
PHYSICAL REVIEW E 103, 052409 (2021)

Dynamics of genetic code evolution: The emergence of universality

John-Antonio Argyriadis ,1,* Yang-Hui He ,2,† Vishnu Jejjala ,3,‡ and Djordje Minic 4,§

1Jesus College, University of Oxford, OX1 3DW, United Kingdom
and Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road,

University of Oxford, OX1 3PU, United Kingdom
2Department of Mathematics, City, University of London, EC1V 0HB, United Kingdom;

Merton College, University of Oxford, OX1 4JD, United Kingdom;
and School of Physics, NanKai University, Tianjin, 300071, People’s Republic of China

3Mandelstam Institute for Theoretical Physics, School of Physics, NITheP, and CoE-MaSS,
University of the Witwatersrand, Johannesburg, WITS 2050, South Africa

and David Rittenhouse Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
4Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

(Received 20 December 2019; revised 21 April 2020; accepted 8 October 2020; published 17 May 2021)

We study the dynamics of genetic code evolution. The model of Vetsigian et al. [Proc. Natl. Acad. Sci.
USA 103, 10696 (2006)] and Vetsigian [Collective evolution of biological and physical systems, Ph.D. thesis,
2005] uses the mechanism of horizontal gene transfer to demonstrate convergence of the genetic code to a near
universal solution. We reproduce and analyze the algorithm as a dynamical system. All the parameters used
in the model are varied to assess their impact on convergence and optimality score. We show that by allowing
specific parameters to vary with time, the solution exhibits attractor dynamics. Finally, we study automorphisms
of the genetic code arising due to this model. We use this to examine the scaling of the solutions to re-examine
universality and find that there is a direct link to mutation rate.

DOI: 10.1103/PhysRevE.103.052409

I. INTRODUCTION

The genetic code arose through evolution. We think of it
as being universal, optimal, and highly redundant [1]. The
mechanics of the evolution of life on Earth means that all
organisms share the same genetic code in which each codon
produces the same amino acid. We call this the standard
genetic code. (While there are deviations from the standard
genetic code [2], these involve only a handful of codons being
coded differently and will not be the subject of our inves-
tigations here.) Because of selection pressures, the standard
genetic code has self optimized to minimize errors in transla-
tion and transcription [3–5]. From theoretical considerations,
Woese et al. [6] showed that the standard genetic code is
related to a property called the polar requirement, which has
subsequently been corroborated by experiment [7] and shown
to be highly optimal when considering one type of error:
point mutations [8]. It can be considered as part of an abstract
chemical property of the genetic code [9]. Following Vetsigian
et al. [10] and Vetsigian [11], in this paper, we consider the
code’s optimality in terms of these features.

Sella and Ardell [9] attempted to model the evolution of
the genetic code. This was done through considering the co-

*john-antonio.argyriadis@jesus.ox.ac.uk
†hey@maths.ox.ac.uk
‡vishnu@neo.phys.wits.ac.za
§dminic@vt.edu

evolution between the genetic code and the encoding of a
protein within a closed model system. This allows for complex
dynamics between mutations of messages and selection on
proteins to minimize the lethal effects of these mutations. This
minimizes the errors through mutations and allows protein
networks to develop to promote a higher likelihood of sur-
vival. We seek to understand whether the algorithm based on
this coevolutionary model can be phrased as a purely physical
problem of dynamical evolution. To address this we must first
discuss the algorithm.

The algorithm described by Vetsigian et al. [10] models
the evolution of the genetic code through horizontal gene
transfer (HGT). This allows organisms to exchange genetic
information via DNA through transferring the segments of
a genome to each other within the same generation through
various mechanisms. This is used in concert with the Code
Message Coevolution Model dynamics described by Sella
and Ardell [9] to obtain an iterative discrete time algorithm.
Implementation of the algorithm demonstrates convergence
of the genetic code to a highly optimised and near universal
solution. This solution is an attractor. Horizontal gene transfer
is crucial to achieving this solution. This result provides a
testable model for understanding the standard genetic code.

The dynamics from the coevolution model along with
the additional communication incorporated by the iterative
discrete time algorithm governs the evolution of genetic
code states (genetic code configurations) of which there is
a finite number. This allows us to treat the algorithm as
a discrete dynamical system, as it is the time dependent

2470-0045/2021/103(5)/052409(17) 052409-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2934-3993
https://orcid.org/0000-0002-0787-8380
https://orcid.org/0000-0003-2603-6717
https://orcid.org/0000-0001-7733-2204
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.052409&domain=pdf&date_stamp=2021-05-17
https://doi.org/10.1073/pnas.0603780103
https://doi.org/10.1103/PhysRevE.103.052409

ARGYRIADIS, HE, JEJJALA, AND MINIC PHYSICAL REVIEW E 103, 052409 (2021)

dynamics of coevolving matrices which represent the genetic
code state. We will consider this algorithm as if it were
a system out of equilibrium for which there is the emer-
gence of an attractor solution in the space of genetic code
mappings [12].

The behavior we establish exemplifies the notion of univer-
sality. In statistical physics, systems with a large number of
degrees of freedom exhibit universality in a scaling limit. His-
torically, this idea originated in the theory of phase transitions
and was made mathematical precise through the renormal-
ization group. (See, for example, Refs. [13–15].) Starting
from specific initial conditions, by integrating out degrees of
freedom (e.g., through coarse-graining), we flow to a fixed
point. At the fixed point, the theory is scale invariant.1 Very
different physical systems can flow to the same fixed point
in that correlation functions of local operators behave in an
identical manner. Such theories are said to belong to the same
universality class. Input parameters dictate how the system
converges to universality. It is therefore natural to examine
how variations on these parameters influence the universality
of the solution. We will use approximate scale invariance as a
tool to assess how close we are to universality and to diagnose
features of the universal solution.

In this article, we investigate a mechanism for the origin
of the genetic code that leads to universal behavior at late
times. We initially describe the model with considerations
of universality as in Vetsigian et al. [10] by defining it in
such a way that all entities within the algorithm converge
to a single solution. We then consider universality in a more
formal manner through statistical mechanics.

Let us begin by stating the main results. The first re-
quirement for the convergence of the genetic code is a
trivial observation that we make rigorous: there must be
more codons than amino acids. The second requirement
is that we must demand horizontal gene transfer to opti-
mize the setup. This corroborates the claims of Vetsigian
et al. [10]. We also discover that universality in terms of
scaling in the solution depends on the rate of mutations.
It is largely independent of mistranslations of the genetic
code.

The organization of this paper is as follows. In Sec. II, we
recast the biological algorithm into a computational algorithm
to which we can apply the principles of dynamical systems.
We reproduce the results from Vetsigian et al. [10] and show
that the initial conditions do not influence the algorithm’s
ability to flow to a near universal solution. Our new results
are in Sec. III. In particular, in Sec. III A, we correct minor
errors in the literature. In Secs. III B–III D, we vary all the
parameters in the model to examine their influence on the
attractor mechanism. In Sec. III E, we discuss automorphisms
and scaling in the genetic code. We then illustrate the mech-
anism for universality in terms of scaling with an example.
In Sec. III F, we re-examine universality and express this
behavior in terms of the homogeneity of the fitness function.
We find that the universal solution is characterized by the rate

1This is a simplification. At a fixed point of the renormalization
group, the theory enjoys a larger symmetry, conformal invariance,
which includes scale or dilatation invariance.

of mutations and is largely independent of the mistranslation
rate. In Sec. IV, we conclude with a summary and directions
for future work. Finally, the Appendices collect the results of
various experiments less central to the argument than those
discussed in the main text.

