dt2 · · · dtl

= lim
l→∞

1

l

l∑
i=1

[∑
σ

∫ ∞

0
· · ·

∫ ∞

0
φn1n2 (t1)φn2n3 (t2) · · · φni−1ni (ti−1)φni+1ni+2 (ti+1) · · · φnl nl+1 (tl )dt1 · · · dtl

]

×
[∫ ∞

0
φnini+1 (ti ) ln

φnini+1 (ti)

φnini−1 (ti)
dti

]

= lim
l→∞

1

l

l∑
i=1

(∑
σ

�n1n2�n2n3 · · · �ni−1ni�ni+1ni+2 · · · �nl nl+1

){
�nini+1 ln

�nini+1

�nini−1

+ �nini+1 D
[
φni+1|ni (t )

∥∥φni−1|ni (t )
]}
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= lim
l→∞

1

l

∑
σ

�n1n2�n2n3 · · ·�nl nl+1

[
l∑

i=1

ln
�nini+1

�nini−1

]
+ lim

l→∞
1

l

∑
σ

�n1n2�n2n3 · · ·�nl nl+1

{
l∑

i=1

D
[
φni+1|ni (t )

∥∥φni−1|ni (t )
]}

= lim
l→∞

1

l
D[P(σ )‖P(σ̃ ) ] +

∑
n,n′,n′′

�n�nn′�n′n′′ D[φn′′|n′ (t )‖φn|n′ (t ) ]

=
∑
n,n′

�n�nn′ ln
�nn′

�n′n
+

∑
n,n′,n′′

�n�nn′�n′n′′ D[φn′′|n′ (t )‖φn|n′ (t ) ]. (A1)

APPENDIX B: NUMERICAL ALGORITHM FOR SOLVING EQ. (26)

We give a numerical algorithm to solve Eq. (26) in the main text, which is based on the truncation of sgCME. Set 0 � n � N,

and introduce a column vector

P(m) = [[P0(0) P1(0)]T [P0(1) P1(1)]T · · · [P0(N ) P1(N )]T ]T , (B1)

and a matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

T 0 − G0 − D0 D1

G0 T 1 − G1 − D1 D2

G1 T 2 − G2 − D2 D3
. . .

. . .

GN−2 T N−1 − GN−1 − DN−1 DN

GN−1 T N − GN − DN

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B2)

where

T i =
(−K1(i) K2(i)

K1(i) −K2(i)

)
, Gi =

(
K3(i) 0

0 K4(i)

)
, Di =

(
K5(i) 0

0 K5(i)

)
. (B3)

By solving the algebraic equation AP =0 with the conservation condition:
∑n

i=0 P(i) = 1, we can obtain a numerical P.

APPENDIX C: ANALYSIS FOR THE NON-MARKOVIAN DEGRADATION

In Case 3, we assume that the waiting-time distribution of the degradation reaction is Gamma distribution whereas the
waiting-time distributions of other reactions are exponential distributions. Then, we set ψ1(t ; m) = λ1e−λ1t , ψ2(t ; m) = λ0e−λ0t ,

where λ1 and λ0 are the rates of gene activation and inactivation, respectively; ψ3(t ; m) = μ0e−μ0t , ψ4(t ; m) = μe−μt ,

where μ is the transcription rate whereas μ0 is the leakage rate. ψ5(t ; m) = [
(L3)]−1(δm)L3tL3−1e−δmt , where L3 is positive
integer and is called memory index, δ is the mean degradation rate. Simple calculation can show �1(t ; m) = 1 − e−λ1t ,

�2(t ; m) = 1 − e−λ0t , �3(t ; m) = 1 − e−μ0t , �4(t ; m) = 1 − e−μt , and �5(t ; m) = 1− ∑L3−1
i=0

(δmt )i

i! e−δmt . In addition, we have

φ1(t ; m) = λ1e−(λ1+μ0+δm)t [
∑L3−1

i=0
(δmt )i

i! ], φ2(t ; m) = λ0e−(λ0+μ+δm)t [
∑L3−1

i=0
(δmt )i

i! ], φ3(t ; m) = μ0e−(λ1+μ0+δm)t [
∑L3−1

i=0
(δmt )i

i! ],

φ4(t ; m) = μe−(λ0+μ+δm)t [
∑L3−1

i=0
(δmt )i

i! ], φ5(t ; m) = [
(L3)]−1(δm)L3tL3−1e−[λ1(1−Ion )+λ0Ion+μ0(1−Ion )+μIon+δm]t . Thus, �1(m) =
λ1

∑L3−1
i=0

(δm)i

(λ1+μ0+δm)i+1 , �2(m) = λ0
∑L3−1

i=0
(δm)i

(λ0+μ+δm)i+1 �3(m) = μ0
∑L3−1

i=0
(δm)i

(λ1+μ0+δm)i+1 , �4(m) = μ
∑L3−1

i=0
(δm)i

(λ0+μ+δm)i+1 and

�5(m) = ( δm
λ1(1−Ion )+λ0Ion+μ0(1−Ion )+μIon+δm )L3 . The mean residence time at state n = (off, on, m) is given by

τn =
L3−1∑
i=0

(δm)i

[λ1(1 − Ion)+λ0Ion + μ0(1 − Ion) + μIon + δm]i+1 . (C1)

The effective transition rates are given by

K1(m) = λ1, K2(m) = λ0, K3(m) = μ0, K4(m) = μ,

K5(m) = [λ1(1 − Ion) + λ0Ion + μ0(1 − Ion) + μIon]
(δm)L3/[λ1(1 − Ion)+λ0Ion + μ0(1 − Ion) + μIon + δm]L3

1 − (δm)L3/[λ1(1 − Ion)+λ0Ion + μ0(1 − Ion) + μIon + δm]L3
(C2)

Substituting Eq. (C2) into Eqs. (26)–(28), respectively, we can obtain the stationary probability, the mean mRNA, and the
equivalent dissipation.