II. MODELING FRAMEWORK

We begin with a precise rephrasing of the problem ad-
dressed by Vetsigian et al. [10] into one of computation.
Emphasis will be on representing the aspects of the math-
ematical problem while minimizing the amount of biology
introduced.

A. Basic definitions

We model the set of codons making up DNA geometrically
using a Hamming metric [16].

Definition 1. Let ib ∈ i be a set of elements (bases) form-
ing an alphabet of length |i|. We define a codon as a sequence
of n bases such that c ∈ C := {ib,1, . . . , ib′,n}. The number of
possible codons is |C| = |i|n.

For codons in the standard genetic code, we have |i| = 4
(A,C,G,T) and n = 3 meaning that |C| = 64. We define the
set of codons, C, lexicographically. Note that there is an asso-
ciated symmetry with a Hamming metric [17].

We can next define the structure of the genetic code:
Definition 2. Denoting the set of animo acids a ∈ A such

that we have |A| amino acids, the mapping from codon space
to amino acid space, G : C → A is the genetic code. We
represent the map G as matrix �c,a with dimensions |C| × |A|
such that

�c,a =
{

1 if G(c) = a,

0 otherwise.
(1)

We refer to �c,a as the δ matrix. This matrix defined in
Eq. (1) has one entry per row (as each codon can only map
to a single amino acid) and no empty columns (we assume
that every amino acid has been mapped to). The map G is
surjective but not injective. In Nature, we encounter 20 amino
acids in the genetic code.2 The codon TTT maps to the amino
acid phenylalanine, for example. This matrix can therefore
be considered as a nonsquare, row-stochastic, binary matrix
with no empty columns. Notice that when summing over the
columns of a row-stochastic matrix, we get 1. These properties
place constraints on the information flow for optimization
[18]. Note that due to these constraints, we also must have
|C| � |A|. Using the inclusion/exclusion principle [19], the
number of possible configurations of the δ matrix �c,a is

#config =
|A|∑
j=0

(−1) j

(|A|
j

)
(|A| − j)|C|. (2)

2For the purposes of calculation, we treat the stop codons as map-
ping to a dummy amino acid, so in our language |A| = 21 in the
standard genetic code.

052409-2

DYNAMICS OF GENETIC CODE EVOLUTION: THE … PHYSICAL REVIEW E 103, 052409 (2021)

During the map G, errors occur with a given probability:

prob(c → a) =
∑

c′
Lc,c′�c′,a,

Lc,c′ (�) =

⎧⎪⎨
⎪⎩

�
(n(|i|−1)) dist(c, c′) = 1,

1 − � dist(c, c′) = 0,

0 otherwise.

(3)

The parameter � ∈ [0, 1] ⊂ R. The distance is defined using
the Hamming metric such that

dist(c, c′) := #(c j �= c′
j) j=1,...,n. (4)

The distance is the number of bases ib that differ between
two codons c and c′. Here, � represents a parameter for the
probability of error, and Lc,c′ (�) is a bistochastic matrix, viz.,
a symmetric, nonnegative matrix whose rows and columns
sum to 1. The matrix Lc,c′ (�) is used to only consider near-
est neighbors in codon space. The number of codons with
dist(c, c′) = 1 is given by n(|i| − 1) as there are n positions
which can have |i| − 1 different values. We can encode this
information in a Hamming graph in which the C = |i|n possi-
ble codons correspond to vertices and an edge joins vertices
whose corresponding codons that differ by a single letter —
i.e., those codons at Hamming distance 1.

In this algorithm the genetic code G rearranges itself to
minimize the likelihood that probabilistic nature of the map
causes a differing amino acid a to appear when mapping
from codon space [4,5]. In this model we consider two forms
of errors, both of which only occur on nearest neighbors
(dist(c, c′) = 1). They are the following:

(1) Mistranslation: When a single base ib is read incor-
rectly. We will denote this Tc,c′ and take � → ν, where ν is the
rate of mistranslation.

(2) Point mutations: A single base ib changes before be-
ing read. We will denote this Mc,c′ and � → μ where μ is the
rate of mutations. There are various kinds of point mutations.

For simplicity, we will neglect excisions or insertions of
bases.

B. Fitness

Information is translated from genome to proteome. For
our purposes, these are sequences of codons and amino acids,
respectively. In particular,

Definition 3. A sequence SG = {c1, . . . , cM} of length M
is called a genome, where each codon cx ∈ C has a position
x in the sequence {1, . . . , M}. A target amino acid s(x) is the
mapping under the genetic code G of the codon at position
x to the amino acid s(x) ∈ A. The image under the genetic
code map G of the genome sequence SG, gives a sequence
SP = {s1, . . . , sM} of target amino acids called the proteome,
which is a subsequence of a protein.

We denote the target amino acid s(x) as s to abbreviate no-
tation. The definition we quote above is a slight simplification
of Refs. [9–11] as in this algorithm, we assume s ≡ a ∈ A.
As the amino acids at each position in the sequence are in-
distinguishable [10], we can store details of the proteome and
genome within the following objects:

Definition 4. A vector Ls specifies the frequency of the
target amino acid s in a proteome sequence of length M. The

codon usage matrix Uc,s specifies the frequency of a codon c
within a target amino acid s.

Crucially, we encode all necessary information about the
genome and proteome within these two objects without having
to go through the respective sequences analytically. The two
matrices are both column stochastic, i.e.,

|A|∑
s

Ls = 1,

|C|∑
c

Uc,s = 1s. (5)

The notion of distance in amino acid information space is
structurally ambiguous (not well defined like a Hamming
metric). Due to this we can define the topological distance
between amino acids by the following ad ∈ [0, 1], which can
be randomly generated. The notion of distance is normalized.
Using this we can define a fitness matrix as

Wa,s = �|ad −sd |. (6)

As in Sella and Ardell [9], � is a parameter used to consider
how an abstract physicochemical distance between amino
acids scales into the fitness. This makes the fitness ma-
trix Eq. (6) some measure of how “useful” each arbitrary
amino acid a is instead of the target amino acid s. Since
0 < � � 1, this is a positive symmetric matrix. By consid-
ering the probability of mistranslations and the entire genome
we can describe an overall fitness score [10]:

f =
∏

c

∏
s

{∑
c′

∑
a

Tc,c′�c′,aWa,s

}LsUc,s

. (7)

This product is taken componentwise.
To measure how well a δ matrix performs, we define the

optimality score O as

O =
∑

c

∑
c′

(
Nc,c′

{ ∑
a

∑
b

�c,aSa,b�
T
c′,b

})
, (8)

which measures the average amino acid similarity between
neighboring codons. We define amino acid similarity as Sa,b =∑

s |Wa,s − Ws,b|. In (8), Nc,c′ is 1 if two codons are nearest
neighbors (dist(c, c′) = 1) and zero otherwise [10,11]. Note
that it is a tautology that two isomorphic genetic codes give
the same optimality score. We return to this point in Sec. III E
below.

C. The algorithm

Based on these mathematical preliminaries, we consider
the following algorithm [10].

(1) Construction: We can construct a set of N objects
each with their own genetic code G and therefore δ matrix
�c,a and their own codon usage matrix Uc,s.

(2) Mixing: We randomly select one object as the acceptor
A and a random subset K of N as the donors (k ∈ K ⊂ N) and
run them through the iteration

(1 − H)U A
c,s + H

K

∑
k∈K

U (k)
c,s → U A

c,s, (9)

where H represents the fraction of the genetic code due to
horizontal gene transfer (H ∈ [0, 1]).

052409-3

ARGYRIADIS, HE, JEJJALA, AND MINIC PHYSICAL REVIEW E 103, 052409 (2021)

FIG. 1. Evolution of optimality score for (a) H = 0 (red) and (b) H = 0.4 (blue). Both graphs were produced using the following
parameters: |i| = 4, n = 3 giving |C| = 64, |A| = 20, N = 80, K = 1, ν = 0.01, μ = 10−4, and � = 0.99. Ls and ad are the same for both
graphs.

(3) Fitness maximization: We attempt an elementary
code change to the δ matrix �c,a. We do this by assigning
one codon to a new amino acid. This is done by reallocating a
unit entry in �c,a to a different position within that row of the
matrix. We accept the new code if and only if it preserves or
increases the fitness score f , which has been calculated using
the new U A

c,s. Otherwise, we keep the original δ matrix �c,a, if
there are no new possibilities.

(4) Mutational equilibrium: We can derive a new codon
usage matrix U A

c,s from the new δ matrix �c,a uniquely at
mutational selection equilibrium. We first derive a fitness
matrix with respect to codons Fc,s = ∑

a �c,aWa,s. Using the
Perron–Frobenius theorem, we calculate the column stochas-
tic eigenvector corresponding to the largest eigenvalues, for
the following matrix (Qs):

Qs
c,c′ =

∑
c′′

Mc,c′′δc′′,c′Fc′′,s, (10)

where δc′′,c′ is a Kronecker δ so that we consider the sth
column of the matrix Fc′′,s as a diagonal matrix. The index
s here is fixed and not a free index. Each column stochastic
eigenvector of Qs

c,c′ corresponds to the sth column of U A
c,s. We

normalize the eigenvector so that it is column stochastic) by
setting the sum of elements to unity.

(5) Repetition: We repeat steps 2 through 4 for t time
steps.

a. Experimental setup. In this model there are 12 parame-
ters to generate and define. These are tabulated as follows.

(i) Space structure: |i| and n for the codon space, |A| and
ad for amino acid space, and Ls target amino acid frequency;

(ii) Innovation pool structure: N number of objects, K
number of donors per iteration, and H fraction of genome that
is similar due to horizontal gene transfer;

(iii) Noise and fitness parameters: ν, μ, and �;
(iv) Number of time steps: t .
We generate Ls and ad randomly. The parameters |i|, n,

|A|, N , and K are positive integers while H , ν, μ, and � take
any value in the interval [0,1]. We reproduce the results in
Vetsigian et al. [10] using their parameters as quoted in Fig. 1.
The initial δ matrices �c,a are identical at the start, as done
in Vetsigian et al. [10]. The results in Fig. 1 show that when
modeling without horizontal gene transfer [Fig. 1(a), red], the

δ matrices �c,a optimize themselves, but do not converge to
a universal solution. This is shown by the optimality scores,
O, ranging from 0.7 to 1.25 and not changing after 1500
time steps. When including horizontal gene transfer [Fig. 1(b),
blue] we get a set of optimality scores, O, that optimize
on average more than without horizontal gene transfer (red,
H = 0). The results display the attractor mechanism. This is
because the optimality score falls in a smaller range (between
0.75 and 1) and fluctuations continuing at the the t = 5000
time step.

The time taken to produce these results was very large
as we use |i| = 4, n = 3, and |A| = 20 giving us 64 × 20
matrices. To perform a more careful analysis, we consider a
toy model by reducing the matrix dimensions to 27 × 9. This
corresponds to the parameters |i| = 3, n = 3 (so |C| = 27)
and |A|=9. We also set up the algorithm so that each entity
has its own unique δ matrix �c,a such that they all start with
different initial optimality scores to see if the scores will
still converge. These results are in Appendix A. They show
some convergence after 5000 time steps. This suggests that
the set of �c,a can be arbitrary in order for optimised attractor
mechanism to emerge. This also points to the existence of an
attractor mechanism at work for H �= 0.

When performing the analysis all initial δ matrices �c,a

will be identical. We will vary a single parameter from the set
{|i|, n, |A|, N, K, H, ν, μ,�} while keeping the others fixed.
We generate ad and Ls randomly for all runs. We will take ten
runs for each parameter and take the average. The standard
deviation will be used to analyze the spread (to measure the
rate of convergence). We use the standard deviation as it
allows us to measure the spread of optimality scores in an
intuitive manner, similar to the mean code distance used in
Vetsigian et al. [10] as we highlight further in Sec. III E.
We will take the average of the standard deviation over the
ten runs. These results are discussed in Secs. III B–III D be-
low, where we consider universality to be represented by
the ability for all entities within the algorithm to converge
to a single solution. The remainder of Sec. III is devoted
to re-defining and re-examining universality using statistical
mechanics and the renormalization group. The Figs. 8–15 in
Appendices A–E are data generated to supplement the results
in Sec. III.

052409-4

DYNAMICS OF GENETIC CODE EVOLUTION: THE … PHYSICAL REVIEW E 103, 052409 (2021)

TABLE I. Row 1 gives the resulting eigenvalues and eigenvectors for the parameters stated in the paper. Row 2 provides the eigenvalues
and eigenvectors from the paper using the corrected parameters. Note these eigenvectors are for a given value of s.

Eigenvalues and column stochastic eigenvectors for a set of � and μ

Scaling for an abstract
physicochemical between amino acids � Rate of mutations μ Largest eigenvalue λs

1 0.8 0.1 0.9549
2 0.85 0.01 0.9808

Corresponding eigenvector Uc,s
T

1 [0.2635 0.2134 0.1549 0.1549 0.2134]
2 [0.9058 0.0461 0.0011 0.0011 0.0461]

III. RESULTS AND ANALYSIS

A. The model of Sella and Ardell

In an insightful paper, Sella and Ardell [9] develop a code
message coevolution model that describes the impact of mes-
sage mutation on the fitness of the genetic code. The authors
observe that at mutational equilibrium, there is a balance
between mutations in messages and selection on proteins.
This model has been summarized in Becich et al. [20]. The
process involves calculating the column stochastic eigenvec-
tor corresponding to the largest eigenvalues as described in
step 4 (mutational equilibrium) of the algorithm described in
Sec. II C. We note for completeness and reproducibility two
minor errata. Example A from Sella and Ardell [9] consists
of a model with the following setup. There is a ring of five
codons mapping to a ring of five amino acids with �c,a being
the identity matrix. Note that we will denote the eigenvector as
Uc,s, however, s is fixed and is not a free index (as in our step
4). To reproduce the results, we take � = 0.85 and μ = 0.01.3

The resulting eigenvalues and eigenvectors are given in Ta-

3We are grateful to D. Ardell for communications on this point.

ble I. Note that at machine precision the eigenvectors sum to
one (

∑
c Uc,s = 1) as required.

B. Varying parameters for space structure

Recall that |i| counts the number of nucleotides. These are
the letters that comprise a DNA sequence. Taking a codon
to consist of an n nucleotide sequence, the number of pos-
sible codons is then |C| = |i|n. These codons describe |A|
amino acids. With four bases as in the standard genetic code,
there are 64 three base sequences corresponding to possible
codons. These codons correspond to 20 amino acids, so we
have a many to one map. In this subsection, we report on
experiments involving varying parameters corresponding to
the spatial structure of the map.