In addition, the memory dissipation can be decomposed as

ṠM = Ṡ(off )
M + Ṡ(on)

M , (C3)
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where

Ṡ(off )
M =

∑
m

P0(m)K1(m)
K5(m)D

[
Ron

5 (m)
∥∥R2(m)

]
K2(m) + K4(m) + K5(m)

+
∑

m

P0(m)K5(m)
K5(m − 1)

[
Roff

5 (m − 1)
∥∥R3(m − 1)

]
K1(m − 1) + K3(m − 1) + K5(m − 1)

+
∑

m

P0(m)K3(m)
K1(m + 1)D

[
R1(m + 1)

∥∥Roff
5 (m + 1)

] + K3(m + 1)D
[
R3(m + 1)

∥∥Roff
5 (m + 1)

]
K1(m + 1) + K3(m + 1) + K5(m + 1)

, (C3a)

Ṡ(on)
M =

∑
m

P1(m)K2(m)
K5(m)D

[
Roff

5 (m)
∥∥R1(m)

]
K1(m) + K3(m) + K5(m)

+
∑

m

P1(m)K5(m)
K5(m − 1)D

[
Ron

5 (m − 1)
∥∥R4(m − 1)

]
K2(m − 1) + K4(m − 1) + K5(m − 1)

+
∑

m

P1(m)K4(m)
K4(m + 1)D

[
R4(m + 1)

∥∥Ron
5 (m + 1)

] + K2(m + 1)D
[
R2(m + 1)

∥∥Ron
5 (m + 1)

]
K2(m + 1) + K4(m + 1) + K5(m + 1)

, (C3b)

with the memory differences given by

D
[
Ron

5 (m)
∥∥R2(m)

] = D
[
Ron

5 (m)
∥∥R4(m)

] = − ln 
(L3) + (L3 − 1)ψ (L3) + ln(λ0 + μ + δm) + ln

(
L3−1∑
i=0

(δm)i

(λ0 + μ+δm)i+1

)

−
∫ ∞

0

(λ0 + μ + δm)L3


(L3)
tL3−1e−(λ0+μ+δm)t ln

(
L3−1∑
i=0

(δmt )i

i!

)
dt . (C3c)

D
[

Roff
5 (m)

∥∥R3(m)
] = D

[
Roff

5 (m)
∥∥R1(m)

] = − ln 
(L3) + (L3 − 1)ψ (L3) + ln(λ1 + μ0 + δm) + ln

(
L3−1∑
i=0

(δm)i

(λ1 + μ0+δm)i+1

)

−
∫ ∞

0

(λ1 + μ0 + δm)L3


(L3)
tL3−1e−(λ1+μ0+δm)t ln

(
L3−1∑
i=0

(δmt )i

i!

)
dt . (C3d)

D
[
R1(m)

∥∥Roff
5 (m)

] = D
[
R3(m)

∥∥Roff
5 (m)

]

= ln 
(L3) − (L3 − 1)

∑L3−1
i=0

(δm)iψ (i+1)
(λ1+μ0+δm)i+1∑L3−1

i=0
(δm)i

(λ1+μ0+δm)i+1

− ln(λ1 + μ0 + δm) − ln

(
L3−1∑
i=0

(δm)i

(λ1+μ0+δm)i+1

)

+
(

L3−1∑
i=0

(δm)i

(λ1+μ0+δm)i+1

)−1 ∫ ∞

0
e−(λ1+μ0+δm)t

(
L3−1∑
i=0

(δmt )i

i!

)
ln

(
L3−1∑
i=0

(δmt )i

i!

)
dt, (C3e)

D
[
R4(m)

∥∥Ron
5 (m)

] = D
[
R2(m)

∥∥Ron
5 (m)

]

= ln 
(L3) − (L3 − 1)

∑L3−1
i=0

(δm)iψ (i+1)
(λ0+μ+δm)i+1∑L3−1

i=0
(δm)i

(λ0+μ+δm)i+1

− ln(λ0+μ + δm) − ln

(
L3−1∑
i=0

(δm)i

(λ0+μ+δm)i+1

)

+
(

L3−1∑
i=0

(δm)i

(λ0+μ+δm)i+1

)−1 ∫ ∞

0
e−(λ0+μ+δm)t

(
L3−1∑
i=0

(δmt )i

i!

)
ln

(
L3−1∑
i=0

(δmt )i

i!

)
dt . (C3f)

Finally, we compute the mean memory difference according to Eq. (34), i.e., the following expression:

〈D〉 =
∑

m

[P0(m)Doff (m) + P1(m)Don(m)],

with

Doff (m) = D
[
R1(m)

∥∥Roff
5 (m)

] + D
[

Roff
5 (m)

∥∥R1(m)
] + D

[
R3(m)

∥∥Roff
5 (m)

] + D
[
Roff

5 (m)
∥∥R3(m)

]
,

Don(m) = D
[
R4(m)

∥∥Ron
5 (m)

]+D
[
Ron

5 (m)
∥∥R4(m)

] + D
[
R2(m)

∥∥Ron
5 (m)

] + D
[
Ron

5 (m)
∥∥R2(m)

]
.
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