1. Experiment 1: Varying the number of nucleotides

We test the fitness optimization for the cases |i| = 3, 4, 5.
We do not take |i| = 2 as this gives |C| = 8 < |A| = 9, break-
ing one of the constraints on the δ matrix. We do not take
|i| � 6 either as this produces a matrix that is at minimum
216 × 9, which takes significant processing time to iterate.
The results are given in Fig. 2. For all values of |i|, Fig. 2(a)

FIG. 2. Panel (a) shows the average time evolution of the standard deviation of the optimality score for a given |i| over ten runs. Panel
(b) shows the average final optimality score for a given |i| over ten runs. The initial parameters are the same for all runs: n = 3, |A| = 9, N = 80,
K = 1, H = 0.4, ν = 0.01, μ = 10−4, and � = 0.99. The error bars show the average one standard deviation spread of final optimality scores
over the ten runs (to measure the rate of convergence).

052409-5

ARGYRIADIS, HE, JEJJALA, AND MINIC PHYSICAL REVIEW E 103, 052409 (2021)

FIG. 3. Panel (a) shows the average time evolution of the standard deviation of the optimality score for a given n over ten runs. Panel
(b) shows the average final optimality score for a given n over ten runs. The initial parameters are the same for all runs: |i| = 3, |A| = 9,
N = 80, K = 1, H = 0.4, ν = 0.01, μ = 10−4, and � = 0.99. The error bars show the average one standard deviation spread of final optimality
scores over the ten runs (to measure the rate of convergence).

displays an optimised solution with an attractor mechanism
converging to a near universal solution. When varying |i| we
find the value of the optimality score, O, increases propor-
tionally as shown in Fig. 2(b). This makes sense as increasing
|i| increases |C| meaning we sum over more elements to get
the optimality score O. The rate of convergence decreases as
indicated by the error bars increasing proportionally with |i|
in Fig. 2(b). This is as expected as larger matrices should take
longer to find the universal solution.

2. Experiment 2: Varying the length of a codon

For the length of a codon n, we take n = 2, 3, 4. We do not
take n = 1 or n � 5 for the same reasons as when varying |i|.
The results are given in Fig. 3. They display the same pattern
as when varying |i|, because we are increasing |C| again.
When n = 2, we get |C| = |A| = 9 which means �c,a forms
a permutation matrix. This matrix cannot be changed in step 3
of the algorithm discussed in Sec. II C (fitness maximization)
as we cannot reassign a single codon c to a new amino acid a
without being left with an empty column. The δ matrix, �c,a,
cannot therefore evolve, giving a single flat line for n = 2 as
seen in Fig. 3(a). This implies that we require |C| > |A| for
the algorithm to work. We take note of the smallness of the
standard deviations in Fig. 3(b).

3. Experiment 3: Varying the number of amino acids

The result of this experiment is that variations on |A| dis-
play convergence. It is important to consider that the randomly
generated values for topological amino acid distance ad and
site frequency Ls will also vary, as they are generated with
consideration on |A|. The results for this are given in Fig. 4.
There appears to be an upwards trend in Fig. 4(b). This result
is intuitively expected as increasing the number of amino acids
increases the number of terms we sum over; however, further
investigation is needed to confirm this. This should be done
keeping randomly generated variables fixed where possible.

C. Varying parameters for the innovation pool structure

Recall that the algorithm from Sec. II C begins by con-
structing N objects each with a genetic code G. At each time
step, one of these objects receives a fragment of genome from
K donors selected from the set of objects. The parameter H
computes the fraction of the recipient genome due to horizon-
tal gene transfer.

1. Experiment 4: Varying N

The results for varying N is shown in Fig. 9 in Appendix B.
The number of entities N is taken from 10 to 100 in steps
of 10. The results when varying the number of entities show
a linear relationship between number of entities N and final
average final optimality score as seen in Fig. 9(b).

2. Experiment 5: Varying K

When varying the number of donors K from 1 to 5, we
find that it does not affect the algorithm’s dynamics as seen
in Fig. 10 in Appendix B. This makes sense as we are always
adding the same fraction H to the acceptor codon usage U A

c,s.
We should note there does appear to be a slight upwards
trend in average final optimality score as shown in Fig. 10(b).
Further investigation should be undertaken with larger value
of K such that K ≈ N .

3. Experiment 6: Varying H

We take H , the fraction of the genome similar due to
horizontal gene transfer from 0 to 1 in increments of 0.1. The
results are shown in Fig. 5 below. Figure 5(a) that for H = 0,
there is no convergence as expected, while for H = 0.2 the
results begin to converge but at a very slow rate. Looking at
the Fig. 5(b), it is clear that 0.4 � H � 0.7 gives the minimal
optimality score and the smallest error bars. This implies
the final results have been substantially optimised and have
converged to a greater extent via the attractor mechanism to a
near universal solution. When H � 0.8, the final scores, O,
are less optimal and have converged less. This is probably
due to a change from “mixing” to “swapping” of codon us-

052409-6

DYNAMICS OF GENETIC CODE EVOLUTION: THE … PHYSICAL REVIEW E 103, 052409 (2021)

FIG. 4. Panel (a) shows the average time evolution of the standard deviation of the optimality score for a given |A| over ten runs. Panel
(b) shows |A| (number of amino acids) against the average final optimality score, averaged over ten runs. The initial parameters are the same
for all runs: |i| = 3, n = 3, N = 80, K = 1, H = 0.4, ν = 0.01, μ = 10−4, and � = 0.99. The error bars in show the average one standard
deviation spread of final optimality scores over the ten runs (to measure the rate of convergence).

age matrices Uc,s, preventing optimal communication. Results
from Fig. 5 suggest that maximum mixing occurs around
H = 0.6.

4. Experiment 7: Time evolution of H

The parameter H is best considered a variable that de-
creases with time [10,21]. This is due to better translation of
the model allowing evolution of a protein network with more
specific interactions to occur [10]. To model this, we define H
in the following manner:

H (t) = H0e−kt . (11)

In this equation, H0 is the initial fraction of horizontal gene
transfer similar (0 � H0 � 1), and k is a constant. Initially, H0

is set to 1. Setting k = 10−3 gives a number that is approxi-
mately zero at, say, t = 5000. The results in Sec. III indicate
that we expect convergence to occur after 5000 iterations. For
this reason, we set k = 10−4 so that H (t = 5000) is relatively
far from zero. The resulting dynamics is given in Fig. 6 and
Appendix C, where the degree of convergence is significantly
improved in several runs, to all prior results. The majority of

the trials have fully converged and can be considered univer-
sal. Note that the solutions converge to different values, due to
ad being randomly generated. We can see that only Fig. 6(d),
does not completely converge. The rate of convergence seem
to to be fairly similar to the runs when using large constant
H . This makes sense as this is a stochastic process meaning
the rate of convergence should vary between runs. However,
the average rate of convergence significantly improves in the
cases where universality manifests within this time frame.
Note that H (t) sits in the optimal range suggested in Sec. III C
for approximately the last 1500 time steps.

D. Varying error and fitness parameters

Recall that the parameters ν, μ, and � take values in
the interval [0,1]. The parameter ν measures the rate of
mistranslation, when a single base is misread. The param-
eter μ measures the rate of mutation, when a single base
is changed. The parameter � characterizes how an abstract
physicochemical distance between amino acids scales into the
fitness.

FIG. 5. The average final optimality score for a given H . Panel (a) shows the average time evolution of the standard deviation of the
optimality score for a given H over ten runs. Panel (b) shows the average final optimality score for a given H over ten runs. The initial
parameters are the same for all runs: |i| = 3, n = 3, |A| = 9, N = 80, K = 1, ν = 0.01, μ = 10−4, and � = 0.99. The error bars show the
average one standard deviation spread of final optimality scores over ten runs (to measure the rate of convergence).

052409-7

ARGYRIADIS, HE, JEJJALA, AND MINIC PHYSICAL REVIEW E 103, 052409 (2021)

FIG. 6. Evolution of optimality score with a time evolving parameter H . Four runs showing the evolution of optimality score for a time
evolving H [according to Eq. (11)]. We use: |i| = 3, n = 3, |A| = 9, N = 80, K = 1, ν = 0.01, μ = 10−4, � = 0.99, k = 10−4, and H0 = 1.

1. Experiment 8: Varying ν and μ

The plots for these variations are in Appendix D. It can be
seen that variations on ν have no effect on a given optimality
score. As we are trying to minimize the effects of errors
from ν and μ, there is less requirement to optimize as they
decrease. This can be seen in Fig. 12(b) in Appendix D. As
these parameters decrease the optimality score increases. Note
we take ν and μ from 1 to 10−4 on a log scale. We do not try
ν, μ = 0 as this implies there is no need to optimize the code
as no errors can occur.

2. Experiment 9: Varying �

As described by Vetsigian [11], � is a scale for the fitness
for one amino acid substitution. This implies that it should
not affect the rate of convergence directly. However, it will
affect the score converged to. To examine this we reduce the
fitness score f to a function of � and ν to consider their role
in the algorithm given by Fig. 13(a) in Appendix D. The rest
of the values are randomly generated. The variations of � are
proportional to f as expected.

E. Redefining universality within a genetic code model

The framework we have described so far shows that there
is some degree of convergence via an attractor mechanism.
With horizontal gene transfer turned on (H �= 0), we have an
attractor. While the details of the solution depend in part on
the initial conditions assigned to parameters in the model,
the model exhibits near universality at late times. This is

demonstrated by the converging behavior of the optimality
scores O of all entities. We aim to refine the concept of
universality. To do this we must first understand genetic code
configurations and the possible symmetries associated with
them. We will then analyze the fitness landscape of all genetic
code configurations to to see if this function can be scaled ho-
mogeneously. To re-examine universality further, we mainly
consider the model provided by Sella and Ardell [9] while
also incorporating the fitness function provided by Vetsigian
et al. [10].

Note that for this section we will also work with the fitness
in the following form:

log f =
∑

c

∑
s

LsUc,s log

(∑
c′

∑
a

Tc,c′�c′,aWa,s

)
. (12)

The logarithm simplifies algebraic manipulations.
Using Definition 2, we represent each genetic code con-

figuration using a δ matrix �c,a. We can also calculate total
number of configurations using Eq. (2). This framework al-
lows us to consider the genetic code mapping as a surjective
mapping from a Hamming graph (of codons) to a random
graph (of distance between amino acids in an abstract topo-
logical information space). These graphs have automorphisms
due to labeling which we will highlight clearly in an upcoming
example. The automorphisms imply that certain genetic code
configurations (and therefore δ matrices �c,a) are isomorphic
to each other, meaning that they represent the same genetic
code map G even though they have different δ matrices �c,a.
Considering the random graph is randomly generated, we a

052409-8

DYNAMICS OF GENETIC CODE EVOLUTION: THE … PHYSICAL REVIEW E 103, 052409 (2021)

priori assume that no automorphisms exist within the amino
acid graph. Note this is only true for |A| > 2, as |A| = 1 is
trivial and |A| = 2 has an inherent symmetry in swapping the
labels. Now the codons graphs as setup as a Hamming graph.
Hamming graphs are known for having automorphisms [17].
Due to there being a certain number of automorphisms for
the Hamming graph for a given |i| and n, we quotient Eq. (2)
by the number of symmetries to get the number of unique
codes. As previously noted in Sec. II B, these automorphisms

imply that two isomorphic genetic codes should yield the
same optimality score.

1. Example

To understand the isomorphisms, we will consider an ex-
ample. Put |i| = 2, n = 2, and |A| = 3. This means |C| = 4
giving δ matrices with dimensions 4 × 3. Using (2) we get
#config(|C| = 4, |A| = 3) = 36. We represent this map in the
following format:

01

1000

11

G

a b

c

(13)

In Eq. (13), G : {00, 10, 11, 01} 	→ {c, c, b, a}. We see that
the Hamming graph on the left hand side is isomorphic un-
der relabeling [17]. In particular, if we relabel 0 ←→ 1, the
genetic code map would not change. This configuration has
a symmetry factor of 18. Taking the quotient of the number
of configurations with the symmetry factor suggests that there
are only two unique configurations of �c,a for |C| = 4 and
|A| = 3. Said another way, in this example, there are

(4
2

)
ways

of selecting a pair of codons that are mapped by G to the same
amino acid. Taking into account the repetition, there are 3!
(the order of S3) ways of mapping the codons to the amino
acids. The product of these terms gives the 36 configurations.
Taking into account the isomorphisms, we pick out the odd
and even elements of the permutation group S3 as our distin-
guished configurations.

We will now calculate Eq. (12) for all configurations of
�c,a. We do this for a given value of � and generate plots in
the μ–ν phase space plane (error space). In Fig. 7, we show
results for � = 0.99, 0.5, 0.1, 0.01. We expect each unique
genetic code configuration to correspond to a unique surface
in error space.

From Fig. 7, we see that there are two unique surfaces for a
given value of �. This is due to there being two unique config-
urations of �c,a. Within this phase space, there is a curve on
which the surfaces interact. These curves are a critical locus
for which the ability of a code to produce a maximum log f
changes. As � varies, the shape of the surfaces change and
critical locus changes. In the case for � = 0.99 [Fig. 7(a)],
the critical locus is essentially independent of ν. The depen-
dence on ν for the surfaces and the critical locus grow as
� decreases. To verify this, we take a polynomial fit to the
critical locus for this model.

Taking the ansatz,

log(f)fit = a + b1ν + b2μ + c1ν
2 + c2νμ + c3μ

2, (14)

for � = 0.99 the surfaces have polynomials of the form:

log(f)fit = −84.8470 + 0.0801ν − 0.0618ν2

+ 22.0655μ − 15.2344μ2, (15)

log(f)fit = −84.0745 + 0.0522ν − 0.0404ν2

+ 26.1504μ − 23.5190μ2, (16)

with R2 > 0.99995. Taking the difference between Eqs. (15)
and (16), we get the critical locus

−0.7725 + 0.0278ν − 0.0214ν2 + 4.0849μ+ 8.2846μ2 = 0.

(17)

As inferred from Fig. 7, the dependence on ν is negligible as
the coefficients are two or three orders of magnitude smaller
than the coefficients for terms involving μ. For any value of
�, the coefficient of the μν cross term O(10−10). Thus, at
� ≈ 1,

∂ log f

∂ν
= 0. (18)

This relation does not necessarily hold for smaller values
of � for which we report results in Appendix E. Here, the
coefficients of ν are on a similar magnitude to those for μ.
This implies that � influences the effects of mistranslations
ν in an inversely proportional manner. For the results in the
prior sections we use � = 0.99 for all runs as in [10]. This
is due to the fact that the effects of mistranslations are more
likely to be nonlethal. Note that as � and μ are related through
eigenvectors and therefore not linearly related.

Note we also have results for |i| = 4, n = 1 and |A| = 3
such that we have another case with |C| = 4 and |A| = 3
but with different automorphisms in Appendix E. For this we
find a unique configuration of genetic codes and therefore no
critical locus. We also find that the dependence on ν increases
and � decreases as before.

052409-9

ARGYRIADIS, HE, JEJJALA, AND MINIC PHYSICAL REVIEW E 103, 052409 (2021)

FIG. 7. Four surface plots of log f in μ–ν phase space for � = 0.99 (a), 0.5 (b), 0.1 (c), and 0.01 (d). We have set |C| = 4 and |A| = 3.
Each colored surface corresponds to a unique genetic code configuration.

F. Re-examining universality

To understand the universality of the model in a more
formal manner, we examine it in terms of Widom scaling
[22]. In particular, we look for homogeneous behavior as a
signal of scale invariance on a critical locus. Consider the
logarithm of the fitness function, log f . As above, f (ν, μ)
is a function of the rate of mistranslations and the rate of
mutations. Now, homogeneity of log f demands that

log f (κν, κμ) = κβ log f (ν, μ), (19)

where κ ∈ R is a scale and β is the degree of homogeneity.
As ν, μ ∈ [0, 1], we require that κν, κμ ∈ [0, 1]. In particular,
when κ = 1,

ν
∂ log f

∂ν
+ μ

∂ log f

∂μ
= β log f (ν, μ). (20)

This is the content of Euler’s homogeneous function theorem.
However, if we consider the case of � ≈ 1 − ε, where ε �

1, then contributions from ν become negligible such that we
can apply (18), leaving us to calculate ∂ log f

∂μ
. From Eq. (12),

the only part of the log f that depends on μ is Uc,s. Therefore,
we must calculate ∂Uc,s

∂μ
.

Suppose A is a real symmetric matrix with eigenvalues λi

and eigenvectors vi such that vT
i vi = 1. The Perron–Frobenius

theorem ensures that the matrix A has a unique real eigenvalue
with a magnitude larger than that of any other eigenvalue and

a corresponding eigenvector with positive components. Then

∂vi = (λi1 − A)+(∂A)vi, (21)

where X + denotes the Moore–Penrose inverse of X [23]. In
defining Uc,s, we have normalized so that

∑
c Uc,s = 1s. As

Qs
c,c′ is a symmetric and real matrix, we therefore only need to

rescale Uc,s → U ′
c,s such that

∑
c U ′

c,s · U ′
c,s = 1 for any given

s. By doing this we can differentiate U ′
c,s:

β =
∑

c

∑
s μ

((
λmax

s 1 − Qs
c,c′

)+(∑
c′′

∂Mc,c′′
∂μ

δc′′,c′Fc′′,s
)
U ′

c,s

)′
Ls∑

c

∑
s Uc,sLs

,

(22)

where

∂Mc,c′′

∂μ
=

⎧⎨
⎩

1/(n(|i| − 1)) if dist(c, c′) = 1,

−1 if dist(c, c′) = 0,

0 otherwise.
(23)

We have derived the degree of scaling in the limit � → 1.
This implies that the model is approximately homogeneous
in the regime that we have worked in, with degree specified
by Eq. (22). We see that the order is dependent on the muta-
tions μ, implying that the universality of the code arise due
to species having similar mutational errors. We regard the
scaling behavior as a phenomenological observation about the
solution near an approximate fixed point of the renormaliza-
tion group.

052409-10

DYNAMICS OF GENETIC CODE EVOLUTION: THE … PHYSICAL REVIEW E 103, 052409 (2021)

We emphasize that when investigating what happens as we
tweak the parameters of the model, we calculate the standard
deviation to establish which results are significant when we
measure the optimality score. In assessing Widom scaling, we
look at the degree of homogeneity, not the degree of optimal-
ity; we do this using the fitness score, which is the function
actually being maximized in this algorithm, not the optimality
score. The Ls terms act as a weighting for each amino acid s.
We have used a scaling argument to justify universality of the
algorithm. The fact that the degree of homogeneity is inde-
pendent of ν, the rate of mistranslations, in the � → 1 limit,
does not imply that the final optimality score is independent
of mistranslations. As seen in Experiment 8 in Sec. III D, it
is not: decreasing ν increases the optimality score. We should
emphasise that for smaller values of �, Eq. (22) will not hold.
This is because Eq. (18) begins to break down for values of
� outside the condition � ≈ 1. We can amend Eq. (22) to
consider results around � = 0.9 by incorporating the addition
on an error term through considerations of the first term of
Eq. (20). This approximation does not apply for smaller values
of �, however, since, as suggested by Sella and Ardell [9], we
expect � to be relatively large.

IV. CONCLUSION AND PROSPECTS

In this paper, we have argued that with generic initial con-
ditions, there is a late time near universality resulting from the
flow of the theory to an attractive solution, viz., the standard
genetic code. The convergence via the attractor mechanism to
a near universal solution relies on the mechanism of horizontal
gene transfer [10], which corresponds to setting a parameter H
to a nonzero value. We varied the parameters of the model and
found that all variations still display this convergence, except
for H = 0. This demonstrates the robustness of the model.
We also found that for 0.3 < H < 0.7 we obtain near univer-
sal solutions with the greatest degree of optimization, with
H > 0.7 not being as effective due to some transition
from “mixing” to “swapping.” Taking H as a decreasing
time-dependent function vastly improves the convergence in
comparison to constant values of H . We found that increasing
the number of codons, |C|, increases the optimality score O.
By limiting the fitness function to a regime that we work in
(� = 0.99), we are able to make approximations that lead
to homogeneity in log f , where f (ν, μ) is a fitness func-
tion depending on the rate of mistranslation and the rate of
point mutation. We derive an expression for the degree of
homogeneity, β. In the limit � → 1, β depends strongly on
the mutation rate and negligibly on the mistranslation rate.
We conclude that the rate of point mutations is the crucial
factor in driving arbitrary initial conditions to the attractor
solution that optimizes fitness of the genetic code. The point
mutation rate is determined by the eigenvalue of the linearized
renormalization group transformation around the fixed point
for the dynamics.

Improvements to make the algorithm more accurate for
biology would involve exploring how to incorporate stop
codons which do not code for amino acids into the model as
something more than a dummy amino acid. We should also
consider that mutations and horizontal gene transfer do not
occur at the same rate as suggested by both occurring at each

iteration. Some work to estimate a timescale for this model
possibly by considering rate of error as the sum of all errors
(ν + μ) and relating this to the measured rate of error in, for
example, a kinetic proofreading model [24]. We also suggest
that additional factors and steps should be incorporated to
guarantee a universal solution is converged to every run.

Variations on the dimensions, |C| and |A|, which count the
number of codons and the number of amino acids, respec-
tively, display convergence to a universal result. This could
have applications to synthetic biology where codes with up
to 8 bases have been created [25]. These codes should also
converge to a universal genetic code given enough time. An
open question is to determine what sets the initial conditions.
Why did life on Earth evolve to make use of four base pairs in
DNA, three base pairs per codon, and 20 amino acids?

We have focused on a single basin of attraction, whereas
there could be others. The basin of attraction may be deter-
mined by biochemistry inputs. We can imagine, for example,
a different basin of attraction in which the solvent is ammonia,
methane, or hydrogen fluoride instead of water. We can also
imagine biochemistry organized around silicon instead of car-
bon. The molecular realization of the genetic code would be
different based on these other inputs, but we expect that the
same principles apply, and these other hypothetical genetic
codes would also evolve to a universal solution based on the
principle of horizontal gene transfer.

Broadly speaking, we have argued that the concept of uni-
versality from statistical physics applies to biological systems
like the genetic code. The thermodynamic limit arises from a
large N number of degrees of freedom in the entities studied.
The dynamical system is driven to an attractor solution as a
result of interactions, in this case horizontal gene transfer. We
have considered a mechanism for horizontal gene transfer and
by tweaking its parameters identified which ones are the most
important. The existence of approximate homogeneity offers
evidence for universality. We would like to interrogate how
general this setup is and whether it is useful for studying other
complex systems.

Indeed, like thermodynamics and evolution itself, we wish
to consider horizontal gene transfer as an organizing prin-
ciple in Nature. Different solutions to a theory or different
possible initial conditions can exchange information with
each other through complex processes. Dynamics can then
flow the system to a late time attractor solution that is inde-
pendent of specific parameters of the model. As a proving
ground for this hypothesis, we can consider the vacuum selec-
tion problem in quantum gravity. String theory, a promising
candidate framework for marrying gravitation with quantum
theory, generically predicts a landscape of vacua, one of
which is our Universe with the Standard Models of particle
physics and cosmology as phenomenological features that
explain dynamics at small and large scales. (See, for example,
Refs. [26–28] for related reviews.) These vacua inevitably
arise as a consequence of a simple observation—we live in
four spacetime dimensions whereas the consistency of the
theory demands ten, and there is no unique way to reduce
the number of dimensions. Because they are unobserved, the
extra dimensions predicted by string theory comprise a com-
pact geometry with special properties. The moduli space of
string compactifications is believed to be connected. We can

052409-11

ARGYRIADIS, HE, JEJJALA, AND MINIC PHYSICAL REVIEW E 103, 052409 (2021)

calculate the degree of fine tuning necessary to support certain
cosmological structures and the astrophysical and chemical
preconditions necessary for life [29]. Rather than making an
explicitly anthropic argument [30,31], we can model a dy-
namics for vacuum selection which incorporates a mechanism
analogous to horizontal gene transfer to lead to universal and
optimal structures as an attractive fixed point. Thus, instead
of arguing that low energy observables such as the cosmolog-
ical constant are distributed randomly across the landscape,
horizontal gene transfer, by driving the system to the attractor
value, may obviate aspects of the measure problem. Devel-
oping and testing this hypothesis within the string theory
framework is work in progress.

ACKNOWLEDGMENTS

We are grateful to David Ardell, Nigel Goldenfeld, Su-
jay Nair, and Kalin Vetsigian for feedback and insightful
discussions. Y.-H.H. is indebted to the Science and Tech-
nology Facilities Council, UK, for support through Grant
No. ST/J00037X/1. V.J. thanks the South African Research
Chairs Initiative of the Department of Science and Technol-
ogy and the National Research Foundation for support. D.M.
thanks the Julian Schwinger Foundation and the US Depart-
ment of Energy (Grant No. DE-SC0020262) for support.

APPENDIX A: DIFFERENT INITIAL DELTA MATRICES �c,a

Initializing with different δ matrices, the optimality score converges. This can be seen in Fig. 8.

FIG. 8. Graph showing evolution of optimality score when all entities have a different initial �c,a rather than the same initial �c,a. Initial
parameters are: |i| = 3, n = 3, |A| = 9, N = 80, K = 1, H = 0.4, ν = 0.01, μ = 10−4, and � = 0.99.

APPENDIX B: VARYING INNOVATION POOL STRUCTURE

As discussed in Sec. III C, we plot what happens as we vary N , the number of entities under consideration, and K , the number
of donors. This can be seen in Figs. 9 and 10, respectively.

FIG. 9. Panel (a) shows the average time evolution of the standard deviation of the optimality score for a given N over ten runs. Panel
(b) shows N (number of entities) against the average final optimality score, averaged over ten runs. The initial parameters are the same for all
runs: |i| = 3, n = 3, |A| = 9, K = 1, H = 0.4, ν = 0.01, μ = 10−4, and � = 0.99. The error bars show the average one standard deviation
spread of final optimality scores over ten runs (to measure the rate of convergence).

052409-12

DYNAMICS OF GENETIC CODE EVOLUTION: THE … PHYSICAL REVIEW E 103, 052409 (2021)

FIG. 10. Panel (a) shows the average time evolution of the standard deviation of the optimality score for a given K over ten runs. Panel
(b) shows K (number of donors) against the average final optimality score, averaged over ten runs. The initial parameters are the same for all
runs: |i| = 3, n = 3, |A| = 9, N = 80, H = 0.4, ν = 0.01, μ = 10−4, and � = 0.99. The error bars show the average one standard deviation
spread of final optimality scores over ten runs (to measure the rate of convergence).

FIG. 11. Evolution of optimality score with a time evolving parameter H . Six runs showing the evolution of optimality score for a time
evolving H [according to Eq. (11)]. We use: |i| = 3, n = 3, |A| = 9, N = 80, K = 1, ν = 0.01, μ = 10−4, � = 0.99, k = 10−4, and H0 = 1.

052409-13

ARGYRIADIS, HE, JEJJALA, AND MINIC PHYSICAL REVIEW E 103, 052409 (2021)

FIG. 12. Panel (a) shows the average time evolution of the standard deviation of the optimality score for a given ν and μ over ten runs.
Panel (b) shows ν and μ against the average final optimality score, averaged over ten runs. The initial parameters are the same for all runs:
|i| = 3, n = 3, |A| = 9, N = 80, K = 1, H = 0.4, and � = 0.99. When varying ν, we put μ = 10−4. When varying μ, we put ν = 0.01. The
error bars show the average one standard deviation spread of final optimality scores over three runs (to measure the rate of convergence).

APPENDIX C: TIME EVOLUTION OF H

As discussed in Sec. III C. We provide additional plots
of the evolution of the optimality score with a time vary-
ing parameter H as given in Eq. (11). This can be seen in
Fig. 11.

APPENDIX D: VARYING NOISE AND FITNESS
PARAMETERS

As discussed in Sec. III D, we plot variations of ν (the
mistranslation rate), μ (the mutation rate), and � (the scale
for abstract physicochemical distance). This can be seen in
Figs. 12 and 13, respectively.

APPENDIX E: DEFINING UNIVERSALITY

We show the best fits for different values of � corresponding to the surfaces for log f as a function of ν and μ in Fig. 7.
In analogy to Eqs. (15) and (16) for � = 0., 99, we provide polynomial best fits for |i| = 2, n = 2 and |A| = 3 for � =

0.5, 0.1, 0.01. This can be seen in Figs. 14 and 15, respectively.
(1) � = 0.5:

log(f)fit = −49.6633 + 44.1899ν − 31.6042ν2 + 21.4761μ − 14.8319μ2, R2 = 0.99761. (E1)

log(f)fit = −47.5384 + 40.8086ν − 29.5881ν2 + 25.3872μ − 22.8529μ2, R2 = 0.997706. (E2)

(2) � = 0.1:

log(f)fit = −47.7527 + 61.5566ν − 39.4707ν2 + 16.8343μ − 11.4213μ2, R2 = 0.99705, (E3)

FIG. 13. Panel (a) displays a surface plot of the fitness function f in terms of � and ν. Panel (b) is simply a heatmap of the first plot. We
use: |i| = 3, n = 3, |A| = 9, N = 80, K = 1, H = 0.4, and μ = 10−4. Other parameters are randomly generated.

052409-14

DYNAMICS OF GENETIC CODE EVOLUTION: THE … PHYSICAL REVIEW E 103, 052409 (2021)

FIG. 14. Four surface plots of polynomial fit of log f in μ–ν phase space for � = 0.99 (a), 0.5 (b), 0.1 (c), and 0.01 (d). This is to be
compared with Fig. 7.

log(f)fit = −45.5857 + 59.7551ν − 39.8311ν2 + 19.962μ − 18.1142μ2, R2 = 0.996994. (E4)

(3) � = 0.01:

log(f)fit = −48.6657 + 62.1467ν − 36.9472ν2 + 11.0255μ − 6.69862μ2, R2 = 0.997404, (E5)

log(f)fit = −46.9935 + 63.104ν − 41.1589ν2 + 14.3666μ − 13.2086μ2, R2 = 0.997725. (E6)

The values |i| = 4, n = 1, |C| = 4, |A| = 3 is represented by the following map:

4

21

3

G

a b

c

(E7)

These give the surface plots of polynomial fit of log f over the μ–ν phase space shown in Fig. 15.

052409-15

ARGYRIADIS, HE, JEJJALA, AND MINIC PHYSICAL REVIEW E 103, 052409 (2021)

FIG. 15. Four surface plots of polynomial fit of ln f in μ–ν phase space for � = 0.99 (a), 0.5 (b), 0.1 (c), and 0.01 (d).

[1] G. Sella and D. H. Ardell, The coevolution of genes and genetic
codes: Crick’s frozen accident revisited, J. Mol. Evol. 63, 297
(2006).

[2] S. G. Bonitz, R. Berlani, G. Coruzzi, M. Li, G. Macino, F. G.
Nobrega, M. P. Nobrega, B. E. Thalenfeld, and A. Tzagoloff,
Codon recognition rules in yeast mitochondria, Proc. Natl.
Acad. Sci. USA 77, 3167 (1980).

[3] S. J. Freeland and L. D. Hurst, The genetic code is one in a
million, J. Mol. Evol. 47, 238 (1998).

[4] S. J. Freeland, T. Wu, and N. Keulmann, The case for an
error minimizing standard genetic code, Origins Life Evol.
Biospheres 33, 457 (2003).

[5] D. Haig and L. D. Hurst, A quantitative measure of error mini-
mization in the genetic code, J. Mol. Evol. 33, 412 (1991).

[6] C. R. Woese, D. H. Dugre, C. Saxinger, and S. A. Dugre, The
molecular basis for the genetic code, Proc. Natl. Acad. Sci. USA
55, 966 (1966).

[7] D. C. Mathew and Zaida Luthey-Schulten, On the physical basis
of the amino acid polar requirement, J. Mol. Evol. 66, 519
(2008).

[8] T. Butler, N. Goldenfeld, D. Mathew, and Z. L. Schulten,
Extreme genetic code optimality from a molecular dynamics
calculation of amino acid polar requirement, Phys. Rev. E 79,
060901(R) (2009).

[9] G. Sella and D. H. Ardell, The impact of message mutation on
the fitness of a genetic code, J. Mol. Evol. 54, 638 (2002).

[10] K. Vetsigian, C. Woese, and N. Goldenfeld, Collective evolution
and the genetic code, Proc. Natl. Acad. Sci. USA 103, 10696
(2006).

[11] K. H. Vetsigian, Collective evolution of biological and phys-
ical systems, Ph.D. thesis, Department of Physics, University
of Illinois at Urbana-Champaign, Champaign, IL, 2005, http:
//hdl.handle.net/2142/35234.

[12] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applica-
tions to Physics, Biology, Chemistry and Engineering, Studies
in nonlinearity (Westview Press, Boulder, CO, 2000).

[13] K. G. Wilson, The Renormalization Group: Critical phenomena
and the Kondo problem, Rev. Mod. Phys. 47, 773 (1975).

[14] K. G. Wilson, The renormalization group and critical phenom-
ena, Rev. Mod. Phys. 55, 583 (1983).

[15] N. D. Goldenfeld, Lectures On Phase Transitions And The
Renormalization Group, Frontiers in Physics, Vol. 85 (West-
view Press, 1992).

[16] D. J. Baylis, Error Correcting Codes: A Mathematical Introduc-
tion (Taylor & Francis, London, 2017).

[17] S. Morteza Mirafzal and M. Ziaee, A note on the automorphism
group of the Hamming graph, 2019, http://dx.doi.org/10.13140/
RG.2.2.24817.33125

052409-16

https://doi.org/10.1007/s00239-004-0176-7
https://doi.org/10.1073/pnas.77.6.3167
https://doi.org/10.1007/PL00006381
https://doi.org/10.1023/A:1025771327614
https://doi.org/10.1007/BF02103132
https://doi.org/10.1073/pnas.55.4.966
https://doi.org/10.1007/s00239-008-9073-9
https://doi.org/10.1103/PhysRevE.79.060901
https://doi.org/10.1007/s00239-001-0060-7
https://doi.org/10.1073/pnas.0603780103
http://hdl.handle.net/2142/35234
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.55.583
http://dx.doi.org/10.13140/RG.2.2.24817.33125

DYNAMICS OF GENETIC CODE EVOLUTION: THE … PHYSICAL REVIEW E 103, 052409 (2021)

[18] W. Bialek, Biophysics: Searching for Principles (Princeton
University Press, Princeton, NJ, 2012).

[19] R. B. J. T. Allenby and A. Slomson, How to Count: An Intro-
duction to Combinatorics, Second Edition, 2nd ed. (Chapman
& Hall/CRC, Boca Raton, FL, 2010).

[20] P. J. Becich, B. P. Stark, H. S. Bhat, and D. Ardell, CMCpy: Ge-
netic code-message coevolution models in python, Evol. Bioinf.
Online 9, 111 (2013).

[21] C. R. Woese, On the evolution of cells, Proc. Natl. Acad. Sci.
USA 99, 8742 (2002).

[22] B. Widom, Equation of state in the neighborhood of the critical
point, J. Chem. Phys. 43, 3898 (1965).

[23] K. B. Petersen and M. S. Pedersen, The Matrix Cookbook
(Technical University of Denmark, Lyngby, 2008), Version
20081110.

[24] U. Alon, An Introduction to Systems Biology (Chapman &
Hall/CRC Mathematical and Computational Biology, CRC
Press LLC, Boca Raton, FL, 2019).

[25] S. Hoshika, N. A. Leal, M.-J. Kim, M.-S. Kim, N. B. Karalkar,
H.-J. Kim, A. M. Bates, N. E. Watkins, H. A. SantaLucia,

A. J. Meyer, S. DasGupta, J. A. Piccirilli, A. D. Ellington, J.
SantaLucia, M. M. Georgiadis, and S. A. Benner, Hachimoji
DNA and RNA: A genetic system with eight building blocks,
Science 363, 884 (2019).

[26] F. Denef and M. R. Douglas, Computational complexity of the
landscape, Ann. Phys. 322, 1096 (2007).

[27] V. Jejjala, M. Kavic, and D. Minic, Time and M-theory, Int. J.
Mod. Phys. A22, 3317 (2007).

[28] Y.-H. He, The Calabi-Yau landscape: From geometry, to
physics, to machine learning, arXiv:1812.02893.

[29] F. C. Adams, The degree of fine-tuning in
our universe—and others, Phys. Rep., 807, 1
(2019).

[30] S. Weinberg, The cosmological constant problem, Rev. Mod.
Phys. 61, 1 (1989).

[31] J. Polchinski, The cosmological constant and the string
landscape, in The Quantum Structure of Space and Time:
Proceedings of the 23rd Solvay Conference on Physics, Brussels,
Belgium, 1–3 December 2005 (World Scientific, Singapore,
2006), pp. 216–236.

052409-17

https://doi.org/10.4137/EBO.S11169
https://doi.org/10.1073/pnas.132266999
https://doi.org/10.1063/1.1696618
https://doi.org/10.1126/science.aat0971
https://doi.org/10.1016/j.aop.2006.07.013
https://doi.org/10.1142/S0217751X07036981
http://arxiv.org/abs/arXiv:1812.02893
https://doi.org/10.1016/j.physrep.2019.02.001
https://doi.org/10.1103/RevModPhys.61.1

